2010年中考数学模拟试题(含答案)
2010年中考数学模拟试题卷
2010 年中考数学模拟试题卷(满分 :120 分考试时间 :100 分钟 )一、选择题(共 10 道小题,每题 3 分,共 30 分)1、 2的倒数是 () A.1B . 1C . 2D .2B222、以下各式计算正确的选项是( )AC3262 3524 843A .a +a =aB. ( - a ) =-aC. a ·a =aD. a ÷a =aOx1,第 4 题为解的二元一次方程组是 ( )3、以1yx y 0B .x y 0C .x y 0 D.x y 0 A .x y1x y 2x y2x y 14、如图,把一种量角器搁置在BAC 上边,请你依据量角器上的平分刻度判断BAC 的度数是( )A . 15 B . 20 C . 30 D .455、以下图是同一副扑克中的 4 张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出 一张,则抽到偶数的概率是 ( )A .1B .1C .3D .2324 3 6、如图,数轴上点P 表示的数可能是 ( )A .7B .7C . 3.2D .10第 5 题7、一天,小王和爸爸去爬山,已知山底到山顶的 行程为 300 米,小王先走了一段行程, 爸爸才开始出发, 图中两条线段表示小王和爸爸走开山脚爬山的行程 S( 米 ) 与爬山所用时间t( 分钟 ) 的关系s( 从爸爸开始爬山时计时) 依据图像, 以下说300 法错误的选项是()..P-4-3-2-11234第 6 题AA'A .爸爸爬山时,小王已走了 50 米B .爸爸走了 5 分钟时,小王仍在爸爸的前面C .小王比爸爸晚到山顶D .爸爸前 10 分钟爬山的速度比小王慢, 10 分钟后爬山的速度比小王快50 o510第 7 题DtBC(B')C'第 8 题y8、已知:如图,△ABC 的面积为 12,将△ ABC 沿 BC 方向移到△ A ’ B ’C ’ 的地点, 使 B ’与 C 重合,连结 AC ’交 A ’ C 于D ,则△ C ’DC 的面积为( )10 B .8 C .6 D .49、已知,抛物线 y=ax 2+bx+c 的部分图像如图,则以下说法①对称轴是直线 x = 1;②当- 1< x < 3 时, y < 0;-1 o1 x-3第 9 题③ a+b+c =- 4 ; ④方 程 ax 2+bx+c+5=0 无 实数 根其 中正 确的 有 A( )A.1个B .2个C .3个D .4个B10、在一平直河岸 l 同侧有 A 、B 两乡村, A 、 B 到 l 的距离 AM 、BN分别是 3km , 2km ,且 MN 为 3km ,现计划在河岸上建一抽水站 P , 用输水管向两个乡村A 、B 供水,则水管长度最少为 ( )km ( 精 确到 0.1km)A .4.8B .5.2C .5.8D.6.2二、填空题(共 4 道小题,每题4 分,共 16 分)11、2010 年上海世界展览会马上举行,各项准备工作马上达成,此中中国馆计 lMN第 10题划投资 1095600000 元,将 1095600000 保存两个有效数字的近似数应为_________________ .12、某一十字路口的交通讯号灯每分钟红灯亮30 秒,绿灯亮25 秒,黄灯亮 5第 11 题秒,当你仰头看信号灯时,是黄灯的概率为 ________.DC13、如图是圆锥的主视图 ( 单位 cm),则其表面积为 _________cm 2.14、某商铺老板将一件进价为800 元的商品先抬价 50%,再打 8 折卖出,则卖出这件商品所获收益是_______元.15、如图,正方形 ABCD 的面积为1,M 是 AB 的中点,连结 AC 、DM ,AM第15题则图中暗影部分的面积是.16、如图,平面直角坐标系中,A(4,2) 、 B(3,0) 将△ ABC 绕 OA 中点 C逆时针旋转 90°获得△ A ’ B ’ O ’ 则 A ’的坐标为 _________ .三、解答题(共8 道小题)1 117、( 此题 6 分) 计算: 12cos453 .3第 16 题18、( 此题 6 分) 先化简,再求值:(3x 1)x 2 ,此中 x 是方程 x 2 x 0的解 .x 1x 2x19、( 此题 6 分) 已知:如图,在 O 中,弦 AB 、CD 交于点 E , AD CB .求证: AECE .A20、( 此题 8 分) 请阅读以下资料:E我们规定一种运算:a b ad bc , 例 如 :c dOD2 35 3 4 10 12 2 .24 5BCB依据这类运算的规定, 请解答以下问题:( 1)直接写出122的计算结果;0.5( 2)当x取何值时 ,x0.5x12x0 ;0.5x 1y x y ( 3)若30.57,直接写出 x 和y的值.8121、( 此题8 分 ) 如图,在一旗杆AB 上系一活动旌旗C,在某一时辰,旗杆的影子落在平川BD和一坡度为1∶ 3 的斜坡DF 上,拉动旌旗使其影子正好落在斜坡极点 D 处,若测得旗高BC=4m,影长 BD= 8m,影长 DE= 6m, ( 假定旗杆AB与地面垂直, B、D、 G三点共线, AB、BG、 DF 在同一平面内 ) 。
2010年中考模拟数学卷参考答案
2010年中考模拟试卷 数学参考答案及评分标准三、解答题(本题有8小题,第17~19题每题6分,第20~21题8分,第22~23题每题10分,第24题12分,共66分) 17、(本题满分6分)解:∵方程2233x m x x -=--无解 ∴方程2233x m x x -=--有增根x=3------------2分 ∴方程两边同乘以(x-3),得:26x m -=------------2分∴当x=3时,m =分18、(本题满分6分)解:过C 点作BA 的延长线交于点E ,------------1分∵AB =AC =10,∠B =022.5 ∴∠EAC =045∴△EAC 为等腰直角三角形------------1分设AE =EC =X,则AB =AC =10∴x =∴111022S AB EC ∆=⋅=⨯⨯=35.42m ------------2分 又∵53.610⨯2cm =362m >35.42m ------------1分∴预订草皮够用------------1分19、(本题满分6分) 解:答案不唯一,酌情给分。
20、(本题满分8分)解:(1)18 0.55------------各1分(2)图略--------------共4分(虚设组不设各扣1分)(3)0.55±0.1均为正确------------2分 21、(本题满分8分) 解:(1)正确的结论:①②③------------2分(2)错误理由:当a >0时,只有1x >2x >0或2x <1x <0时,1y <2y 而2x <0<1x 时,1y >2y ------------4分 改正:当a >0时,在同一象限内,函数ay x=,y 随x 增大而减小-----2分22、(本题满分10分)解:(1)如右图------------共6分(030,045角,线段a 各1分,余酌情给分)(2)设AB =x,则Rt △ABC 中,OB =x ,由题意得:6+ x ------------1分得,1)x =≈8米------------2分 答:旗杆高度约为8米。
2010年中考模拟数学试卷和答案
2010年中考模拟试卷数 学考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 如果0=+b a ,那么a ,b 两个实数一定是( )A.都等于0B.一正一负C.互为相反数D.互为倒数2. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生 3. 直四棱柱,长方体和正方体之间的包含关系是( )4. 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限 .其中错误的是( )A.只有①B.只有②C.只有③D.①②③ 5. 已知点P (x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限B. 第二象限C. 第三象限D. 第四象限6. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( )A.161 B.41 C.16π D.4π 7. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个8. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC的中点,EP ⊥CD 于点P ,则∠FPC=( ) A.35° B.45° C.50° D.55°9. 两个不相等的正数满足2=+b a ,1-=t ab ,设2)(b a S -=,则S 关于t 的函数图象是( )A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0 .按此方案,第2009棵树种植点的坐标为( )A.(5,2009)B.(6,2010)C.(3,401) D (4,402)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 如图,镜子中号码的实际号码是___________ .12. 在实数范围内因式分解44-x = _____________________ . 13. 给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_______________ .14. 如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________ .15. 已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________ . 16. 如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上 .①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________ .三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17. (本小题满分6分)如果a ,b ,c 是三个任意的整数,那么在2b a +,2c b +,2ac +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由 .18. (本小题满分6分)如图,,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形) . (1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值; (2)求正六边形1T ,2T 的面积比21:S S 的值 .如图是一个几何体的三视图 . (1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 .20. (本小题满分8分)如图,已知线段a .(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,以AB 和BC 分别为两条直角边,使AB=a ,BC=a 21(要求保留作图痕迹,不必写出作法); (2)若在(1)作出的RtΔABC 中,AB=4cm ,求AC 边上的高 .学校医务室对九年级的用眼习惯所作的调查结果如表1所示,表中空缺的部分反映在表2的扇形图和表3的条形图中.(1)请把三个表中的空缺部分补充完整;(2)请提出一个保护视力的口号(15个字以内).22. (本小题满分10分)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P .(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论.在杭州市中学生篮球赛中,小方共打了10场球 .他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高 .如果他所参加的10场比赛的平均得分超过18分 (1)用含x 的代数式表示y ;(2)小方在前5场比赛中,总分可达到的最大值是多少? (3)小方在第10场比赛中,得分可达到的最小值是多少?24. (本小题满分12分)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0) . (1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离 .2010年中考模拟试卷数学参考答案一、仔细选一选(每小题3分,芬30分)二. 认真填一填(本题有6个小题,每小题4分,共24分) 11、326512.)2)(2)(2(2-++x x x 13、23;2.614、14或16或2615、46-≠->m m 或16、①5∶2 ;②21三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)至少会有一个整数 .因为三个任意的整数a,b,c 中,至少会有2个数的奇偶性相同,不妨设其为a ,b , 那么2ba +就一定是整数 . 18、(本题4分)(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形 . 所以r ∶a=1∶1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r ∶b=3∶2;(2) T 1∶T 2的连长比是3∶2,所以S 1∶S 2=4:3):(2=b a .19、(本题6分)(1) 圆锥; (2) 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米)(3) 如图将圆锥侧面展开,线段BD 为所求的最短路程 . 由条件得,∠BAB ′=120°,C 为弧BB ′中点,所以BD =33 .20、(本题8分)(1)作图如右,ABC ∆即为所求的直角三角形;(2)由勾股定理得,AC =52cm , 设斜边AC 上的高为h, ABC ∆面积等于h ⨯⨯=⨯⨯52212421,所以554=h 21、(本题8分)(1)补全的三张表如下:(表一)(2)例如:“象爱护生命一样地爱护眼睛!”等 . 22、(本题10分)(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° . 23、(本题10分)(1)9191215225++++=x y ;(2)由题意有x x >++++9191215225,解得x <17,所以小方在前5场比赛中总分的最大值应为17×5-1=84分;(3)又由题意,小方在这10场比赛中得分至少为18×10 + 1=181分, 设他在第10场比赛中的得分为S ,则有81+(22+15+12+19)+ S ≥181 .解得S≥29,所以小方在第10场比赛中得分的最小值应为29分 .24、(本题12分)(1)设第一象限内的点B (m,n ),则tan ∠POB 91==m n ,得m=9n ,又点B 在函数xy 1=的图象上,得m n 1=,所以m =3(-3舍去),点B 为)31,3(,而AB ∥x 轴,所以点A (31,31),所以38313=-=AB ;(2)由条件可知所求抛物线开口向下,设点A (a , a ),B (a 1,a ),则AB =a1- a =38, 所以03832=-+a a ,解得313=-=a a 或 .当a = -3时,点A (―3,―3),B (―31,―3),因为顶点在y = x 上,所以顶点为(-35,-35),所以可设二次函数为35)35(2-+=x k y ,点A 代入,解得k= -43,所以所求函数解析式为35)35(432-+-=x y .同理,当a = 31时,所求函数解析式为35)35(432+--=x y ;(3)设A (a , a ),B (a 1,a ),由条件可知抛物线的对称轴为aa x 212+= .设所求二次函数解析式为:)2)1()(2(59++--=aa x x y .点A (a , a )代入,解得31=a ,1362=a ,所以点P 到直线AB 的距离为3或136.。
2010年中考模拟卷 数学卷
2010年中考模拟卷 数学参考答案及评分标准题号 选择填空1718192021222324总分得分一.仔细选一选 (本题有10个小题, 每小题3分, 共30分)二.认真填一填(本题有6个小题, 每小题4分, 共24分)11. 如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.12. (1,3) 13. =3 14. 215. 3 16. 0或3或4或8 三.全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分) 解:由题意得120k -≠ 12k ≠..........................................(2) 10k +≥ 1k ≥- (2)△2(21)4(12)(1)k k =-+-⨯-⨯->0k <2 ∴0k ≤<2且12k ≠ (2)18.(本小题满分6分)过点B 作直线BF ∥CD (1)135°105°A BC DFE∵CD ∥AE∴BF ∥CD ∥AE (1)题号 1 2 3 4 5 6 7 8 9 10 答案DBCDDCCBCD∴∠A=∠ABF=105°……………………………………(1) ∴∠CBF=∠ABC-∠ABF=30°………………………….(1) 又BF ∥CD∴∠CBF+∠C=180°..........................................(1) ∴∠C=150° (1)19.(本小题满分6分)(1)5+8+11+16+6=46(人) 一共分成5组。
组距是:65-55=10(分) (2)(2)分布两端虚设的频数为0的是:40─50和100─110两组。
它们的组中值分别是:45分和105分…………(2) (3)80─90一组人数最多。
它的频率是:1684623=…………………………(1) (4)5558651175168569546⨯+⨯+⨯+⨯+⨯77.2≈分 (1)20.(本小题满分8分)作出△ABC 的内心............(3) 作出△ABC 的外心................(3) 作处线段DO2 (1)∴如图所示,线段DO2的长就是△ABC 的内心、外心分别到点A 的距离之差。
2010年中考模拟卷数学参考答案
2010年中考模拟卷数学参考答案二.认真填一填(本题有6个小题,每小题4分,共24分) 11.4(x+3)(x-3) 12.10≠≥x x 且 13.15414.6)1(2+--=x y 15. ︒20 16.)12,1222(22++++n nn n n n P n 三.全面答一答(本题有8个小题,共66分) 17.(本小题满分6分) 解:11)1()1)(1(1----+⨯+=a a a a a a a 原式…………………………………………………2分 =12111--=--a a a …………………………………………………2分 当a=-2时,原式=34…………………………………………………2分18.(本题满分6分) 解:可以做2)1(-n n 条直线…………………………………………………3分 理由如下:平面上有n 个点,两点确定一条直线。
取第一个点A 有n 种取法,取第二个点B(n-1)种取法,所以一共可连成n(n-1)条直线,但AB 和BA 是同一条直线,所以应除以2,得2)1(-n n 条直线 …………………………………………………3分 19.(本题满分6分)解:过点A 作BC 的垂线段,垂足为D ,则由题可知,∠BAD=30°,∠DAC=60° ∵∠BAD=30°,△ABD 为直角三角形, ∴BD=3223663==AD …………………………………………………2分同理可得3663==AD CD …………………………………………………2分∴楼高AB=2.152388≈…………………………………………………2分 20.(本小题6分)(1)21人 …………………………………………………1分(2)众数 90 中位数80…………………………………………………2分(3)从平均数和中位数的角度来比较,一班的成绩比二班好;从平均数和众数的角度来比较,一班的成绩不如二班;从B 级以上(包括B 级)的人数的角度来比较,一班的成绩比二班好。
2010年中考数学模拟试卷 答卷
2010年中考模拟试卷 数学参考答案及评分标准一、选择题:(每小题3分,共30分)二、填空题:(每小题4分,共24分)11.12103.62⨯ 12. 22x 4)(- 13. 25a -〉14. 0<d <1 或 d >5 15. ①、②、③、④ 16. 30 19917. (本题满分6分)先化简,再求代数式的值1a 2a 1a 1a 1a 2a 222+--++÷-+)(,请选择合适的值带入求值 2)1()1)(1(111)1(2--+++⨯-+=a a aa a a ………………………………………………..3分 1a 1a 1a 2-++-=1a 3a -+=…………………………………………………………………………………4分当a=2时原式 = 5…………………………………………………………………………………6分18. (本题满分6分)△ABD 与△ABE 的相似比为2………………………………………………………1分 ……………………………………………图1对得1分,图2对得2分,图3对得2分。
19.(本题满分6分)(1)2+22+32+36+28=120,此样本抽取了120名学生才成绩……………………………2分(2)中位数落在80.5 ~90.5这个范围内.……………………………………………4分 (3)4801202836900=+⨯所以该校获得优秀成绩学生的人数约480名。
…………6分 20.(本题满分8分)(1)由△BMC 是等边三角形可知: ∠MBC=∠MCB=60°,BM=MC 又∵ED ∥BC,∴∠EMB=∠MBC;∠DMC=∠MCB ∴∠EMB =∠DMC 又 ∵点M 平分ED, ∴EM = MD则可证△EMB ≌△DMC ………2分 ∴∠EBM =∠ECM 则可得∠EBC =∠DCB∴△ABC 是等腰三角形。
(3)21. (本题满分8分)作AE ⊥y 轴于E∵42AOD S OD ==△,∴21OD.AE=4 ∴AE=4………………………………………………… 1分 ∵AB ⊥OB,且C 为OB 的中点,∴∠DOC =∠ABC =90°,OC =BC, ∠OCD =∠BCA ∴Rt △DOC ≌Rt △ABC∴AB =CD =2…………………………………………………………………………………2分 ∴A(4,2)……………………………………………………………………………………3分 将A(4,2)代入xky 1=中,得k =8∴x8y 1=……………………………………………………………………………………… 4分 将A(4,2)和D(0,-2)代入b kx y 2+=得422a b b +=⎧⎨=-⎩解之得:12a b =⎧⎨=-⎩∴22y x =-…………………………………………………………………………………6分(2)在y 轴的右侧,当21y y 〈时,0<x <2………………………………………………8分22. (本题满分10分)(1)∵半径OD = 5,则直径AB =10∴5310BD AB BD ==,则BD=6∴若设OE=x ,则BE=5-x ,由勾股定理可得:22220E -DO BE -BD =从而列方程:26-2x 5)(-=22x 5-,…………………………………………………3分,得x=524,再由垂径定理可得CD=548…………………………………………………4分 (2) ∵∠ADO:∠EDO=4:1,则可设∠ADO=4x ,∠EDO=x 又∵OA=OD,则∠OAD=∠ODA=4X由AB 垂直CD,得:4x+4x+x=90°∴x=10°……………………………………………6分 ∴∠ADE=50°,则∠AOC=100°……………………7分 (3) ∵弧AC=9251805100=⨯∏⨯∏∴2∏r =∏925,则圆锥底面圆半径为1825 (9)∴侧S =∏=∏⨯=∏1812551825rl ……………………10分23. (本题满分10分)(1)由题意设A 型货箱用了x 节,则B 型货箱用了(50-x )节,则可列不等式组: 35x +25(50-x )≥153015x+35(50-x )≥1150………………………………………………………………2分 解得:28≤x ≤30…………………………………………………………………………3分 ∵x 取整数 ∴ x = 28、29、30……………………………………………………4分 ∴ 有三种方案:当A 型货箱用了28节时,B 型货箱用了22节。
2010年河南省中招考试数学模拟试卷及答案
2010年河南省中招考试模拟试卷数 学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟. 请用钢笔或圆珠笔直接答在试卷上.2.一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(2的平方根是【 】A .2±B . 1.414±C .D .-22. 如图,由四个相同的直角三角板拼成的图形,设三角板的直角边分别为a 、b ,则这两个图形能验证的式子是【 】A.22()()4a b a b ab +--= B .222()()2a b a b ab +-+= C .222()2a b ab a b -+=+ D .22()()a b a b a b +-=- 3.已知数轴上的三点(1)A -、(4)B -、()P x ,并且P 与A 的距离大于P 与B 的距离,则【 】A .3x >-B .4x ≤C .2x <-.D . 2.5x <-4.对于实数a 、b ,如果点(,)a b b a +-在反比例函数ky x =(0k ≠)的图象上,则a 、b 、k 满足的关系式是【】A .22a b k += B .22a b k +=- C .22a b k -=. D .22a b k -=- 5.由若干个相同的小正方体堆成一个几何体,它的主视图和左视图如图所示,那么组成这个几何体的小正方体的个数不会超过【 】A .12B .11C .10D .96.如图,长方体木块的长、宽、高分别为6cm 、4cm 、8cm .一只虫子从点A 出发爬到一条高棱的中点B 处,则小虫子爬过的最短路程是【 】A .10B .9C .D .二、填空题(每小题3分,共27分) 7.20092的个位数字是_________.8.反比例函数的图象经过点(2,3)N -,M 是图象上的一个动点,则M 点到两坐标轴的距离之(第2题)(第5题)主视图左视图B(第6题)积为_____ .9.如图,三角形纸片ABC 的C ∠折叠,折痕为DE ,若60A ∠=︒,70B ∠=︒,那么BDC ∠、AEC ∠的和等于 度.10.为了估计鱼池中有多少条鱼,渔民先从池中捕捞出100条鱼做上标记,然后放回池中,待有标记的鱼完全混合于鱼群后,再捕捞出100条鱼,发现其中只有1条有标记,那么这个池中大约有鱼 条.11.在平面直角坐标系中,直线11:l y k x b =+(10k >)和直线22:l y k x =(20k <)交于点(1,3)P -,则关于x 的不等式21k x k x b >+的解集为 .12.如图,点P 在等腰直角ABC △的斜边AB 上,分别作APC △、PBC △的外接圆,若4AC =,则两圆公共部分面积的最小值等于 .13.一油桶,连油带桶的质量为21千克,用掉一半油后,再用掉连油带桶质量的一半的油,这时剩下的油连桶的质量为6千克,则原来桶里的油的质量是 千克.14.定义关于x 的二次函数2()f x x =,已知实数m 、n ,请比较大小:()()2f m f n + 2m n f +⎛⎫⎪⎝⎭.15.如图,编号分别是1、2、3号的三个正方形放在一条直线上,1、3号平放,2号斜放,若2号正方形的边长为a ,则1、3号正方形的面积和等于 .三、解答题(本大题共8个小题, 满分75分)16.(8分)先化简,再求值:22m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3tan 30m =︒,n ︒.1(第15题)23(第12题)ACE(第9题)17.(9分)以下是甲、乙两个学习小组在一次数学应用知识竞赛中的成绩表:(单位:分)⑴ 请填写下表:⑵ 利用⑴的信息,请你对甲、乙两个学习小组的成绩进行分析.18.(9分)如图,在菱形ABCD 中,AB a =,120C ∠=︒,E 点在边BC 上(异于端点),F 点在边CD 上,且60EAF ∠=︒.⑴ 求证:EC CF a +=; ⑵ 写出线段EF 的变化范围.D A B EF (第18题)19.(9分)一个数学学习小组在学习“概率”时,做了一个投掷骰子的实验,共投掷了60次,出现向上数的次数如下表:⑴请分别计算出数字1和5出现的频率;⑵同学甲说:“根据实验,一次试验中出现向上点数为5的概率最大.”同学乙说:“如果投掷540次,那么出现向上点数是6的次数是117次.”请判断这两位同学的说法是否正确,并说明理由;⑶如果两位同学各投掷一次骰子,请求出向上点数数字和为6的概率.20.(9分)如图,A 、B 两地间有一座山,汽车原来从A 地到B 地须经C 地沿折线A —C —B 行驶.现在开通隧道后,汽车直接沿直线AB 行驶.已知AC =10 km ,30A ∠=︒,105C ∠=︒,则隧道开通后,汽车从A 地到B 地比原来少走了多少千米?(结果精确到0.1km )1.411.73≈)21.(9分)学校计划组织385名师生租车旅游,出租车公司有42座和60座两种客车,42座客车租金每辆为320元,60座客车的租金每辆为460元.⑴ 学校单独租用这两种车辆各需多少租金?⑵ 学校若同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助选择一种最节省的租车方案.(第20题)B22.(10分)如图,在平面直角坐标系中,直线364y x=-+分别与x轴交于点A,与y轴交于点B,点C在线段AB上,以CA为直径的D交x轴于另一点E,连结BE.⑴求线段AB的长;⑵当D与直线BE相切时,求点C的坐标.(第22题)23.(12分)如图(甲),ACB △与DCE △是两个全等的直角三角形,其中90ACB DCE ∠=∠=︒,4AC =,2BC =,点D 、C 、B 在同一条直线上.⑴ 直线DE 与AB 有怎样的位置关系?请给出证明; ⑵ 如图(乙),DCE △沿着直线DB 向右平移多少距离时,点E 恰好落在边AB 上;⑶ 在DCE △沿着直线DB 向右平移过程中,使DCE △与ACB △的公共部分是四边形,设平移距离为x ,这个四边形的面积为y ,请求出y 关于x 的关系式,并写出x 的取值范围.(第23题)(甲) (乙) (备用图)金迈思教育·数学数学参考答案一、选择题:⑴C ⑵B ⑶D ⑷D ⑸B ⑹A二、填空题: ⑺2.⑻6.⑼100︒.⑽10000.⑾1x <-.⑿24π-.⒀18.⒁≥.⒂2a .三、解答题:16.略解:m 1n =.原式=2()m n m n m m --÷=1m n -. 17.略解:⑴ 甲组的中位数是84,乙组的众数是90,频数是0.5.⑵ 甲、乙两组的中位数、平均数都是84.从众数看,乙组的成绩好;从方差看,甲组的成绩比较均衡;从频数看,乙组的成绩好.18.略证:连结AC .⑴证BAE CAF ∠=∠,()ABE ACF ASA △≌△,BE CF =;⑵由于AE EF =,EF a ≤<. 19.略解:⑴ 数字1和5出现的频率分别为0.15和0.25;⑵ 错误,频率和概率意义不同;⑶ 用树状图或列表,概率为536.20.略解:作高CD,(51 3.4AC CB AB +-=≈km .答.21.略解:⑴单独租42座和60座客车的租金分别是3200元和3220元;⑵设租42座客车x 辆,则60座客车需要(8x -)辆,则4260(8)385,320460(8)3200.x x x x +-≥⎧⎨+-≤⎩解得3535718x ≤≤.取整得4,5x =.对应租金分别为3120元和2980元.答.22.⑴AB =10;⑵ 连结CE 、ED ,90BED ∠=︒,OBE DEA DAE ∠=∠=∠,OBE OAB △∽△,2OB OE OA =⋅,得 4.5OE =,得214.5,8C ⎛⎫ ⎪⎝⎭.23.略解:⑴ 垂直,延长DE 交AB 于F ,证明ABC DEC △≌△;⑵平移1;⑶ ①当点E 在ACB △内部或AB 的中点时,重叠部分是直角梯形,122MC x =-,212(01)4y x x x =-+<≤.②当点'C 在点B 的右侧时,重叠部分CBNM 是一组对角是直角的四边形,AMN ABC △∽△,122AM x =+,由A N M N A M A C B C A B ==得22AN MN AM AC BC AB ⋅=⋅,2AMN ABC S AM S AB ⎛⎫= ⎪⎝⎭△△,则21242055AMN S x x =++△,212162055y x x =--+(24x ≤<).’。
2010年中考数学模拟试题(含答案)
D BAOC 第8题2010年中考数学模拟试题(二)(新人教版)(考试时间:120分钟 满分120分)一、填空:(每小题2分,共20分) 1.计算:(-1) ×(-2) = . 2.如图,已知AB ∥CD ,则∠A = 度. 3.分解因式 x 3-xy 2= 。
4.在函数y =x 的取值范围是 。
5.截至2009年6月5日止,全球感染H1N1流感病毒有21240人,感染人数用科学计数法表示为 人.6.方程2 x 2-18=0的解是 .7.若100个产品中有95个正品、5个次品,从中随机抽取一个,恰好是次品的概率是 .8.某蔬菜基地的圆弧形蔬菜大棚的剖面如图(2)所示,已知 AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m .9.一个扇形所在圆的半径为3cm ,扇形的圆心角为120°,则扇形的面积是 cm 2. (结果保留π)10.如图,是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )二、选择题(每小题3分,共24分)11.-8的相反数是( )CDB第2题.80A第10题 ……n =1 n =2n =3A .8B .-8C .18 D .18- 12.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( ).A.外离B. 相交C.外切D.内切13.下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是( )A .①②③B .①②C .①③D .②③14.在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,9.1,6.5,7.7,则这四人中,射击成绩最稳定的是( ) A .甲B .乙C .丙D .丁15、tan 30°的值等于( )A. 21B. 22C.23 D.33 16图1中几何体的主视图是( )17.若分式 x 2-1x +1的值为零,则x 的值是( )A .1B .0C .-1D .±118.如图,抛物线y =ax 2+bx +c 的对称轴是x = 13,小亮通过观察得出了下面四条信息:①c <0,②abc <0,③a -b +c >0,④2a -3b =0. 你认为其中正确的有( )A .1个B .2个C .3个D .4 三、解答题:(共76分)19、(本题7分)计算:112sin 602-⎛⎫- ⎪⎝⎭ACBDx第18题20、(本题7分)解方程: 0)3(2)3(2=-+-x x x21.(本题8分)如图,E 是正方形ABCD 的边DC 上的一点,过A 作A F ⊥AE ,交CB 延长线于点F ,求证:△ADE ≌△ABF .22.(本题10分)已知ABC △在平面直角坐标系中的位置如图10所示. (1)分别写出图中点A C 和点的坐标;(2)画出ABC △绕点C 按顺时针方向旋转90A B C '''°后的△; (3)求点A 旋转到点A '所经过的路线长(结果保留π)._F _E _ C _ D _ B _A 第21题 第22题23、(本题10分)右边下面两图是根据某校初三(1)班同学的上学方式情况调查所制作的条形和扇形统计图,请你根据图中提供的信息,解答以下问题: (1) 求该班学生骑自行车的人数有(2)求该班学生人数 人.并将条形统计图补充完整; (3)若该校初三年有600名学生, 试估计该年级乘车上学的人数.24.(本题10分)某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 47500元,不高于48000元,两种型号的冰箱生产成本和售价如下表:(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?骑自行车20%乘车步行50%第23题25、(本题12分)如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥ 于点N .(1)求证MN 是O ⊙的切线;(2)若1202B A C A B ∠==°,,求以直径AB ,弦BC 和⌒AM 围成图形的面积(结果保留π).、第25题26.(本题12分)如图,抛物线21222y x x =-++与x 轴交于A B 、两点,与y 轴交于C 点.(1)求A B C 、、三点的坐标; (2)证明ABC △为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使ABP △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.参考答案一、1.2 2.120 3.x (x +y )(x -y )4.x≥12 5.2.124×104 6.3和-3 7.1208.4 9.3π 10.2n(n+1)二.11. A 12.C 13.B 14. C 15. D 16.D 17.A18.B19.20.X 1=3,X 2=121.证明:∵ABCD 是正方形 ∴AB AD = ︒=∠=∠=∠90DAB ABF D ∵A F ⊥AE ∴DAE EAB BAF ∠=∠-︒=∠90.在ADE ∆和ABF ∆中∵AE AD BAF DAE ABF D =∠=∠∠=∠,, ∴△ADE ≌△ABF 22.解:(1)()04A ,、()31C ,(2)图略(3)AC =⌒AA' π= 23.解:(1)8 (2)该班学生人数为40%5020=(人) 图画对(略) (3)该年级乘车上学的人数约为1806004012=⨯ 24..解:(1)设生产A 型冰箱x 台,则B 型冰箱为()100x -台,由题意得:47500(28002200)(30002600)(100x x -+-⨯-≤≤解得:37.540x ≤≤ x 是正整 ∴x 取38,39或40.(2)设投入成本为y 元,由题意有: 22002600(100)400260000y x x x =+-=-+4000-< ∴y 随x 的增大而减小∴当40x =时,y 有最小值.即生产A 型冰箱40台,B 型冰箱50台,该厂投入成本最少此时,政府需补贴给农民(280040300060)13%37960()⨯+⨯⨯=元 25.(1)证明:连接OM .∵OM OB =,∴B OMB ∠=∠,∵AB AC =,∴B C ∠=∠. ∴OMB C ∠=∠,∴OM AC ∥.又MN AC ⊥,∴OM MN ⊥,点M 在O ⊙上,∴MN 是O ⊙的切线(2)S =164π+26.解:(1)抛物线21222y x x =-++与x 轴交于A B 、两点,21202x x ∴-++=.即240x -=.解之得:12x x ==∴点A B 、的坐标为(A B ) ,将0x =代入21222y x x =-++, 得C 点的坐标为(0,2)(2)6AC BC AB ===,222AB AC BC ∴=+,则90ACB ∠=°,ABC ∴△是直角三角形.(3)将2y =代入21222y x x =-++,得212222x x -++=,120x x ∴==,P ∴点坐标为.。
2010年初中数学中考模拟试题答案
在 R t △ADE 中, EA =r, DE=6-r, AD=x,
∴ x 2 6 r 2 r 2 ,r= 1 x 2 +3,
∵ EF= EA, ∴AF=2DE,
即 y =2(6-r)=- 1 x 2 +6, (6 分) 6
D
E
C
∵AB∥CD,
∴∠AFE=∠CEF,
G
∴∠AEF=∠AFE, ∴AE=AF, ∵AE=EF,
A
B
F
( 图3 )
∴AE=AF=CE=CF, ∴△AEF 和△CEF 都是正三角形,
∴四边形 AECF 是菱形,且∠CEF=60°,
∴∠BCF=30°,
1
∴BF=
1
CF=
AF= 1 AB=2,
BC= 2 3 .(12 分)
223
②点 F 是 AB 的中点时, y =3,
图 D
E
C
H
G
A
( 图 1)
D
E
B F
C
G
A
B F
( 图2 )
1
即-
x 2 +6=3,∴ x = 3
2 .(8 分)
6
(3)(如图 3).
当x=2
3 时,
︵图 F 是AC的中点。此时,四边形 AECF 菱形.(9 分)
理由如下:
︵ ∵点 F 是AC的中点,∴∠AEF=∠CEF, AF=CF,
2.85×20+2.85×1.5×10+2.85×2×(x-30)=128.25,x=35(5 分)
∴调整后水费是:3.3×20+3.3×1.5×10+3.3×2×5=148.5(元)(6 分)
2010年中考数学模拟试卷参考答案
2010年中考数学模拟试卷 参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. -4,2 12.(3,5) 13.12-14.31 15. n )23( 16. 6S 1≤≤ 三. 解答题(8小题共66分) 17. (本题6分)解:(1)上述两同学回答的均不全面,应该是300 , 1500 , 900 (遗漏一个扣1分) ………3分 (2)答案不唯一.如面对不确定的情况就要考虑进行分类讨论;考虑问题要全面呀等等,只要有这样的意思就得3分. …………………………3分 18. (本题6分)解:900,1350,1800 ,2700, 3600,只要举出其中两个角能够进行三等分, ……………………2分尺规作图正确,每个2分 ………………………4分19、(本题6分)解:(1)第一只 肉 香肠 红枣 红枣第二只 红枣 肉 红枣 红枣 肉 香肠 红枣 香肠 红枣∴P =61122= …………………………3分(2)这样模拟不正确 …………………………1分 理由如下:连续两次掷骰子点数朝上的情况有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16种,而满足条件的情况有4种 …………………………2分 20. (本题8分)解:老板第二次售手链还是赚了. …………………………1分 设第一次批发价为x 元/条,则第二次的批发价为x+0.5元/条 依题意,得: )x1000.5)(10(x ++=150 解之得 5.2x ,2x 21== …………………………3分经检验,5.2x ,2x 21== 都是原方程的根 …………………………1分 由于当x=2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x=2.5不合题意,舍去.故第一次的批发价为2元/条.第二次的批发价为2.5元/条第二次共批发手链605.21505.0x 150==+(条) …………………………1分第二次的利润为: 1.2150-5).08.260518.26054(=⨯⨯⨯+⨯⨯ …………………………1分故,老板第二次售手链赚了1.2元 . …………………………1分21.(本题8分)解:(1)如图,由题意得,∠EAD =45°,∠FBD =30°.∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD , ∴ ∠FBC =∠EAC =60°. ∴ ∠DBC =30°.又∵ ∠DBC =∠DAB +∠ADB , ∴ ∠ADB =15°.∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km . ……………………………………………4分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°. ∴ DO =2×sin60°=2×323=,BO =2×cos60°=1. 在Rt △CBO 中,∠CBO =30°,CO =BO tan30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332km . …………………………………………………4分 22. (本题10分)解:(1)这个样本的中位数为120(人),众数为100(人),平均数为150(人) ………3分 信息:①这一周每天参观人数不低于100人; ②周末参观人数逐渐增加;金③一周内参观人数在百人左右的天数最多;④星期日参观人数最多;⑤这一周每天参观人数不超过240人;⑥星期五参观人数最接近这一周的平均值;•⑦一周内多数天参观人数低于本周参观人数的平均值等等.…………………………2分(2)①由(1)知样本数据的中位数为120(人),则甲、乙两团共120人,其中甲团有x人,乙团有(120-x)人.∵0<120-x≤50,∴甲团人数超过50人…………………………1分ⅰ)当50<x•≤100,•0<120-x≤50时,W=60x+80(120-x)即W=9600-20x(70≤x≤100)ⅱ)当x>100,0<120-x•≤50时,W=40x+80(120-x)即W=9600-40x(100<x<120)∴当70≤x≤100时,W关于x的函数关系式为W=9600-20x;当100<x<120时,W关于x的函数关系式为:W=9600-40x.…………………………2分②依题意x≤100,∴W关于x的函数关系式应为:W=9600-20x(70≤x≤100)根据一次函数的性质知:当x=70时,W=9600-2×700=8200(元)而两团合起来购票应付费40×120=4800(元),∴两团合起来购票比分开购票最多可节约8200-4800=3400(元).…………………………2分23.(本题10分)证明:(1)连接AM,∵AB是半圆O的直径,∴∠BMA=90°…………………………1分又∵DE⊥AB,∠ABM=∠NBE,∴Rt△ABM∽Rt△NBE∴BN BEBA BM,即BN·BM=BE·BA …………………………2分(2)连接AD,BD(如图2),∵AB是⊙O的直径,∴∠ADB=90°…………………………1分又因∵DE⊥AB,∴BD2=BE·BA …………………………1分∵BC是⊙O1的切线,∴BC2=BN·BM …………………………1分由(1)知BN·BM=BE·BA,∴BC2=BD2,即BC=BD …………………………1分(3)连接O 1N 和OM (如图3),则OM 过点O 1, ∵OB=OM ,O 1N=O 1M ,∴∠MNO 1=∠NMO 1=∠MBO …………………………1分 ∴O 1N ∥OB …………………………1分而DE ⊥OB ,∴OE ⊥O 1N∵O 1N 是 ⊙O 1的半径,∴DE 是⊙O 1的切线.…………………………1分24.(本题12分)解:(1)①法一:由题可知1AO CQ ==.90AOH QCH ∠=∠=,AHO QHC ∠=∠,AOH QCH ∴△≌△.OH CH ∴=,即H 为AQ 的中点. …………………………1分法二:(01)A ,,(01)B -,,OA OB ∴=.又BQ x ∥轴,HA HQ ∴=. …………………………1分 由①可知AH QH =,AHR QHP ∠=∠,AR PQ ∥,RAH PQH ∴∠=∠, RAH PQH ∴△≌△.AR PQ ∴=,又AR PQ ∥,∴四边形APQR 为平行四边形.………………………1分②设214P m m ⎛⎫ ⎪⎝⎭,,PQ y ∥轴,则(1)Q m -,,则2114PQ m =+.过P 作PG y ⊥轴,垂足为G ,在Rt APG △中,2114AP m PQ ===+=.∴平行四边形APQR 为菱形. …………………………2分(2)设直线PR 为y kx b =+,由OH CH =,得,0)2m (H ,214P m m ⎛⎫⎪⎝⎭,代入得: 2021.4m k b km b m ⎧+=⎪⎪⎨⎪+=⎪⎩, 221.4m k b m ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线PR 为2124m y x m =-.………………………1分 设直线PR 与抛物线的公共点为214x x ⎛⎫ ⎪⎝⎭,,代入直线PR 关系式得:22110424m x x m -+=,21()04x m -=,解得x m =.得公共点为214m m ⎛⎫ ⎪⎝⎭,. 所以直线PH 与抛物线214y x =只有一个公共点P . …………………………2分 (3)AN ∥GH ,AN 21GH =. …………………………2分由(1)知AP=PQ ,同理知AM=MN.M A N M N A ,A Q P PA Q ∠=∠∠=∠∴ BQ PQ ,BQ M N ⊥⊥∴MN ∥PQ ∴180MPQ NMA =∠+∠ ∵⊿AMN 和⊿APQ 的内角和都为180180MAN MNA AQP PAQ =∠+∠+∠+∠∴ 90MAN PAQ =∠+∠∴ AQ AN 90NAQ ⊥∴=∠∴…………………………2分由(1)知四边形APQR 为菱形,HQ AH PR AQ =⊥∴,PR ∴∥AN为GH ∴⊿ANQ 的中位线.∴AN ∥GH ,AN 21GH = …………………………1分。
2010年中考数学模拟试卷(4)参考答案
2010年中考数学模拟试卷(4)参考答案一、选择题(本大题共10题,每题4分,满分40分)1.D ; 2.C ; 3.D ; 4.B ; 5.A ; 6.D 7.D 8.C 9.D 10.C 二、填空题(本大题共12题,每题4分,满分48分) 11.1x ≠-; 12.12; 13. 略; 14.2000sin α15、4:1 16、(2,4)或(3,4)或(8,4) 三、解答题17、x >-4 画数轴略 18、①原式=11-a 4分 ②如a=2时,原式=1,答案不唯一 2分19、(1)解:树状图:略 P=61 3分(2)两个球上数字之和为6时,概率最大,即3162'==p 6分20、 DF=AB 1分 证明:∵四边形ABCD 是矩形∴∠B=Rt ∠ ∴AD ∥BC∴∠DAF=∠BEA (两直线平行,内错角相等) 3分 又∵DF ⊥AE∴∠DFA=∠B=Rt ∠ ∵AD=AE∴△ADF ≌△EAB(AAS) 5分 ∴DF=AB(全等三角形的对应边相等) 6分 21、解:(1)线段O A 对应的函数关系式为:112s t =(012t ≤≤)线段A B 对应的函数关系式为:1(1220)s t =<≤.(2)图中线段A B 的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟. (3)如图中折线段C D D B -.22、解:(1)设平均每分钟一道正门可以通过x 名学生,一道侧门为y 名学生。
1分 则⎩⎨⎧=+=+22022602y x y x 解得:⎩⎨⎧==60100y x 5分(2)∵(100+60)×80%×4×2=1024 7分 又∵20×50=1000 ∴1024>1000 故学生可以安全撤离 8分 23.解:平移后抛物线的解析式为22(2)1y x =-+. (2)∴A 点坐标为(2,1),……………………………………1分 设直线OA 解析式为y kx =,将A (2,1)代入得12k =,直线OA 解析式为12y x =,将3x =代入12y x =得32y =,∴C 点坐标为(3,32).……1分将3x =代入22(2)1y x =-+得3y =,∴B 点坐标为(3,3)∴A B C 34S = (2)(2)∵PA ∥BC ,∴∠PAB =∠ABC1°当∠PBA =∠BAC 时,PB ∥AC ,∴四边形PACB 是平行四边形,t (分钟)∴32P A B C ==.………………………………………1分∴15(2,)2P .………………………………………………1分2°当∠APB =∠BAC 时,A P AB A BB C=,∴2ABAP BC=.又∵AB ==∴103A P =………………………………………………1分∴213(2,)3P ……………………………………………1分综上所述满足条件的P 点有5(2,)2,13(2,)3.……………………………1分24.解:(1)方法一:由已知得:C (0,-3),A (-1,0) …………………………1分 将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a 解得:⎪⎩⎪⎨⎧-=-==321c b a ……4分所以这个二次函数的表达式为:322--=x x y ……4分方法二:由已知得:C (0,-3),A (-1,0) ………1分 设该表达式为:)3)(1(-+=x x a y ………2分 将C 点的坐标代入得:1=a ………4分 所以这个二次函数的表达式为:322--=x x y ……4分 (注:表达式的最终结果用三种形式中的任一种都不扣分) (2)方法一:存在,F 点的坐标为(2,-3) ……5分 理由:易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E 点的坐标为(-3,0) ……………6分 由A 、C 、E 、F 四点的坐标得:AE =CF =2,AE ∥CF ∴以A 、C 、E 、F 为顶点的四边形为平行四边形 ∴存在点F ,坐标为(2,-3) …………7分 方法二:易得D (1,-4),所以直线CD 的解析式为:3--=x y∴E 点的坐标为(-3,0) ……………5分 ∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合 ∴存在点F ,坐标为(2,-3) ……………7分(3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ), 代入抛物线的表达式,解得2171+=R …………9分②当直线MN 在x 轴下方时,设圆的半径为r (r>0), 则N (r+1,-r ), 代入抛物线的表达式,解得2171+-=r ………11分∴圆的半径为2171+或2171+-. ……………11分。
2010年中考模拟试卷 数学
2010年中考模拟试卷 数学卷数学参考答案及评分标准一、仔细选一选(每小题3分,共30分)说明:第1和10小题为原创题,其中2;3;5;7;8为课本习题的延伸;4;6;9为借鉴题。
(突出数学的时效性和大众化及生活中的应用) 二. 认真填一填(本题有6个小题,每小题4分,共24分)11、R=52 12.7313、b= -11 147 15、0360)2(⨯-=n S 16、20112010说明:14,16题自编题 ;11,12,13,15属于借鉴。
三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)解:(1)m=2-2---------------------------------2分(2 ︳2-2-1︱+(2-2+6)0=︱1-2︳+1=2-----------------4分 说明:此题想增加数学计算的趣味性而设置了本题。
从一般的计算演变而来。
属于改编。
18、(本题6分)解: 四边形BCFD 为平行四边形-------------1分首先△ADE 绕点E 旋转180︒得到△CFE 可得△AD E ≌△CFE----------1分 ∴DE=EF------------1分又∵D.E 分别为中点∴D E ∥BC 且DE=21BC-------1分 ∴DF=∥BC ----------1分∴四边形BCFD 为平行四边形---------1分说明:旨在考查学生能运用旋转的不变性来证明三角形全等,和应用三角形的中位线的性质来证明一个四边形是平行四边形的性质应用(属于改编)。
19、(本题6分)解: (1)512,51==X X ------------------2分 (2)aa 12+-----------------------------------2分(3)5x 2-26x=-5x 2-526x=-1 x 2-526x+25169=-1+25169(x-513)2=25144(x-513)=±512∴512,51==X X ------------------2分说明:通过观察,归纳,猜想得到第1和第2小题的结论。
2010年中考模拟试卷 数学参考答案及评分标准[002]
2010年中考模拟试卷 数学参考答案及评分标准一、选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案CABBBADCAA二、填空题(每小题4分,共24分) 11.-- 2,例如22- 等 12.6, 13.231a14.-2<a ≤-1 15.3 16.),(24245--P ,),(2010201020P ,2512三、解答题(6+6+6+8+8+10+10+12=66分)17(本题6分)解:(1).原式233133--+=-1(3分) (2)原式=()()21222---+a a a a (1分)=()()()2222-++-a a a a =()()222-+-a a a (1分)=21+a (1分) 18(本题6分)解:(1)S=πrl=50×20π=1000π……..……………………….(2分)(2)θ=0001443605020360.=⨯=lr…………………………………………………(2分) 剪去的扇形纸片的圆心角=360°-2×144°=72°………………………………………(2分)19(本题6分)解:(1)当射线BA 绕点B 按顺时针方向旋转45度时与⊙O 相切……(1分) ⊥BF ,在直角三角形OBF 中,︒=∠=∠∴==45,4,22BOF OBF OB OF ∴∠ABF=45°..(2分) (2)(2)过O 画OH ⊥MN 于H ,易知∠AOB=30°,∴OH=21OB=2 在直角三角形OMH 中,OM ︒=∠︒=∠∴=90,45,22MON MOH …………………(1分)()()422221224122-=⨯-⨯=-=∴∆ππMON MON S S S 扇形弓形∴线段MN 与⌒MN 所围成图形的面积为2π-4………………………………………………(2分) 20. (本题8分)(1)用直尺和圆规作△ABC …………………(4分) (2)① 作ACB ∠的平分线交AB 于D ;……………………(1分)② 过D 点作DE ⊥BC ,垂足为E .……………................(1分) (3)△ADC ≌△EDC ;△ACD ∽△ABC .(每写对一对得1分)21.(本题8分)(1)80 ,25%、40%、30%4分(2)补全条形图(如右图)………2分(3)520…………………………….2分22.(本题10分)(1) 1 , 2 。
2010年全国中考数学全真模拟试题大汇集-(附答案)
2010年中考数学全真模拟试题(一)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分.第1卷l 至4页,第Ⅱ卷5至12页.满分120分.考试时间120分钟.第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试卷上。
3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的. 1.一3的绝对值是(A)3 (C)±3 (B) 3 (D)±132.2004年聊城市的国民生产总值为1012亿元,用科学记数法表示正确的是 (A)1012³108元 (B)1.012³1110元 (C)1.0³1110元. (D)1.012³1210元. 3.下列各式计算正确的是 (A)527()a a =.(B)22122x x-=(C)236326a a a = (D)826a a a ÷=。
4.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是(A)18(B)13(C)38(D)355.如图,将两根钢条'A A 、'B B 的中点O 连在一起,使'A A 、'B B 可以绕着点0自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△AOB ≅△''A O B 的理由是(A)边角边 (B)角边角 (C)边边边 (D)角角边6.已知两圆相交,其圆心距为6,大圆半径为8,则小圆半径r 的取值范围是 (A)r>2 (13)2<r<14 (C)l<r<8 (13)2<r<8 7.化简24()22aaaa a a---+ 的结果是 (A)一4 (B)4 (C)2a (13) 2a +4第5题图8.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =10,DF =4,则菱形ABCD 的边长为(A)4(B)5 (C)6.(D)9.9.小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm 幻灯片到屏幕的距离是1.5m ,幻灯片上小树的高度是10cm ,则屏幕上小树的高度是(A)50cm . (B)500cm . (C)60 cm . (D)600cm .10.多边形的内角中,锐角的个数最多有 (A)1个. (B)2个. (C)3个. (D)4个.11.如图,已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为(A)(0,0). (B)11(,)22-.(c) ,)22-(D) 11(,)22-.12.等腰三角形一腰上的高与另一腰的夹角为30。
2010中考模拟试卷 数学试题卷参考答案
2010年中考模拟试卷参考答案一、选择题 (每题3分共30分)题号 1 2 3 4 5 6 7 8 9 10 答案DBBCBDBBAB二、填空题(每题4分,共24分)11. X(X+3)(X-3) 12. 3+3 13. 414. 25 15.(21 ,23)(0,33 )(2,3 )(3-1,1 )16.2365a三、解答题(满分66分)17、 (本小题满分6分) 解:作PC ⊥AB设PC=x ,∵060=∠PBC 则CB=,33X ……………… 2分X AC PAC 330=∴=∠……………… 2分32333=∴=-∴X X X ……………… 2分18、 (本小题满分6分)(1)过F 作FH ∥AB,交AD 于H,连结EH,EF,G 为DC 上一点,连结GH,GF, 则四边形EFGH 就是所求四边形.(3分)①(2)作MN ∥AB,交AD 于N,P 为AB 上一点,连结PN,过M 作MQ ∥PN,交CD 于Q,连结PM,NQ,则梯形PMQN 就是所求四边形.(3分)PAB CA B C D HFG E MA BCD N P Q②(工具不限,画得有理就给满分,画图正确但无画法每个扣一分) 19、(本小题满分8分) (1)A (2,2);B(-2,-2);C (23,23)-.………………3分(2)作AD ⊥x 轴于D ,连结AC 、BD 和OC 。
∵A 的坐标为(2,2), ∴∠AOD=45°,AO=22………………1分∵C 在O 的东南45°方向上, ∴∠AOC=45°+45°=90°,∵AO=BO,∴AC=BC , 又∵∠BAC=60°,∴△ABC 为正三角形………………2分∴AC=BC=AB=2AO=42. ∴OC=3·42262=………………1分由条件设:教练船的速度为3m,A 、B 两船的速度均为4m.则教练船所用的时间为: 263m ,A 、B 两船所用的时间均为:424m =2m .∵263m =243m ,2m =183m ,∴263m >2m ,所以教练船不是最先赶到。
2010年河南中考数学模拟试卷及答案
2010年河南中考数学模拟试卷及答案一、选择题(每小题3分,共18分)1. 如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 【 】 A .5°C B .7°C C .12°C D .-12°C2. 某市2010年第一季度财政收入为46.40亿元,用科学记数法(结果保留两个有效数字)表示为 【 】A.81040⨯元 B.9100.4⨯元 C.9104⨯元 D.8104⨯元3. 下列说法正确的是 【 】 A .一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖。
B .一组数据2,3,3,6,8,5的众数与中位数都是3。
C .“打开电视,正在播放关于世博会的新闻”是必然事件。
D .若甲组数据的方差31.02=甲S ,乙组数据的方差02.02=乙S ,则乙组数据比甲组数据稳定。
4.一个无盖的正方体盒子的平面展开图可以是下列图形中的 【 】.A.只有图① B.图③、图② C.图②、图③ D.图①、图③5. 如图,一次函数y1=x-1与反比例函数y2=x 2的图像交于点A (2,1),B (-1,-2),则使y1>y2的x的取 值范围是 【 】 A. x>2 B. x>2 或-1<x<0 C. -1<x<2 D. x>2 或x<-16如图为二次函数y=ax 2+bx +c 的图象,在下列说法中:①ac <0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2= 3③a +b +c >0 ④当x >1时,y 随x 的增大而增大。
把正确的都选上应为 【 】 A①② B.①②③ C.①②④ D.①②③④二、填空题(每小题3分,共27分)7. .25的算术平方根是 . .8. 将一副直角三角尺如图放置,已知AE BC ∥,则AFD ∠的度数是 . . 9. 某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______10如图:平行四边形ABCD 的周长为16,AC 、BD相交于点③② ①BA 23题图O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为 . 11. 如图,ABC △内接于⊙O ,30C ∠=,2AB =,则 ︵ AB 长(结果保留π)______.12.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是 . .13、正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的坐标为 .14.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .当P 落在直角梯形ABCD 内部时,PD 的最小值等于 .15.在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点MMN AC ⊥ 于点N .若1202BAC AB ∠==°,,则图中阴影部分的面积(结果保留π)是 .二、解答题(本大题8个小题,共75分)16.(8分)解方程:22111x x x -=--17.(9分)如图,正方形ABCD 中,E 是AD 边上一点,且BE=CE , BE 与对角线AC 交于点F ,联结DF ,交EC 于点G .(1)求证:∠ABF =∠ADF ;(2)求证:DF ⊥EC .18.(9分)2008年北京奥运会后,同学们为了解某品牌A ,B 两种型号冰箱的销售状况,王明对其专卖店开业以来连续七个月的销售情况进行了统计,并将得到的数据制成如下的统计表:月份一月 二月 三月 四月 五月 六月 七月 A 型销售量(单位:台) 10 14 17 16 13 14 14 B 型销售量(单位:台)6101415161720(1)完成下表(结果精确到0.1):平均数 中位数 方差 A 型销售量14图1 30︒30︒B D A C 图3 C AD B 图2 D 1C 1B 1C A D B 图4CA DB B 型销售量 14 18.6(2)请你根据七个月的销售情况在图中绘制成折 线统计图,并依据折线图的变化趋势,对专卖店今 后的进货情况提出建议(字数控制在20~50字).l9.(9分) 某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D B
A
O
C
第8题
2010年中考数学模拟试题(二)
(新人教版)
(考试时间:120分钟 满分120分)
一、填空:(每小题2分,共20分) 1.计算:(-1) ×(-2) = . 2.如图,已知AB ∥CD ,则∠A = 度. 3.分解因式 x 3-xy 2= 。
4.在函数y =
x 的取值范围是 。
5.截至2009年6月5日止,全球感染H1N1流感病毒有21240人,感染人数用科学计数法表示
为 人.
6.方程2 x 2
-18=0的解是 .
7.若100个产品中有95个正品、5个次品,从中随机抽取一个,
恰好是次品的概率是 .
8.某蔬菜基地的圆弧形蔬菜大棚的剖面如图(2)所示,已知
AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m .
9.一个扇形所在圆的半径为3c m ,扇形的圆心角为120°,则扇形的面积
是 cm 2. (结果保留π)
10.如图,是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍
时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )
二、选择题(每小题3分,共24分)
11.-8的相反数是( )
C
D
B
第2题
.80
A
第10题
……
n =1
n =2
n =3
A .8
B .-8
C .
18
D .18
-
12.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( ). A.外离 B. 相交 C.外切 D.内切
13.下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是( )
A .①②③
B .①②
C .①③
D .②③
14.在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,9.1,6.5,7.7,
则这四人中,射击成绩最稳定的是( ) A .甲
B .乙
C .丙
D .丁
15、tan 30°的值等于( )
A.
2
1 B.
2
2 C.
2
3 D.
3
3
16图1中几何体的主视图是( )
17.若分式 x 2-1 x +1
的值为零,则x 的值是( )
A .1
B .0
C .-1
D .±1
18.如图,抛物线y =ax 2+bx +c 的对称轴是x = 1
3
,小亮通过
观察得出了下面四条信息:
①c <0,②abc <0,③a -b +c >0,④2a -3b =0. 你认为其中正确的有( )
A .1个
B .2个
C .3个
D .4 三、解答题:(共76分) 19、(本题7分)计算:
1
12sin 602-⎛⎫- ⎪
⎝⎭
A
C
B
D
x
第18题
20、(本题7分)解方程: 0)3(2)3(2=-+-x x x
21.(本题8分)如图,E 是正方形ABCD 的边DC 上的一点,过A 作A F ⊥AE ,交CB 延长线
于点F ,求证:△ADE ≌△ABF .
22.(本题10分)已知A B C △在平面直角坐标系中的位置如图10所示.
(1)分别写出图中点A C 和点的坐标;
(2)画出A B C △绕点C 按顺时针方向旋转90A B C '''°后的△; (3)求点A 旋转到点A '所经过的路线长(结果保留π).
_
F _
E _
C _
D _ B _
A 第21题
第22题
x
23、(本题10分)右边下面两图是根据某校初三(1)班同学的上学方式情况调查所制作的条形
和扇形统计图,请你根据图中提供的信息,解答以下问题: (1) 求该班学生骑自行车的人数有
(2)求该班学生人数 人.并将条形统计图补充完整; (3)若该校初三年有600名学生, 试估计该年级乘车上学的人数.
24.(本题10
分)某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100
台.经预算,两种冰箱全部售出后,可获得利润不低于 47500元,不高于48000元,两种型
号的冰箱生产成本和售价如下表:
(1)冰箱厂有哪几种生产方案?
(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、
彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?
骑自行车
20%
乘车
步行50%
第23题
25、(本题12分)如图5,在A B C
△中,A B A C
=,以A B为直径的O
⊙交B C于点M,M N A C
⊥于点N.
(1)求证M N是O
⊙的切线;
(2)若1202
B A
C A B
∠==
°,,求以直径AB,弦BC和
⌒
AM围成图形的面积(结果保留π).
、
第25题
26.(本题12分)如图,
抛物线2
122
2
y x x =-
+
+与x 轴交于A B 、两点,
与y 轴交于C 点. (1)求A B C 、、三点的坐标;
(2)证明A B C △为直角三角形;
(3)在抛物线上除C 点外,是否还存在另外一个点P ,使A B P △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.
参考答案
一、1.2 2.120 3.x (x +y )(x -y )4.x≥
12
5.2.124×104 6.3和-3 7.
1
20
8.4
9.3π 10.2n(n+1)二.11. A 12.C 13.B 14. C 15. D 16.D 17.A18.B
19.20.X 1=3,X 2=1
21.证明:∵ABCD 是正方形 ∴AB AD = ︒=∠=∠=∠90DAB ABF D ∵A F ⊥AE
∴DAE EAB BAF ∠=∠-︒=∠90.在ADE ∆和ABF ∆中
∵AE AD BAF DAE ABF D =∠=∠∠=∠,, ∴△ADE ≌△ABF
22.解:(1)()04A ,、()31C ,
(2)图略
(3)AC =⌒AA ' =90180
⨯π2
=
23.解:(1)8 (2)该班学生人数为
40%
5020
=(人) 图画对(略)
(3)该年级乘车上学的人数约为18060040
12
=⨯ 24..解:(1)设生产A 型冰箱x 台,则B 型冰箱为()100x -台,由题意得:
47500
(2800
2200)
(3000
2600)
(100
x x -+-⨯-≤≤ 解得:37.540x ≤≤ x 是正整 ∴x 取38,39或40.
(2)设投入成本为y 元,由题意有: 22002600(100)400260000y x x x =+-=-+
4000-< ∴y 随x 的增大而减小∴当40x =时,y 有最小值.
即生产A 型冰箱40台,B 型冰箱50台,该厂投入成本最少
此时,政府需补贴给农民(280040300060)13%37960()⨯+⨯⨯=元 25.(1)证明:连接O M .
∵O M O B =,∴B O M B ∠=∠,∵A B A C =,∴B C ∠=∠. ∴O M B C ∠=∠,∴O M A C ∥.
又M N A C ⊥,∴O M M N ⊥,点M 在O ⊙上,∴M N 是O ⊙的切线
(2)S =
16
4
π+
26.解:(1) 抛物线2
1222
y x x =-
+
+与x 轴交于A B 、两点,
2
12022
x x ∴-
+
+=.即240x -
-=.解之得:12x x ==
∴点A B 、的坐标为(A B 、() ,将0x =代入2
122
2
y x x =-+
+,
得C 点的坐标为(0,2)
(2)AC BC AB === 222AB AC BC ∴=+,则90A C B ∠=°, A B C ∴△是直角三角形.
(3)将2y =代入2
122
2
y x x =-
+
+,得2
1222
2
x x -
+
+=,120x x ∴==
,.
P ∴点坐标为2).。