九年级数学二次函数的图象与面积问题PPT教学课件

合集下载

二次函数的应用课件面积问题(共10张PPT)

二次函数的应用课件面积问题(共10张PPT)

(1)y=x2-3x+4
(2)y=1-27 x+ 2
(4)y=100-5x2
(5)y=-6x2+12x
(6)y=- 3 x2-4x+1 2
∴抛物线的顶点坐标是(5,50) 答:当矩形窗框的宽为5m时,长为1. 解:设矩形的宽为x米,矩形的透光面积为y米。 某商店将每件商品进价为8元的商品按每10元出售,一天可售出约100件。 某商店将每件商品进价为8元的商品按每10元出售,一天可售出约100件。 答:当矩形窗框的宽为5m时,长为1.
y=-2(x-5)2+50 答:与墙垂直的一边长为5m时,花圃的面积最大,最大面积为50m2。 (4)y=100-5x2 (3)y=7x2- x+
y=- (x-1)2+
将这个函数关系式配方,得: 将这种商品的售价降低多少时,能使销售利润最大?
因为x=1时,满足0<x<2,这时
=1.
y=-2(x-5) +50 解将:这设 种矩商形品的的宽售为价降x米低,多矩少形时的,透2能光使面销积售为利y米润。最大?
(3)y=7x2- x+
y即=:-2(yx=--52)x22++520∴0x 抛物线的顶点坐标是(5,50)
其销售量可增加约10件。将这种商品的售价降低多少时, 能使销售利润最大?
请同学们完成这个问 题的解答
你会解吗?
例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。窗 框的长、宽各为多少时,它的透光面积最大?最大透光面积是多少?
解:设矩形的宽为x米,矩形的透光面积为y米。由题意 得:
y=x· 6-3x 2
(0<x<2)
即:y=- 3 x2+3x

沪科版九年级数学上册 21.1 二次函数 课件(共19张ppt)

沪科版九年级数学上册 21.1  二次函数 课件(共19张ppt)

双曲线
思考:●什么是二次函数?
●二次函数的图象是什么样的?
探究新知
观察下面图片,说说这些是什么样的曲线?
喷泉形成的轨迹
拱桥
探究新知
篮球的运行轨迹
探究新知
二次函数的概念
问题1:某水产养殖户用40米的围网,在水库中围一块矩形
的水面,投放鱼苗。要使围成的水面面积最大,它的长应
是多少米?
探究新知
解析:设围成的矩形水面的一边长为 x m,那么,矩形
____________.
4.某厂今年一月份新产品的研发资金为 a 元,以后每
月新产品的研发资金与上月相比增长率都是 x,则该厂
今年三月份新产品的研发资金 y (元)关于 x 的函数关系
2
y=a(1+x)
式为_____________.
随堂练习
5.矩形的周长为16 cm,它的一边长为 x (cm),面积为
一般形式
y=ax2+bx+c
(a≠0,a,b,c是常数)
特殊形式
y=ax2 ( a≠0);
y=ax2+bx (a≠0,a,b是常数);
y=ax2+c (a≠0,a,c是常数).
y (cm2).求:
(1) y 与 x 之间的函数解析式及自变量 x 的取值范围;
(2) 当 x=3 时矩形的面积.
解:(1) y=(8-x)x=-x2+8x (0<x<8);
(2)当x=3时,y=-32+8×3=15 cm2 .
课堂小结
定 义
二次
函数
等号两边都是整式;
自变量的最高次数是2;
二次项系数a≠0.
即 y=-10x2+40x+2850.

《二次函数的图像和性质》PPT课件 人教版九年级数学

《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标

人教版九年级上册数学二次函数课件

人教版九年级上册数学二次函数课件
当a=0时,这个函数不是 二次函数,有可能是一次函数.
自主探究
问题: (3)b或c能为0吗?
当b≠0时,是一次函数, 当b=0时, 是常数函数关于x的函数 y m 1 xm2m
是二次函数,求m的值.
分析:若 y m 1 xm2m 是二次函数,须满
足的条件是 m2 m 2, m 1 0.
自主探究
1.问题探究 (1)正方体的六个面是全等的正方形,如果 正方体的棱长为x,表面积为y,那么y与x的关 系可以怎样表示?
y 6x2
(2) n边形的对角线条数d与边数n之间有怎
样的关系?
d 1 n2 3 n
2
2
自主探究
(3)某工厂一种产品现在的年产量是20件, 计划今后两年增加产量,如果每年都比上一 年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而定,y与x之间的关 系应怎样表示?
第二十二章 二次函数 22.1 二次函数的图象和性质
22.1.1 二次函数
情境引入
欣赏下面两幅图片:
姚明一次精彩的投球
情境引入
广场前喷水池喷出的水珠
情境引入
篮球和水珠在空中走过一条曲线, 在曲线的各个位置上,篮球(水珠)的 竖直高度h与它距离投出位置(喷头)的 水平距离x之间有什么关系?上面问题中 变量之间的关系可以用二次函数来表示.
y 20x2 40x 20.
自主探究
2.视察思考
请视察下面三个式子,它们的变量对应规律可
用怎样的函数表示?这些函数有什么共同特点?请
你结合学习一次函数概念的经验,给它下个定义.
(1) y 6 x2 ;
(2)d
1 2
n2
3 2
n;
具有

人教版数学九年级上册第二十二章《二次函数》课件(共22张)

人教版数学九年级上册第二十二章《二次函数》课件(共22张)
解:因为第1档次的产品一天能生产 95 件,每件利润 6 元,每 提高一个档次,每件利润增加 2 元,但一天产量减少 5 件, 所以第 x 档次,提高了(x−1)档,利润增加了 2(x−1)元. 所以 y=[6+2(x−1)][95−5(x−1)], 即 y=−10x2+180x+400(其中 x 是正整数,且1≤x≤10).
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.

人教九年级数学上册《二次函数与图形面积问题》课件

人教九年级数学上册《二次函数与图形面积问题》课件

第1课时 二次函数与图形面积问题
重难互动探究
探究问题 求几何图形的最大(小)面积 例 [教材探究1变式题] 一条隧道的截面如图22-3-2所 示,它的上部是一个以AD为直径的半圆O,下部是一个矩形 ABCD.
图22-3-2
第1课时 二次函数与图形面积问题
(1)当AD=4米时,求隧道截面上部半圆O的面积; (2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米. ①求隧道截面的面积S(平方米)关于半径r(米)的函数关系 式(不要求写出r的取值范围); ②若2米≤CD≤3米,求隧道截面的面积S的最大值(π取3.14, 结果精确到0.1平方米).
与x间的函数关系,再求解.
解: 不妨设矩形纸较短边长为 a,设 DE=x,则 AE=a -x.
那么两个正方形的面积和为 y=x2+(a-x)2 =2x2-2ax+a2. 当 x=--2×22a=12a 时, y 最小=2×12a2-2a×12a+a2=12a2. 即点 E 选在矩形纸较短边的中点时,剪下的两个正方形的 面积和最小.
[解析] (1)已知AD=4米,即半圆O的半径为2米,直接根 据圆的面积公式计算;(2)①隧道的截面积由两部分组成, 即半圆面积和矩形面积;②注意自变量的取值范围,在实际问 题中求最大(小)值,要注意自变量的范围是否符合实际意义.
第1课时 二次函数与图形面积问题
解:(1)当 AD=4 米时,S 半圆=12π·A2D2=12π×22=2 π(平方米),
数学
新课标(RJ) 九年级上册
22.3 实际问题与二次函数
第1课时 二次函数与图形面积问题
第1课时 二次函数与图形面积问题
新知梳理
► 知识点 用二次函数求几何图形的最大(小)面积 在解答有关二次函数求几何图形的最大(小)面积的问题时 ,应遵循以下规律: (1)利用几何图形的面积(或体积)公式得到关于面积( 或体积)的二次函数关系式; (2)由已得到的二次函数关系式求解问题; (3)结合实际问题中自变量的取值范围得出实际问题的答 案.

二次函数应用几何图形的最大面积问题教学课件

二次函数应用几何图形的最大面积问题教学课件
根据几何图形的特性,选择合 适的二次函数模型来表示面积 。
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所

《二次函数与图形面积问题》PPT课件 人教版九年级数学

《二次函数与图形面积问题》PPT课件 人教版九年级数学

即当AC、BD的长均为5时,四边形ABCD的面积最大.
2.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(如 图所示),墙长为18m,这个矩形的长,宽各为多少时, 菜园的面积最大,最大面积是多少?
解:设矩形的长为x m,面积为y m2,则矩形的宽为15- 2xm.
y
x
15
x
2
=
1 2
x2
15x.
二次函数与图 形面积问题
R·九年级上册
复习导入
用你认为最简单的方法求出顶点坐标,说
出开口方向,对称轴及最值.
(1)y=x2-4x-5
开口方向 对称轴 顶点坐标 最小值
向上 x=2 (2,-9) -9
(2)y=-x2+x+ 1 4
向上
x=1 4
(1 ,1) 22 1
2
探究新知
知识点 利用二次函数解决最大(小)面积问题
2
2
x2
5x
A
B
所以当
x= -
2
5 (-
1
=5 )
时,S取最大值,S最大值
1 52 2
5 5=
25 2
2
当AC,BD的长均为5时,四边形ABCD的面积最大.
6. 一块三角形材料如图所示,∠A=30°,∠C=90°,
AB=12. 用这块材料剪出一个矩形CDEF,其中,点D,
E,F分别在BC,AB,AC上,要使剪出的矩形CDEF的
D
GC
则AH=a-x,HE = a - x2 + x2 ,
H
S正方形EFGH [ (a - x)2 x2 ]2 =2 x2 2ax + a2
当x=
a 2

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高

初三二次函数课件ppt课件

初三二次函数课件ppt课件

02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。

22.3.1二次函数与图形面积问题课件 2024-2025学年人教版数学九上

22.3.1二次函数与图形面积问题课件 2024-2025学年人教版数学九上
位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大?最大面积是多少?
(2)S=-x2+30x=-(x-15)2+225,
∵a=-1<0,∴S有最大值,
即当x=15(米)时,S最大值=225平方米.
知识讲解
(4) 当l是多少米时,场地的面积S最大?
(4)解:根据题意得S=-l2+30l (0<l<30).
因此,当l=
b
30

15时,
2a
2 ( 1)
2
2
S有最大值 4ac b 30 225.
4a
4 ( 1)
也就是说,当l是15m时,场地的面积S最大.
随堂练习
2. 用长为6米的铝合金材料做一个形状如图所示的矩形窗框.窗框的高与
随堂练习
4. 某广告公司设计一幅周长为12 m的矩形广告牌,广告设计费用每平
方米1 000元,设矩形的一边长为x(m),面积为S(m2).
(1) 写出S与x之间的关系式,并写出自变量x的取值范围;
(2) 请你设计一个方案,使获得的设计费最多,并求出这个费用.
解:(1)设矩形一边长为x,则另一边长为(6-x),
知识点 利用二次函数解决几何图形的最值问题
【例 2】用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为
x米,面积为y平方米.
(1)求y关于x的函数关系式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果
不能,请说明理由.
知识讲解

二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册

二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册
(g为定值)
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x


y


-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x

-3
-2
-1
0
1
2
3

y

9
4
1
0
1
4
9

(1)你能描述图象的形状吗?

人教版九年级上册数学《实际问题与二次函数》二次函数PPT教学课件

人教版九年级上册数学《实际问题与二次函数》二次函数PPT教学课件

课堂小测
解析:(1)降低x元后,所销售的件数是(500+100x), y=-100x2+600x+5500 (0<x≤11 )
(2)y=-100x2+600x+5500 (0<x≤11 ) 配方得y=-100(x-3)2+6400 当x=3时,y的最大值是6400元. 即降价为3元时,利润最大. 所以销售单价为10.5元时,最大利润为6400元.
(0≤x≤30)
当x=5时,y的最大值是6250. 定价:60+5=65(元)
新知探究
问题3.已知某商品的进价为每件40元。现在的售
价是每件60元,每星期可卖出300件。市场调查反 映:如调整价格,每降价一元,每星期可多卖出 20件。如何定价才能使利润最大?
巩固练习
解:设每件降价x元时的总利润为y元.
巩固练习
从地面竖直向上抛出一小球,小球的高度
t
b 2a
2
30 (
5)
3,
h
4ac b2 4a
4 (3025)
45.中的最大高度是 45 m.
小结
1.主要学习了如何将实际问题转化为数学问题,特别是如 何利用二次函数的有关性质解决实际问题的方法. 2.利用二次函数解决实际问题时,根据面积公式等关系写 出二次函数表达式是解决问题的关键.
知识归纳
一般地,因为抛物线y=ax2+bx+c的顶点是最
低(高)点,所以当
x b 2a
时,二次函数
y=ax2+bx+c有最小(大)值 4ac b2 .
4a
巩固练习
1.将一条长为20cm的铁丝剪成两段,并以每一段铁丝
的长度为周长各做成一个正方形,则这两个正方形面积

22.3 第1课时 二次函数与图形面积问题 课件(共21张PPT)

22.3 第1课时 二次函数与图形面积问题 课件(共21张PPT)
(2)请你设计一个方案,使获得的设计费最多,并求出此时的费
用.
解:(1)∵矩形的一边长为x m,∴其邻边长为(6-x)m,
∴S=x(6-x)=-x²+6x,其中0<x<6.
(2)∵ S=-x²+6x=-(x-3)²+9, ∴当x=3, 即矩形的一边长为
3 m时, 矩形面积最大, 为9 m², 此时设计费最多, 为9×
问题3 面积S关于的函数解析式是什
么?自变量的取值范围是什么?
自主探究
1.已知二次函数 y=x²+2x-3,在下列各条件下,当x取何值时,
y有最大值或最小值.
(1)x为全体实数; (2)-3≤x≤0;
(3)-10≤x≤-4.
(1)当x=-1时,y有最小值;无最大值.
(2)当x=-3时,y有最大值;当x=-1时,y有最小值.
(2)开口向下,对称轴为直线x=1,顶点坐标(1,-6),当
x=1时,y有最大值-6.
女排精神是永不言败,一排球运动员从地面竖直向上抛出一
排球,排球的高度h(单位:m)与排球的运动时间t(单位:
s)之间的关系式是h=25t-5t2(0≤t≤5).排球的运动时间是多
少时,排球最高?排球运动过程中的最大高度是多少?
6cm/s的速度沿A→D运动,直到两点都到达终点为止.设点P的运动时间 为
t(s),△APQ的面积为S(cm²),则S关于t的函数图象大致是( C)
例2: 某广告公司设计一个周长为12 m的矩形广告牌,广告设计费
为每平方米1 000元,设矩形的一边长为x m,面积为S .
(1)求S与x之间的关系式,并写出自变量x的取值范围;

× −
= ,即最
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数图象与面积问题
一、写出下图中各个点的坐标?
y(纵轴)
F
1
AO
E
D
x(横轴)
B C
二、如图:求①S∆ABD ②S四边形ABCD?
y(纵轴)
F
E
AO
D
B C
x(横轴)
二、求①经过A,C,D三点的抛物线表达式
②你能写出原抛物线向右平移4个单位后的表达式吗?
y(纵轴)
F
E
AO
D
H x(横轴)
B
C
G
一展身手
如图所示,已知抛物线y=ax2+bx+c(a≠0)与x轴相 交于两点A(x1,0) B(x2,0)(x1<x2)与y轴 负半轴相交于点C,若抛物线顶点P的横坐标是1, A、 B两点间的距离为4,且△ABC的面积为6。
(1)求点A和B的坐标
y
(2)求此抛物线的解析式
A
DB
ON
x
C
*(3)设M(x,y)(其中0<x<3)是
.M
抛物线上的一个动点,试求当四边
形OCMB的面积最大时,点M的坐标。 P
学海反思:
数学中的“数形结合”问题,大多 与函数图象和直线形有关。
函数的解析式和函数的图象分别从 “数”和“形”两方面反映了函数的性 质.
函数的解析式是从数量关系上反映 量与量之间的联系;
函数图象则直观地反映了函数的各 种性质,使抽象的函数关系得到了形象 的显示。

相关文档
最新文档