前后盘式制动器制动系统

合集下载

汽车制动系统简介

汽车制动系统简介

汽车制动系统简介汽车制动系统是车辆中非常重要的系统之一,其作用是使车辆在行驶中停止或减速。

制动系统由多个组件组成,包括刹车盘、刹车鼓、刹车片、制动液和制动器等。

在这篇文章中,我们将简要介绍汽车制动系统及其组成部分。

第一部分:制动系统的类型汽车制动系统可以分为两种类型:盘式制动和鼓式制动。

盘式制动是目前大多数车辆所采用的制动系统。

其原理是利用刹车盘和刹车片之间的摩擦来制动车辆。

刹车盘通常固定在车轮上,而刹车片则与刹车盘接触,产生摩擦力。

盘式制动系统具有制动效果良好、可靠性高、散热效果好等优点,并且易于维护和更换。

1、刹车盘刹车盘是盘式制动系统中非常重要的部分,其作用是提供有足够的摩擦能力。

刹车盘通常是由钢铁或合金铸造而成,具有较高的热容量和耐腐蚀性能。

2、刹车片刹车片是制动系统中的关键部分,是实际用来制动车辆的组件。

刹车片通常由摩擦材料制成,如陶瓷、半金属等。

不同种类的刹车片具有不同的摩擦系数和磨损率,可以根据车辆的需求选择合适的刹车片。

3、刹车鼓刹车鼓是鼓式制动系统中使用的部件,其作用与刹车盘类似,提供给制动器足够的摩擦能力。

刹车鼓通常由灰铸铁制成,其质量和几何形状对制动效果有重要影响。

4、制动液制动液是传输制动力的介质。

制动液通常是基于丙二醇或多重醇等物质的液体,能够承受高压和高温。

制动液在传输制动力的同时,也是一种润滑剂,有助于减少制动器组件之间的磨损。

5、制动器制动器是制动系统中最重要的部件,其作用是产生制动力,并实现停车、减速等功能。

制动器的类型包括盘式制动器和鼓式制动器。

盘式制动器由制动卡钳和制动活塞组成。

当制动踏板施加力时,制动卡钳内的制动片会与刹车盘接触,从而制动车轮。

制动系统的工作原理是将制动力传递给车轮,从而实现减速和停车的功能。

当司机踩下制动踏板时,制动器组件会产生摩擦力,将车轮减速或停止转动。

制动系统的工作过程可以分为三个阶段:制动前段、制动中段和制动后段。

在制动前段,制动器和车轮之间开始接触,并逐渐产生摩擦力;在制动中段,制动器和车轮之间的摩擦力达到最大;在制动后段,制动器逐渐减小制动力,车轮恢复正常运转。

《盘式制动器》课件

《盘式制动器》课件
商用车
随着物流运输业的快速发展,盘式制动器在 商用车领域的应用也逐渐增多,提高了车辆 的制动安全性和稳定性。
环境友好性
总结词
随着环保意识的提高,盘式制动 器在环保方面也表现出良好的性
能,成为绿色出行的选择。
低噪音
盘式制动器在制动过程中产生的噪 音较低,对周围环境的影响较小。
节能减排
采用新型高强度材料和结构设计, 提高了制动器的能效和可靠性,有 助于减少能源消耗和排放污染物。
盘式制动器的优点
相比鼓式制动器,盘式制动器具有更好的散热性 能和更快的响应速度,更适合于高速行驶和高负 荷制动。
盘式制动器的结构与工作原理
详细介绍了盘式制动器的组成部件,如制动盘、 制动钳、摩擦片和液压系统等,以及其工作原理 。
摩托车制动系统
摩托车盘式制动器概述
01
摩托车盘式制动器是现代摩托车的重要安全装置,具有轻量化
刹车盘状况
检查刹车盘表面是否光滑 ,有无裂纹或损伤,如有 需要应及时修复或更换。
制动液水平
检查制动液液面高度,确 保制动液充足,无泄漏现 象。
更换摩擦片
摩擦片磨损
摩擦片是制动器中的易损件,随着使用次数 的增加,摩擦片会逐渐磨损,当磨损到一定 程度时,制动力会下降,影响制动效果。
更换时机
当摩擦片磨损到一定程度时,应及时更换。 一般来说,当摩擦片厚度小于原厚度的1/3时 ,应考虑更换。
、高响应和良好的抗热衰退性能。
摩托车盘式制动器的特点
02
相比传统的鼓式制动器,摩托车盘式制动器具有更好的制动力
分配和更短的制动距离,提高了驾驶安全性。
摩托车盘式制动器的安装与调整
03
提供了关于如何正确安装和调整摩托车盘式制动器的详细指南

盘式制动器的原理

盘式制动器的原理

盘式制动器的原理
盘式制动器是通过利用摩擦力将旋转的制动盘停止的一种制动装置。

其主要原理如下:
1. 制动盘:盘式制动器由制动盘和制动钳两部分组成。

制动盘是一个圆盘状的零件,一般由钢铁或铸铁制成。

制动盘安装在车轮的轴上,与车轮一起以相同的速度旋转。

2. 制动钳:制动钳包含刹车片和活塞两部分。

刹车片位于制动钳两侧,可以与制动盘表面接触。

活塞由制动液压系统控制,通过压缩刹车片使之与制动盘接触。

3. 刹车片:刹车片通常由摩擦材料制成,例如有机复合材料或金属材料。

制动盘旋转时,刹车片与制动盘接触,产生摩擦力使制动盘减速甚至停止旋转。

4. 制动液压系统:盘式制动器通常使用液压系统来控制制动力。

当驾驶员踩下制动踏板时,制动液会被送入制动钳中的活塞,使刹车片压紧制动盘。

5. 摩擦力:当刹车片与制动盘接触时,由于摩擦力的作用,制动盘会减速或停止旋转。

摩擦力产生的摩擦热会被散发到空气中,以免过热导致制动性能下降。

通过控制制动液压系统的压力,驾驶员可以灵活地调节制动力大小。

盘式制动器具有快速散热、制动效果稳定的特点,常见于汽车、摩托车和自行车等车辆中。

盘式制动器工作总结

盘式制动器工作总结

盘式制动器工作总结
盘式制动器是一种常见的车辆制动装置,它通过摩擦力将车轮减速或停止,确保车辆行驶的安全。

在汽车、摩托车等交通工具中,盘式制动器都扮演着重要的角色。

下面我们来总结一下盘式制动器的工作原理和特点。

盘式制动器的工作原理是利用摩擦力来减速或停止车轮的旋转。

当驾驶员踩下制动踏板时,制动器会将制动盘和制动片之间施加一定的压力,从而产生摩擦力,使车轮减速或停止。

盘式制动器通常由制动盘、制动片、制动钳和制动油管等部件组成。

制动盘固定在车轮上,制动片则安装在制动钳内,当制动踏板踩下时,制动钳会夹紧制动盘,从而实现制动效果。

盘式制动器具有制动力大、散热性能好、响应速度快等特点。

由于制动盘和制动片的接触面积大,制动力可以得到有效地传递,因此制动效果非常显著。

此外,盘式制动器的散热性能也非常好,制动盘和制动片之间的空气流通有利于散热,可以有效地防止制动器过热。

另外,盘式制动器的响应速度也很快,一旦踩下制动踏板,制动效果就会立即产生,确保了驾驶的安全。

总的来说,盘式制动器是一种效果显著、安全可靠的制动装置,它在车辆行驶中起着非常重要的作用。

我们在日常驾驶中要注意保养和维护制动器,确保其正常工作,以保障行车安全。

盘式制动器原理

盘式制动器原理

盘式制动器原理
盘式制动器是一种常见的汽车制动系统,它通过制动盘和制动钳的摩擦来实现车辆的减速和停止。

其原理如下:
制动踏板被踩下,通过传动系统将力量传递到制动钢丝绳或液压管道,进而传递到制动钳。

制动钳内装有制动片,当制动钳受到压力时,制动片会被挤压到制动盘上。

制动盘固定在车轮上,当制动片被挤压到制动盘上时,制动盘受到摩擦力的作用,从而使车轮减速。

制动盘的转动被制动片的摩擦力所阻碍,使车轮停止旋转,从而实现了车辆的制动。

在制动过程中,制动片和制动盘之间会产生大量的摩擦热,因此制动器通常会采取一些散热措施,如通风孔设计、散热片等,以避免制动系统过热导致失效。

盘式制动器的优点在于制动效果好、制动力平稳。

制动盘与制动片之间的接触面积大,摩擦力较大,可以快速将车辆减速停止。

此外,盘式制动器还具有制动力平稳、寿命长、维护方便等优点。

然而,盘式制动器也存在一些缺点。

例如,制动盘和制动片的磨损会导致性能下降,需要定期更换制动片;制动盘受热膨胀影响,会产生制动力下降的问题;制动器在潮湿环境下容易生锈等。

总的来说,盘式制动器是一种常见且有效的汽车制动系统,通过制
动盘和制动片之间的摩擦来实现车辆的制动。

虽然它具有一些缺点,但在日常驾驶中仍然是一种可靠的制动方式。

通过了解盘式制动器的原理,我们可以更好地理解汽车制动系统的工作原理,从而更好地保养和维护车辆,确保行车安全。

盘式制动器工作原理

盘式制动器工作原理

盘式制动器工作原理
盘式制动器是一种常见的汽车制动装置,其工作原理是通过摩擦力来实现制动
效果的。

盘式制动器主要由制动盘、制动钳和制动片等部件组成,下面我们来详细了解一下盘式制动器的工作原理。

首先,当司机踩下制动踏板时,制动液会被推送到制动钳内部的活塞上。

活塞
会根据压力的大小,将制动片挤压到制动盘上,从而产生摩擦力。

制动盘是安装在车轮上的,当制动片挤压到制动盘上时,制动盘会因为摩擦力的作用而减速甚至停止转动,从而使车辆减速甚至停止。

其次,制动片是盘式制动器中的关键部件,它是由摩擦材料制成的。

在制动过
程中,制动片会受到制动盘的摩擦,产生摩擦力来减速车辆。

制动片的材料通常是耐磨耐高温的材料,以确保在制动过程中能够持续发挥作用。

此外,制动盘也是盘式制动器中至关重要的部件。

制动盘一般由铸铁或者钢铁
制成,具有良好的散热性能和耐磨性能。

在制动过程中,制动盘会受到制动片的摩擦,产生热量,如果散热不好,就会导致制动盘变形甚至开裂,影响制动效果。

最后,制动钳是用来控制制动片挤压制动盘的部件。

制动钳通常由活塞、活塞
密封圈和钳体等部件组成。

活塞受到制动液的作用,会向外推动,从而挤压制动片。

制动钳的设计和制造对于制动系统的性能和安全性有着至关重要的影响。

综上所述,盘式制动器的工作原理主要是通过制动盘、制动片、制动钳等部件
的协同作用,利用摩擦力来实现车辆的减速和停止。

在日常驾驶中,我们要注意定期检查制动系统的工作状态,确保制动器的正常使用,以确保行车安全。

盘式制动器工作原理

盘式制动器工作原理

盘式制动器工作原理
盘式制动器是一种常见的汽车制动装置,用于减速或停止汽车运动。

它由刹车盘、刹车钳和刹车片等组成。

工作时,当驾驶员踩下刹车踏板时,液压系统中的制动液被压入刹车钳内。

刹车钳里的活塞受到液压力的作用,向外移动。

刹车钳内还装有刹车片,它们与刹车盘相对,减缓或停止盘的转动。

活塞的移动使刹车片紧贴刹车盘,在其表面产生摩擦力。

这个摩擦力通过摩擦转化为热能,将刹车盘的运动能量转化为热量,实现减速或停止汽车。

由于刹车片与刹车盘接触面积大、摩擦力大,因此能够产生较高的制动效果。

为了保证刹车片与刹车盘之间的良好接触,制动器通常会在活塞和刹车片之间增加一个弹簧装置,用于保持刹车片与刹车盘之间的一定间隙。

当驾驶员松开刹车踏板时,刹车片会回到起始位置,以减少与刹车盘之间的摩擦。

为了提高刹车的性能和安全性,一些高级制动器还会加入附加装置,如防抱死系统(ABS)和制动力分配系统(EBD)。

它们帮助驾驶员更好地控制车辆刹车,避免轮胎锁死和制动不均衡等现象,确保行车安全。

总之,盘式制动器通过刹车盘、刹车钳和刹车片的协同作用来减速或停止汽车运动。

它利用液压力和摩擦力将运动能量转化为热能,从而实现安全的制动效果。

图解汽车(12) 汽车制动系统结构解析

图解汽车(12) 汽车制动系统结构解析

图解汽车(12)汽车制动系统结构解析● 制动系统的组成作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。

工作原理就是将汽车的动能通过摩擦转换成热能。

汽车制动系统主要由供能装置、控制装置、传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。

● 鼓式制动器鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。

主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。

在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。

从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。

不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。

●盘式制动器盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。

盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。

与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。

制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。

● 通风制动盘制动过程实际上是摩擦力将动能转化为热能的过程,如制动器的热量不能及时散出,将会影响其制动效果。

为了进一步提升制动效能,通风制动盘应运而生。

通风刹车盘内部是中空的或在制动盘打很多小孔,冷空气可以从中间穿过进行降温。

从外表看,它在圆周上有许多通向圆心的洞空,它利用汽车在行驶当中产生的离心力能使空气对流,达到散热的目的,因此比普通实心盘式散热效果要好许多。

●陶瓷制动盘陶瓷制动盘相对于一般的刹车盘具有重量轻、耐高温耐磨等特性。

普通的刹车盘在全力制动下容易高热而产生热衰退,制动性能会大打折扣,而陶瓷刹车盘有很好的抗热衰退性能,其耐热性能要比普通制动盘高出许多倍。

盘式制动器制动系统原理外文文献翻译、中英文翻译、外文翻译

盘式制动器制动系统原理外文文献翻译、中英文翻译、外文翻译

盘式制动器制动系统原理外文文献翻译、中英文翻译、外文翻译制动系统原理摩擦力是指抵抗两个物体之间相对运动的力。

在制动系统中,通过产生摩擦力来使汽车停止运动或减速行驶。

摩擦力的大小取决于物体表面粗糙度和接触面所受压力的大小。

当发生摩擦运动时,动能就会转化为热能。

因此在刹车时,必须尽量减少热量的产生,以避免制动系统故障。

摩擦力和制动系统在制动系统中,摩擦力的大小是由控制器控制的。

通过改变摩擦力,可以使汽车停止运动或以不同的速度行驶。

控制器通过制动蹄或制动板传递给旋转的制动鼓或制动盘。

当驾驶员踩在制动脚踏板上的力增大时,摩擦力也会随之增加。

车轮在制动摩擦力的作用下逐渐停止转动,但轮胎和地面之间也会产生摩擦力。

制动器上产生的摩擦力必须与轮胎与地面之间产生的摩擦力大小相匹配,避免车轮锁死或打滑的现象。

为了控制车轮在减速时出现打滑的现象,现在广泛使用电脑控制的制动器。

鼓式制动器的基本操作原理鼓式制动器由一个铸造鼓和连接在制动板上的制动蹄构成。

铸造鼓固定在车轮上,随车轮一起转动。

制动器内还有液压缸、弹簧和连接杆等部件。

制动蹄和摩擦材料连接在一起,制动器工作时,摩擦材料贴附在制动鼓的内表面,制动蹄在力的作用下紧贴在制动鼓的内表面,产生摩擦力。

制动器的工作原理是通过液压缸控制制动蹄的运动,使其紧贴在制动鼓上,从而实现制动效果。

在刹车系统开始工作时,盘式制动器的制动片会被推向制动盘。

制动片与制动盘之间的摩擦力会使得车轮减速或停止旋转。

制动盘通常是由铁制成的,而制动片则通常是由摩擦材料制成的。

制动片与制动盘之间的摩擦力是由制动液压缸内部的液压力驱动的。

这种液压力是由操纵者的脚踏板产生的。

盘式制动器的优点是可以承受更高的温度和更大的力量,因为它们的制动面积更大。

此外,盘式制动器的制动片更容易被更换和维护。

缺点是盘式制动器比鼓式制动器更昂贵,并且更容易受到灰尘和水的影响。

总的来说,盘式制动器是一种高效、可靠的刹车系统,适用于高速行驶和紧急制动。

盘式制动器的常见故障

盘式制动器的常见故障

盘式制动器的常见故障盘式制动器是现代汽车中常见的制动系统之一。

它的制动效果好,使用寿命长,因此受到了广泛的应用。

但是,盘式制动器也有一些常见的故障。

本文将介绍一些盘式制动器的常见故障及其解决方法。

一、刹车片磨损刹车片磨损是盘式制动器的最常见故障之一。

刹车片在制动时与制动盘摩擦,从而产生制动力。

随着时间的推移,刹车片会磨损,导致制动效果减弱。

如果刹车片过度磨损,甚至会导致制动失效。

解决方法:定期检查刹车片的磨损情况,及时更换磨损严重的刹车片。

通常情况下,刹车片的使用寿命为2-3万公里左右,但具体使用寿命取决于车辆的使用情况。

二、制动盘变形制动盘是盘式制动器的另一个重要部件。

制动盘与车轮相连,当刹车片与制动盘摩擦时,制动盘会产生一定的热膨胀,如果制动盘过度加热,就会导致制动盘变形。

制动盘变形会导致制动效果减弱,甚至会导致刹车时出现抖动现象。

解决方法:定期检查制动盘的变形情况,及时更换变形严重的制动盘。

此外,避免长时间连续制动,也可以减少制动盘变形的可能性。

三、制动液泄漏制动液是盘式制动器的液压介质,它通过制动系统的管路和油管将制动力传递到刹车片和制动盘上。

如果制动液泄漏,就会导致制动力减弱或失效。

解决方法:定期检查制动系统的制动液液位,如果发现液位下降,应及时检查制动系统的管路和油管,查找泄漏点并进行修理。

四、制动器异响制动器异响是盘式制动器的另一个常见故障。

异响通常是由于制动片与制动盘之间的不良摩擦引起的,也可能是由于制动片表面出现杂质导致的。

异响不仅会影响行车舒适性,还可能会影响制动效果。

解决方法:定期检查制动片和制动盘表面的情况,如果发现杂质,应及时清理。

如果异响较为严重,可以将车辆送到专业的维修站进行检修。

五、制动系统故障灯亮起制动系统故障灯亮起是盘式制动器的另一个常见故障。

如果制动系统故障灯亮起,说明制动系统出现了故障,可能是由于制动液不足、制动盘变形、刹车片磨损等原因引起的。

解决方法:及时检查制动系统,找出故障原因并进行修理。

F_Brake

F_Brake

F-制动F - 制动BR - 制动系统所有车辆都采用带辅助制动(BA)的真空助力器。

前制动器使用通风良好的盘式制动器,后制动器则使用LT20D 鼓式制动器和盘式制动器。

类型(盘式制动) AD22VK前面制动盘尺寸(外径×厚度)(mm ) Ø260 X 22刹车片大小(长度×宽度×厚度)(mm )144.2 X 46.0 X 9.0缸内径(mm ) Ø53.97 刹车片磨损报警配有类型(鼓式制动或盘式制动) L T 20D (鼓式) 后面 制动鼓内径(mm ) Ø203 衬里大小(长度×宽度×厚度)(mm )194 X 30 X 4.0缸内径(mm ) (Ø15.87)蹄片间隙调整 自动调节器主缸内径(mm )[inch] Ø22.22 [7/8]真空助力器 类 型 C255(带BA辅助制动)膜片型[inch] Ø10油液Nissan 制动液 (NR-3)或DOT3[详细说明]F-制动制动总泵[结构]所有车辆都采用储液罐销固定型串连式总泵。

[维修要点]主活塞和辅助活塞都无法维修,必须作为一个总成更换。

F-制动带BA 制动助力的真空助力器[结构]当制动力超出一定值时,相对于输入的增大,制动助力的真空助力器也可使输出增大,从而减少产生最大制动时所需的脚制动力。

在紧急情况下,ABS 会发挥更大作用。

[维修要点]检查操作在发动机停止工作时,每隔5秒踩下制动踏板几次 ; 然后,将制动踏板踩到底,同时起动发动机,并检查制动踏板和地板之间的间隙是否已缩少。

检查气密性让发动机怠速工作约1分钟,以使助力器处于真空状态 ; 关闭发动机,以正常方式每隔5秒踩下制动踏板。

每次踩下踏板后,请检查制动踏板和地板之间的间隙是否加大(即踏板高度是否增加)。

F-制动前盘式制动器[结构]采用AD22VK 通风式盘式制动器。

[维修要点]检查刹车片磨损- 从缸体的检查孔检查刹车片的厚度。

盘式制动器制动系统设计

盘式制动器制动系统设计

XXX大学本科生毕业设计(论文)HX7200制动系设计学生姓名:______________学号:______________班级: ______________专业:______________指导教师:______________4月目录目录 ............................................................................................................................ 错误!未定义书签。

摘要 .......................................................................................................................... 错误!未定义书签。

Abstract ......................................................................................................................... 错误!未定义书签。

第1章绪论......................................................................................................... 错误!未定义书签。

1.1本课题研究背景............................................................................................. 错误!未定义书签。

1.2制动系统旳研究现实状况............................................................................. 错误!未定义书签。

2014长安CS75全车维修手册2.3.1制动系统-概述

2014长安CS75全车维修手册2.3.1制动系统-概述

规格材料规格一般规格项目规格制动液HZY4(或DOT4)前盘式制动器规格制动盘直径286 mm新品制动盘正常厚度28 mm制动盘报废厚度26 mm新品制动盘最大跳动量(已安装)0.025 mm制动钳活塞直径45×2 mm制动摩擦块摩擦材料最小厚度 2 mm后盘式制动器(EPB卡钳)规格制动盘直径298 mm新品制动盘正常厚度12 mm制动盘报废厚度10 mm新品制动盘最大跳动量(已安装)0.025 mm制动钳活塞直径38 mm制动摩擦块摩擦材料最小厚度 2 mm说明与操作系统概述基础制动系统采用双回路,对角线布置(左前、右后;右前、左后),前后均为盘式液压制动。

前、后轮盘式制动钳安装在转向节上,均为浮钳式制动钳。

前、后行车制动器能够进行制动间隙的自动调节,后电子驻车制动器可以通过间隙自调功能调节制动盘与摩擦片的间隙。

注意:驻车制动为电子+机械式。

制动总泵采用纵向串联设计,直接和助力器连接,助力器可以增加制动力,减少驾驶员施加在制动踏板上的力。

纵向串联设计可以保证在一条制动回路失效时,另一条制动回路仍保持完好的工作状态。

防抱死控制系统(含ESC)在基本制动的基础上增加了电子液压控制单元和轮速传感器,每个车轮配有独立回路的液压系统;电子控制单元由装在车轮上的轮速传感器采集四个车轮的轮速信号,通过液压控制单元调节制动过程的制动压力,达到防止车轮抱死和控制车身稳定性的目的;在 ABS 不起作用时,电子制动力分配系统仍可调节后轮制动力,保证后轮不会先于前轮抱死,以保证车辆的安全。

电子驻车制动系统是一个通过电子驻车制动按钮来操作后轮盘式电子驻车执行机构的机械电子系统,驻车制动按钮位于两个前座椅之间,拉起电子驻车制动按钮即可实现驻车;踩下制动踏板并同时按下电子驻车制动按钮即可实现驻车解除。

部件位置图序号部件名称序号部件名称1前制动器总成(左)9后轮速传感器线束总成(左)2前轮速传感器线束总成(左)10后制动器总成(左)3制动总泵带真空助力器及液壶总成11离合踏板总成4前轮速传感器线束总成(右)12制动踏板总成5前制动器总成(右)13油门踏板总成6EPB ECU总成14ABS\ESC执行机构总成7后轮速传感器线束总成(右)15离合液压输出管总成8后制动器总成(右)16一般检查一般检查路试实施路试是为了比较汽车的实际制动性能和驾驶员所期望的标准的制动性能。

盘式制动器工作原理

盘式制动器工作原理

盘式制动器工作原理
盘式制动器是一种常见的汽车、摩托车和自行车制动装置,它通过摩擦产生的力来减速或停止车辆进而实现制动的效果。

该制动器由制动盘、制动片、制动钳和制动液等组成。

工作原理如下:
1. 当车辆需要制动时,驾驶员踩下制动踏板,使制动液从主缸中由制动管路流入制动钳。

2. 制动钳中的活塞受到制动液压力的作用,向外移动。

3. 制动钳上的制动片与制动盘之间形成摩擦力。

制动盘被固定在车轮上,而制动片则夹紧在制动盘两侧。

4. 当制动钳活塞向外移动时,制动片被夹紧在制动盘上,产生摩擦力。

5. 摩擦力将制动盘的旋转转变为热能,从而使车轮减速或停止。

6. 制动钳活塞的回程由制动钳内部的弹簧完成,当驾驶员释放制动踏板时,制动液返回主缸,活塞回到原始位置。

通过不断地夹紧和释放制动盘,盘式制动器能够实现可靠的制动效果。

制动木的材料通常是由具有良好耐磨、耐热性能的摩擦材料制成,例如复合材料、有机材料或石棉材料。

由于制动片与制动盘之间的摩擦需要承受较大的力和温度,因此制动片需要定期检查和更换,以确保制动效果的安全和可靠性。

盘式制动器说明书

盘式制动器说明书

第1章制动系统基础1.1 引言汽车行驶时能在短距离内停车且维持行驶方向稳定性和在下坡时能稳定一定车速的能力,称为汽车的制动性制动系统是汽车的最重要系统之一,是为使高速行驶的汽车减速或停车而设计的。

汽车的制动性是汽车的主要性能之一。

制动性直接关系到交通安全,重大交通事故往往与制动距离太长、紧急制动时发生侧滑等情况有关,故汽车的制动性是汽车安全行驶的重要保障。

1.2 制动系统对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。

作用在行驶汽车上的滚动阻力、上坡阻力、空气阻力都能对汽车起到阻力作用,但这些外力的大小都是随机的、不可控制的。

因此,汽车上必须装设一系列专门装置,以便驾驶员能根据道路和交通等情况,使外界对汽车某些部分施加一定的力,对汽车进行一定程度的强制制动。

这种可控制的对汽车进行制动的外力称为制动力,相应的一系列专门装置即称为制动系统。

1.2.1制动系统的组成制动系统是由制动器和制动驱动机构组成的。

制动器是指产生阻碍车辆运动或运动趋势的力(制动力)的部件,其中也包括辅助制动系统中的缓速装置。

制动驱动机构包括供能装置、控制装置、传动装置、制动力调节装置以及报警装置、压力保护装置等附加装置。

1.2.2制动系统(1)一个基本的制动系统包括一个主缸,通过液压管路到盘式/鼓式制动器,以停止车轮转动。

为减轻驾驶员所需的制动力,绝大部分车辆都有液压助力器或真空助力器。

(2)制动系统中用到两种摩擦力:动摩擦力和静摩擦力。

在制动系统中,摩擦力的大小取决于作用在摩擦表面上的压力和摩擦接触面积。

不同的摩擦材料有不同的摩擦性能或摩擦系数。

摩擦产生的热量必须散失。

摩擦材料由石棉或非石棉材料制成。

(3)制动系统利用液压装置进行制动。

因为液压是不可压缩的,制动液能用来传递运动和力。

第2章制动器2.1 引言制动器是制动系统中用以产生阻碍车辆运动或运动趋势的力的部件。

制动器主要有摩擦式、液力式和电磁式等几种形式。

盘式制动器工作原理

盘式制动器工作原理

盘式制动器工作原理
盘式制动器是一种常用于汽车和其他运输工具上的制动装置,其工作原理主要包括以下几个步骤:
1. 制动踏板踩下:当驾驶者踩下车辆上的制动踏板时,踏板上的力量会通过连接杆传递给制动器。

2. 液压传力:制动器内部设有一个主缸,主缸内有一个活塞。

当踏板施加力量在活塞上时,活塞会压缩制动液,并将压力传递到制动器的活塞上。

3. 压力传导:制动器中有一个活塞,它将通过制动液传递的压力传递给制动器的刹车片。

刹车片位于车轮后面的刹车盘上。

4. 摩擦制动:当制动器活塞施加压力到刹车片时,刹车片会与刹车盘产生摩擦。

由于刹车片比较硬,所以摩擦会使刹车片受到压缩和磨损。

5. 减速:当刹车片与刹车盘摩擦时,车轮会因刹车片的阻力而减速。

所施加的制动力决定了车轮减速的程度。

通过以上原理,盘式制动器能够将车辆的动能转化为热能,达到减速和停车的目的。

刹车盘的散热性能较好,能够有效地将热量散发出去,提高刹车系统的使用寿命。

这种制动器具有响应迅速、制动效果好等优点,广泛应用于各种车辆的制动系统中。

盘式制动器_毕业设计

盘式制动器_毕业设计

盘式制动器_毕业设计一、引言汽车的制动系统是保障行车安全的关键部件之一,而盘式制动器作为现代汽车制动系统的重要组成部分,具有诸多优点。

本次毕业设计旨在深入研究盘式制动器的工作原理、结构特点、性能优势以及设计过程中的关键技术。

二、盘式制动器的工作原理盘式制动器主要由制动盘、制动钳、制动衬块等部件组成。

当驾驶员踩下制动踏板时,制动液通过制动管路进入制动钳的油缸,推动活塞向外移动,使制动衬块紧紧压在制动盘上。

由于制动盘与车轮一同旋转,制动衬块与制动盘之间的摩擦力产生制动力矩,从而使车轮减速或停止转动。

盘式制动器的工作原理基于摩擦力的作用。

制动衬块与制动盘之间的摩擦力大小取决于制动压力、摩擦系数以及接触面积等因素。

为了提高制动性能,需要优化这些因素。

三、盘式制动器的结构特点1、制动盘制动盘通常采用通风式设计,以提高散热性能。

通风式制动盘内部有通风道,可以有效地将制动过程中产生的热量散发出去,防止制动盘过热导致制动性能下降。

2、制动钳制动钳分为浮动式和固定式两种。

浮动式制动钳可以在制动时沿导向销移动,使制动衬块均匀地压在制动盘上;固定式制动钳则固定在车桥上,其制动力更为均匀和稳定。

3、制动衬块制动衬块的材料和形状对制动性能有重要影响。

一般采用高性能的摩擦材料,如陶瓷纤维或半金属材料,以提供良好的摩擦系数和耐磨性。

四、盘式制动器的性能优势1、良好的散热性能相比鼓式制动器,盘式制动器的散热效果更好,能够在频繁制动的情况下保持稳定的制动性能,减少热衰退现象的发生。

2、制动响应迅速盘式制动器的制动钳和制动衬块与制动盘的接触面积较大,制动压力传递更直接,因此制动响应速度更快,能够提供更短的制动距离。

3、稳定性高盘式制动器的制动力分布均匀,不易出现制动跑偏等问题,提高了车辆行驶的稳定性和安全性。

4、易于维护盘式制动器的结构相对简单,检查和更换制动衬块等部件较为方便,降低了维护成本。

五、盘式制动器的设计要点1、制动盘的设计制动盘的直径、厚度、通风道的设计等都会影响制动性能和散热效果。

认识汽车制动系统之盘式制动器

认识汽车制动系统之盘式制动器
导向销第第一一章章
车桥
第二章
误区 原则
制动钳体
摩擦块 制动盘
轮缸活塞: 固定不动
制动前 制动钳体:固定不动
制动盘: 随车轮一起转动
制动时
轮缸活塞:在液压力的作用下带动左侧摩 擦块贴向旋转的制动盘
制动钳体:作用在制动钳体上的反作用力 带动制动钳体沿导向销向左移 动,使固定在制动钳体上的右 侧摩擦块贴向旋转的制动盘
已被浮钳盘式取代
1、下列零件不属于定钳盘式制动器的是( )。 A、制动钳体 B、轮缸活塞 C、导向销 D、制动盘
2、制动时,制动钳体发生移动的是哪种盘式制动器。 A、浮钳盘式 B、定钳盘式 C、钳盘式 D、都是
3、盘式制动器在制动时,都是利用摩擦块与制动盘之间的摩 擦力实现的。
4、浮钳盘式制动器制动效能低于定钳盘式制动器。
第二章
误区 原则

不同点
浮钳盘式
定钳盘式

结构 有导向销,钳体可 无导向销,钳体不

以移动
能移动
式 制 动
原理
两侧轮缸活塞不同 两侧轮缸活塞同时
时运动
运动

油路
油路短,受热汽化 油路长,受热汽化
长短
的机会少
的机会多
定 钳
制动响 应时间
响应时间短
响应时间长盘ຫໍສະໝຸດ 式制动制 动
效能

相对与前者要低

应用
广泛用于轿车
认识汽车制动系统 之盘式制动器
第第一一章章
第二章
误区 原则
1、预习作业情况分析 第第一一章章
第二章
误区 原则
2、预习情况调查结果分析 第第一一章章
第二章
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章制动系统设计计算
1.盘式制动器形式
与全盘式相比,浮动钳盘式具有如下优点:
在盘的内侧有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管,家之液压缸;冷却条件好,所以制动液汽化的可能性小;成本低。

所以,本设计前后盘式制动器均采用浮动钳式盘式制动器。

2.
3.
X型的结构简单。

直行制动时任一回路失效,剩余的总制动力都能保持正常值的50%。

但是,一旦某一管路损坏造成制动力不对称,此时前轮将朝制动力大的一边绕主销转动,使汽车丧失稳定性。

因此,这种方案适用于主销偏移距为负值(达20mm)的汽车上。

这时,不平衡的制动力使车轮反向转动,改善了汽车的稳定性。

所以本次设计选择X型管路。

4.液压制动主缸的设计
采用双回路制动系统,双回路制动系统的制动主缸为串联双缸制动主缸。

,当制动系统中任一回路失效时,串联双缸制动主缸的另一腔仍能够工作,只是所需踏板行程加大,导致汽车制动距离增长,制动力减小。

大大的提高了工作的可靠性。

5.行车制动与驻车制动形式
行车制动用液压,而驻车制动时通过拉线用机械力推动凸轮或螺杆推动活塞,使活塞移动,让制动盘与刹车片接触。

第2章制动系统设计计算
制动系统主要参数数值
根据相关资料查得,通常应满足空载同步附着系数在之间较为合适,满载同步附着系数在 之间较为合适。

制动器有关计算
确定前后制动力矩分配系数β
任何附着系数ϕ路面上前后同时抱死的条件为、(ϕ=): 得:
1
f F =
2
f F =
一般常用制动器制动力分配系数β来表示分配比例
空载条件:
686.02
1
==
f f F F β
空载条件: N F f 4.54061= N F f 3.30372=
制动器制动力矩的确定
应急制动时,假定前后轮同时抱死拖滑,此时所需的前桥制动力矩为
得,单个后轮盘式制动器的制动力矩μ1M =21μM
= N/m
单个前轮盘式制动器的制动力矩μ2M =21μM
=N/m
盘式制动器主要参数确定
制动盘直径D 应尽可能取大些,这时制动盘的有效半径得到增加,可以降低制动钳的夹紧力,减少衬块的单位压力和工作温度。

受轮辋直径的限制,制动盘的直径通常选择为轮辋直径的70%一79%。

总质量大于2t 的汽车应取上限。

这里去制动盘的直径D 为轮辋直径的百分之79%,即D==300mm 制动盘厚度h
制动盘厚度对制动盘的质量和温升有影响。

为使质量小些,厚度不宜太大,为了减少温升,厚度又不宜过小。

因此,参考同类型车,取为25mm,通风式,增大散热。

摩擦衬块内半径R1和外半径R2
摩擦衬块外半径只与内半径及推荐摩擦衬块外半径R2与内半径R1的比值不大于。

若此比值偏大,工作时衬块的外缘与内侧圆周速度相差较多,磨损不均匀,接触面积减少,最终导致制动力矩变化大。

因为制动器直径D 等于300mm,则摩擦块R2=150mm,取R2/R1=,所以R1=100mm 。

制动衬块工作面积A
在确定盘式制动器制动衬块的工作面积时,根据制动衬快单位面积占有的汽车质量,推荐在~2
cm , 此处取为cm2,可得A =2305kg ÷cm2 = 922cm 。

摩擦衬块摩擦系数f
当前国产的制动摩擦片材料在温度低于 250℃时,保持摩擦系数f =~ 已无大问题。

所选择摩擦系数f =。

盘式制动器的制动力计算
假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制动力矩为
平均半径m R 为
对于前制动器 对于后制动器
第3章 液压制动驱动机构的设计计算
前轮制动轮缸直径d 的确定
制动轮缸对制动块施加的张开力0F 与轮缸直径d 和制动管路压力p 的关系为
)/(40p F d π=
制动管路压力一般不超过10~12a MP 。

取a MP 10=p 。

轮缸直径d 应在标准规定的尺寸系列中选取(HG2865-1997),具体为19mm 、22mm 、24mm 、25mm 、28mm 、30mm 、32mm 、35mm 、38mm 、40mm 、45mm 、50mm 、55mm 。

因此取前轮制动轮缸直径为24mm .
同理,后轮制动轮缸直径0.023mm 0.023m 10
101318
46
==⨯⨯=
d 。

因此取后轮制动轮缸直径为23mm .
制动主缸直径0d 的确定
第i 个轮缸的工作容积为:
式中,i d 为第i 个轮缸活塞的直径;n 为轮缸中活塞的数目;i δ为第i 个轮缸活塞在完全制动时的行程,初步设计时,对盘式制动器可取此处取2=δ.5mm .
所以一个前轮轮缸的工作容积为31
1
2
32
1304m m 4
2
==∑⨯π
V
一个后轮轮缸的工作容积为311
2
25
953m m 4
2
==
∑⨯π
V
所有轮缸的总工作容积为∑=
m
V V 1
i ,式中,m 为轮缸数目。

制动主缸应有的
工作容积为V V V '+=0,式中V '为制动软管的变形容积。

在初步设计时,制动主缸的工作容积可为:对于乘用车V V 1.10=;对于商用车V V 3.10=。

此处取V V 1.10=。

所以3
m m 5144)9531304(22=+=+= V V V
主缸活塞行程0S 和活塞直径0d 为 一般0S =(~)o d 。

此处取0S =o d 。

所以 30O 4
d V π
=
主缸的直径o d 应符合QC/T311-1999中规定的尺寸系列,具体为19mm 、22mm 、
28mm 、32mm 、35mm 、38mm 、40mm 、45mm 。

所以取得190=d mm 。

制动踏板力p F 和制动踏板工作行程p S
制动踏板力p F 为:
式中,0d 为制动主缸活塞直径;p 为制动管路的液压;p i 为探班机构的传动比;η为踏板机构及液压主缸的机械效率,可取η=~.此处取p i =4,η=. 制动踏板力应满足以下要求;最大踏板力一般为500N (乘用车)或700N (商用车)。

设计时,制动踏板力可在200N ~350N 的范围内选取。

所以500N N 34.380.85
14110(0.019)4π)1(146
2p 0p 2
<=⨯
⨯⨯==ηπi p d F 符合设计要求。

制动踏板工作行程p S 为
式中,1m δ为主缸中推杆与活塞间的间隙,一般取~2mm;2m δ为主缸活塞空行程,主缸活塞由不工作时的极限位置到使其皮碗完全封堵主缸上的旁通孔所经过的行程。

制动器调整正常时的踏板工作行程p S ,在只应占计及制动衬块的容许磨损量的踏板行程的40%~60%。

为了避免空气侵入制动管路,在计算制动主缸活塞回位弹簧时,应保证踏板放开后,制动管路中仍保持~MPa 的残余压力。

最大踏板行程,对乘用车应不大于100~150mm ,对商用车不大于180mm 。

此外,作用在制动手柄上最大的力,对乘用车不大于400N ,对商用车不大于600N 。

制动手柄最大。

相关文档
最新文档