恒温箱温度控制电路设计
基于单片机的恒温箱控制系统设计
基于单片机的恒温箱控制系统设计一、引言在现代科技的众多应用领域中,恒温控制技术扮演着至关重要的角色。
无论是在医疗、化工、科研还是在食品加工等行业,对环境温度的精确控制都有着严格的要求。
恒温箱作为实现恒温控制的重要设备,其性能的优劣直接影响到相关工作的质量和效率。
基于单片机的恒温箱控制系统凭借其精度高、稳定性好、成本低等优点,得到了广泛的应用。
二、系统总体设计(一)设计目标本恒温箱控制系统的设计目标是能够在设定的温度范围内,精确地控制箱内温度,使其保持恒定。
温度控制精度为±05℃,温度调节范围为 0℃ 100℃。
(二)系统组成该系统主要由温度传感器、单片机、驱动电路、加热制冷装置和显示模块等部分组成。
温度传感器用于实时采集恒温箱内的温度数据,并将其转换为电信号传输给单片机。
单片机作为核心控制单元,对采集到的温度数据进行处理和分析,根据预设的控制算法生成控制信号,通过驱动电路控制加热制冷装置的工作状态,从而实现对箱内温度的调节。
显示模块用于实时显示箱内温度和系统的工作状态。
三、硬件设计(一)单片机选型选择合适的单片机是系统设计的关键。
考虑到系统的性能要求和成本因素,本设计选用了_____型号的单片机。
该单片机具有丰富的片上资源,如 ADC 转换模块、定时器/计数器、通用 I/O 口等,能够满足系统的控制需求。
(二)温度传感器选用_____型号的数字式温度传感器,其具有高精度、低功耗、响应速度快等优点。
传感器通过 I2C 总线与单片机进行通信,将采集到的温度数据传输给单片机。
(三)驱动电路驱动电路用于控制加热制冷装置的工作。
加热装置采用电阻丝加热,制冷装置采用半导体制冷片。
驱动电路采用_____芯片,通过单片机输出的控制信号来控制加热制冷装置的通断,从而实现温度的调节。
(四)显示模块显示模块选用_____型号的液晶显示屏,通过单片机的并行接口与单片机进行连接。
显示屏能够实时显示箱内温度、设定温度以及系统的工作状态等信息。
恒温箱温度控制系统的设计任务书
编号:毕业设计任务书题目:恒温箱温度控制系统的设计学院:机电工程学院专业:电气工程及其自动化学生姓名:孙卉学号:1200120304指导教师单位:机电工程学院姓名:韦寿祺职称:教授题目类型:☐理论研究☐实验研究☑工程设计☐工程技术研究☐软件开发2015年12月28日一、毕业设计(论文)的内容恒温箱广泛应用在医疗、工业生产和食品加工等领域,其对温度稳定性要求较高,如何实现对温度的精确控制是恒温箱温度控制系统的关键。
温度控制系统通常由被控对象、测量装置、调节器和执行机构等组成。
目前,测量装置大多采用温度传感器采集温度,但是在常规的环境中,温度受其它因素影响较大,而且难以校准,因此,温度也是较难准确测量的一个参数,常规方法测量温度误差大、测量滞后时间长。
当前,普遍使用单片机或者PLC实现恒温箱温度的智能控制,两种控制方式各有优势。
本课题要求设计一种智能恒温控制系统,选择合适的控制方式实现温度的智能控制,具体任务如下:1、收集有关恒温箱的文献资料,了解恒温箱的工作原理、工艺要求等,重点学习掌握恒温箱温度控制系统的构成、运行参数、控制特点等,选择合适的控制方式,制定恒温箱电热温度控制系统的控制方案。
2、建立恒温箱电热温度控制系统的数学模型,应用仿真软件进行仿真,选择调节器参数,分析系统稳态和动态控制性能指标。
3、完成恒温箱电热温度控制系统的硬件电路设计和相关控制软件程序的编写,绘制系统原理图,计算元器件参数,选择元器件型号。
4、制作演示模拟样机,进行软硬件联调。
二、毕业设计(论文)的要求与数据1、收集恒温箱温度控制系统的工作原理和控制方法的相关文献资料15篇以上,其中英文文献不少于2篇。
2、恒温箱电热温度控制系统的输入电源为单相220V,电加热额定功率5kW,温度调节范围室温~200℃,温度控制精度在±1℃以内。
3、恒温箱对加热电源电流的传递函数为18.4e ,采用PID调节器或九点1.2s控制器设计恒温箱电热温度控制系统,选择单片机或PLC作为控制器。
恒温箱温度控制系统设计
恒温箱温度控制系统设计恒温箱是一种用于保持恒定温度的设备,广泛应用于实验室、医疗、食品加工等行业。
恒温箱温度控制系统设计是为了保持箱内温度在预定的设定值范围内稳定,确保实验或加工过程的准确性和可靠性。
本文将详细介绍恒温箱温度控制系统设计的关键步骤和技术要点。
一、温度传感器选择和安装:温度传感器是恒温箱温度控制系统的核心部件,常用的传感器有热电偶和热敏电阻。
选择传感器时需要考虑测量范围、精度、响应时间等因素,并在箱内合适的位置进行安装,以确保能够准确测量到箱内温度。
二、温度控制器选择和配置:温度控制器是实现恒温箱温度控制的关键组件,常见的控制器有PID控制器和模糊控制器。
控制器的选择要根据实际需求和系统性能来确定,同时需要根据传感器类型和参数进行配置,确保能够准确控制箱内温度。
三、加热器和散热器安装:恒温箱的温度控制是通过加热器和散热器来实现的,加热器增加箱内温度,散热器降低箱内温度。
加热器和散热器的选择要考虑到箱体的尺寸和散热量,合理配置,并确保安装牢固和散热效果良好。
四、温度控制算法设计:温度控制算法是恒温箱温度控制系统的关键部分,常用的算法有PID算法、模糊控制算法和遗传算法等。
在算法设计过程中需要根据实际需求和系统响应特性进行参数调整,以达到稳定控制和快速响应的效果。
五、温度控制系统的连续监测和调整:温度控制系统需要实时监测箱内温度,并在温度偏离设定值时进行及时调整。
可以通过触摸屏显示温度曲线和设定值,在温度波动较大时进行系统调整,保证温度稳定性。
六、安全性和可靠性设计:综上所述,恒温箱温度控制系统设计应包括温度传感器选择和安装、温度控制器选择和配置、加热器和散热器的安装、温度控制算法设计、温度控制系统的连续监测和调整、以及安全性和可靠性设计。
只有在这些关键步骤和技术要点上做好设计和配置,才能确保恒温箱温度控制系统的稳定性和可靠性,以满足实际需求。
恒温控制电路课程设计
摘要本设计采用的是555时基集成电路制成的温度控制器电路,通过热敏电阻将温度的变化量转化为电阻的变化量,将由于热敏电阻阻值的变化而引起的电压的变化当做IC555时基集成电路的控制指令,从而使其输出高低电平来控制电磁继电器的工作,从而使其输出高低电平来控制电磁继电器的工作,再由电磁继电器驱动再由电磁继电器驱动加热器来实现室内温度的调节与控制。
加热器来实现室内温度的调节与控制。
该种电路设计具有使用元件少、该种电路设计具有使用元件少、该种电路设计具有使用元件少、制作简单等特点。
制作简单等特点。
制作简单等特点。
容容易操控并且效果明显,在实际生活中较为常见。
关键词:时基集成电路;热敏电阻;控温电路;IC555;电磁继电器综述随着电力电子技术的发展,电子技术在电气设备和电气控制领域中的应用越来越广泛。
恒温控制电路在现实生活中无处不在,恒温控制电路在现实生活中无处不在,例如:室内温度控制、禽蛋孵化恒温箱、例如:室内温度控制、禽蛋孵化恒温箱、例如:室内温度控制、禽蛋孵化恒温箱、电子设备中电子设备中主机的温度控制等。
可见恒温控制电路的重要性。
本次设计题目《小室恒温控制电路设计》运用所学的知识,通过查阅一些文献和资料,实现了小室的温度自动控制在所设定的温度内实现了小室的温度自动控制在所设定的温度内((T=T=±±δT )℃,且恒定温度且恒定温度 T T T℃的设定在一定℃的设定在一定范围内可调,并且用灯泡模拟加热系统,在设定温度(T=-δT )℃以下灯泡自动亮)℃以下灯泡自动亮((加热加热)),达到(达到(T=+T=+δT )℃时灯泡自动灭(停止加热)。
使得室内始终保持恒定的温度。
使得室内始终保持恒定的温度。
本次设计能够熟练555时基集成电路在实际电路中的应用,从而使它在这种电路中更好地发挥了其广实用的特性,达到方便快捷的目的。
目录1.1.方案设计与分析方案设计与分析 ............................................................. . (22)1.1 采用集成运放电路制成的控温电路.............................................................................. 21.2 采用555时基集成电路的控温电路................................................................................ 32.2.电路设计框图及功能描述电路设计框图及功能描述 ..................................................... .. (33)2.1电路设计框图..................................................................................................................... 32.2各系统功能描述................................................................................................................. 31.1.电源整流系统功能电源整流系统功能......................................................................................................... 32.2.温度检测系统功能温度检测系统功能......................................................................................................... 33.3.温度控制系统功能温度控制系统功能......................................................................................................... 43.3.电路原理及参数计算电路原理及参数计算 ......................................................... (44)3.1元器件的介绍..................................................................................................................... 41.NE555定时器定时器................................................................................................................. 4 2.负温度系数热敏电阻Rt ................................................................................................. 5 3.整流二极管...................................................................................................................... 5 4.电磁继电器...................................................................................................................... 5 5.稳压二极管...................................................................................................................... 63.2 各部分系统电路的原理及参数....................................................................................... 61.电源整流系统的原理及参数.......................................................................................... 62.温度检测系统原理及参数.............................................................................................. 73.温度控制系统原理及参数.............................................................................................. 84.4.电路原理图电路原理图 ................................................................. .. (99)4.1整个小室工作系统的温度控制电路图............................................................................. 94.2整个设计电路的仿真图(proteus )............................................................................. 105.5.课程设计体会课程设计体会 .............................................................. .. (1212)参考文献 .................................................................... .. (1313)图1-1 采用集成运放器的控温电路该电路虽然可以实现控制温度的目的,该电路虽然可以实现控制温度的目的,但电路结构较为复杂,但电路结构较为复杂,但电路结构较为复杂,所使用的元件较多,所使用的元件较多,所使用的元件较多,制作制作起来比较麻烦,起来比较麻烦,而且靠滞回比较器的滞环宽度确定控温的精度,而且靠滞回比较器的滞环宽度确定控温的精度,而且靠滞回比较器的滞环宽度确定控温的精度,计算和控制都不灵活,计算和控制都不灵活,计算和控制都不灵活,所以所以本次设计不采用这个方案。
恒温控制电路设计
恒温控制电路设计一.概述:本设计的主要内容是用单片机系统进行温度实时采集与控制。
温度信号由AD590K和温度/电压转换电路提供,对AD590K进行了精度优于正负0.1° C的非线性补偿,温度实时控制采用分段非线性和积分分离PI算法,其分段点是设定温度的函数。
控制输出来用脉冲移相触发可控硅来调节加热丝有效功率。
系统具备较高的测量精度和控制精度。
二.实施方案:本题目是设计制作一个恒温箱控制系统,为测量和温度调节方便,内加2L纯净水,加热器为100W电炉。
要求能在40度到100度范围内设定控制水温,静态控制精度为0.2° C,并具有较好的快速性与较小的超调.含有十进制数码管显示、温度曲线打印等功能。
关键词:非线性补偿:大多数被测参数与显示值之间呈现非线性关系,为了消除非线性误差,必须在仪表中加入非线性补偿电路。
常用的方法有:模拟式非线性补偿法、非线性数模转换补偿法、数字式非线性补偿法等。
分段非线性:由于热敏电阻的阻值与温度之间的关系存在着非线性,需通过计算机进行非线性改正,消除非线性的影响。
为克服非线性的影响,采用分段线性法补偿。
如果该温度计的测量范围为5c至45℃,将整个温度测量范围等分为10个小区间,每4度为一个区间,在每个区间内温度与频率的关系可视为线性。
过零检测光耦:过零检测光藕就是在交流电网过零检测光藕.在电网过零时干扰最小,不会影响模拟测量的结果,这种光耦是在直流电时导通的.它的前级结构是二极管。
热惯性:系统在升温过程中,加热器温度总是高于被控对象温度,在达到设定值后,即使减小或切断加热功率,加热器存储的热量在一定时间内仍然会使系统升温,降温有类似的反向过程,这称之为系统的热惯性。
超调:系统在达到设定值后一般并不能立即稳定在设定值,而是超过设定值后经一定的过渡过程才重新稳定。
传感器滞后是指由于传感器本身热传导特性或是由于传感器安装位置的原因,使传感器测量到的温度比系统实际的温度在时间上滞后,系统达到设定值后调节器无法立即作出反应,产生超调。
毕业论文恒温箱温湿度系统反馈控制电路的设计
广州大学松田学院毕业论文(设计)题目恒温箱温湿度系统反馈控制电路的设计学生姓名汤桢文专业班级电气工程及其自动化(1)导师姓名曾霞毕业论文原创性声明本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本毕业论文不包括任何其他个人或集体已经发表或撰写的成果作品。
本人完全意识到本声明的法律后果由本人承担。
作者签名:20 年月日毕业论文版权使用授权书本毕业论文作者完全了解学校有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理部门或机构送交毕业论文的复印件和电子版,允许毕业论文被查阅和借阅。
本人授权优秀毕业论文评选机构将本毕业论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文。
本毕业论文属于 1、保密囗,在10年解密后适用本授权书2、不保密囗。
(请在以上相应方框内打“√”)作者签名:20 年月日导师签名:20 年月日广州大学松田学院2015 届毕业论文(设计)任务书系(部)电气与汽车工程系教研室电气工程及其自动化学生姓名汤桢文课题名称恒温箱温湿度系统反馈控制电路的设计课题来源结合生产实际题目类设计类型课题任务及要求基于过程控制的恒温箱反馈控制系统设计,以单片机(AT89C51)为处理系统,采用过程控制和反馈控制的方法,通过单片机对采集信号(用高精度传感器采集的数据信号),数据的处理与计算,不断进行数据的比较,得出更加精确的控制信号,从而使恒温箱的温湿度更加准确从而满足更严格的使用要求。
本设计是基于AT89C51单片机的恒温箱控制系统系统分为硬件和软件两部分,其中硬件包括:温度传感器、显示、控制和报警的设计;软件包括:键盘管理程序设计、显示程序设计、控制程序设计和温度报警程序设计。
编写程序结合硬件进行调试,能够实现设置和调节初始温度值,进行数码管显示,当加热到设定值后立刻报警。
另外,本系统通过软件实现对按键误差、加热过冲的调整,以提高系统的安全性、可靠性和稳定性。
基于单片机的恒温箱控制系统设计方案
设计一个基于单片机的恒温箱控制系统涉及到硬件设计和软件编程两个方面。
下面是一个简要的设计方案:硬件设计:1. 传感器选择:选择合适的温度传感器,如DS18B20数字温度传感器,用于实时监测箱内温度。
2. 执行器:选择合适的加热器或制冷器作为执行器,用于调节箱内温度。
3. 单片机:选择适合的单片机,如Arduino Uno或STM32等,作为控制核心。
4. 显示器:可以添加LCD显示屏,用于显示当前温度和设定温度。
5. 输入设备:可以添加旋钮或按钮,用于设定目标温度。
软件设计:1. 温度读取:编写程序从温度传感器读取实时温度数据。
2. 控制算法:设计恒温控制算法,比如PID控制算法,根据实际温度和设定温度调节加热器或制冷器。
3. 用户界面:编写程序实现与用户的交互,包括设定目标温度和显示当前温度。
4. 安全保护:添加温度过高或过低的报警功能,保护箱内物品和系统安全。
5. 实时监控:实现实时监控功能,定时记录温度数据并可通过串口或WiFi上传至PC进行分析。
实施步骤:1. 进行硬件连接,将温度传感器、执行器和单片机连接好。
2. 编写单片机程序,包括温度读取、控制算法等功能。
3. 测试程序功能,确保可以准确地读取温度并控制箱内温度。
4. 调试控制算法,优化控制效果,确保恒温箱可以稳定工作。
5. 添加用户界面和安全保护功能,完善系统设计。
通过以上硬件设计和软件编程,可以实现一个基于单片机的恒温箱控制系统,能够稳定地控制恒温箱内的温度,满足不同实验或存储需求。
在实际应用中,还可以根据具体需求对系统功能和性能进行进一步优化和扩展。
(完整word版)基于PID的恒温箱温度控制系统设计
基于PID的恒温箱温度控制系统设计2008届)2008年6月摘要本设计是恒温箱温度控制系统设计。
可供各类实验室、医疗机构、食品加工、生产部门等使用。
在周围温度不断变化条件下,使用恒温箱,可以使一定范围的温度恒定在特定温度下,从而适应生活和工作。
控制的温度范围为50—1200C。
恒温箱可以在线设定温度,并对温度进行实时数码显示。
设计内容包括硬件和软件两个部分。
硬件主要由AT89S52单片机、DS18B20 数字温度传感器、8155 片外存储器、继电器,LED 数码管和报警器等组成。
电原理图包括数据采集、温度显示、键盘设定、温度控制和复位电路等几个模块。
软件部分主要对PID 算法进行了数学建模和编程。
本设计由键盘电路输入设定温度信号给单片机,温度信号采集电路采集现场温度信号给单片机,单片机根据输入与反馈信号的偏差进行PID 计算,输出控制信号给加温控制电路,实现加温和停止。
当实际温度比设定温度大2 摄氏度以上时,则清P1.3 输出口,从而停止对电阻丝的加热。
当实际温度比设定温度小2 摄氏度以上时,取PID 的最大值,实现全功率输出。
在它们之间时,实现PID 算法控制,控制可控硅的接触时间,调节电阻丝功率。
显示电路实现现场温度的实时监控。
软件部分,采用PID 控制和时间最优控制相结合的控制方案,实现了控制速度快、超调小、线性控制精度高和实现成本低等的优点。
硬件部分采用单片机来实现温度控制,不仅具有控制方便、简单、灵活等优点,而且可以大幅度的提高被控温度的技术指标,从而大大提高产品的质量。
关键词:恒温控制,单片机,数字PID 算法ABSTRACTThe system of this design is the temperature controller of a constant temperature box.Can be provided as each kind of laboratory, medical treatment organization, food processing and produce the section etc. usage.Under the condition that the surroundings temperature continuously change, the usage constant temperature box, can make the temperature maintaining of the certain scope settle under the particular temperature, thus adapt the life and works.The temperature scope of the control is 50-120, The constant temperature box can with on-line enactment temperature, and carry on the solid hour to the temperature figures manifestation.When be placed in to set the appearance, figures tubemanifestation enactment temperature, circulate, manifestation actual temperature.Design content including hardware and software two parts. The hardware mainly by at89S52 monolithic integrated circuit, the DS18B20 digit temperature sensor, 8155 piece of external memory, the relay, the LEDnixietube and the alarm apparatus and so on is composed. Electricity schematic diagram including data acquisition, temperature demonstration, keyboard hypothesis, temperature control and reset circuit and so on several modules. The software part mainly hascarried on mathematics modelling and the programming to the PID algorithm.The circuit design of the keyboard input from the set temperature signal to the microcontroller, Temperature Signal Acquisition Circuit collect temperature signal to the microcontroller, According to SCMinput and feedback signal, the error for PID, the outputcontrol signals to the heating control circuit, Heating and achieve stop. Showcircuit scene of the real-time monitoring of temperature. Whenactualtemperature compares to set temperature big more than 2 degrees , then the pureexportation, thus stop to electric resistance silk of heating.When the actual temperature compares to set smaller than 2 degrees , taking the PID biggest value, carrying out the whole power exportation.among the two , carry out the PID calculate way control, control contact time that controvablesilicon , regulate the electric resistance silk power.software part, the adoption PID control and the control project time superior control combine together, carried out to control the quick,super adjust small, line control the accuracy is high and carry out thecost advantage of low etc..The hardware part adopts a machine to carry out the temperature control, not only have the control convenience, simple, vivid etc. advantage, and can is control with the significant exaltation the technique index sign the quantity of the product thus andconsumedly.Keywords:Temperature ,control ,microcontroller , 目录绪论还是在日常生活中, 都已 经变得非常适用和广泛了。
恒温箱温度计算机控制系统设计
西南科技大学计算机控制系统报告设计名称:恒温箱温度计算机控制系统设计姓名: XXX学号: XXX班级:自动09XX指导教师:聂诗良起止日期:2012.10.15--2012.11.15西南科技大学信息工程学院制设计任务书学生班级:自动0903 学生姓名:XXX 学号:2009XXX 设计名称:恒温箱温度计算机控制系统设计起止日期:10月15日——11月15日指导教师:聂诗良恒温箱温度计算机控制系统设计摘要:本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机AT89C51作为主控芯片,液晶作为显示输出,实现了对温度的实时测量与恒定控制。
关键词:恒温,AT89S52 单片机,温度传感元件The incubator temperature computercontrol system designAbstract:The design from the actual application to select a small size, and relatively high accuracy digital temperature sensing element DS18B20 as temperature collector, AT89C51 microcontroller as the master chip, digital tube display output to achieve real-time measurement of temperature and constant control .Keyword:Thermostat. AT89S52 microcontroller;Temperature sensor element;1设计目的和意义利用AT89S52对温度进行控制,采用单总线传输方式的DS18B20作为温度传感器,与按键、液晶显示、报鸣器等外部辅助硬件共同组成一个温度控制系统,实现温度的自我调节。
文献综述-恒温箱自动控制系统设计
恒温箱自动控制系统设计组员:院系:指导教师:【摘要】本组设计的恒温箱自动控制系统主要由中央处理器、温度传感器、半导体制冷器、键盘、显示、声光报警等部分组成。
处理器采用AVR Mega128单片机,温度传感器采用DS18B20,利用半导体制冷片一面制冷一面发热的工作特性进行升降温,用LCD12864作为显示输出。
温度传感器检测到温度数据传送给单片机,单片机再将温度数据与给定值进行比较,从而发出对半导体制冷器的控制信号,使温度维系在给定值附近(偏差小于±2℃),同时单片机将数据送与显示器。
【关键字】单片机温度传感器半导体制冷器控制一、设计方案比较1.1总体设计方案这里利用DS18B20芯片作为恒温箱的温度检测元件。
DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。
单片机从外部的两位十进制拨码键盘进行给定值设定,读入的数据与给定值进行比较,根据偏差的大小,采用闭环控制的方法使控制量更加精准。
控制结果通过液晶显示器LCD12864予以显示。
系统整体框图如图一所示:图一、系统整体框图1)温度检测元件的选择:方案一:这里所设计的是测温电路,因此可以采用热敏电阻之类的器件利用其感温效应,检测并采集出随温度变化而产生的电压或电流,进行A/D转换后送给单片机进行数据处理,从而发出控制信号。
此方案需要另外设计A/D转换电路,使得温测电路比较麻烦。
方案二:上网查得温度传感器DS18B20能直接读出被测温度,并可根据实际要求通过简单的编程实现9~12位的数字值读取方式,它内部有一个结构为8字节的高速暂存RAM存储器。
DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。
与方案一比较更加简单实用,因此我们选择方案二。
2)显示方案选择:方案一:温度的显示可以用数码管,但数码管只能显示简单的数字,它有电路复杂,占用资源较多,显示信息少等缺点。
方案二:LCD12864汉字图形点阵液晶显示模块,可显示汉字及图形,内置8192个中文汉字,128个字符及64×256点阵显示RAM。
温度控制电路设计 (1)精选全文
可编辑修改精选全文完整版温度控制电路设计一、设计任务设计一温度控制电路并进行仿真。
二、设计要求基本功能:利用AD590作为测温传感器,T L为低温报警门限温度值,T H为高温报警门限温度值。
当T小于T L时,低温警报LED亮并启动加热器;当T大于T H时,高温警报LED亮并启动风扇;当T介于T L、T H之间时,LED全灭,加热器与风扇都不工作(假设T L=20℃,T H=30℃)。
扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。
三、设计方案AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。
在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1µA/K。
AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。
低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。
应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。
主要特性:流过器件的电流(μA) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55℃~+150℃;AD590的电源电压范围为4~30 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。
基本使用方法如右图。
AD590的输出电流是以绝对温度零度(-273℃)为基准,每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其输出电流I out=(273+25)=298μA。
V o的值为I o乘上10K,以室温25℃而言,输出值为10K×298μA=2.98V。
测量V o时,不可分出任何电流,否则测量值会不准。
温度控制电路设计框图如下:温度控制电路框图由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。
过零光耦 可控硅 恒温箱温度控制电路
过零光耦可控硅恒温箱温度控制电路一、概述在工业生产中,恒温箱被广泛应用于对温度敏感物品的储存和测试。
如何确保恒温箱内的温度稳定控制是一个关键问题。
本文将介绍如何利用过零光耦和可控硅构建一个恒温箱的温度控制电路。
二、过零光耦的工作原理1. 过零光耦是一种可控硅触发电路,它采用光电器件实现输入和输出电气隔离。
当控制端输入的电压为零时,过零光耦会输出一个脉冲信号,用于触发可控硅的导通。
2. 过零光耦的工作原理是利用光电器件对输入电压进行检测,一旦检测到输入电压为零,就会产生输出信号。
这个特性使得过零光耦能够实现对交流电压的精确触发。
三、可控硅的特性和应用1. 可控硅是一种半导体器件,能够在电压施加时实现导通和阻断。
它具有电压控制特性,可以实现对交流电压的精确控制。
2. 可控硅在恒温箱的温度控制电路中扮演着重要角色。
通过合适的触发脉冲控制可控硅的导通角度,可以实现对加热元件的精确控制。
四、恒温箱温度控制电路的设计和实现1. 温度传感器:我们需要选择适合的温度传感器,常用的有热敏电阻和绝对温度传感器等。
2. 过零光耦和可控硅:利用过零光耦检测交流电压的零点来触发可控硅的导通,从而实现对加热元件的精确控制。
3. 控制系统:选用微处理器或者单片机等控制单元,根据温度传感器的反馈信号调整过零光耦的触发脉冲,以实现对恒温箱内温度的精确控制。
4. 加热元件:作为恒温箱的关键部件,加热元件的选择和设计需要充分考虑到恒温箱的尺寸和所需温度范围。
五、恒温箱温度控制电路的优势和应用1. 精确性:利用过零光耦和可控硅构建的温度控制电路可以实现对恒温箱内温度的高精确控制,确保温度稳定性。
2. 稳定性:由于可控硅的电压控制特性,恒温箱温度控制电路能够实现对加热元件的稳定控制,确保恒温箱内温度的稳定性。
3. 应用广泛:恒温箱温度控制电路可以广泛应用于实验室、医药、食品、农业等领域,为温度敏感物品的存储和测试提供可靠保障。
六、结论通过本文的介绍,我们了解了过零光耦、可控硅以及恒温箱温度控制电路的设计和实现原理。
恒温箱温度控制系统的设计
3.1.7核心控制器的选择13
3.2单片机电路的设计13
3.3显示电路的设计14
3.4按键电路的设计15
3.5报警电路的设计16
3.6稳压电路的设计16
3.7过零检测电路17
3.8加热器件驱动电路18
3.8.1光电辐合器介绍18
3.8.2可控硅介绍18
3.83可控硅驱动电路设计19
3.9热电偶信号处理电路20
2.4.1PID调节器的特点8
2.4.2PID调节器参数的整定8
2.5本章小结9
3恒温箱温度控制系统的硬件电路的设计10
3.1元器件的选择10
3.1.1温度传感器的选择10
3.1.2电线的选择ห้องสมุดไป่ตู้0
3.1.3显示器的选择11
3.1.4稳压器的选择11
3.1.5按键的选择12
3.1.6加热负萩控制器件的选择12
PID is a classical algoritlun and control algoritluns. It has a veiy liigli status in the actual control system. Tlie PID algoritlun is relatively simple and has liigli precision of control. But in order to achieve a better control effect, The PID parameters need a constant tuning and they are unable to adapt in the system for a longer time. Tlierefore is it important for finding a reasonable and effective timing for the parameters in wliich we have to modeling and stimulation. Ill order to find a better solution without wasting much time. MATLAB is used and tliis has effectively improve the design efficiency and the control perfonnance achieved the desired results.
单片机恒温箱温度控制系统设计
.课程设计题目:单片机恒温箱温度控制系统的设计本课程设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。
设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,可以使温度保持在要求的一个恒定范围内,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。
技术参数和设计任务:1、利用单片机AT89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。
2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。
3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到0.1℃。
4、温度超出预置温度±5℃时发出声音报警。
5、对升、降温过程没有线性要求。
6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。
一、本课程设计系统概述1、系统原理选用AT89C2051单片机为中央处理器,通过温度传感器DS18B20对恒温箱进行温度采集,将采集到的信号传送给单片机,在由单片机对数据进行处理控制显示器,并比较采集温度与设定温度是否一致,然后驱动恒温箱的加热或制冷。
2、系统总结构图总体设计应该是全面考虑系统的总体目标,进行硬件初步选型,然后确定一个系统的草案,同时考虑软硬件实现的可行性。
总体方案经过反复推敲,确定了以美国Atmel公司推出的51系列单片机为温度智能控制系统的核心,并选择低功耗和低成本的存储器、数码显示器等元件,总体方案如下图:图1系统总体框图二、硬件各单元设计1、单片机最小系统电路单片机选用Atmel公司的单片机芯片AT89C2051 ,完全可以满足本系统中要求的采集、控制和数据处理的需要。
单片机的选择在整个系统设计中至关重要,该单片机与MCS-51系列单片机高度兼容、低功耗、可以在接近零频率下工作等诸多优点,而广泛应用于各类计算机系统、工业控制、消费类产品中。
温度控制电路的设计
设计性试验 温度控制电路的设计序言:温度是一个基本的物理量,温度传感器是最早开发、应用最广的一类传感器。
在半导体技术的支持下,相继开发了半导体电偶传感器、PN 结温度传感器和集成温度传感器。
与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。
温度传感器是检测温度的器件,其种类最多、应用最广、发展最快。
温度传感器广泛应用于微波炉、空调、冰箱、饮水机、恒温箱、电脑内的CPU 、硬盘的过热保护等场合的温度测量与控制等,便携式非接触红外温度测量仪等许多方面。
本实验利用温度传感器,设计制作一个温度控制电路,将温度控制在一定范围内(即恒温箱、冰箱等地基本传感器控制电路),是大家对温度传感器机器控制有一个简单的认识。
实验与仿真:一、 实验目的1. 了解传感器的基本知识,掌握温度传感器的基本用法。
2. 了解有关控制的基本知识。
3. 掌握根据温度传感器来设计控制电路的基本思想。
二、 设计指标与要求4. 电源:12V +或12V ±单双电源供电均可。
5. 要求温度设定范围为-20℃~+130℃,温度非线性误差不得超过5±℃。
6. 控制部分:监控温度高于设定的上限温度或低于下限温度时,分别点亮不同颜色的二极管。
三、 实验原理与电路设计本实验要求根据监控温度来做出相应的报警响应,该温度传感控制系统如图温度传感器将温度信号转化为电信号,经过信号处理电路对其进行处理,最后通过报警控制电路来控制发光二极管的指示。
(一)温度传感器1、热敏电阻。
正温度系数热敏电阻器也称PTC型热敏电阻器,属于直热式热敏电阻器,其主要特性是电阻值与温度变化成正比例关系,即当温度升高时,电阻随之增大。
2、集成芯片LM35:LM35是美国国家半导体公司生产的集成电路温度传感器系列产品之一,它具有很高的工作精度和较宽的线性工作范围,该器件输出电压与摄氏温度成线性关系。
因而,从使用角度来说,LM35与用开尔文标准的线性温度传感器相比更有优越之处,LM35无需外部校准或微调,可以提供常用的室温精度。
推荐-恒温箱温度计算机控制系统设计报告1 精品
计算机控制系统设计报告设计名称:恒温箱温度计算机控制系统设计基于单片机的恒温箱控制系统设计摘要:本设计是基于AT89S52单片机的恒温箱控制系统,系统分为硬件和软件两部分,其中硬件包括:电源、温度传感器、显示、控制、晶闸管驱动和报警的设计;软件包括:键盘管理程序设计、显示程序设计、PID控制程序设计和温度报警程序设计。
编写程序结合硬件进行调试,能够实现设置和调节初始温度值,进行液晶显示,当加热到设定值后立刻报警。
本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机AT89S52为主控芯片,液晶作为显示输出,实现了对温度的实时测量与恒定控制。
关键词:单片机、温度传感器、恒温、声光报警、PID。
引言:温度控制是工业生产过程中经常遇到的过程控制,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用,其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。
对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测温方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同。
因而,对温度的测控方法多种多样。
随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。
利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。
然而现有的温度传感元件大多为模拟器件(热电耦)体积大、应用复杂、而且不容易实现数字化等缺点,阻碍了应用领域的扩展。
本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机AT89S52作为主控芯片,数码管作为显示输出,实现了对温度的实时测量与恒定控制。
一、本课题设计要求如下图所示,恒温箱采用木箱或纸箱(外形尺寸不大于30cm×30cm×30cm),内置白炽灯泡(功率不大于100W)用于加热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒温箱温度控制电路设计
一,概述
衡温箱的基本功能:利用测量电路测量温度,反馈于控制电路,控制电路根据温度的高低做出反应,控制制冷系统或加热系统对温度做出改变,总的来说,恒温箱的功能就是保持温度。
其典型应用为用以饲养或培养生物或生物的一部分(细胞等),以前用于孵卵的恒温器,有的是通过热水加热(水温式),但实验用的大部分为电热式,装有电热器和温度调节器,是一种外壁上装有绝热材料的箱子或柜橱。
恒温箱的组成下图所示:
工作原理:
恒温箱由制冷系统,加热系统,控制系统,温度系统空气循环系统,和传感器系统等组成.恒温箱的温度控制是一个典型的自动控制问题,属于自动控制理论和控制系统设计课程的内容。
在本课程的设计作业中,我们采用一种简单的控制策略,当恒温箱的温度低于下限值T L=T S-0.5的时候通过继电器启动加热系统,当恒温箱的温度高于上限值T H=T S+0.5的
时候通过继电器启动制冷系统。
设计任务:
(一)、温度测量电路
设计一个温度测量电路,用输出电压值指示被测温度。
当被测温度为T S =25时,测量电路输出电压为0V;当被测温度处在25±2℃之间时,输出电压为-5V~+5V之间一个随被测温度变化的值。
此处的设计需用到NTC热敏电阻,即具有负温度系数的热敏电阻,其阻值随温度的升高而降低。
(二)、温度控制电路
设计一个温度控制电路,当恒温箱的温度低于下限值T L=T S-0.5的时候通过继电器启动加热系统,当恒温箱的温度高于上限值T H=T S+0.5的时候通过继电器启动制冷系统。
(三)、报警电路
设计一个报警电路,当恒温箱的温度处于设定的正常范围时绿灯闪亮,当温度高于T H 时红灯闪亮,当温度低于T L时黄灯闪亮。
指示灯为白炽灯,闪亮方式为由暗逐渐变亮在逐渐变暗。
(四)、电源电路
设计一个电源电路,把220V交流电变换成稳定的低电压直流电源供控制电路使用。
总之,整个设计思路就是,用热敏电阻感知温度变化,由电阻电压的变化反映温度变化,将电压放大后输出。
设定温度的上下限值为25±2℃, 控制相关设备(制冷系统与加热系统),并在温度超出限值时发出相应的报警信号。
二、温度测量电路设计
1)温度测量电路的组成、原理和基本功能
它的组成有:差分比例运算电路跟反向运算电路各一个,第一级放大电路的正向输入端跟一个回路相连,UI2由该回路的分压提供。
原理:(1)在电压源回路中接入一个定值电阻跟一个热敏电阻,随着温度的变动,热敏电阻的阻值会随之改变,其两端的电压也会发生改变。
(2)第一级放大电路:将热敏电阻的电压作为电压源,输入第一级放大电路(差分比例运算电路)的正向输入端,第一级放大电路的反向输入端的输入电压有确定值,两输入端的差值会随着温度的变化而出现正负值。
当温度低于Ts时,输出电压为正值,否则为负值。
(3)第二级放大电路:为了使温度低于Ts时输出的电压为负值,高于Ts时为正值,还需接一个反向运算电路方可,控制运算电路的参数,使被测温度处在25±2℃之间时,输出电压为-5V~+5V之间一个随被测温度变化的值。
基本功能:测量温度,并将结果表现在输出电压上。
2) 输出电压与被测温度之间的关系(可以用数学表达式或特性曲线表示)。
(Ts=298.15k )
由(1)可得, UO ’=Rf/R2*( U*RT/(RT+R1)-UI1) UO= —Rf2/R3*UO ’ 热力学转换公式:T=t+273.15
又)11(N
T T B N T
e
R R -= 联立可得:
UO=—Rf2*Rf
R3*R2
*( U*
/( +R1)-UI1)
其中Rf2/R3为第二级放大电路放大的倍数,Rf/R2为第一级放大电路放大的倍数。
作其特性曲线:
输出电压与被测温度之间的关系
-15
-10
-5
05
10
15
293294
295
296
297
298
299
300
301
302
303
温度(k)
输出电压(m V )
系列1
3)放大电路的输入方式和主要性能指标。
输入方式:先接一个差分比例运算电路,再接一个反向运算电路。
差分比例运算电路的正向输入端连接RT端的电压,即与RT的阻值同步,而反向输入端输入不变的电压。
反向运算电路的反向输入端跟第一级放大电路的输出电压相连,正向输入端接地。
主要性能指标:
对于第一级运算电路,放大的倍数略小,Rf=40Ω,R2=30Ω,放大倍数为4/3,UI1=20V
对于第二级运算电路,放大倍数较第一级的高,其中Rf2=500Ω,R3=100Ω,放大倍数为5倍。
如图(一)所示
图(一)
4)分析设计要求,确定合理的温度控制电路形式,计算电路中元器件的参数,画出电路图。
设计要求,当被测温度为T S时,测量电路输出电压为0V;当被测温度处在T S±2℃之间时,输出电压为-5V~+5V之间一个随被测温度变化的值。
列下表:
温度阻值(欧姆) 热敏电阻两端电压
294.1534831 1.5475
296.15322160.7697
298.15298280
300.15 27645 -0.7596 302.15
25648
-1.5069
观察到若要当被测温度处在T S ±2℃之间时,输出电压为-5V~+5V 之间一个随被测温度变化的值。
必须将热敏电阻两端的电压放大约20/3倍,分两次放大,于是第一次放大4/3倍,第二次5倍。
电路中器件的参数与电路图如图(二)所示:
图(二)
5) 通过理论分析和计算说明电路设计和参数选择的合理性。
由(2)可得, UO=—Rf2*Rf
R3*R2
*( U*
/( +R1)-UI1)
代入数据:
UO=—20/3*{40* 30*e^(3400*(1/T-1/298))/(30*e^(3400*(1/T-1/298))+29828)—20} 当T=Ts 时,UO=0
当T=Ts+2时 ,计算可得 UO= 5.06,约等于5V
当T=Ts-2时, 计算可得UO= -5.13 ,同样很接近5V.
对于热敏电阻端的回路,选择输出电压为40V ,远小于热敏电阻的耐电压700V ,因此热敏电阻不会因电压过大而损坏。
故从总体上来说,参数的选择有一定的合理性。