23.2.2中心对称图形
23.2.2中心对称图形
![23.2.2中心对称图形](https://img.taocdn.com/s3/m/288aa23f43323968011c928f.png)
6.探究:经过中心对称图形的对称中心的一条直线, 把这个图形分割成两个部分,那么这两部分有什么关 系?
经过中心对称图形的对称中心的一条直线, 把这个图形分割成两个部分,那么这两部分全等。
如图,工人师傅想把图中的这块材料块分为面积相等的两 部分,应该怎样修?画出示意图并说明理由
3、观察图形,并回答的问题:
5. 如图,已知△ ABC 与△ CDA 关于点 O 对称,过点 O 任 作直线 EF分别与 AD、 BC交于点E、点 F,则,下列结论 正确的有 。 ①直线BD必经过点O; ②四边形ABCD是中心对称图形; ③点E和点F是关于中心O的对称点; ④△AOE与△COF成中心对称; ⑤四边形DEOC与四边形BFOA的面积相等.
观察下面的图案,如果图案绕某一点旋转, 那么,旋转多少度可以和原图重合?
可以旋转60°,120°, 180°,240°,300° 可以旋转90°,180°, 270°,
(1)如图,将线段AB绕它的中点旋转 180°,你有什么发现?
A
· 0
B
可以发现:线段AB绕它的中点旋转180° 后与本身重合。
数学九年级上册
复习回顾 ① 中心对称的概念
把一个图形绕着某一点O旋转 180°,如 果它能够与另一个图形重合,那么就说这两个 图形关于这个点对称(或中心对称). ② 中心对称的性质
(1)中心对称的两个图形,对称点所连 线段都经过对称中心,而且被对称中心所平分; (2)中心对称的两个图形是全等图形.
①是中心对称图形,但不是轴对称图形; ②不是中心对称图形,但是轴对称图形; ③即是中心对称图形,又是轴对称图形; ④是中心对称图形,但不是轴对称图形;
⑤不是中心对称图形,但是轴对称图形;
随堂练习
人教版数学九年级上册23.2.2 中心对称图形教案
![人教版数学九年级上册23.2.2 中心对称图形教案](https://img.taocdn.com/s3/m/7e0f66afc9d376eeaeaad1f34693daef5ef713dd.png)
23.2.2中心对称图形●类比导入(1)欣赏:这些图案有什么共同的特征?(2)回顾:轴对称图形的特点是沿一条直线折叠,直线两旁的部分能够互相重合.(3)操作:你能将下面图形绕其上一点旋转180°,使旋转前后的图形完全重合吗?找出这些图形的共同特征.【教学与建议】教学:类比轴对称图形,中心对称图形,加强新旧知识之间的对比.建议:类比轴对称图形,学习中心对称图形.比较出两种图形的异同.●悬念激趣[魔术大揭秘]将图①中的四张扑克牌中的一张旋转180°后,得到图②,你知道旋转了哪一张扑克牌吗?议一议.图①图②【教学与建议】教学:通过魔术游戏及大家常见的扑克牌引入课题,激发学生学习兴趣.建议:班级先分组,然后实际操作比赛.命题角度1中心对称图形的识别识别中心对称图形,会辨别轴对称图形与中心对称图形.【例1】(1)下列标志既是轴对称图形又是中心对称图形的是(A)A B C D(2)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是(A)A B C D命题角度2中心对称图形的开放性作图命题方式:①设计中心对称图形;②将原有图形分割为若干个中心对称图形.【例2】(1)图①和图②中所有的小正方形都全等,将图①的正方形放在图②中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是__③__.图①图②(2)有一块矩形土地ABCD,其中有一口如图所示的圆形井,现将此土地分给甲、乙两户承包种植蔬菜.若使两家得到的面积一样大,请帮他们分一分.(保留作图痕迹)解:如图,直线l即为所求的痕迹.必胜的下棋游戏要玩这种游戏,需要准备一张正方形纸ABCD(如图所示),再找一些形状、大小相同,而且对称的小东西,例如同样分值的硬币、围棋棋子等等.规则:两人对垒,两个人依次把棋子一个一个放到纸上的任意位置,一直到没有地方再放为止,最后放下棋子的那个人为赢家.必胜法则:假设我们使走第一步棋的人获胜,那他只需把他的第一个棋子放到正方形对角线的交点O处,并使棋子的对称中心和点O重合;以后每一次把自己的棋子放到对手所放棋子的对称位置上(比如如图:对方放在M处,我就放M′处,对手放N处,我就放N′处等等).只要遵守这个规则,那么走第一步的人总会找到安放棋子的位置,最后必然获胜.几何道理:正方形是中心对称图形,对角线的交点是对称中心.经过对称中心的任意直线(如图的EF等)都把图形分成相等的两部分,因此,除掉这个中心O外,任何一点(放下的任一棋子)必然有它对称的另一点(放棋子的位置).由此可知,只要走第一步棋的人占领了图形的中心位置,那么无论他的对手把棋子放到什么位置,必然会找到一个和对手刚刚放下的棋子位置相对称的空位子.又因为棋子位置每次必须由后走的人选择,因此玩到最后,先下的人必胜.高效课堂教学设计1.了解中心对称图形的概念及其性质.2.让学生掌握中心对称图形性质的应用.▲重点中心对称图形的概念、性质及其运用.▲难点中心对称图形性质的应用.◆活动1新课导入剪纸艺术是我国文化宝库中的优秀瑰宝.如右图是一幅剪纸作品,将它绕其中心点旋转180°后能与自身重合.我们把具有这样特征的图形叫做中心对称图形.观察下列图案,它们都具有这样的特征吗?本节课我们就学习中心对称图形的一些知识.◆活动2探究新知1.教材P66思考.提出问题:(1)线段AB绕点O旋转180°后的图形与它本身有什么关系?(2)▱ABCD绕点O旋转180°后,点A的对应点为__点C__,点C的对应点为__点A__,点B的对应点为__点D__,点D的对应点为__点B__,旋转后的图形与它本身有什么关系?学生完成并交流展示.2.(1)除了上面所讲的线段、平行四边形都是中心对称图形外,你还能说出一些其他的中心对称图形吗?(2)说说中心对称图形具有哪些特点?它与中心对称有什么区别和联系?学生完成并交流展示.◆活动3知识归纳1.把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形__重合__,那么这个图形叫做中心对称图形,该点就是__它的对称中心__.2.判断中心对称图形的“两个方法”:①若一个图形上,存在这样的一个点,使整个图形绕着这个点旋转180°后能够与原来的图形重合,则这个图形就是中心对称图形;②若图形中的对应点的连线都经过同一个点,并且被这个点平分,则这个图形就是中心对称图形.3.中心对称图形是指一个图形本身是中心对称的,它反映了一个图形的本质特征.而中心对称是指两个图形关于某一点对称,揭示的是两个全等图形之间的一种位置关系.◆活动4例题与练习例1随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是(A)例2判断下列图形是否为中心对称图形,如果是,请指出它们的对称中心.(1)线段;(2)等腰三角形;(3)平行四边形;(4)矩形;(5)圆;(6)角.解:(1)是中心对称图形,对称中心是线段的中点;(3)(4)是中心对称图形,对称中心是它们对角线的交点;(5)是中心对称图形,对称中心是圆心;(2)(6)不是中心对称图形.例3下列各图是中心对称图形吗?如果是,请画出它们的对称中心.解:三种图形都是中心对称图形,它们的对称中心如图中点A,B,C所示.练习1.教材P67练习第1,2题.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是(C)A B C D3.下列四个图形中,既是轴对称图形又是中心对称图形的是(B)A B C D4.如图,在矩形中挖去一个正方形,并用无刻度的直尺(即直尺只具有连线的功能),准确作出直线l,将剩下图形的面积平分.(保留作图痕迹)解:如图,直线l即为所求.◆活动5课堂小结1.中心对称的定义,会判断某个图形是否为中心对称图形.2.中心对称图形的性质及运用.1.作业布置.(1)教材P69习题23.2第2,8题;(2)对应课时练习.2.教学反思。
人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)
![人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)](https://img.taocdn.com/s3/m/fd41ffd3bdeb19e8b8f67c1cfad6195f312be8bc.png)
美丽的中心对称图形
你能设计出中心对称图形吗?
巩固训练
1. 剪纸是我国具有独特艺术风格的民间艺术,反 映了劳动人民对现实生活的深刻感悟. 下列剪纸 图案中,是中心对称图形的有( A )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
2. 下列图形是轴对称图形但不是中心对称 图形的是( D )
A
B
C
D
3. 如图,直线 a⊥b 于点O,曲线 c 关于点 О 成中心对称,点 A 的对称点是 A',AB⊥a 于点B,A'D⊥b 于点 D. 若 OB=3,OD=2,则 阴影部分的面积为___6___.
4. 图①②都是由边长为 1 的小等边三角形构成 的网格,每个网格图中有3个小等边三角形已涂上阴 影. 请在余下的空白小等边三角形中,分别按下列要 求选取一个涂上阴影: (1)使得4个阴影小等边三角形组成一个轴对称图形. (2)使得4个阴影小等边三角形组成一个中心对称图形.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
【画一画】
1. 下图是中心对称图形的一部分及对称中心,请你
补如全何它寻的找另中一心部对分称. A
B
图形的对称中心?
H G
C
D
F
E
2. 如图,请你用无刻度的直尺画一条直线,把下 面的平行四边形分成完全相等的两部分.
几何画板演示
【归纳】过对称中心的直线将中心对称图 形分成全等的两部分.
练习
如图,直线 EF 经过▱ABCD 的对角线的交 点O,若 AE=3,四边形 AEFB 的面积为15, 则 CF=__3___,四边形 EDCF 的面积为__1_5___.
后的图形能够与原来的图形重合,那么这个图形叫
23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册
![23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册](https://img.taocdn.com/s3/m/23f584b15ff7ba0d4a7302768e9951e79b896995.png)
3. 数学建模:学生能够将中心对称图形的性质应用到实际问题中,通过建立数学模型来解决问题,培养学生的数学应用能力和解决问题的能力。
教学难点与重点
1. 教学重点:
(1)中心对称图形的概念:本节课的核心是让学生理解并掌握中心对称图形的定义,即图形中心有一个点,称为对称中心,使得图形上的任意一点关于对称中心都有对应的一点,这两点距离对称中心相等,且连线垂直平分。
- 针对学生在自主学习和合作学习中的困难,提供更多的学习资源和指导,帮助学生提高自主学习能力和团队合作能力。
- 定期进行教学反思和评估,及时调整教学策略和方法,以提高教学效果。
教学评价与反馈
2. 小组讨论成果展示:通过小组讨论成果展示,评估学生在合作学习中的参与度和对中心对称图形概念、性质的理解程度。
6. 学生自我评价与反馈:鼓励学生进行自我评价和反馈,让他们认识到自己的优点和不足,并提出改进建议。
7. 家长反馈:通过与家长的沟通,了解学生在家庭中的学习情况,并根据家长反馈给予学生适当的指导和建议。
8. 定期进行教学评价与反馈,及时调整教学策略和方法,以提高教学效果。
课后作业
1. 请学生运用中心对称图形的性质,设计一个简单的几何作图,并说明作图步骤和原理。
4. 已知一个矩形ABCD,点E是CD边上的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。
5. 已知一个正方形ABCD,点E是对角线AC的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。
九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)
![九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)](https://img.taocdn.com/s3/m/c9531265ff4733687e21af45b307e87101f6f826.png)
(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他
人教版初中数学九年级上册精品教学课件 第23章 旋转 23.2.2 中心对称图形
![人教版初中数学九年级上册精品教学课件 第23章 旋转 23.2.2 中心对称图形](https://img.taocdn.com/s3/m/3efea6a6c9d376eeaeaad1f34693daef5ff71377.png)
互动课堂理解
点拨:中心对称图形就是把一个图形绕着某个点旋转180°后能 与自身重合,轴对称图形就是把一个图形沿着某条直线进行折叠后, 直线两旁的部分能够完全重合.应该注意中心对称图形与轴对称图 形都是指一个图形.解决此类问题应先从一般几何图形入手,熟练 掌握常见的几何图形的对称性,如圆、正方形等这些既是中心对称 图形又是轴对称图形的特例.
关闭
称图形能画拼出出来3.个中心对称图形,如图.
答案
互动课堂理解
识别中心对称图形 【例】 下列图形中,既是轴对称图形又是中心对称图形的是
()
分析:根据中心对称图形与轴对称图形的概念逐一进行识别即可, 能够正确理解其概念是解决该类问题的关键.
解析:A是轴对称图形,不是中心对称图形,不合题意;B是轴对称图 形,不是中心对称图形,不合题意;C不是轴对称图形,是中心对称图 形,不合题意;D是轴对称图形,也是中心对称图形,符合题意.
关闭
D
答案
1
2
3
4
5
快乐预习感知
4.在中国的园林建筑中,很多建筑图形具有对称性.下图是一个破损 花窗的图形,请把它补画成中心对称图形.
关闭
如图.
答案
1
2
3
4
5
快乐预习感知
5.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC, ∠BAC≠90°, 将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼 成一个平面四边形,则能拼出几个中心对称图形?把拼成的中心对
123Fra bibliotek45
快乐预习感知
1.剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现 实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )
23.中心对称图形课件
![23.中心对称图形课件](https://img.taocdn.com/s3/m/2762d885ac51f01dc281e53a580216fc700a5331.png)
23.2.2中心对称图形
【导引】
中心对称的作图
先分别作出①②③④四种情况的图形,再运用中心对称图形的定义
加以辨认.根据题意,可作出四种情况的图形如图1,其中旋转
180°后能与自身重合的只有第2个图形,∴将②涂黑能构成中心对
称图形.如图2,故答案填②.
图1 图2
23.2.2中心对称图形
想一想 中心对称与中心对称图形之间有什么与区分?
23.2.2中心对称图形 例3 如图,有一张纸片,纸片被分为一个矩形和一个菱形,请你 画一条直线把这张纸片分成面积相等的两部分.
方法归纳:对于这种由两个中心对称图形组成的复合图
形,平分面积时,常用方法是找到它们的对称中心,再过
对称中心作直线.
23.2.2中心对称图形
【练一练】
1.如图,直线EF经过平行四边形ABCD的对角线的交点O,若 AE=2 cm,四边形AEFB的面积为12 cm2,则CF=__2_c_m____, 平行四边形ABCD的面积为_2_4_c_m__2__.
23.2.2中心对称图形
当堂练习
1. 下列图案都是由字母“ m ”经过变形、组合而成
的,其中不是中心对称图形的是 ( B )
A
B
C
D
2.下列图形中既是轴对称图形又是中心对称图形的是( C)
A. 锐角 B. 等边三角形 C. 线段 D. 平行四边形
23.2.2中心对称图形
3. 世界因为有了圆的图案,万物才显得富有生机,以下来自现实
A
O
B
O
(1)线段
(2)平行四边形
共同点:(1)都绕一点旋转了180°;
(2)都与原图形完全重合.
23.2.2中心对称图形
人教版九年级上23.中心对称图形
![人教版九年级上23.中心对称图形](https://img.taocdn.com/s3/m/e79f548a185f312b3169a45177232f60ddcce7b1.png)
重点及难点
重点:中心对称图 形的有关概念及其 它的运用.
难点:判断一个图 形是不是中心对称 图形
教学目标
知识目标:了解中 心对称图形的概念 并掌握其应用。 能力目标:培养学 生的概括能力和实 践能力。 情感目标:通过合 作交流,探索实践 培养学生的主体意 识。
二 说教法
三 说学法
1、通过视察—探 究—归纳培养学生 收集、提炼和归纳 信息的能力。
图形个数
两个图形
一个图形
对称点位置
对称点分别在两个图形上
对称点在图形本身
联系
巩固练习
结 论
中心对称的多边形很多,如边数为偶数的正多边形都是中心对称图形。
巩固新知
2、在26个英文大写正体字母中,哪些字母是中心 对称图形?哪些字母是轴对称图形?
ABCDEFGH I J KLM NOPQRSTUVWXYZ
23.2.2 中心对称图形 说课稿
1、说教材 2、说教法 3、说学法 4、说教学过程 5、说板书设计
一 说教材
地位及作用
中心对称图形与旋 转有着不可分割的 联系,它完善了初 中部分对“对称图 形”(轴对称图形、 中心对称图形)的 知识讲授,起到了 承上启下的作用, 为后面学习图形的 设计打下基础。
3、设计意图2
利用多媒体的优势展示了平行四边形绕它 的对角线的交点旋转180度能与自身重合,这 样有利于让学生用语言描述出中心对称图形的 概念,培养了学生的语言表达能力和归纳总结 的能力.
1、对照中心对称与中心对称图形的异同点。
中心对称
中心对称图形
研究对象是两个图形 研究对象是一个图形
变化情势都是图形绕对称中心旋转180O
创设情景:(由设置扑克牌魔术表演引入)
23.2.2 中心对称图形 课件-2024-2025学年人教版数学九年级上册
![23.2.2 中心对称图形 课件-2024-2025学年人教版数学九年级上册](https://img.taocdn.com/s3/m/a0d2c962eef9aef8941ea76e58fafab068dc4418.png)
第 二
旋转
十
三
23.2.2 中心对称图形
章
-
23.2.2 中心对称图形
探究与应用
课堂小结与检测
探 活动1 理解中心对称图形的概念,能识别中心对称图形
究
与 [操作尝试]
应 用
Hale Waihona Puke (1)如图23-2-14,将线段AB绕它的中点
旋转180°,你有什么发现?
图23-2-14
(2)如图23-2-15,将▱ABCD绕它的两条对
应
用
图23-2-17
探 究
变式 如图23-2-18,四边形ABCD是菱形,O是其两条对角线的
与 交点,直线l1,l2,l3均过点O.当菱形的两条对角线的长分别为6
应
用 和8时,图中阴影部分的面积为 12 .
图23-2-18
探
活动2 理解中心对称图形的性质,并能简单运用
究 与
例3 (教材补充例题)图23-2-19是3×3的正方形网格,其中已
角线的交点O旋转180°,你有什么发现?
图23-2-15
解:(1)线段AB绕它的中点旋转180°后与它本身重合.
(2)▱ABCD绕它的两条对角线的交点O旋转180°后与它本身重合.
探 究
[概括新知]
与 1.中心对称图形的相关概念:把一个图形绕着某一个点旋转
应 用
180° ,如果 旋转后 的图形能够与原来的图形 重合 ,那
解:(1)(2)是中心对称图形,对称中心是点O(如图).
课 3.如图23-2-22是4×4的正方形网格,请在其中选取一个白色
堂
小 的小正方形涂黑,使图中黑色部分是一个中心对称图形.
人教版九年级数学上册 23.2.2 中心对称图形(22张PPT)课件
![人教版九年级数学上册 23.2.2 中心对称图形(22张PPT)课件](https://img.taocdn.com/s3/m/d0c1d1a1afaad1f34693daef5ef7ba0d4a736d30.png)
并且被对称中心平分
如果一个图形绕着一个 点旋转180后的图形能 够与原来的图形重合, 那么这个图形叫做中心 对称图形,这个点就是 它的对称中心
________
①两个图形的关系
区别
②对称点在两个图形上
①具有某种性质的一个图形 ②对称点在一个图形上
若把中心对称图形的两部分分别看作两图,则它们成中心对称. 联系 若把中心对称的两图看作一个整体,则成为中心对称图形.
(2)平行四边形、长方形和正方形都是中心对称 图形,对角线的交点是它们的对称中心. ( )
(3)角是轴对称图形也是中心对称图形. ( )
(4)在成中心对称的两个图形中,对应线段平行
(或在同一直线上)且相等.
()
3. 判断下列图形是否是中心对称图形:
√
√ ×
√
√
√
√
√
4. 观察图形,并回答下面的问题: (1)哪些只是轴对称图形?(3)(4)(6) (2)哪些只是中心对称图形?(1) (3)哪些既是轴对称图形,又是中心对称图形?
D
O
B
C
如果一个图形绕一个点旋转180°后,能和原来的图形
互相重合,那么这个图形叫做中心对称图形;这个点
叫做它的对称中心;互相重合的点叫做对称点.
图中____A_B_C__D_是中心对称图形 对称中心是__点__O__
点A的对称点是_点__C___
点D的对称点是_点__B___
小练习
下列图形是中心对称图形吗?
复习中心对称的概念
把一个图形绕着某一点旋转 180°,如果它能够与另一个 图形重合,那么就说这两个图形关于这个点对称或中心对 称.这个点叫做对称中心.
这两个图形在旋转后能重合的对应点叫做关于对称中心的 对称点.
九年级数学人教版(上册)课件23.2.2中心对称图形
![九年级数学人教版(上册)课件23.2.2中心对称图形](https://img.taocdn.com/s3/m/3ffb0da1fbb069dc5022aaea998fcc22bcd143a1.png)
2、学练第62页课时达标演练2、3、6题
1.若设点M(a,b),
M点关于X轴的对称点M1( a,-b ) M点关于Y轴的对称点M2( - a, b ), M点关于原点O的对称点M3(-a,-b )
作业:课本P69 第3、4两题。
谢谢
F(-2,1) G(-2,-1)
05:45:46
(2,-1) (2,1)
填空:
1.已知点M的坐标为(3,-5),则关于x轴对称的点的坐
标点M’的坐标为 (3,5),关于y轴对称的点M’的坐标
为
,关(于-3原,-5点) 对称的点的坐标为
.
(-3,5)
2.点M(-2,3)与点N(2,3)关于__y_轴___对称;
,
点 P 到 y 轴的距离为 1 ;
6、点 P(-3,-4)关于 y 轴对称的点的坐标为
(3,-4),点 P 到 x 轴的距离为 4
,
点 P 到 y 轴的距离为 3 .
y
O
x
课堂小结
本节课你学会了什么?
两个点关于原点对称时,它 们的坐标符号相反,即点P (x,y)关于原点的对称点P′ 的坐标是(-x,-y),及利用 这个特点解决一些实际问题.
中心对称图形
• 学习目标: 1、理解点 P 与点 P′关于原点对称时,它们的横纵 坐标的关系。 2、会用关于原点对称的点的坐标的关系解决有关问 题。
• 学习重难点: 点 P(x,y)关于原点的对称点 P′(-x,-y)及其应 用。
回顾旧知
1. 什么叫中心对称和中心对称图形?
把一个图形绕着某一点旋转180,如 果他能与另一个图形重合,那么就说这两 个图形关于这点成中心对称。
23.2《中心对称图形》人教版九年级数学上册教学课件2
![23.2《中心对称图形》人教版九年级数学上册教学课件2](https://img.taocdn.com/s3/m/dfc89ded68dc5022aaea998fcc22bcd126ff42de.png)
随堂练习 练习3
下面的扑克牌中,哪些牌面是中心对称图形?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习 练习4
在26个英文大写正体字母中,哪些字母是中心对称图形?
典型例题
A. 二瓣
B. 三瓣
C. 四瓣
D. 五瓣
E. 六瓣
(1) 以上5个图形中是轴对称图形的有__A_、_B_、__C_、_D_、__E_,是中心对 称图形的有_A_、_C_、__E_;(分别用图形的代号A、B、C、D、E填空).
(2) 若“花瓣”在圆中是均匀分布的,试根据上题的结果总结
“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的 规律:“_花__瓣__”_个__数__为_偶__数__时_,__这__个_图__形__既_是__轴__对_称__图__形_又__是__中_心__对__称_图形;
区别
_两___个图形之间的关系. 对称点分别在_两__个图形上. 对称中心在_两__个图形之间.
具有某种性质的_一__个图形. 对称点在__同__一__个图形上. 对称中心在图形_上__或其_内__部__.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳 中心对称图形与轴对称图形的区别与联系?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
做一做 判断下列图形是不是中心对称图形?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
做一做 下列图形是中心对称图形吗?如果是,请指出对称中心.
(1)
(2)
都是中心对称图形.
(3)
(4)
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳 中心对称与中心对称图形的区别与联系?
23.2.2 中心对称图形
![23.2.2 中心对称图形](https://img.taocdn.com/s3/m/dd36767a182e453610661ed9ad51f01dc2815738.png)
美丽的中心对称图形在建筑物和工艺品等领域非常常见
THANKS
D
D
3.下列图形中,是轴对称图形但不是中心对称图形的是( )4. 在线段、等腰梯形、平行四边形、矩形、正六边形、圆、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有( ) A. 3个 B.4个 C.5个 D.6个
3
有一块如图(1)所示的钢板,工人师傅想把它分成面积相等 的两部分,请你在图中画出分割方法.导引:过中心对称图形对称中心的直线将图形分成全等的两部分.可以 将不规则图形分割成若干规则的中心对称图形,然后再去解题. 解:钢板可看成由上、下两个矩形构成(如图(2)所示),矩形是中 心对称图形,过对称中心的任一直线把矩形分成全等的两部分, 自然平分其面积,而矩形的对称中心是两条对角线的交点,因 此,先作出两矩形的对称中心,过这两个对称中心作直线即 可.(画法不唯一)
判断下列图形是否为中心对称图形. 解:(1)(3)(5)(6)(9)是中心对称图形, (2)(4)(7)(8)不是中心对称图形.
(1)
(9)
(8)
(7)
(6)
(5)
(4)
(3)
(2)
指出如图所示的汽车标志中的中心对称图形.
√
√
×
×
×
(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形, 但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取1个涂上阴影,使4个阴影小正方形组成一个既是轴对称图形,又是中心对称图形.
如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.
23.2.2-中心对称图形(课件)
![23.2.2-中心对称图形(课件)](https://img.taocdn.com/s3/m/42a19c4f2f3f5727a5e9856a561252d380eb20ca.png)
(2)将(1)中画出的图形与原图形看成一个整体图形,
请写出这个整体图形对称轴的条数;这个整体图形至 少旋转多少度与自身重合?
O
第23页,共26页。
如图,四边形ABCD关于点O是中心对称图形,
求证:四边形ABCD是平行四边形
A
D
证明: 连结AC、BD
O·
B
C
∵四边形ABCD关于点O是中心对称图形
⑶ 下列多边形中,是中心对称图形而不是
轴对称图形的是( )A A平行四边形 B矩形 C菱形 D正方形
⑷ 已知:下列命题中真命题的个数是( B)
①关于中心对称的两个图形一定不全等
②关于中心对称的两个图形是全等形
③两个全等的图形一定关于中心对称
A0 B1 C2
D3
第15页,共26页。
A F
O
D
C OA__OB
(2)在右图中y5 ,画出与△ABC关于x轴对称的y5△A1B1C1
4
②3 ①
4
C1
3 B1
2
2
1
1
A1
-5 -4 -3 -2 -1 O -1
1 2 3 4 5x
-5 -4 -3 -2 -1 O 1 2 3 4 5 x
-1
A
③ -2 -3
④
-4
-5
第20页,共26页。
-2
-3 B -4
C -5
☆典例分析
区别的概念
区别: 中心对称指两个全等图形的相互位置关系
中心对称图形指一个图形本身成中心对称
联系: 如果将中心对称图形的两个图形看成一个整体,
则它们是中心对称图形
如果将中心对称图形,把对称的部分看成 两个图形,则它们是关于中心对称。
23.2.2中心对称图形
![23.2.2中心对称图形](https://img.taocdn.com/s3/m/63219571af1ffc4ffe47ac31.png)
中心对称图形与轴对称图形有什么区别 与联系?
轴对称图形 1 2 有一条对称轴—— 直线 中心对称图形 有一个对称中心—— 点
180° 图形沿轴对折(翻转180° ) 图形绕对称中心旋转
3
翻转前后的图形完全重合 旋转前后的图形完全重合
名称
中心对称 把一个图形绕着某一个点旋转180,如果他能 够与另一个图形重合,那么就说这两个图形 关于这点对称,这个点叫做对称中心,两个图 形关于点对称也称中心对称,这两个图形中 的对应点叫做关于中心的对称点 ①两个图形完全重合; ②对应点连线都经过对称中心,并且被对称 中心平分 ①两个图形的关系 ②对称点在两个图形上
后三个图形都是旋转1800后能与自身重合
比 较
中心对称与中心对称图形是两个既有 联系又有区别的概念.
区别: 中心对称指两个全等图形的相互位置关系, 中心对称图形指一个图形本身成中心对称.
联系: 如果将中心对称图形的两个图形看成一个整体, 则它们是中心对称图形. 如果将中心对称图形对称的部分看成两个图形, 则它们成中心对称.
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
旋转 2700
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
旋转 3600
正方形是中心对称图形吗?正方形绕两条对角线 的交点旋转多少度能与原来的图形重合?能由此 验证正方形的一些特殊性质吗?
旋转 nx900
正方形是中心对称图形;它绕两条对角线的交点旋转 900或其整数倍,都能与原来的图形重合,因此,可以 验证正方形的四边相等、四角相等、对角线互相垂直平 分等性质。
23.2.2 中心对称图形课件(共30张PPT)
![23.2.2 中心对称图形课件(共30张PPT)](https://img.taocdn.com/s3/m/7698782990c69ec3d5bb7557.png)
广东省怀集县怀城镇城东初级中学 梁伟
观察总结
A
D
O
B
C
把一个图形绕着某一个点旋转180,如果旋转后的 图形能够与原来的图形重合,那么这个图形叫做 中心对称图形;这个点叫做它的对称中心;互相 重合的点叫做对称点.
心的对称点.
中心对称性质
A C B O A'
B' C'
(1)关于中心对称的两个图形是全等形; (2)关于中心对称的两个图形,对称点 所连线段都经过对称中心,而且被对称中 心平分.
中心对称与轴对称有什么区别?又有什么联系?
观察思考
(1)这些图形有什么共同的特征? 都是旋转对称图形。
后三个图形都是旋转1800后能与自身重合
梁伟 广东省怀集县怀城镇城东初级中学
探索发现
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
还有其它英文字 母是中心对称的
练一练
知识点一 5、在英文字母VWXYZ中,是 中 心对称的英文字母的个数有( B)个. A . 1 B . 2 C . 3 D. 4 6、所有的平行四边形都是
【小组讨论1】 (1)判断一个图形是否是中心对称 图形的关键是什么 ?
探索
(1)平行四边形是中心对称图形吗?如果是,
请找出它的对称中心,并设法验证你的结论。
(2)根据上面的过程,你能验证平行四边形的 哪些性质?
O
(1)平行四边形是中心对称图形,对称中心是两 条对角线的交点。 (2)能验证平行四边形的对边相等、对角相等、 对角线互相平分等性质。