高中三角函数常考知识点及练习题
高一数学知识点三角函数与恒等公式经典题常考题50道含答案与解析
高一数学三角函数及恒等公式经典题常考题50道一、单选题1.函数y=cosx|tanx|(0≤x<且x≠ )的图象是下图中的()A. B. C. D.【答案】C【考点】同角三角函数基本关系的运用,正弦函数的图象【解析】【解答】解:当0 时,y=cosxtanx≥0,排除B,D.当时,y=﹣cosxtanx<0,排除A.故选:C.【分析】根据x的围判断函数的值域,使用排除法得出答案.==========================================================================2.若α,β都是锐角,且,则cosβ=()A. B. C. 或 D. 或【答案】A【考点】两角和与差的余弦函数【解析】【解答】解:∵α,β都是锐角,且,∴cosα= = ,cos(α﹣β)= = ,则cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)= + = ,故选:A.【分析】由条件利用同角三角函数的基本关系,两角差的三角公式,求得cosβ=cos[α﹣(α﹣β)]的值.==========================================================================3.设为锐角,若cos = ,则sin 的值为()A. B. C. D.【答案】B【考点】二倍角的正弦【解析】【解答】∵为锐角,cos = ,∴∈,∴ = = .则sin =2 . 故答案为:B【分析】根据题意利用同角三角函数的关系式求出正弦的值,再由二倍角的正弦公式代入数值求出结果即可。
==========================================================================4.sin15°sin105°的值是()A. B. C. D.【答案】A【考点】运用诱导公式化简求值【解析】【解答】sin15°sin105°=sin15°cos15°= sin30°= ,故答案为:A.【分析】利用诱导公式转化已知的三角函数关系式求出结果即可。
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
(word完整版)高中数学必修4三角函数常考题型:三角函数的诱导公式(一)
三角函数的诱导公式(一)【知识梳理】1. 诱导公式⑴角n+ a与角a的终边关于原点对称. 如图所示.10丿H(2)公式:sin( n+ a = —sin acos( n+ a) =—cos_ a.tan( n+ a = tan_ a2. 诱导公式三(1)角一a与角a的终边关于X轴对称. 如图所示.彳(2)公式:sin( —a = —sin _aCOs(— a) = COs_ atan(— a = —tan_ a3. 诱导公式四(1)角n— a与角a的终边关于y轴对称.如图所示.(2)公式:sin( n— a = sin __ acos( n— a = 一COS_a tan( n— a = —tan_ a.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:。
o 119 n⑴sin( — 1 200 °; (2)tan 945 ; (3)cos_^.[解](1)si n( — 1 200 )=— sin 1 200 =—°si n(3 x 360 牛 120 ) =— sin 120 =— sin(180 — 60 )3=—sin 60 =——; 2(2)tan 945 =tan(2 x 360 °+ 225 °= tan 225 = tan( 180 4 45 °)= tan 45 = 1;【类题通法】【对点训练】求 sin 585 cos 1 290 4 cos( — 30°)sin 210 4 tan 135 的值.解:sin 585 °s 1 290 C cos(— 30°)sin 210 ° tan 135 = sin(360 ° 225°)cos(3x 360° 4 210) 4 cos 30 gin 210 半 tan(180 —45 ° = sin 225 c6s 210 半 cos 30 s °n 210 — tan 45 = sin( 180 半 45 °)cos(180 4 30 °)4 cos 30 sin(180 4 30 °— tan 45 =sin 45 cbs 30 — cos 30 s i n 30 — tan 45 = 返 x ©_ ?/3x 1—1 乎-也-42 2 2 2 4题型二、化简求值问题cos — a tan 7 n4 asin n — a(2)化简曲:豊4 " * "—1需°cos — 180 — a sin — a — 180 (3)cos 譽 =cos 20 n — n = cos 6 6n =cos := 6 【例2】 (1)化简:cos — a tan 7 n4 a 解析]sin n— a cos d an n4 asin acos a tan asin a心=1sin a[答案]1•••a+ 125°= 180°+ ( a — 55°),sin 4X 360 °+ a c os 3 x 360 °— a sin a c os — a (2)[解]原式=—— cos 180 + a [ — sin 180 + a ] COS a = =—1. —cos a sin a — COs a 【类题通法】 利用诱导公式一〜四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切. 化简: tan 2 n — 0 sin 2 n — 0 cos 6 n —tan — 0s in — 0cos — 0—cos 0sin n+ 0 tan Osin 0cos 0cos 0sin 0 =tan 0 题型三、给角(或式)求值冋题【例3】 1 (1)已知 sin 3= 3, cos(a+ 3=— 1,贝U sin( a+ 2 3)的值为( ) 3 A . 1 B . — 11 Ci 1D 「11⑵已知cos( a — 55 °)=— 3,且a 为第四象限角,求 sin( a+ 125°)的值.(1)[解析] **cos( a+ 3) = — 1 ,• '•a+ 3= T H- 2k n, k , 1 •'sin( a+ 2 3) = sin [(a+ 3] = sin( n+ 3 = — sin 3= — 3.3[答案]D(2)[解]・.cos( a — 55 °)=— ]0,且a 是第四象限角.• a — 55°是第三象限角.sin( a — 55 °)= — i : 1 — COS ? a — 55 =— 2.23【对点训练】解:原式=••sin( a- 125° = sin[180 — (a — 55°)] = — sin( a — 55°)=警.【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间 的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】1 、sin( n+ a=— 3,求 cos(5n+ a 的值. 3由诱导公式得,sin( n- a = — sin a,当a 是第一象限角时,cos a= - ;1 — Sin 2 a=彳^2 2A /2 此时,cos(5 n — %)= cos( n+ a = —cos a=— 3 . 3当 a 是第二象限角时,cos a=— • :1— sin 2 a=— ^^2 ,2占 此时,cos(5 n — %)= cos( n+ a = — cos a= 3 .3 【练习反馈】1.如图所示,角0的终边与单位圆交于点 P ,晋,则cos(n — 的值为(B . — -5 52*5D. 50-五—5,送•'cos( n — ® = — cos 0= 5 .已知 解: 所以sin a= 3,所以a 是第一象限或第二象限角.解析: 选 C 行=1 ,「.cos答案:2 — 2n5.已知 cos 6"coS a+于的值.n —cos 6— a 2. 4 _ 已知 sin( n+%)= 5,且 a 是第四象限角,贝U COS ( a — 2冗)的值是( ) 3 B.5D.5 4 解析:选 B sin a =-4, 又a 是第四象限角, • 'COS ( a — 2 n )= COS a= \ -1- Sin 2 a= 5. sin a — 3 n + COS n — a 3.设 tan(5 n+ a) = m ,贝U sin — a — COS n+ a 解析: '•ta n(5n+ a = tan a= m , —sin a — cos a — tan a — 1 — m — 1 m + 1 • • •原式= = = = —sin a+ cos a — tan a+ 1 — m + 1 m — 1 答案:cos — 585 ° sin 495 + sin — 570的值是解析: 原式= cos 360 °+ 225 ° sin 360 °+ 135 ° — sin 210 °+ 360 cos 225 cos 180 °+ 45 ° sin 135 — sin 210 °sin 180 °— 45° — sin 180 ° + 30° —cos 45sin 45 + sin 30 —2 .2 1 + _ 2 2 2 — 2.解:cos n+ =— cos n —6 5 n a+E。
高中数学必修4三角函数常考题型:同角三角函数的基本关系
同角三角函数的根本关系【知识梳理】同角三角函数的根本关系(1)平方关系:同一个角α的正弦、余弦的平方和等于1.即sin 2α+cos 2α=1.(2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即sin αcos α=tan_α⎝⎛⎭⎫其中α≠k π+π2(k ∈Z ). 【常考题型】题型一、一个三角函数值求另两个三角函数值【例1】 (1)sin α=1213,并且α是第二象限角,求cos α和tan α. (2)cos α=-45,求sin α和tan α. [解] (1)cos 2α=1-sin 2α=1-⎝⎛⎭⎫12132=⎝⎛⎭⎫5132,又α是第二象限角,所以cos α<0,cos α=-513,tan α=sin αcos α=-125. (2)sin 2α=1-cos 2α=1-⎝⎛⎭⎫-452=⎝⎛⎭⎫352, 因为cos α=-45<0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-34;当α是第三象限角时,sin α=-35,tan α=sin αcos α=34. 【类题通法】三角函数值求其他三角函数值的方法(1)假设sin α=m ,可以先应用公式cos α=±1-sin 2α,求得cos α的值,再由公式tan α=sin αcos α求得tan α的值. (2)假设cos α=m ,可以先应用公式sin α=±1-cos 2α,求得sin α的值,再由公式tan α=sin αcos α求得tan α的值. (3)假设tan α=m ,可以应用公式tan α=sin αcos α=m ⇒sin α=m cos α及sin 2α+cos 2α=1,求得cos α=±11+m 2,sin α=±m 1+m 2的值. 【对点训练】tan α=43,且α是第三象限角,求sin α,cos α的值. 解:由tan α=sin αcos α=43,得sin α=43cos α,① 又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,故cos α=-35,sin α=43cos α=-45. 题型二、化切求值【例2】 tan α=3,求以下各式的值.(1)4sin α-cos α3sin α+5cos α; (2)sin 2α-2sin α·cos α-cos 2α4cos 2α-3sin 2α; (3)34sin 2α+12cos 2α. [解] (1)原式=4tan α-13tan α+5=4×3-13×3+5=1114; (2)原式=tan 2α-2tan α-14-3tan 2α=9-2×3-14-3×32=-223; (3)原式=34sin 2α+12cos 2αsin 2α+cos 2α=34tan 2α+12tan 2α+1=34×9+129+1=2940. 【类题通法】化切求值的方法技巧(1)tan α=m ,可以求a sin α+b cos αc sin α+d cos α或a sin 2α+b sin αcos α+c cos 2αd sin 2α+e sin αcos α+f cos 2α的值,将分子分母同除以cos α或cos 2α,化成关于tan α的式子,从而到达求值的目的.(2)对于a sin 2α+b sin αcos α+c cos 2α的求值,可看成分母是1,利用1=sin 2α+cos 2α进行代替后分子分母同时除以cos 2α,得到关于tan α的式子,从而可以求值.【对点训练】tan α=2,求以下各式的值:(1)2sin α-3cos α4sin α-9cos α; (2)4sin 2α-3sin αcos α-5cos 2 α.解:(1)2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1. (2)4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α, 这时分子和分母均为关于sin α,cos α的二次齐次式.因为cos 2α≠0,所以分子和分母同除以cos 2α,那么4sin 2α-3sin αcos α-5cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1. 题型三、化简三角函数式【例3】 化简tan α1sin 2α-1,其中α是第二象限角. [解] 因为α是第二象限角,所以sin α>0,cos α<0.故tan α1sin 2α-1=tan α1-sin 2αsin 2α =tan αcos 2αsin 2α=sin αcos α·⎪⎪⎪⎪cos αsin α =sin αcos α·-cos αsin α=-1.【类题通法】三角函数式化简技巧(1)化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,到达化繁为简的目的.(2)对于含有根号的,常把根号里面的局部化成完全平方式,然后去根号到达化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,到达化简的目的.【对点训练】化简:(1)sin θ-cos θtan θ-1; (2) sin 2θ-sin 4θ,θ是第二象限角.解:(1)sin θ-cos θtan θ-1=sin θ-cos θsin θcos θ-1=sin θ-cos θsin θ-cos θcos θ=cos θ. (2)由于θ为第二象限角,所以sin θ>0,cos θ<0, 故sin 2θ-sin 4θ=sin 2θ(1-sin 2θ)=sin 2θcos 2θ=|sin θcos θ|=-sin θcos θ.题型四、证明简单的三角恒等式【例4】 求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α. [证明] 法一:∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α=tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边, ∴原等式成立.法二:∵左边=tan αsin αtan α-tan αcos α=sin α1-cos α, 右边=tan α+tan αcos αtan αsin α=1+cos αsin α=1-cos 2αsin α(1-cos α)=sin 2αsin α(1-cos α)=sin α1-cos α, ∴左边=右边,原等式成立.【类题通法】简单的三角恒等式的证明思路(1)从一边开始,证明它等于另一边;(2)证明左、右两边等于同一个式子;(3)逐步寻找等式成立的条件,到达由繁到简.【对点训练】证明:1+2sin θcos θcos 2θ-sin 2θ=1+tan θ1-tan θ证明:∵左边=sin 2θ+cos 2θ+2sin θcos θ(cos θ+sin θ)(cos θ-sin θ)=(sin θ+cos θ)2(cos θ+sin θ)(cos θ-sin θ)=cos θ+sin θcos θ-sin θ=cos θ+sin θcos θcos θ-sin θcos θ=1+tan θ1-tan θ=右边,∴原等式成立.【练习反应】1.α∈⎝⎛⎭⎫π2,π,sin α=35,那么cos α等于( ) A.45B .-45C .-17 D.35解析:选B ∵α∈⎝⎛⎭⎫π2,π且sin α=35, ∴cos α=-1-sin 2α=-1-⎝⎛⎭⎫352=-45. 2.假设α为第三象限角,那么cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3C .1D .-1 解析:选B ∵α为第三象限角,∴原式=cos α-cos α+2sin α-sin α=-3. 3.cos α-sin α=-12,那么sin αcos α的值为________. 解析:由得(cos α-sin α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α=14,解得sin αcos α=38. 答案:384.假设tan α=2,那么2sin α-cos αsin α+2cos α的值为________. 解析:原式=2sin α-cos αcos αsin α+2cos αcos α=2tan α-1tan α+2=2×2-12+2=34.答案:345.化简:1-2sin 130°cos 130°sin 130°+1-sin 2130°. 解:原式=sin 2130°-2sin 130°cos 130°+cos 2130°sin 130°+cos 2130°=|sin 130°-cos 130°|sin 130°+|cos 130°|=sin 130°-cos 130°sin 130°-cos 130°=1.。
高中数学 三角函数5部分25个考点100道典型题!
三角函数超全考点与题型分析第一部分三角函数定义【思维导图】【常见考法】考点一:终边相同的角1.终边在第二、四象限的角平分线上的角可表示为。
【答案】180135,k k Z⋅︒+︒∈【解析】角的终边在第二象限的角平分线上,可表示为:13601352180135k k α=⋅︒+︒=⋅︒+︒,k Z ∈,角的终边在第四象限的角平分线上,可表示为:2360315(21)180135k k α=⋅︒+︒=+⋅︒+︒,k Z ∈.故当角的终边在第二、四象限的角平分线上时,可表示为:180135k α=⋅︒+︒,k Z ∈.2.下列各组角中,终边相同的角是。
A.2k π与()2k k Z ππ+∈B.3±k ππ与()3k k Z π∈C.()21+k π与()()41k k Z π±∈D.6k ππ+与()6k k Z ππ±∈【答案】C【解析】对于A 选项,()2k k Z π∈表示2π的整数倍,()()2122k k k Z πππ++=∈表示2π的奇数倍,2k π与()2k k Z ππ+∈的终边不一定相同;对于B 选项,()()3133k k k Z πππ±±=∈ ,()31k k Z +∈表示除3余数为1的整数,()()31312k k k Z -=-+∈表示除3余数为2的整数,而()3k k Z π∈表示3π的整数倍,所以,,,33k x x k k Z x x k Z πππ⎧⎫⎧⎫=±∈=∈⎨⎬⎨⎬⎩⎭⎩⎭Ö,则3±k ππ与()3k k Z π∈的终边不一定相同;对于C 选项,对于()41k π±,取1k k Z =∈得()()14141k k ππ±=±,对于()21+k π,取2k k Z =∈得()()22121k k ππ+=+,()()()()12121241214222k k k k k k ππππ+-+=-=- ,()()()()1212124121422221k k k k k k ππππ--+=--=--均为2π的整数倍,则()21+k π与()()41k k Z π±∈的终边相同;对于D 选项,显然,66x x k k Z x x k k Z ππππ⎧⎫⎧⎫=+∈=±∈⎨⎬⎨⎬⎩⎭⎩⎭Ö,则6k ππ+与()6k k Z ππ±∈的终边不一定相同.故选:C.3.已知集合|22,42k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭则角α的终边落在阴影处(包括边界)的区域是。
高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)
1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
高中数学三角函数知识点及试题总结
高考三角函数1.特殊角的三角函数值:2.角度制与弧度制的互化:,23600π= ,1800π=3.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。
r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy (2)各象限的符号:sin α cos α tan αxy+O— —+x yO — +— +y O— + + —5.同角三角函数的基本关系:(1)平方关系:s in 2α+ cos 2α=1。
(2)商数关系:ααcos sin =tan α (z k k ∈+≠,2ππα)6.诱导公式:记忆口诀:2k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质8、三角函数公式: 降幂公式: 1+cos α=2cos 22αcos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-= 9.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
部编版高中数学必修一第五章三角函数带答案常考点
(名师选题)部编版高中数学必修一第五章三角函数带答案常考点单选题1、已知角α的终边与单位圆交于点P (−12,√32),则sinα的值为( ) A .−√32B .−12C .√32D .122、已知cosα=2√55,则cos 4α−sin 4α=( )A .35B .45C .1225D .−12253、已知函数f(x)=sin (x +π3).给出下列结论: ①f(x)的最小正周期为2π; ②f (π2)是f(x)的最大值;③把函数y =sinx 的图象上所有点向左平移π3个单位长度,可得到函数y =f(x)的图象. 其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③4、《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕像,它取材于现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的每只手臂长约π4m ,肩宽约为π8m ,“弓”所在圆的半径约为1.25m ,则如图掷铁饼者双手之间的距离约为( )A .π2m B .5√24m C .5π8m D .2m 5、已知sinαcosα=12,则tanα+1tanα的值为( )A .12B .−12C .−2D .26、设0<α<π,sinα+cosα=713,则1−tanα1+tanα的值为( )A .177B .717C .−177D .−7177、若函数f(x)=sin(ωx +π3)(0<ω<3)的图象向右平移2π3个长度单位后关于点(π2,0)对称,则f(x)在[−7π24,π2]上的最小值为( )A .1B .−√22C .−√32D .√6−√248、cos 2π12−cos 25π12=( )A .12B .√33C .√22D .√32多选题9、下列不等式中成立的是( ) A .sin1<sin π3B .cos2π3>cos2C .cos (−70∘)>sin18∘D .sin4π5>sin17π610、已知函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称,则( ) A .函数f (x +π12)为偶函数 B .函数f(x)在[π12,π6]上单调递增C .若|f (x 1)−f (x 2)|=2,则|x 1−x 2|的最小值为π3D .将函数f(x)图象上所有点的横坐标缩小为原来的13,得到函数y =sin(x +φ)的图象11、已知函数f(x)=sin(3x +φ) (−π2<φ<π2)的图象关于直线x =π4对称,则( ) A .函数f (x +π12)为奇函数 B .函数f (x )在[π12,π3]上单调递增C .若|f (x 1)−f (x 2)|=2,则|x 1−x 2|的最小值为π3D .函数f (x )的图象向右平移π4个单位长度得到函数y =−cos3x 的图象 填空题12、若cosα=−35,α为第二象限的角,则sin(π−α)=__________.13、若α∈(π2,π),且cos2α−sinα=14,则tanα=_____.部编版高中数学必修一第五章三角函数带答案(三十七)参考答案1、答案:C分析:根据三角函数的定义即可求出. 因为角α的终边与单位圆交于点P (−12,√32), 所以根据三角函数的定义可知,sinα=y =√32. 故选:C . 2、答案:A分析:利用同角三角函数基本关系式先化简再求值. ∵cosα=2√55, ∴cos 4α−sin 4α=(cos 2α+sin 2α)(cos 2α−sin 2α)=cos 2α−sin 2α=2cos 2α−1=2×(2√55)2−1=35.故选:A.小提示:利用三角公式求三角函数值的关键: (1)角的范围的判断;(2)选择合适的公式进行化简求值. 3、答案:B分析:对所给选项结合正弦型函数的性质逐一判断即可. 因为f(x)=sin(x +π3),所以周期T =2πω=2π,故①正确;f(π2)=sin(π2+π3)=sin5π6=12≠1,故②不正确;将函数y =sinx 的图象上所有点向左平移π3个单位长度,得到y =sin(x +π3)的图象, 故③正确. 故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.4、答案:B分析:由题意知这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长.由题得:弓所在的弧长为:l=π4+π4+π8=5π8;所以其所对的圆心角α=5π854=π2;∴两手之间的距离d=2Rsinπ4=√2×1.25AB=5√24m.故选:B5、答案:D解析:根据题中条件,由切化弦,将所求式子化简整理,即可得出结果.∵sinαcosα=12,∴tanα+1tanα=sinαcosα+cosαsinα=sin2α+cos2αsinαcosα=112=2,故选:D.6、答案:C分析:依题意可知π2<α<π,得到cosα−sinα<0,再利用正余弦和差积三者的关系可求得cosα−sinα的值,将所求关系式切化弦,代入所求关系式计算即可.由sinα+cosα=713,平方得到1+sin2α=49169,∴sin2α=49169−1=−120169=2sinαcosα,0<α<π,∴π2<α<π,∴cosα<0,而sinα>0,∴cosα−sinα<0;令t=cosα−sinα(t<0),则t2=1−sin2α,∴t2=1−sin2α=1+120169=289169,t<0∴t=−1713∴1−tanα1+tanα=cosα−sinαcosα+sinα=137(cosα−sinα)=137×(−1713)=−177,故选:C.7、答案:C分析:由图像平移过程写出平移后的解析式g(x)=sin(ωx+π3−2ωπ3),利用正弦函数的对称性求参数ω,最后由正弦型函数的单调性求区间最小值即可.将f(x)向右平移2π3个长度单位后,得到g(x)=sin[ω(x−2π3)+π3]=sin(ωx+π3−2ωπ3),∵g(x)关于(π2,0)对称,∴g(π2)=sin(ωπ2+π3−2ωπ3)=sin(π3−ωπ6)=0,∴π3−ωπ6=kπ,k∈Z,即ω=2−6k,k∈Z,又0<ω<3,则ω=2,即f(x)=sin(2x+π3),由x∈[−7π24,π2]知:2x+π3∈[−π4,4π3],则sin(2x+π3)∈[−√32,1],∴f(x)在[−7π24,π2]上的最小值为−√32.故选:C. 8、答案:D分析:由题意结合诱导公式可得cos2π12−cos25π12=cos2π12−sin2π12,再由二倍角公式即可得解.由题意,cos2π12−cos25π12=cos2π12−cos2(π2−π12)=cos2π12−sin2π12=cosπ6=√32.故选:D.9、答案:ACD分析:结合诱导公式,根据y =sinx 和y =cosx 的单调性依次判断各个选项即可得到结果. 对于A ,∵y =sinx 在(0,π2)上单调递增,又0<1<π3<π2,∴sin1<sin π3,A 正确;对于B ,∵y =cosx 在(π2,π)上单调递减,又π2<2<2π3<π,∴cos2π3<cos2,B 错误;对于C ,∵cos (−70∘)=cos70∘=sin20∘,又sin20∘>sin18∘,∴cos (−70∘)>sin18∘,C 正确; 对于D ,∵sin4π5=sin (π−π5)=sin π5,sin 17π6=sin (3π−π6)=sin π6,又sin π6<sin π5,∴sin 4π5>sin17π6,D 正确.故选:ACD. 10、答案:BC分析:根据函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称,由3×π4+φ=kπ+π2,k ∈Z 求得函数的解析式,再逐项判断.因为函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称, 所以3×π4+φ=kπ+π2,k ∈Z ,即φ=kπ−π4,k ∈Z ,又因为−π2<φ<π2,则φ=−π4, 所以f(x)=sin(3x −π4),A.函数f (x +π12)=sin(3(x +π12)−π4)=sin3x 为奇函数,故错误;B. 因为x ∈[π12,π6],则3x −π4∈[0,π4],又y =sinx 在[0,π4]上递增,所以函数f(x)在[π12,π6]上单调递增,故正确;C. T =2π3因为|f (x 1)−f (x 2)|=2,则f (x 1),f (x 2) 分别为函数的最大值和最小值,则|x 1−x 2|的最小值为T 2=π3,故正确;D.将函数f(x)图象上所有点的横坐标缩小为原来的13,得到函数y =sin(9x −π4)的图象,故错误; 故选:BC 11、答案:AC解析:利用f(x)=sin(3x +φ)的图象关于直线x =π4对称,即可求出φ的值,从而得出f (x )的解析式,再利用三角函数的性质逐一判断四个选项即可.因为f(x)=sin(3x +φ)的图象关于直线x =π4对称,所以3×π4+φ=π2+kπ(k ∈Z ) ,得φ=−π4+kπ,k ∈Z ,因为 −π2<φ<π2,所以k =0,φ=−π4, 所以f(x)=sin (3x −π4), 对于A :f (x +π12)=sin [3(x +π12)−π4]=sin3x ,所以f (x +π12)为奇函数成立,故选项A 正确; 对于B :x ∈[π12,π3]时,3x −π4∈[0,3π4],函数f (x )在[π12,π3]上不是单调函数;故选项B 不正确; 对于C :因为f (x )max =1,f (x )min =−1,又因为|f (x 1)−f (x 2)|=2,所以|x 1−x 2|的最小值为半个周期,即2π3×12=π3,故选项C 正确;对于D :函数f (x )的图象向右平移π4个单位长度得到y =sin [3(x −π4)−π4]=sin (3x −π)=−sin3x ,故选项D 不正确; 故选:AC小提示:本题主要考查了利用三角函数的对称轴求函数解析式,考查了三角函数平移变换、三角函数的周期、单调性、最值,属于中档题 12、答案:45分析:先根据同角三角函数的关系求出sinα,再结合诱导公式即可求出sin(π−α). ∵cosα=−35, α为第二象限的角,∴sinα=√1−cos 2α=45,∴sin(π−α)=sinα=45. 所以答案是:45.小提示:本题考查同角三角函数的关系以及诱导公式的应用,属于基础题. 13、答案:−√33分析:根据同角平方和关系可解得sin α=12,进而根据角的范围可得α=5π6,进而可求.因为cos 2α−sin α=14,所以4(1-sin 2α)-4sin α-1=0即4sin 2α+4sin α-3=0 ,∴解得sin α=12或sin α=−32(舍去).∵α∈(π2,π),∴α=5π6,因此tan α=tan5π6=−√33. 所以答案是:−√33。
(完整版)高中数学三角函数复习专题
高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。
2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。
高三三角函数知识总结和练习
三角函数知识点1.1任意角和弧度制1. 角的分类:任意角可按旋转方向分为 , , 。
2. 终边相同的角:与角α终边相同的角的集合为 。
3. 象限角:第一象限角的集合为: 。
第二象限角的集合为: 。
第三象限角的集合为: 。
第四象限角的集合为: 。
4、 轴线角:终边落在x 轴上的角的集合为: 。
终边落在y 轴上的角的集合为: 。
终边落在坐标轴上的角的集合为: 。
5、角度与弧度的换算:360︒= rad ,180︒= rad , 1︒= rad ,1rad ≈ ︒。
6.弧长,扇形面积公式:设扇形的弧长为l ,圆心角大小为α(弧度),半径为r , 则弧长l = ,S 扇形= = 。
练习巩固1、写出与下列各角终边相同的角的集合S ,并把S 中适合不等式-3600≤β<7200的元素β写出来:(1)600; (2)-210; (3)363014,2、已知α是第三象限角,则2α是第几象限角?3、.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为变式1、已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,则扇形的面积 变式2.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数变式3.中心角为60°的扇形,它的弧长为2π,则它的内切圆半径为变式4.一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为变式5.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为.3、2sin1变式: 2 2 2 2)2sin 2(21R - 42c§1.2任意角的三角函数1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==,()tan ,0y x xα=≠三角函数值只与角的大小有关,而与终边上点P2.. 三角函数线正弦线:MP; 余弦线:OM; 正切线:3.三角函数在各象限的符号:+ + - + - - - + sin α cos α tan α4. 同角三角函数的基本关系式:(1)平方关系:22221sin cos 1,1tan cos αααα+=+=(2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。
高中三角函数常考知识点和练习题集
三角函数常考知识点及练习题1. 任意角的三角函数:(1) 弧长公式:R a l = R 为圆弧的半径,a 为圆心角弧度数,l 为弧长。
(2) 扇形的面积公式:lR S 21=R 为圆弧的半径,l 为弧长。
(3) 三角函数〔6个〕表示:a 为任意角,角a 的终边上任意点P 的坐标为),(y x ,它与原点的距离为r 〔r >0〕那么角a 的正弦、余弦、正切、余切、正割、余割分别是:r y a =sin ,r x a =cos ,x y a =tan ,y x a =cot ,xra =sec ,y r a =csc .(4) 同角三角函数关系式:①倒数关系: 1cot tan =a a ②商数关系:a a a cos sin tan =, aaa sin cos cot = ③平方关系:1cos sin 22=+a a(5) 诱导公式:〔奇变偶不变,符号看象限〕k ·π/2+a 所谓奇偶指的是整数k 的奇偶性2.〔1〕两角和与差公式:βββtan tan 1tan tan )(tan a a a a ±=± 注:公式的逆用或者变形......... 〔2〕二倍角公式:aaa 2tan 1tan 22tan -=从二倍角的余弦公式里面可得出 降幂公式:22cos 1cos 2a a += , 22cos 1sin 2a a -=〔3〕半角公式〔可由降幂公式推导出〕:2cos 12sinaa -±=,2cos 12cos a a +±= ,aa a a a a a sin cos 1cos 1sin cos 1cos 12tan -=+=+-±= 3.4.函数)sin(ϕω+=x A y 的图像与性质:〔本节知识考察一般能化成形如)sin(ϕω+=x A y 图像及性质〕 (1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T (3) 五点法作)sin(ϕω+=x A y 的简图,设ϕω+=x t ,取0、2π、π、23π、π2来求相应x 的值以及对应的y 值再描点作图。
高中数学三角函数专题训练
高一年级数学——三角函数一、知识点归纳1、正弦函数、余弦函数和正切函数的图象与性质:2.正、余弦定理:在ABC ∆中有: ①正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆半径)2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩ ⇒ sin 2sin 2sin 2a A R b B R c C R ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩注意变形应用 ②面积公式:111sin sin sin 222ABCS abs C ac B bc A ∆=== ③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩二、方法总结:1.三角函数恒等变形的基本策略。
(1)注意隐含条件的应用:1=cos 2x +sin 2x 。
(2)角的配凑。
α=(α+β)-β,β=2βα+-2βα-等。
(3)升幂与降幂。
主要用2倍角的余弦。
(4)化弦(切)法,用正弦定理或余弦定理。
(5)引入辅助角。
asin θ+bcos θ=22b a +sin (θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
2.解答三角高考题的策略。
(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。
(2)寻找联系:运用相关公式,找出差异之间的内在联系。
(3)合理转化:选择恰当的公式,促使差异的转化。
二、典型例题一、选择题1.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( )A.2-B.12-C.12D.22.0203sin 702cos 10--=( )A.12B.2C. 2D.23.函数)cos[2()]y x x ππ=-+是( )A .周期为4π的奇函数 B .周期为4π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数40=( )A .1 B .2 C 5.已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A .247 B .247- C .724 D .724-6.函数3sin 4cos 5y x x =++的最小正周期是( )A .5πB .2πC .πD .2π7.在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( )A .锐角三角形B .直角三角形C .钝角三角形D .无法判定8.设0sin14cos14a =+,0sin16cos16b =+,c =,则,,a b c 大小关系( ) A .a b c << B .b a c << C .c b a << D .a c b <<9.函数)cos[2()]y x x ππ=-+是( )A .周期为4π的奇函数 B .周期为4π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数10.已知cos 2θ=44sin cos θθ+的值为( )A .1813 B .1811C .97D .1-11、已知0,4πα⎛⎫∈ ⎪⎝⎭,()0,βπ∈,且()1tan 2αβ-=,1tan 7β=-,则2αβ-的值是 ( ) A 、56π-B 、23π-C 、 712π-D .34π- 12、已知不等式()2632sincos 6cos 04442x x x f x m =+--≤对于任意的566x ππ-≤≤恒成立,则实数m 的取值范围是 ( ) A 、3m ≥B 、3m ≤C 、3m ≤-D 、33m -≤≤二、填空题 13、已知1sin 3x =,()sin 1x y +=,则()sin 2y x += 14、函数sin 222cos 34y x x π⎛⎫=+++⎪⎝⎭的最小值是 15、函数1sin cosxy x-=图像的对称中心是(写出通式)16、关于函数()cos223sin cos f x x x x =-,下列命题:①、若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②、()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增;③、函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像;④、将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合.其中正确的命题序号 (注:把你认为正确的序号都填上)一、典型例题1、设函数.求的最小正周期;2、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin 2sin sin ,a A C a C b B +-= (Ⅰ)求B ;(Ⅱ)若075,2,A b a c ==求与 3、若3sin 23cos 3sin32)(2xx x x f -=,],0[π∈x ,求)(x f 的值域和对称中心坐标;4、已知x x x x x f 44sin cos sin 2cos )(--=,求)(x f 的最小正周期、最大值、最小值 5、在ABC △中,5cos 13A =-,3cos 5B =.(Ⅰ)求sin C 的值; (Ⅱ)设5BC =,求ABC △的面积.6、已知函数(x)f 22cos 2sin 4cos x x x =+-。
完整版)高三三角函数专题复习(题型全面)
完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。
考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。
考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。
考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。
此外,该函数的图像还可以通过一定的变换得到。
一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。
cosθ)(θ∈(π/2,π)),则sin=-cosθ。
3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。
练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。
4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。
练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。
(完整版)三角函数知识点及练习题含答案,推荐文档
y
++
o -
-x
y
-+
o -
+
x
y
-+
o +
-
x
、、 、、、
、、 、、、
、、 、、、
6、三角函数线 正弦线:MP; 余弦线:OM;
正切线: AT.
a的 的 的 P、 x,y) r
x
y T
P O M Ax
7. 三角函数的定义域: 三角函数 f (x) sinx f (x) cosx f (x) tanx
8.如果 π <θ< π ,那么下列各式中正确的是( )
4
2
A.cosθ<tanθ<sinθ
B.sinθ<cosθ<tanθ
C.tanθ<sinθ<cosθ
D.cosθ<sinθ<tanθ
9.若 A、B 是锐角△ABC 的两个内角,则 P(cosB-sinA,sinB-cosA)在( )
A.第一象限
任意角
1.D 2.C 3.A 4.D
三角函数
1.B 2.A 3. C 4.D 5. A 6. C 7.B
11.A
12.±4
4 ±
5
13. [ π , 3π ] 14. 0 22
15.二
16.[0, π ]∪( π , π ]∪( 3π ,2π) 17.( π , 3π
4
24
2
44
8.D
9. D
10. D
③终边不相同,它们的同名三角函数值一定不相同;
④不相等的角,同名三角函数值也不相同.
其中正确的个数是( )
A.0
B.1
C.2
D.3
2.若角 α、β 的终边关于 y 轴对称,则下列等式成立的是( )
高中数学三角函数知识点归纳及常考题型分析
高中数学三角函数知识点归纳及常考题型分析三角函数知识点归纳及常考题型分析角的概念及表示角是指由两条射线(或直线段)共同围成的图形,其中一个射线为始边,另一个射线为终边。
正角、负角和零角是角的三种分类。
终边相同的角可以表示为{β|β=k·360+α,k∈Z}。
象限角是指顶点在原点,始边与x轴非负半轴重合的角,其终边落在第几象限就称这个角是第几象限的角。
轴线角是指顶点在原点,始边与x轴非负半轴重合,终边落在坐标轴上的角。
区间角是指角的量数在某个确定的区间内,由若干个区间构成的集合称为区间角的集合。
角度制与弧度制角度制和弧度制是两种常见的角度量方式。
它们之间的互换关系是1rad=180°≈57.30°=57°18ˊ,1°≈0.(rad)。
弧长公式与扇形面积公式弧长公式是指l=|α|·r,其中α是角的量数,r是半径。
扇形面积公式是指s扇形=lr=|α|·r^2/2.三角函数的定义与符号设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y)。
P与原点的距离为r,则sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y。
在各象限中,正弦函数和正切函数在第一象限和第二象限中为正,余弦函数在第一象限和第四象限中为正。
三角函数的图像及基本关系式正弦线是MP,余弦线是OM,正切线是AT。
同角三角函数的基本关系式是sin^2θ+cos^2θ=1,tanθ=sinθ/cosθ。
正弦、余弦的诱导公式正弦、余弦的诱导公式是奇变偶不变,符号看象限。
其中sin(±α)和cos(±α)的值与sinα和cosα的值有关,而sin(α+π)=-sinα,cos(α+π)=-cosα。
和角与差角公式和角与差角公式是sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ∓sinαsinβ,tan(α±β)=(tanα±tanβ)/(1∓tanαtanβ),sin(α+β)sin(α-β)=sin^2α-sin^2β,cos(α+β)cos(α-β)=cos^2α-sin^2β,asinα+bcosα=a^2+b^2sin(α+φ),其中辅助角φ所在象限由点(a,b)的象限决定,tanφ=b/a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数常考知识点及练习题1. 任意角的三角函数:(1) 弧长公式:R a l = R 为圆弧的半径,a 为圆心角弧度数,l 为弧长。
(2) 扇形的面积公式:lR S 21=R 为圆弧的半径,l 为弧长。
(3) 三角函数(6个)表示:a 为任意角,角a 的终边上任意点P 的坐标为),(y x ,它与原点的距离为r (r >0)那么角a 的正弦、余弦、正切、余切、正割、余割分别是:r y a =sin ,r x a =cos ,x y a =tan ,y x a =cot ,xra =sec ,y r a =csc .(4) 同角三角函数关系式:①倒数关系: 1cot tan =a a ②商数关系:a a a cos sin tan =, aaa sin cos cot = ③平方关系:1cos sin 22=+a a(5) 诱导公式:(奇变偶不变,符号看象限)k ·π/2+a 所谓奇偶指的是整数k 的奇偶性2.(1)两角和与差公式:βββαsin sin cos cos )cos(a a =± βββsin cos cos sin )sin(a a a ±=± βββtan tan 1tan tan )(tan a a a a ±=± 注:公式的逆用或者变形......... (2)二倍角公式:a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a aaaa 2tan 1tan 22tan -=从二倍角的余弦公式里面可得出降幂公式:22cos 1cos 2a a += , 22cos 1sin 2a a -=(3)半角公式(可由降幂公式推导出):2cos 12sinaa -±=,2cos 12cos a a +±= ,aa a a a a a sin cos 1cos 1sin cos 1cos 12tan -=+=+-±=3.4.函数)sin(ϕω+=x A y 的图像与性质:(本节知识考察一般能化成形如)sin(ϕω+=x A y 图像及性质) (1) 函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是ωπ2=T(2) 函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是ωπ=T (3) 五点法作)sin(ϕω+=x A y 的简图,设ϕω+=x t ,取0、2π、π、23π、π2来求相应x的值以及对应的y 值再描点作图。
(4) 关于平移伸缩变换可具体参考函数平移伸缩变换,提倡先平移后伸缩。
切记每一个变换总是对字母x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。
(附上函数平移伸缩变换):函数的平移变换:①)0)(()(>±=→=a a x f y x f y 将)(x f y =图像沿x 轴向左(右)平移a 个单位 (左加右减)②)0()()(>±=→=b b x f y x f y 将)(x f y =图像沿y 轴向上(下)平移b 个单位 (上加下减)函数的伸缩变换:①)0)(()(>=→=w wx f y x f y 将)(x f y =图像纵坐标不变,横坐标缩到原来的w1倍(1>w 缩短, 10<<w 伸长) ②)0)(()(>=→=A x Af y x f y 将)(x f y =图像横坐标不变,纵坐标伸长到原来的A 倍(1>A 伸长,10<<A 缩短) 函数的对称变换:① )()(x f y x f y -=→=) 将)(x f y =图像绕y 轴翻折180°(整体翻折) (对三角函数来说:图像关于x 轴对称)② )()(x f y x f y -=→=将)(x f y =图像绕x 轴翻折180°(整体翻折) (对三角函数来说:图像关于y 轴对称)③)()(x f y x f y =→= 将)(x f y =图像在y 轴右侧保留,并把右侧图像绕y 轴翻折到左侧(偶函数局部翻折)④)()(x f y x f y =→=保留)(x f y =在x 轴上方图像,x 轴下方图像绕x 轴翻折上去(局部翻动) 5.三角变换:三角变换是运算化简过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算、化简的方法技能。
(1) 角的变换:角之间的和差、倍半、互补、互余等关系对角变换,还可作添加、删除角的恒等变形(2) 函数名称变换:三角变形中常常需要变函数名称为同名函数。
采用公式:)sin(cos sin 22ϕθθθ++=+b a b a 其中2222sin ,cos ba b ba a +=+=ϕϕ(3) 常数代换:在三角函数运算、求值、证明中有时候需将常数转化为三角函数,特别是常数“1”。
(4) 幂的变换:对次数较高的三角函数式一般采用降幂处理,有时需要升幂例如:a cos 1+常用升幂化为有理式。
(5) 公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用、逆用及变形。
(6) 结构变化:在三角变换中常常对条件、结论的结构进行调整,或重新分组,或移项,或变乘为除,或求差等等。
在形式上有时需要和差与积的互化、分解因式、配方等。
(7) 消元法:如果所要证明的式子中不含已知条件中的某些变量,可用此法(8) 思路变换:如果一种思路无法再走下去,试着改变自己的思路,通过分析比较去选择更合适、简捷的方法去解题目。
(9) 利用方程思想解三角函数。
如对于以下三个式子:a a cos sin + ,a a cos sin a a cos sin -,已知其中一个式子的值,其余二式均可求出,且必要时可以换元。
6.函数的最值(几种常见的函数及其最值的求法):①b x a y +=sin (或)cos b x a +型:利用三角函数的值域,须注意对字母的讨论 ②x b x a y cos sin +=型:引进辅助角化成)sin(22ϕ++=x b a y 再利用有界性③c x b x a y ++=sin sin 2型:配方后求二次函数的最值,应注意1sin ≤x 的约束 ④dx c bx a y ++=sin sin 型:反解出x sin ,化归为1sin ≤x 解决⑥c x x b x x a y +⋅++=cos sin )cos (sin 型:常用到换元法:x x t cos sin +=,但须注意t 的取值范围:2≤t 。
(3)三角形中常用的关系:)sin(sin C B A +=, )cos(cos C B A +-=, 2cos2sin CB A +=, )(2sin 2sinC B A +-=, )(2cos 2cos C B A +=练习题:1.(08全国一6)2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数2.(08全国一9)为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( )A .向左平移π6个长度单位 B .向右平移π6个长度单位C .向左平移5π6个长度单位 D .向右平移5π6个长度单位 3.(08全国二1)若sin 0α<且tan 0α>是,则α是( ) A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.(08全国二10).函数x x x f cos sin )(-=的最大值为( )A .1 B . 2 C .3 D .25.(08安徽卷8)函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为( )A.-sin x B.sin x C.-cos x D.cos x 7.(08广东卷5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32 D. -2,32 9.(08湖北卷7)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是( ) A.512π B.512π- C.1112π D.1112π-10.(08江西卷6)函数sin ()sin 2sin2xf x xx =+是( )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数11.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1BCD .212.(08山东卷10)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A .235-B .235C .45-D .4513.(08陕西卷1)sin330︒等于( )A .32-B .12-C .12D .32 14.(08四川卷4)()2tan cot cos x x x +=( )A.tan x B.sin x C.cos x D.cot x 15.(08天津卷6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 16.(08天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<17.(08浙江卷2)函数2(sin cos )1y x x =++的最小正周期是( )A.2πB .π C.32π D.2π18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是( )A.0 B.1 C.2 D.419.(08北京卷9)若角α的终边经过点(12)P -,,则tan 2α的值为 . 20.(08江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 21.(08辽宁卷16)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .22.(08浙江卷12)若3sin()25πθ+=,则cos 2θ=_________。