发光颜色与波长

合集下载

波长与发光颜色知识汇总

波长与发光颜色知识汇总

白色光有完美的颜色特性,但它会损害适应暗光的视觉,一定光源熄灭后需要一定的时间来重新适应。

红色光通常是用作夜视。

红光不会引起你瞳孔过分收缩和一旦红光熄灭时眼睛不需要重新适应黑暗。

红色也通常在单色相片处理被用作为“安全”颜色因为它不会损坏正在冲印的底片黄色光有着红色光和白色光的一些优点。

黄色光另外一优点就是当你阅读时减少因为长时间阅读而导致眼睛疲劳的反射和眩目的光。

绿色光也可以用作为夜视,绿色光还特别适用于在夜晚的时候阅读地图或图表。

它还不那么容易被夜视装备发现,便很容易被人眼发现,绿色光的亮度比红色光低。

蓝色光可被用作在夜晚阅读地图和通常很受军事人员青睐,因为蓝色光增加了对比度的水平。

它还可以用作戏院和演出时的后台工作灯色。

蓝绿光有着相似绿光和蓝光的夜视优点,但随着蓝绿光的颜色特性的提高,一些用户因为这个原因喜欢用蓝绿光。

红外线红光是与夜视装备一起使用的。

否则人的眼睛是看不到红外线光的。

紫外光通常是用作识别钞票是否伪造,一些紫外发光二极管照明物在夜总会和派对上很受欢迎,它们被用来使荧光物质发出更亮的光。

光的颜色和它的波长光的颜色是否可以看见是由它的波长决定的,光的波长是以纳米为单位的也说是十亿分之一米。

发光二极管发出的光几乎都是一致的也就是说它几乎都是在一个波长,发出非常纯的颜色。

以下是光的颜色和它的波长。

中红外线红光4600nm - 1600nm --不可见光低红外线红光1300nm - 870nm --不可见光850nm - 810nm -几乎不可见光近红外线光780nm -当直接观察时可看见一个非常暗淡的樱桃红色光770nm -当直接观察时可看见一个深樱桃红色光740nm -深樱桃红色光红色光700nm - 深红色660nm - 红色645nm - 鲜红色630nm - 橘红620nm - 橙红橙色光615nm - 红橙色光610nm - 橙色光605nm - 琥珀色光黄色光590nm - “钠“黄色585nm -黄色575nm - 柠檬黄色/淡绿色绿色570nm - 淡青绿色565nm - 青绿色555nm - 550nm - 鲜绿色525nm - 纯绿色蓝绿色505nm - 青绿色/蓝绿色500nm - 淡绿青色495nm - 天蓝色蓝色475nm - 天青蓝470nm - 460nm-鲜亮蓝色450nm - 纯蓝色蓝紫色444nm - 深蓝色430nm - 蓝紫色紫色405nm - 纯紫色400nm - 深紫色近紫外线光395nm -带微红的深紫色UV-A型紫外线光370nm -几乎是不可见光,受木质玻璃滤光时显现出一个暗深紫色。

每种颜色的光波长的对应值

每种颜色的光波长的对应值

每种颜色的光与波长的对应值紫光 400~450 nm 蓝光 450~480 nm 青光 480~490 nm 蓝光绿 490~500 nm 绿光 500~560 nm 黄光绿 560~580 nm 黄光 580~595 nm 橙光 595~605 nm 红光 605~700 nm根据光子能量公式:E=hυ其中,h为普朗克常数,υ为光子频率可见光的性质是由其频率决定的。

另外,在不同折射率的介质中,光的波长会改变而频率不变。

色温色温(colo(u)r temperature)是表示光源光色的尺度,单位为K(开尔文)。

色温在摄影、录象、出版等领域具有重要应用。

光源的色温是通过对比它的色彩和理论的热黑体辐射体来确定的。

热黑体辐射体与光源的色彩相匹配时的开尔文温度就是那个光源的色温,它直接和普朗克黑体辐射定律相联系。

一.概述基本定义色温是表示光源光谱质量最通用的指标。

一般用Tc表示。

色温是按绝对黑体来定义的,光源的辐射在可见区和绝对黑体的辐射完全相同时,此时黑体的温度就称此光源的色温。

低色温光源的特征是能量分布中,红辐射相对说要多些,通常称为“暖光”;色温提高后,能量分布中,蓝辐射的比例增加,通常称为“冷光”。

一些常用光源的色温为:标准烛光为1930K(开尔文温度单位);钨丝灯为2760-2900K;荧光灯为3000K;闪光灯为3800K;中午阳光为5600K;电子闪光灯为6000K;蓝天为K。

我们知道,通常人眼所见到的光线,是由7种色光的光谱叠加组成。

但其中有些光线偏蓝,有些则偏红,色温就是专门用来量度和计算光线的颜色成分的方法,是19世纪末由英国物理学家洛德·开尔文所创立的,他制定出了一整套色温计算法,而其具体确定的标准是基于以一黑体辐射器所发出来的波长。

三种色温的荧光灯光谱显示器指标色温(ColorTemperature)是高档显示器一个性能指标。

我们知道,光源发光时会产生一组光谱,用一个纯黑体产生出同样的光谱时所需要达到的某一温度,这个温度就是该光源的色温。

各种波长及其颜色

各种波长及其颜色

1、芯片发光颜色(COLW)红(Red):R(610nm-640nm)黄(Yellow):Y(580nm-595nm)兰(Blue):B(455nm-490nm)兰绿(Cyan):C(490nm-515nm)绿(Green):G(501nm-540nm)紫(Purple):P(380nm-410nm)琥珀(Amber):A(590nm-610nm)白(White):W2黄绿(Kelly):K(560nm-580nm)暖白(Warm white)W32、颜色波长★红:R1:610nm-615nm R2:615nm-620nm R3:620nm-625nm R4:625nm-630nm R5:630nm-635nm R6:635nm-640nm ★黄:Y1:580nm-585nm Y2:585nm-590nm Y3:590nm-595nm ★琥珀色:A1:600nm-605nm A2:605nm-610nm ★兰绿:G1:515nm-517.5nm G2:517.5-520nmG3:520nm-525nm G4:525nm-530nm G5:530nm-535nm G6:535nm-540nm ★兰:B1:455nm-460nm B2:460nm-462.5nm B3:462.5nm-465nm B4:460nm-465nm B5:465nm-470nm B6:470nm-475nm B7:475nm-480nm B8:480nm-485nm B9:485nm-490nm ★黄绿:K1:560nm-565nm K2:565nm-570nm K3:570nm-575nm K4:575nm-580nm ★纯绿:C1:490nm-495nm C2:495nm-500nm C3:500nm-515nm图文:颜色的度量──CIE1931色度图明度、色调和饱和度称为颜色视觉三特性。

明度就是明亮的程度;色调是由波长决定的色别,如700nm光的色调是红色,579nm光的色调是黄色,510nm光的色调是绿色等等;饱和度就是纯度,没有混入白色的窄带单色,在视觉上就是高饱和度的颜色。

发光二极管工作原理各种颜色波长以及变色LED灯

发光二极管工作原理各种颜色波长以及变色LED灯
高效明
利用高亮度、高可靠性LED,打造高效、节能的照 明解决方案。
人性化照明
根据场景、人群需求,提供舒适、健康的照明环 境。
LED在其他领域的应用拓展
显示技术
01
发展大屏幕、高分辨率的LED显示屏,满足信息展示和广告宣传
的需求。
医疗领域
02
利用LED的生物相容性和光疗作用,拓展其在医疗美容、生物检
发光二极管工作原理、颜色波长及 变色LED灯
目 录
• 发光二极管(LED)工作原理 • 发光二极管的颜色波长 • 变色LED灯的工作原理及应用 • LED的未来展望
01 发光二极管(LED)工作 原理
LED结构
LED由一个半导体芯 片组成,通常被封装 在环氧树脂或硅胶中。
LED的阳极和阴极分 别与P型和N型半导 体材料相连,以提供 电流。
芯片由P型和N型半 导体材料组成,它们 之间形成一个PN结。
LED工作原理
当电流通过LED时,电子和空 穴在PN结处相遇并释放能量, 以光子的形式释放出来。
LED的颜色取决于半导体材料 的种类和PN结的厚度。
LED发出的光的波长(颜色) 与能量有关,能量越高,波长 越短。
LED的优点
长寿命
LED的使用寿命长达5万小时, 减少了更换灯泡的频率和维护 成本。
响应速度快
LED的响应速度极快,可以在 毫秒级别内点亮和熄灭。
高效节能
LED的能耗仅为白炽灯的1/10, 荧光灯的1/2。
环保
LED不含有害物质,如汞等, 对环境友好。
色彩丰富
LED可以发出各种颜色的光, 包括红、绿、蓝、黄等,因此 可以组合成各种颜色的光。
02 发光二极管的颜色波长
可见光的颜色波长范围

各色led光的发光颜色及波长 7页 0.2M

各色led光的发光颜色及波长 7页 0.2M
在观察颜色的时候,补色会随时随地的跟着主色的出现而产生,这与视网膜上的感光细 胞受到光刺激后的疲劳程度或是错觉有关。当人们注视色彩的时候,视觉范围内的各种颜色 的色光便刺激视网膜上的锥状感光细胞,而产生所看到的色彩;但是视网膜上的锥状感光细 胞一直受到同一色光刺激后,便会有刺激疲劳现象产生,形成补色。另外我们都知道环境色
光通量、流明瓦、照度,色温,波长,照明光电源发展史
LED 产品发光亮度有 3 种单位,分别是照度单位勒克司(Lux)、光量单位流明(Lumen; lm)、发光强度单位烛光(Candle power;CD),3 种单位各自有适合使用的领域,但是在数 值上是互通的。
“mcd”:光通量的空间密度,即单位立体角的光通量,叫发光强度,是衡量光源发光强弱 的量,其中文名称为“坎德拉”,符号就是“cd”。前面那个“m”是词头,是千分之一的意思(就 像长度单位,中文名称为“米”,其符号为“m”,前面再加一个“m”成为“mm”,就变成千分之 一米,也就是毫米了),所以“mcd”的中文读法为“毫坎德拉”。
通常,日光里的各种颜色的光线,是以一定比例混和而成的。但是,经大气层不规则地
“过滤”后,在早、中、晚不同时段,表现出来的颜色并不一致。一般地,早晚均以“穿透能 力强”、“波长较长”的光线为主,因此,多呈黄、红等色。由于云层厚薄不一,不同地方穿 透过来的光线波长也不一致,因此,呈玩多色云彩变化。
到中午时,由于太阳基本上是直射大气层和云层,因此,太阳光线里的大部分都成功穿 透、并投射到地表。这时,我们看到的光线,则是“纯白”的光线。这种光线之下,什么东西 都看得一清二楚。其实,这个光线,已经是多种波长、多种颜色的单色光混和而成。
以红光、黄光为代表的光线,其光波波长较长,其优点是穿透力强、光色柔和;而其缺 点则是亮度提升困难,不宜作为照明。

发光二极管工作原理各种颜色波长以及变色LED灯

发光二极管工作原理各种颜色波长以及变色LED灯

发光二极管工作原理各种颜色波长以及变色LED灯发光二极管简称为LED。

由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管,在电路及仪器中作为指示灯,或者组成文字或数字显示。

磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。

它是半导体二极管的一种,可以把电能转化成光能;常简写为LED。

发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。

当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。

不同的半导体材料中电子和空穴所处的能量状态不同。

当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。

常用的是发红光、绿光或黄光的二极管。

不同颜色的光的应用以及波长一些发光二极管产品,尤其是手电筒上的发光二极管有不同的光束颜色。

这可不是使用了什么暗藏机关来使它们看上去漂亮,不同的光颜色有着不同的应用。

下面就简单介绍一下最常见颜色和它的实际用途。

1、白色光有完美的颜色特性,但它会损害适应暗光的视觉,一定光源熄灭后需要一定的时间来重新适应。

2、红色光通常是用作夜视。

红光不会引起你瞳孔过分收缩和一旦红光熄灭时眼睛不需要重新适应黑暗。

红色也通常在单色相片处理被用作为“安全”颜色因为它不会损坏正在冲印的底片。

3、黄色光有着红色光和白色光的一些优点。

黄色光另外一优点就是当你阅读时减少因为长时间阅读而导致眼睛疲劳的反射和眩目的光。

4、绿色光也可以用作为夜视,绿色光还特别适用于在夜晚的时候阅读地图或图表。

它还不那么容易被夜视装备发现,便很容易被人眼发现,绿色光的亮度比红色光低。

5、蓝色光可被用作在夜晚阅读地图和通常很受军事人员青睐,因为蓝色光增加了对比度的水平。

它还可以用作戏院和演出时的后台工作灯色。

6、蓝绿光有着相似绿光和蓝光的夜视优点,但随着蓝绿光的颜色特性的提高,一些用户因为这个原因喜欢用蓝绿光。

【最新精选】可见光的光谱及各种光的波长

【最新精选】可见光的光谱及各种光的波长

【最新精选】可见光的光谱及各种光的波长各种光的波长各种光的波长可见光的光谱颜色波长频率红色约625—740纳米约480—405兆赫橙色约590—625纳米约510—480兆赫黄色约565—570纳米约530—510兆赫绿色约500—565纳米约600—530兆赫青色约485—500纳米约620—600兆赫蓝色约440—485纳米约680—620兆赫紫色约380—440纳米约790—680兆赫电磁波的波长和强度可以有很大的区别,在人可以感受的波长范围内(约380纳米至740纳米),它被称为可见光,有时也被简称为光。

假如我们将一个光源各个波长的强度列在一起,我们就可以获得这个光源的光谱。

一个物体的光谱决定这个物体的光学特性,包括它的颜色。

不同的光谱可以被人接收为同一个颜色。

虽然我们可以将一个颜色定义为所有这些光谱的总和,但是不同的动物所看到的颜色是不同的,不同的人所感受到的颜色也是不同的,因此这个定义是相当主观的。

一个弥散地反射所有波长的光的表面是白色的,而一个吸收所有波长的光的表面是黑色的。

一个虹所表现的每个颜色只包含一个波长的光。

我们称这样的颜色为单色的。

虹的光谱实际上是连续的,但一般人们将它分为七种颜色:红、橙、黄、绿、青、蓝、紫,但每个人的分法总是稍稍不同的。

单色光的强度也会影响人对一个波长的光的颜色的感受,比如暗的橙黄被感受为褐色,而暗的黄绿被感受为橄榄绿,等等。

显示器无法产生单色的橙色)。

出于眼睛的生理原理,我们无法区分这两种光的颜色。

也有许多颜色是不可能是单色的,因为没有这样的单色的颜色。

黑色、灰色和白色比如就是这样的颜色,粉红色或绛紫色也是这样的颜色。

波动方程是用来描写光的方程,因此通过解波动方程我们应该可以得到颜色的信息。

在真空中光的波动方程如下:utt = c2(uxx + uyy + uzz)c在这里是光速,x、y和z是空间的坐标,t是时间的坐标,u(x,y,z)是描写光的函数,下标表示取偏导数。

芯片发光颜色代码QB的发光颜色波长范围

芯片发光颜色代码QB的发光颜色波长范围

芯片发光颜色代码QB的发光颜色波长范围
红光:615-650、橙色:600-610、黄色:580-595、黄绿:565-575、绿色: 495-530、蓝光:450-480、紫色:370-410、白光:450-465。

LED不同的发光颜色对应一定的发光波长范围,光色几乎覆盖太阳光谱,目前已经成功制备了紫外、蓝、绿、黄、红、红外发光二极管。

此外,LED的工作电压低、工作电流小、易组装,是新一代节能低碳光源。

对于LED的光谱特性我们主要看它的单色性是否优良,而且要注意到红、黄、蓝、绿、白色LED等主要的颜色是否纯正。

人眼可以观察到的光色是电磁波中380nm~780nm的光,颜色随波长的变化而变化;光是看得见、摸不着的,颜色只存在于生物的眼睛和大脑之中,影响明亮感知的除了颜色的色相,还有色彩的面积大小和其他视觉因素。

正是人眼,才导致同样的物体在不同人眼中呈现不同颜色。

白光LED通用照明:
照明是LED的主要应用,约占47%的比例。

与传统白炽灯和荧光灯相比,白光LED具有高光效、开关反应快等优势。

与柔和的日光照明相比,现阶段一些白光LED照明产品中的蓝光成分偏高,为最大限度降低LED灯具中蓝光对人眼的伤害,正在进一步发展模拟太阳光谱的照明技术。

根据国家标准,在选择家庭室内灯具时,建议LED筒灯相关色温不超过5000 K(华氏度)。

如果粗略分类一下,色温2700 - 4500 K
为暖白光,给人温暖的感觉;色温4500 - 6500 K为正白光,令人感觉明朗;色温6500 K以上为冷白光(蓝光成分高),会渲染忧郁情绪。

led灯波长参数解说

led灯波长参数解说

LED灯波长参数解说LED(Light Emitting Diode)是一种发光二极管,具有高效、长寿命、节能的特点,被广泛应用于照明、显示等领域。

LED灯波长是指LED发出的光的波长,不同波长的LED灯具有不同的颜色和应用场景。

本文将对LED灯波长参数进行解说。

1.LED灯波长的单位LED灯波长通常用纳米(nm)作为单位,表示光的波长,即波长是纳米级别。

不同波长的光对应不同的颜色,如红光的波长约为620-750nm,蓝光的波长约为450-495nm。

2.LED灯的主要波长参数LED灯的主要波长参数有单色LED、多色LED和全彩LED。

•单色LED:单色LED仅能发出一种颜色的光,根据波长可分为红光LED、绿光LED和蓝光LED等。

单色LED广泛应用于显示屏、信号指示灯等领域。

•多色LED:多色LED能够发出两种或多种颜色的光,通过控制不同的电流和电压,使不同颜色的LED同时或交替发光。

多色LED常见的应用有汽车照明、舞台照明等。

•全彩LED:全彩LED是由红光、绿光和蓝光LED组合而成,可以通过调节不同颜色LED的亮度来获得各种颜色的光,从而实现类似彩色电视的效果。

全彩LED广泛应用于室内外大屏幕显示、景观照明等领域。

3.LED灯波长与应用场景的关系LED灯波长的不同,决定了其在不同应用场景中的作用和效果。

•红光LED(波长620-750nm):红光LED具有低能耗、高亮度的特点,适合用于高亮度指示灯、车尾灯、广告字迹显示等场景。

•绿光LED(波长495-570nm):绿光LED具有高亮度、广视角的特点,适合用于红绿灯、车内仪表盘、数码显示屏等场景。

•蓝光LED(波长450-495nm):蓝光LED具有高能量、良好的穿透性的特点,适合用于荧光物质激发、荧光显示器、蓝光治疗仪等场景。

•全彩LED:全彩LED能够发出多种颜色的光,广泛应用于大屏幕显示、舞台照明等场景。

通过调节红、绿、蓝LED的亮度组合,可以呈现丰富的色彩效果。

可见光的光谱及各种光的波长

可见光的光谱及各种光的波长

可见光的光谱及各种光的波长各种光的波长各种光的波长可见光的光谱颜色波长频率红色约 625—740 纳米约 480—405 兆赫橙色约 590—625 纳米约 510—480 兆赫黄色约 565—570 纳米约 530—510 兆赫绿色约 500—565 纳米约 600—530 兆赫青色约485—500 纳米约 620—600 兆赫蓝色约 440—485 纳米约 680—620 兆赫紫色约 380—440 纳米约 790—680 兆赫电磁波的波长和强度可以有很大的区别,在人可以感受的波长范围内(约 380 纳米至 740纳米),它被称为可见光,有时也被简称为光。

假如我们将一个光源各个波长的强度列在一起,我们就可以获得这个光源的光谱。

一个物体的光谱决定这个物体的光学特性,包括它的颜色。

不同的光谱可以被人接收为同一个颜色。

虽然我们可以将一个颜色定义为所有这些光谱的总和,但是不同的动物所看到的颜色是不同的,不同的人所感受到的颜色也是不同的,因此这个定义是相当主观的。

一个弥散地反射所有波长的光的表面是白色的,而一个吸收所有波长的光的表面是黑色的。

一个虹所表现的每个颜色只包含一个波长的光。

我们称这样的颜色为单色的。

虹的光谱实际上是连续的,但一般人们将它分为七种颜色:红、橙、黄、绿、青、蓝、紫,但每个人的分法总是稍稍不同的。

单色光的强度也会影响人对一个波长的光的颜色的感受,比如暗的橙黄被感受为褐色,而暗的黄绿被感受为橄榄绿,等等。

显示器无法产生单色的橙色)。

出于眼睛的生理原理,我们无法区分这两种光的颜色。

也有许多颜色是不可能是单色的,因为没有这样的单色的颜色。

黑色、灰色和白色比如就是这样的颜色,粉红色或绛紫色也是这样的颜色。

波动方程是用来描写光的方程,因此通过解波动方程我们应该可以得到颜色的信息。

在真空中光的波动方程如下:utt c2uxx uyy uzzc 在这里是光速,x、y 和 z 是空间的坐标,t 是时间的坐标,uxyz是描写光的函数,下标表示取偏导数。

光的颜色与光的波长的实验测量

光的颜色与光的波长的实验测量
避免损坏仪器
注意观察现 象
发现实验中的特 殊现象
准确记录数 据
确保实验数据准 确性
实验结果分析
01 测量结果统计
记录不同颜色光的位置和强度
02 波长计算
应用光栅仪的刻度和公式计算光的波长
03 实验数据与讨论
实验数据
01 红光
650nm
02 蓝光
实验材料
光栅仪
用于产生干涉条 纹
光电二极管
用于探测光的强 度
光栅标准样 品
用于对照和校准
白光源
提供各种颜色的 光源
实验方法
连接光栅仪 与白光源
确保正常供光
测量光的位 置
记录不同颜色光 在光栅上的位置
计算光的波 长
根据实验数据计 算出光的波长
调整光栅仪
使其产生清晰的 干涉条纹
实验注意事项
小心操作光 栅仪和光源
光的波长
光波的传播
光的波长定义
波长与颜色 关系
波长越短越蓝, 波长越长越红
颜色与波长
不同波长的光呈 现不同颜色
实验目的
实验目的是确定光的 颜色与波长之间的关 系,并掌握使用光栅 仪等仪器测量光的波 长的方法。
实验原理
光栅仪
用于分散光的仪器
原理
利用光的干涉和衍射现象 产生干涉条纹
光的颜色测量步骤
将实验结果应用 到更多领域
实验改进
提升测量精度
结束语
总结
通过实验测量,我们深入 了解了光的颜色和波长的 关系。
重要性
鼓励
光的颜色和波长对于科学 研究和工程应用至关重要。
希望读者能继续深入研究 光学领域,探索更多有趣 的现象。
参考文献
在本实验中涉及到的 相关文献和资料是我 们研究的重要依据, 通过这些研究成果, 我们得以有机地扩展 了实验的应用和展望。

每种颜色的光波长的对应值

每种颜色的光波长的对应值

每种颜色的光与波长的对应值紫光 400~450 nm 蓝光 450~480 nm 青光 480~490 nm 蓝光绿 490~500 nm 绿光 500~560 nm 黄光绿 560~580 nm 黄光 580~595 nm 橙光 595~605 nm 红光 605~700 nm根据光子能量公式:E=hυ其中,h为普朗克常数,υ为光子频率可见光的性质是由其频率决定的。

另外,在不同折射率的介质中,光的波长会改变而频率不变。

色温色温(colo(u)r temperature)是表示光源光色的尺度,单位为K(开尔文)。

色温在摄影、录象、出版等领域具有重要应用。

光源的色温是通过对比它的色彩和理论的热黑体辐射体来确定的。

热黑体辐射体与光源的色彩相匹配时的开尔文温度就是那个光源的色温,它直接和普朗克黑体辐射定律相联系。

一.概述基本定义色温是表示光源光谱质量最通用的指标。

一般用Tc表示。

色温是按绝对黑体来定义的,光源的辐射在可见区和绝对黑体的辐射完全相同时,此时黑体的温度就称此光源的色温。

低色温光源的特征是能量分布中,红辐射相对说要多些,通常称为“暖光”;色温提高后,能量分布中,蓝辐射的比例增加,通常称为“冷光”。

一些常用光源的色温为:标准烛光为1930K(开尔文温度单位);钨丝灯为2760-2900K;荧光灯为3000K;闪光灯为3800K;中午阳光为5600K;电子闪光灯为6000K;蓝天为K。

在讨论彩色摄影用光问题时,摄影家经常提到“色温”的概念。

色温究竟是指什么我们知道,通常人眼所见到的光线,是由7种色光的光谱叠加组成。

但其中有些光线偏蓝,有些则偏红,色温就是专门用来量度和计算光线的颜色成分的方法,是19世纪末由英国物理学家洛德·开尔文所创立的,他制定出了一整套色温计算法,而其具体确定的标准是基于以一黑体辐射器所发出来的波长。

三种色温的荧光灯光谱显示器指标色温(ColorTemperature)是高档显示器一个性能指标。

光的波长和颜色

光的波长和颜色

光的波长和颜色
光的波长和颜色之间存在密切的联系。

光的颜色取决于其波长,波长越短,光的颜色就越偏向蓝色和紫色;波长越长,光的颜色就越偏向红色和橙色。

以下是一些常见光的波长及其对应的颜色:
1. 紫外光:波长范围约为10-400纳米,颜色从深紫到浅紫不等。

2. 可见光:波长范围约为400-700纳米,包括红色、橙色、黄色、绿色、蓝色和紫色。

3. 蓝光:波长范围约为450-495纳米,颜色为蓝色。

4. 绿光:波长范围约为500-565纳米,颜色为绿色。

5. 黄光:波长范围约为570-590纳米,颜色为黄色。

6. 橙光:波长范围约为590-620纳米,颜色为橙色。

7. 红光:波长范围约为620-700纳米,颜色为红色。

8. 红外线:波长范围约为700纳米以上,颜色为红色,但实际上人眼无法看到这种光。

需要注意的是,不同人对光的颜色感知可能存在差异,因此颜色划分可能不是绝对的。

此外,光的波长和颜色之间的关系在科学和艺术领域中有着广泛的应用,如光谱学、光学、摄影、绘画等。

可见光的光谱及各种光的波长

可见光的光谱及各种光的波长

各种光的波长各种光的波长可见光的光谱c在这里是光速,x、y和z是空间的坐标,t是时间的坐标,u(x,y,z)是描写光的函数,下标表示取偏导数。

在空间固定的一点(x、y、z固定),u就成为时间的一个函数了。

通过傅里叶变换我们可以获得每个波长的振幅。

由此我们可以得到这个光在每个波长的强度。

这样一来我们就可以从波动方程获得一个光谱。

但实际上要描写一组光谱到底会产生什么颜色,我们还的理解视网膜的生理功能才行。

亚里士多德就已经讨论过光和颜色之间的关系,但真正阐明两者关系的是艾萨克·牛顿。

约翰·沃尔夫冈·歌德也曾经研究过颜色的成因。

托马斯·杨1801年第一次提出三元色的理论,后来赫尔曼·冯·亥姆霍兹将它完善了。

1960年代人们发现了人眼内部感受颜色的色素,从而确定了这个理论的正确性。

人眼中的锥状细胞和棒状细胞都能感受颜色,一般人眼中有三种不同的锥状细胞:第一种主要感受红色,它的最敏感点在565纳米左右;第二种主要感受绿色,它的最敏感点在535纳米左右;第三种主要感受蓝色,其最敏感点在445纳米左右。

杆状细胞只有一种,它的最敏感的颜色波长在蓝色和绿色之间。

每种锥状细胞的敏感曲线大致是钟形的。

因此进入眼睛的光一般相应这三种锥状细胞和杆状细胞被分为4个不同强度的信号。

因为每种细胞也对其他的波长有反映,因此并非所有的光谱都能被区分。

比如绿光不仅可以被绿锥状细胞接受,其他锥状细胞也可以产生一定强度的信号,所有这些信号的组合就是人眼能够区分的颜色的总和。

如我们的眼睛长时间看一种颜色的话,我们把目光转开就会在别的地方看到这种颜色的补色。

这被称作颜色的互补原理,简单说来,当某个细胞受到某种颜色的光刺激时,它同时会释放出两种信号:刺激黄色,并同时拟制黄色的补色紫色。

事实上,某个场景的光在视网膜上细胞产生的信号并不是完全被百分之百等于人对这个场景的感受。

人的大脑会对这些信号处理,并分析比较周围的信号。

led光色波长

led光色波长

led光色波长
LED(发光二极管)是一种半导体器件,可以将电能转换为光能。

它的光谱分布与波长有关,不同的LED光源具有不同的光谱特征和应用场景。

LED光色波长是指LED发出的光线在不同波长范围内的分布,常见的光色包括白光、红光、绿光、蓝光等。

下面是一些常见的LED 光色波长介绍。

1. 白光 LED光色波长:白光LED光色通常由蓝光LED和黄色荧光粉混合而成。

蓝光通常在465-470nm波长范围内,黄光在580-590nm 波长范围内。

不同比例的混合会产生不同的白色,例如冷白、自然白和暖白。

2. 红光 LED光色波长:红光LED波长范围通常在620-640nm之间。

由于红光波长长,能够穿透较浅,因此常用于光疗和光生物学研究中。

3. 绿光 LED光色波长:绿光LED波长范围通常在515-530nm之间。

绿光LED常用于照明和显示屏等领域中。

4. 蓝光 LED光色波长:蓝光LED波长范围通常在460-470nm之间。

蓝光LED的应用场景非常广泛,例如建筑物照明、汽车车灯、工业照明、舞台照明等等。

除了上述常见的光色波长之外,还有紫光、黄光、橙光等不同波长的LED光源。

这些LED光源在不同的应用场景中有着特定的作用,如紫光LED可用于室内装饰、黄光LED可用于路灯等等。

随着技术的不断发展,LED光源的波长范围也在不断拓展,未来将有更多的颜色
和波长可供选择。

可见光的光谱及各种光的波长

可见光的光谱及各种光的波长

各种光的波长各种光的波长可见光的光谱c在这里是光速,x、y和z是空间的坐标,t是时间的坐标,u(x,y,z)是描写光的函数,下标表示取偏导数。

在空间固定的一点(x、y、z固定),u就成为时间的一个函数了。

通过傅里叶变换我们可以获得每个波长的振幅。

由此我们可以得到这个光在每个波长的强度。

这样一来我们就可以从波动方程获得一个光谱。

但实际上要描写一组光谱到底会产生什么颜色,我们还的理解视网膜的生理功能才行。

亚里士多德就已经讨论过光和颜色之间的关系,但真正阐明两者关系的是艾萨克·牛顿。

约翰·沃尔夫冈·歌德也曾经研究过颜色的成因。

托马斯·杨1801年第一次提出三元色的理论,后来赫尔曼·冯·亥姆霍兹将它完善了。

1960年代人们发现了人眼内部感受颜色的色素,从而确定了这个理论的正确性。

人眼中的锥状细胞和棒状细胞都能感受颜色,一般人眼中有三种不同的锥状细胞:第一种主要感受红色,它的最敏感点在565纳米左右;第二种主要感受绿色,它的最敏感点在535纳米左右;第三种主要感受蓝色,其最敏感点在445纳米左右。

杆状细胞只有一种,它的最敏感的颜色波长在蓝色和绿色之间。

每种锥状细胞的敏感曲线大致是钟形的。

因此进入眼睛的光一般相应这三种锥状细胞和杆状细胞被分为4个不同强度的信号。

因为每种细胞也对其他的波长有反映,因此并非所有的光谱都能被区分。

比如绿光不仅可以被绿锥状细胞接受,其他锥状细胞也可以产生一定强度的信号,所有这些信号的组合就是人眼能够区分的颜色的总和。

如我们的眼睛长时间看一种颜色的话,我们把目光转开就会在别的地方看到这种颜色的补色。

这被称作颜色的互补原理,简单说来,当某个细胞受到某种颜色的光刺激时,它同时会释放出两种信号:刺激黄色,并同时拟制黄色的补色紫色。

事实上,某个场景的光在视网膜上细胞产生的信号并不是完全被百分之百等于人对这个场景的感受。

人的大脑会对这些信号处理,并分析比较周围的信号。

led光波长

led光波长

led光波长LED光波长是指一种发光二极管(Light Emitting Diode,LED)所发射的光的波长范围。

LED光波长决定了其发出的光的颜色,对于不同的应用需求,人们可以根据需要选择不同波长的LED光源。

LED光波长的单位是纳米(nm),常见的LED光波长有红光、黄光、绿光、蓝光和紫光等。

以下是LED光波长的相关参考内容:1. 红光(红光波长范围为620nm-760nm):红光LED是应用最广泛的一种LED光源,其波长范围从红橙色到深红色。

红光LED主要应用于显示屏、指示灯、信号灯等领域,并且在医疗美容和植物生长领域也有应用。

2. 黄光(黄光波长范围为570nm-590nm):黄光LED是一种中等波长的LED光源,其颜色介于绿光和红光之间。

黄光LED主要应用于显示屏、道路标识等领域,其颜色鲜艳明亮,增强了视觉效果。

3. 绿光(绿光波长范围为495nm-570nm):绿光LED是一种中等波长的LED光源,其颜色鲜艳,适合用于显示屏、指示灯、路灯、室内照明等领域。

绿光LED具有较高的亮度和较低的能耗,是一种环保的光源。

4. 蓝光(蓝光波长范围为450nm-495nm):蓝光LED是一种短波长的LED光源,其颜色呈现出深蓝色。

蓝光LED主要应用于显示屏、背光源、车灯等领域。

蓝光LED具有较高的亮度和较低的能耗,适合用于需要高亮度的应用中。

5. 紫光(紫光波长范围为380nm-450nm):紫光LED是一种较短波长的LED光源,其颜色呈现出紫色。

紫光LED主要应用于紫外线检测、紫外线固化、紫外线杀菌和荧光显示等领域。

紫光LED的波长范围还包括紫外线A波长、紫外线B波长和紫外线C波长。

除了以上常见的LED光波长外,还存在其他特殊波长的LED光源,如红外LED和紫外LED。

红外LED的波长超过760nm,主要应用于红外通信、红外传感、红外热成像等领域。

紫外LED的波长小于380nm,主要应用于紫外线检测、紫外线固化、紫外线杀菌和荧光显示等领域。

每种颜色地光与波长地对应值

每种颜色地光与波长地对应值

每种颜色的光与波长的对应值紫光 400~450 nm 蓝光 450~480 nm 青光 480~490 nm 蓝光绿 490~500 nm 绿光 500~560 nm 黄光绿 560~580 nm 黄光 580~595 nm 橙光 595~605 nm 红光 605~700 nm根据光子能量公式:E=hυ其中,h为普朗克常数,υ为光子频率可见光的性质是由其频率决定的。

另外,在不同折射率的介质中,光的波长会改变而频率不变。

色温色温(colo(u)r temperature)是表示光源光色的尺度,单位为K(开尔文)。

色温在摄影、录象、出版等领域具有重要应用。

光源的色温是通过对比它的色彩和理论的热黑体辐射体来确定的。

热黑体辐射体与光源的色彩相匹配时的开尔文温度就是那个光源的色温,它直接和普朗克黑体辐射定律相联系。

一.概述基本定义色温是表示光源光谱质量最通用的指标。

一般用Tc表示。

色温是按绝对黑体来定义的,光源的辐射在可见区和绝对黑体的辐射完全相同时,此时黑体的温度就称此光源的色温。

低色温光源的特征是能量分布中,红辐射相对说要多些,通常称为“暖光”;色温提高后,能量分布中,蓝辐射的比例增加,通常称为“冷光”。

一些常用光源的色温为:标准烛光为1930K (开尔文温度单位);钨丝灯为2760-2900K;荧光灯为3000K;闪光灯为3800K;中午阳光为5600K;电子闪光灯为6000K;蓝天为12000-18000K。

显示器指标色温(ColorTemperature)是高档显示器一个性能指标。

我们知道,光源发光时会产生一组光谱,用一个纯黑体产生出同样的光谱时所需要达到的某一温度,这个温度就是该光源的色温。

15英寸以上数控显示器肯定带有色温调节功能,通过该功能(一般有9300K、6500K、5000K三个选择)可以使显示器的色彩能够满足高标准工作要求。

高档产品中有些还支持色温线性调整功能。

光源颜色光源的颜色常用色温这一概念来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外线红光是与夜视装备一起使用的。否则人的眼睛是看不到红外线光的。
紫外光通常是用作识别钞票是否伪造,一些紫外发光二极管照明物在夜总会和派对上很受欢迎,它们被用来使荧光物质 发出更亮的光。
光的颜色和它的波长
光的颜色是否可以看见是由它的波长决定的,光的波长是以纳米为单位的也说是十亿分之一米。发光二极管发出的光几 乎都是一致的也就是说它几乎都是在一个波长,发出非常纯的颜色。以下是光的颜色和它的波长。
近紫外线光 395nm -带微红的深紫色
UV-A型紫外线光 370nm -几乎是不可见光,受木质玻璃滤光时显现出一个暗深紫色。
白光发光二极管有微黄色的到略带紫色的白光。白光发光二极管的色温范围有低至4000°K到12000°K。常见的白光发光 二极管通常都是6500°- 8000°K范围内。
第2页
中红外线红光
4600nm - 1600nm --不可见光
低红外线红光
1300nm - 870nm --不可见光 850nm - 810nm -几乎不可见光
近红外线光 780nm -当直接观察时可看见一个非常暗淡的樱桃红色光 770nm -当直接观察时可看见一个深樱桃红色光 740nm -深樱桃红色光
蓝绿色 505nm - 青绿色/蓝绿色 500nm - 淡绿青色 495nm - 天蓝色 蓝色 475nm - 天青蓝 470nm - 460nm-鲜亮蓝色 450nm - 纯蓝色
蓝紫色 444nm - 深蓝色 430nm - 蓝紫色
ห้องสมุดไป่ตู้
紫色 405nm - 纯紫色
第1页
400nm - 深紫色
发光颜色与波长.txt
红色光 700nm - 深红色 660nm - 红色 645nm - 鲜红色 630nm - 橘红 620nm - 橙红
橙色光 615nm - 红橙色光 610nm - 橙色光 605nm - 琥珀色光
黄色光 590nm - “钠“黄色 585nm -黄色 575nm - 柠檬黄色/淡绿色
绿色 570nm - 淡青绿色 565nm - 青绿色 555nm - 550nm - 鲜绿色 525nm - 纯绿色
绿色光也可以用作为夜视,绿色光还特别适用于在夜晚的时候阅读地图或图表。它还不那么容易被夜视装备发现,便很 容易被人眼发现,绿色光的亮度比红色光低。
蓝色光可被用作在夜晚阅读地图和通常很受军事人员青睐,因为蓝色光增加了对比度的水平。它还可以用作戏院和演出 时的后台工作灯色。
蓝绿光有着相似绿光和蓝光的夜视优点,但随着蓝绿光的颜色特性的提高,一些用户因为这个原因喜欢用蓝绿光。
发光颜色与波长.txt 白色光有完美的颜色特性,但它会损害适应暗光的视觉,一定光源熄灭后需要一定的时间来重新适应。
红色光通常是用作夜视。红光不会引起你瞳孔过分收缩和一旦红光熄灭时眼睛不需要重新适应黑暗。红色也通常在单色 相片处理被用作为“安全”颜色因为它不会损坏正在冲印的底片黄色光有着红色光和白色光的一些优点。黄色光另外一 优点就是当你阅读时减少因为长时间阅读而导致眼睛疲劳的反射和眩目的光。
相关文档
最新文档