(完整版)勾股定理知识点总结、经典例题
完整版勾股定理知识点及典型例题
(2)在直角三角形中,如果一个锐角等于 30° ,那么它所对的直角边等于斜边的一半。
(3 )在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角 等于30°。
5.勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3) 用于证明线段平方关系的问题。
(4) 利用勾股定理,作出长为j n 的线段6、2、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法八下第18章《勾股定理》勾股定理知识点导航一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a 2+ b 2= C 2.即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+ b 2= c 2,那么这个三角形是直角三角形。
2.勾股数:满足 a 2+ b 2= C 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么 ka ,kb ,kc 同样也是勾股数组。
)* 附:常见勾股数:3,4,5 ; 6,8,10 ; 9,12,15 ; 5,12,13 如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为 C ); (2)若c 2= 3 +孑,则^ ABC 是以/ C 为直角的三角形;若a 2+ b 2< C 2,则此三角形为钝角三角形(其中若a 2+ b 2> C 2,则此三角形为锐角三角形(其中4. 注意:(1)直角三角形斜边上的中线等于斜边的一半a ,b ,斜边长为C ,那么3.判断直角三角形: 其他方法:(1) 有一个角为90°的三角形是直角三角形。
(完整版)勾股定理笔记要点
勾股定理基础知识汇总一、 已经学过的有关直角三角形中的边角关系BA1.两锐角之间的关系:90oA B ∠+∠=2.边与高的关系: ab ch =3.边与角之间的特殊关系:在直角三角形中30°角所对的直角边等于斜边的一半;4.直角三角形斜边上的中线等于斜边的一半。
二、 勾股定理在直角三角形中,两条直角边的平方和等于斜边的平方。
即222a b c +=三、 勾股定理逆定理如果一个三角形的两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
四、 勾股数组1.如果三个正整数,,a b c 满足关系222a b c +=,那么,,a b c 叫做勾股数。
2.勾股数的性质如果,,a b c 是勾股数,k 为正整数,那么,,ka kb kc 也是勾股数思考:勾股数的定义中有何限制?3.常用勾股数:3,4,5;5, 12,13;7,24,25;8,15,17;4.勾股数的几种表达方式22(1).21,22,221n n n n n ++++(毕达哥拉斯)22(2)1,2,1n n n -+(柏拉图) 2222(3),2,m n mn m n -+(丢番图)请探究上述三个表达式,思考下列问题 (1) 你能从勾股数3,4,5;5, 12,13;7,24,25;归纳出毕达哥拉斯给出的表达式吗?这组勾股数有何特征?(2) 柏拉图公式与丢番图公式之间有何联系?与你已经学过的哪些公式有关联?五、勾股定理应用(1) 学习过勾股定理之后三角形的特殊关系①如果30oA ∠=,那么::2a b c =②如果45o A ∠=,那么::a b c = ③如果,,a b c 是直角三角形的三条直角边,那么以a+ b ,c + h ,h 的长为边的三条线段能组成直角三角形④如果,,a b c 是直角三角形的三条直角边,那么以a 1,b 1,1h的长为边的三条线段能组成直角三角形(2) 藤绕树问题的解法我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处.则问题中葛藤的最短长度是 尺.(3) 长方体盒子对角线的长度公式H G F EDCBA(4) 蚂蚁最短路径问题公式AD EFGHab cADEFGHbcABCDEFG Hab cc baH GF E DC B A六、 典型例题例1:我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)),图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3= .【答案】122.如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a b ,,斜边长为c 和一个边长为c 的正方形,请你将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图. (2)证明勾股定理.3.(1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt Rt ABC CDE △≌△,90B D ∠=∠=,且B C D ,,三点共线.试证明90ACE ∠=;(3)伽菲尔德(Garfield ,1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.4.「问题情境」勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行了证明.著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言. 「定理表述」请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述):(3分)「尝试证明」以图1中的直角三角形为基础,可以构造出以a b 、为底,以a b +为高的直角梯形(如图2).请你利用图2,验证勾股定理;(4分) 「知识拓展」利用图2中的直角梯形,我们可以证明2a bc+< BC a b =+,AD = .又在直角梯形ABCD 中有BC AD(填大小关系),即 .2a bc+∴<.(3分)(图1) (图2)A BC Dcb aa ab b ccE a b b a 图1 abc c A E D C B b a图25.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.6.在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为______c2;当△ABC三边长分别为6,8,11时,△ABC 为___________三角形.(4分)(2)猜想:当a2+b2______c2时,△ABC为锐角三角形;当a2+b2______c2时,△ABC为钝角三角形.(4分) (3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.(4分) 7.阅读材料:例:()22134x x+-+并求它的最小值.解:()()()222 222 1340132x x x x+-+=-+-+,如图,建立平面直角坐标系,点()0P x,是x轴上一点,()2201x-+P与点()01A,的距离,()2232x-+可以看成点P与点()32B,的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA PB+的最小值.设点A关于x轴的对称点为A′,则PA PA=′,因此,求PA PB+的最小值,只需求PA PB+′的最小值,而点A′、B间的直线段距离最短,所以PA PB+′的最小值为线段A B′的长度.为此,构造直角三角形A CB′,因为=3=3A C CB',,所以32A B=′,即原式的最小值为32根据以上阅读材料,解答下列问题:(1)代数式()()221129x x-+-+的值可以看成平面直角坐标系中点()0P x,与点()11A,、点B___________的距离之和.(填写点B的坐标)(2)代数式22491237x x x+-+的最小值为_____________.。
(完整版)勾股定理典型例题详解及练习(附答案)
典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是()A.CD、EF、GHC. AB、CD GHB.AB、EF、GHD. AB、CD EF愿路分乐屮1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠2)解題思器;可利用勾脸定理直接求出各边长,再试行判断•』解答过整屮在取DEAF中,Af=l, AE=2,根据勾股定理,得昇EF = Q抡於十£尸° = Q +F二艮同理HE = 2百* QH. = 1 CD = 2^5计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. *縮題后KJ思专:*1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形・因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口*2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜迫而“固执”地运用公式川二/十就其实,同样是S6"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过程.a4•在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初例玉如圏,有一块直角三角形®椀屈U,两直角迫4CM5沁丸m・现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、*C/) "禎B. 3cm G-Icnin題童分析,本题着查勾股定理的应用刎:)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ・进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸九4解龜后的思琴尸勾股定理说到底是一个等式,而含有未知数的等式就是方程。
(完整版)勾股定理基础题
勾股定理基础题考点一:勾股定理1) 对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c,那么一定有222c b a =+勾股定理:直角三角形两直角边的平方和等于斜边的平方。
题型一:直接考查勾股定理 例1. 在ABC ∆中,90C ∠=︒. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例题2 如图(8),水池中离岸边D 点1。
5米的C 处,直立长着一根芦苇,出水部分BC 的长是0。
5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.题型三:利用勾股定理求线段长度——例题:如图4,已知长方形ABCD 中AB=8cm,BC=10cm ,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.题型四:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
(1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c mB 、36 2c mC 、482c mD 、602c m考点二:勾股定理的逆定理题型一:勾股数的应用(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A. 4,5,6 B 。
2,3,4 C 。
11,12,13 D 。
8,15,17(2)若线段a,b ,c 组成直角三角形,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶7题型二:利用勾股定理逆定理判断三角形的形状 (1)下面的三角形中:①△ABC 中,∠C=∠A -∠B ;②△ABC 中,∠A:∠B:∠C=1:2:3; ③△ABC 中,a :b :c=3:4:5;④△ABC 中,三边长分别为8,15,17. 其中是直角三角形的个数有( ).A .1个B .2个C .3个D .4个(2)将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A . 钝角三角形B 。
(完整版)八年级勾股定理题型总结
《勾股定理》典型例题解析一、知识重点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:假如直角三角形的两直角边为 a、 b,斜边为 c ,那么 a 2 + b 2= c 2。
公式的变形: a2 = c 2- b 2, b 2= c 2-a 2。
2、勾股定理的逆定理假如三角形 ABC的三边长分别是a, b, c,且知足 a2 + b2= c2,那么三角形 ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意办理好以下几个重点:①已知的条件:某三角形的三条边的长度.②知足的条件:最大边的平方=最小边的平方 +中间边的平方 .③获得的结论:这个三角形是直角三角形,而且最大边的对角是直角.④假如不知足条件,就说明这个三角形不是直角三角形。
3、勾股数知足 a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数一定是正整数,不可以是分数或小数。
②一组勾股数扩大同样的正整数倍后,还是勾股数。
常有勾股数有:(3,4,5 ) (5 ,12, 13 ) ( 6, 8, 10 )( 7,24, 25 ) ( 8,15, 17 )(9 , 12,15 )4、最短距离问题:主要运用的依照是两点之间线段最短。
二、考点解析考点一:利用勾股定理求面积1、求暗影部分面积:(1)暗影部分是正方形;( 2)暗影部分是长方形;( 3)暗影部分是半圆.2.如图,以 Rt△ABC的三边为直径分别向外作三个半圆,尝试究三个半圆的面积之间的关系.3、以下图,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、 S3,则它们之间的关系是()A. S1- S2= S3B. S1+ S2= S3C. S2+S3< S1D. S2- S3=S1S 3S 1S 24、四边形 ABCD中,∠ B=90°, AB=3,BC=4,CD=12, AD=13,求四边形 ABCD的面积。
勾股定理知识总结及练习
勾股定理知识总结一、知识要点回顾1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。
公式的变形: a 2 = c 2- b 2, b 2= c 2-a 2。
2、勾股定理的逆定理如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2 + b 2= c 2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①、已知的条件:某三角形的三条边的长度.②、满足的条件:最大边的平方=最小边的平方+中间边的平方. ③、得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④、如果不满足条件(2),就说明这个三角形不是直角三角形。
3、勾股定理的应用利用勾股定理已知两边求第三边利用勾股定理的逆定理判断三角形是否为直角三角形 利用勾股定理列方程求线段长构造直角三角形利用勾股定理解决问题1、利用勾股定理已知两边求第三边(1)在△ABC 中,∠C=90°若7a ,c=4,则b= ;(2)在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。
(3) 在Rt △ABC ,∠C=90°,c=25,a :b=3:4,则a= ,b= 。
(4) 在△ABC 中,若∠A=30°,BC=2,则AB= ,AC= 。
(5)直角三角形直角三角形两直角边长分别为3和4,则它斜边上的高为__________ 2、利用勾股逆定理判断一个三角形是否为直角三角形(1)下列各组数中,以它们为边的三角形不是直角三角形的是( )A .1.5,2,3 B. 8,15,17 C .6,8,10 D. 3,4,5 (2).若△ABC 的三边满足2()()0b c b c a +--=则下列结论正确的是( ) A.△ABC 是直角三角形,且∠C 为直角 B. △ABC 是直角三角形,且∠A 为直角 C. △ABC 是直角三角形,且∠B 为直角 D. △ABC 不是直角三角形. (3)如图,AD ⊥BC ,垂足为D ,如果CD=1,AD=2,BD=4,试判断ΔABC 的形状,并说明理由。
小学奥数 勾股定理 知识点+例题+练习 (分类全面)
勾股定理:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2o勾膻定理勾股数★满足关系a2+b2=c2的3个正整数a,b,c称为勾股数。
★常见的勾股数有:①3,4,5;②6,8,10;③8,15,17:④7,24,25;⑤5,12,13;⑥9,12,15…注意:①3,4,5既是勾股数,又是三个连续整数,它们非常特殊,不要认为三个连续整数都是勾股数;②每组勾股数的相同倍数也是勾股数;(如:3,4,5;6,8,10;9,12,15)③勾股数必须都是正整数,(如:0.3,0.4,0.5都是小数,因而不是勾股数)3米例2、一棵大树在离地面3米处折断,树的顶端落在离树的底部4米处,那么这棵树折断之前的高度是多少米?巩固、如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米?巩固、飞机在空中水平飞行,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000m 处,过了20秒,飞机距离这个女孩头顶5000m,则飞机速度是多少?例3、暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的路线探宝.他们登陆后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅走1km就找到了宝藏,则登陆点到埋宝藏点的直线距离为km.丄埋宝藏点632登陆点8巩固、轮船从海中岛A出发,先向北航行9km,又往西航行9km,由于遇到冰山,只好又向南航行4km,再向西航行6km,再折向北航行2km,最后又向西航行9km,到达目的地B,求AB 两地间的距离.例4、一个圆桶,底面直径为24cm,高32cm,则桶内所能容下的最长木棒为多少厘米?如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是分米?B例5、下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是?巩固、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积的和是cm2.巩固、如图所示,阴影部分是一个正方形,则此正方形的面积为?例6、如图,已知直角三角形两直角边BC,AC的长分别为3cm和4cm,那么CD有多长?巩固、三角形的三边长分别为6,&10,它的最短边上的高为,最长边上的高为巩固、若直角三角形的三边长分别为X,6,8,则X2=例7、等腰三角形ABC的腰长为10,底边上的高为6,则底边的长为多少?巩固、如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。
勾股定理知识点总结
练习:
1.若正整数a,b,c是一组勾股数,则下列各组数中,一 定是勾股数的是( C )
A.a+1,b+1,c+1
B.a2,b2,c2
C.2a,2b,2c
D.a-1,b-1,c-1
2.下列几组数:①1,2,3;②30,40,50;③ 3,4,1. 55
其中是勾股数的有_____②____(只填序号)
三角形是___直__角____三角形(按角分类填写)
3. 原命题与逆命题
互逆命题: 两个命题中, 如果第一个命题的题设是第二个
命题的结论, 而第一个命题的结论又是第二个命题 的题设,那么这两个命题叫做互逆命题.
如果把其中一个叫做原命题, 那么另一个叫做 它的逆命题.
互逆定理: 如果一个定理的逆命题经过证明是真命题, 那
勾股定理的逆定理是判定一个三角形是否是直角 三角形的一种重要方法,它通过“数转化为形”来确 定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最长边,不妨设最长边长为c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2, 则△ABC是以∠C为直角的直角三角形
练习:
1.已知△ABC的三边长a,b,c满足:(a+c)(a-c)=b2, 则( A ) A.a边所对的角是直角 B.b边所对的角是直角 C.c边所对的角是直角 D.△ABC不是直角三角形
1.直角三角形中,已知两条边,不知道是直角边还是斜 边时,应分类讨论。 2.当已知条件中没有给出图形时,应认真读句、画图, 避免遗漏另一种情况。
6.方程思想
例1.小强想知道学校旗杆的高,他发现旗杆顶端的绳 子垂到地面还多1米,当他把绳子的下端拉开5米后, 发现下端刚好接触地面,你能帮他算出来吗?
(完整版)勾股定理经典题目及答案
勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
②如果k 是大于1的奇数,那么k, ,是一组勾股数。
212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。
122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。
典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。
勾股定理知识点、经典例题
勾股定理知识点及例题一、基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab(4)已知直角三角形的两边求第三边(在ABC∆中,90∠=︒,则c,b,a)C2:勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
3:勾股数(1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数(又称为商高数或毕达哥拉斯数)(2)记住常见的勾股数可以提高解题速度,①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.等(3)用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)如果(a,b,c)是勾股数,当m> 0时,以am, bm, cm 为三角形的三边长,此三角形必为直角三角形 规律方法指导 (1).勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
勾股定理专题(附问题详解,全面、精选)
勾股定理一、探索勾股定理【知识点1】勾股定理定理内容:在RT△中,勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型1、对勾股定理的理解〔1〕直角三角形的两条直角边长分别为a, b,斜边长c,如此如下关于a,b,c的关系不成立的是〔〕A、c²- a²=b²B、c²- b²=a²C、a²- c²=b²D、 a²+b²= c²〔2〕在直角三角形中,∠A=90°,如此如下各式中不成立的是〔〕A、BC²- AB²=AC²B、BC²- AC²=AB ²C、AB²+AC²= BC²D、AC²+BC²= AB ²2、应用勾股定理求边长〔3〕在直角三角形ABC中,AB=10 cm, BC=8 cm, 求AC的长.〔4〕在直角△中,假如两直角边长为a、b,且满足,如此该直角三角形的斜边长为.3、利用勾股定理求面积〔5〕以直角△的三边为直径作半圆,其中两个半圆的面积为25π,16π,求另一个半圆的面积。
〔6〕如图〔1〕,图中的数字代表正方形的面积,如此正方形A的面积为。
〔7〕如图〔2〕,三角形中未知边x与y的长度分别是x= ,y=。
〔8〕在Rt△ABC中,∠C=90°,假如AC=6,BC=8,如此AB的长为〔〕A、6B、8C、10D、12〔9〕在直线l上依次摆放着七个正方形〔如图4所示〕。
斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S12、、S S S S S S341234、,则+++=_____________。
【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进展推导。
勾股定理中考章节复习知识点+经典题型分析总结)
AB Ca b c弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。
2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
⑵ 命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
⑷ 定理:用推理的方法判断为正确的命题叫做定理。
⑸ 证明:判断一个命题的正确性的推理过程叫做证明。
⑹ 证明的一般步骤 ① 根据题意,画出图形。
② 根据题设、结论、结合图形,写出已知、求证。
③ 经过分析,找出由已知推出求证的途径,写出证明过程。
5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
勾股定理知识点及例题讲解
第九讲勾股定理知识概要1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么222a b c+=.(注:应用勾股定理的关键在于构造直角三角形)2、勾股定理逆定理:如果三角形的三边长a,b,c满足222+=,那么这个三角形是直角三角形,其a b c中c为斜边。
3、勾股定理的作用|(1)已知直角三角形的两边求第三边.(2)已知在特殊直角三角形中,直角三角形的一边,求另两边的关系.(3)用于证明平方关系的问题.4、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如c).(2)验证2c与2a+2b是否具有相等关系.若2c=2a+2b,则△ABC是以∠C=90°的直角三角形;:若2c≠2a+2b,则△ABC不是直角三角形.【注意】当2c≠2a+2b时有两种情况.(1)当2a+2b<2c时,此三角形为钝角三角形;(2)当2a+2b>2c时,此三角形为锐角三角形,其中c为三角形的最大边.5、常用勾股数组:(3, 4 ,5); (5, 12 ,13); (6, 8, 10); (7, 24, 25); (8, 15, 17) ; (9, 40 ,41);(20,21,29)……6、一组勾股数中各数的相同的正整数倍得到的一组新数还是勾股数。
7、一组勾股数中各数的相同的正数倍得到的一组新数为边,仍构成直角三角形。
8、(9、直角三角形的性质:(1)直角三角形中斜边最大;(2)直角三角形中有勾股定理;(3)直角三角形中,30度角所对应直角边等于斜边的一半;(4)直角三角形中,斜边上的中线等于斜边的一半;(5)等积原理(ab=ch )10、双垂图中的射影定理例题精讲~【例1】如图,证明勾股定理.【例2】填空题:》在△ABC 中,∠C 为直角.(1)若BC =2, AC=3则AB = ; 若BC =5, AB=13.则AC = ;若AB=61, AC=11.则BC = .(2)若BC ∶AB =3∶5且AB =20则AC= .(3)若∠A=60°且AC=2cm 则AB= cm ,BC= cm.【巩固练习】1、2、Rt △ABC 中,C ∠是直角,3、(1)已知6BC =,8AC =,求AB 之长;4、(2)已知25AB =,14BC =,求AC 之长;(3)板块一 勾股定理aaa ab b] b@(3)已知13AC =,19AB =,求BC 之长.2、已知等边三角形的边长为a ,求等边三角形一边上的高和这等边三角形的面积.¥【例 3】已知60A ∠=︒,90B D ∠=∠=︒,2AB =,1CD =,求BC 和AD 的长.>【巩固练习】已知:如图所示,在四边形ABCD 中,AB=AD=8,∠A=60°,∠D=150°,四边形ABCD 的周长为32,求BC 和CD 的长.《【例 4】如图,已知AB =13,BC =14,AC =15,BC AD ⊥于D ,求AD 的长.'ABCD【 BA DCB AD【例 5】如图,已知:︒=∠90C ,CM AM =,AB MP ⊥于P .求证:222BC AP BP += ."【例 6】如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .$【巩固练习】 1、如图,已知:在ABC ∆中,︒=∠90ACB ,分别以此直角三角形的三边为直径画半圆,试说明图中阴影部分的面积与直角三角形的面积相等.`P M B C A ; A B S 12、图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是A.13 B.26 C.47 D.94^3、在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则1S+2S+3S+4S=____$"1S2S3S4231【例7】在△ABC 中,如果a ∶b ∶c =1∶3∶2, 那么∠A= °,∠B= °∠C= °如果a ∶b ∶c =1∶1∶2, 那么∠A= °,∠B= °∠C= °`【例 8】判断由线段a ,b ,c 组成的三角形是不是直角三角形:(1)15a =,8b =,17c =;(2)13a =,14b =,15c =;(3)7a =,24b =,25c =.【例 9】已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c , 《试判断△ABC 的形状《【例 10】如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .,板块二 勾股定理逆定理A【例 11】已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点即3CE =EB求证:AF ⊥FE .(》【例 12】如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.|【巩固练习】1.若一个三角形的周长为123cm,一边长为33cm,其他两边之差为3cm,则这个三角形是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形2.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°>3.有一块土地形状如图所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.~ 4.如图,在四边形ABCD 中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A 的度数。
勾股定理知识点及复习题
四个直角三角形的面积与小正方形面积的和为 S = 4 - ab c^ 2ab c 22大正方形面积为 S =(a - b)2=a 22ab - b 2化简可证方法三:S 弟形=-(a b) (a b)2S 弟形1 1=2S ADE • S ABE =2 — ab — C 2,化简得证3 .勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所适用于直角三角形,对于锐角三角形和钝角 这一特征,因而在应用勾股定理时,必须明存在的数量关系,它只 三角形的三边就不具有 了所考察的对象是直角勾股定理的复习—、勾股定理的内容1、 内容:直角三角形两直角边的平方和等于斜边的平方;2、 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么a 2亠b 2 =c 23、 证明:勾股定理的证明方法很多,常见的是用拼图的方法验证勾股定理思路:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式推导出勾股定理4 1 ab (b -a)2=c 2,化简可证: a? - b =c 22方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.三角形4 .勾股定理的应用 ①已知直角三角形的任意两边长,求第三边。
在AABC 中, /C=90,贝V c = . a 2■ b 2, b = ,c 2—a 2, a = .c 2-b 2②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题(注:在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜 边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线), 构造直角三角形,以便正确使用勾股定理进行求解.)5、在数轴上作出表示、n (n 为正整数)的点.ab易错点:(1)已知直角三角形中两边长,求第三边长,要弄清哪条边是斜边,哪条边是直角边,不能确定时,要分类讨论.(2)另外不论是否是直角三角形就用勾股定理;使用勾股定理的前提是直角三角形;(2)在求解问题的过程中,常列方程或方程组来求解;例3.若(二)、例题解析 考点一:已知两边求第三边 例1 .在 ABC 中,.C =90 . ⑴已知 AC =6, BC =8 .求AB 的长 ⑵已知AB =17, AC =15,求BC 的长例4:在Rt △ ABC 中, a , b , c 分别是三条边, 求边长c . 剖析:由于审题不仔细,容易忽视了/B=90°错把c 当成了斜边.温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用 c2=a2+b2例2.如图,由Rt △ ABQ 的三边向外作正方形,若最大正方形的边长为8cm,则正方形M 与正方形N 的面积之和为 ______________ cm 2a 、b 、c, a 2 =144,b 2 =25,则c 2 二 ______________例5:已知一个Rt △ ABC 的两边长分别为3和4,则第三边长的平方是 剖析:此题并没有告诉我们已知的边长 4一定是直角边,而4有可能是斜边,因此要分类讨论.温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.例6:已知a,b,c 为/ ABC 三边,a=6, b=8, b<c ,且c 为整数,则c= 剖析:此题并没有告诉你/ ABC 为直角三角形,因此不能乱用勾股定理.正解:由b<c ,结合三角形三边关系得 8vcv6+8,即8vcv14,又因c 为整数,故c 边 长为 9、10、11、12、13.温馨提示:只有在直角三角形中,才能用勾股定理,因此解题时一定注意已知条件中 是否为直角三角形.例2.已知两线段的长为6cm 和8cm 当第三条线段取 ___________________ 时,这三条线段能组 成一个直角三角形。
勾股定理及经典例题
一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。
满足222a b c +=的三个正整数称为勾股数。
练习题:1. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm (B )8 cm (C )10 cm (D )12 cm2. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )643.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )13几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明) 1.三角形的角平分线定义: 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) A B CD 几何表达式举例: (1) ∵AD 平分∠BAC ∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD 是角平分线2.三角形的中线定义: 在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)A BC D 几何表达式举例: (1) ∵AD 是三角形的中线 ∴ BD = CD (2) ∵ BD = CD ∴AD 是三角形的中线E A B C D从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线. (如图)ABC D(1) ∵AD 是ΔABC 的高 ∴∠ADB=90° (2) ∵∠ADB=90° ∴AD 是ΔABC 的高※4.三角形的三边关系定理: 三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)AB C几何表达式举例: (1) ∵AB+BC >AC ∴……………(2) ∵ AB-BC <AC ∴……………5.等腰三角形的定义: 有两条边相等的三角形叫做等腰三角形. (如图) A B C几何表达式举例: (1) ∵ΔABC 是等腰三角形 ∴ AB = AC (2) ∵AB = AC∴ΔABC 是等腰三角形6.等边三角形的定义: 有三条边相等的三角形叫做等边三角形. (如图) A BC几何表达式举例:(1)∵ΔABC 是等边三角形∴AB=BC=AC (2) ∵AB=BC=AC∴ΔABC 是等边三角形 7.三角形的内角和定理及推论: (1)三角形的内角和180°;(如图) (2)直角三角形的两个锐角互余;(如图) (3)三角形的一个外角等于和它不相邻的两个内角的和;(如图) ※(4)三角形的一个外角大于任何一个和它不相邻的内角.(1) (2) (3)(4)几何表达式举例: (1) ∵∠A+∠B+∠C=180° ∴………………… (2) ∵∠C=90° ∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B ∴………………… (4) ∵∠ACD >∠A ∴………………… 8.直角三角形的定义: 有一个角是直角的三角形叫直角三角形.(如图)A B C几何表达式举例: (1) ∵∠C=90° ∴ΔABC 是直角三角形 (2) ∵ΔABC 是直角三角形∴∠C=90° D AB C A B C AB C两条直角边相等的直角三角形叫等腰直角三角形.(如图) AB C(1) ∵∠C=90° CA=CB ∴ΔABC 是等腰直角三角形 (2) ∵ΔABC 是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质: (1)全等三角形的对应边相等;(如图) (2)全等三角形的对应角相等.(如图) 几何表达式举例: (1) ∵ΔABC ≌ΔEFG ∴ AB = EF ……… (2) ∵ΔABC ≌ΔEFG∴∠A=∠E ……… 11.全等三角形的判定: “SAS ”“ASA ”“AAS ”“SSS ”“HL ”. (如图) (1)(2) (3) 几何表达式举例: (1) ∵ AB = EF ∵ ∠B=∠F 又∵ BC = FG ∴ΔABC ≌ΔEFG(2) ………………(3)在Rt ΔABC 和Rt ΔEFG中 ∵ AB=EF又∵ AC = EG ∴Rt ΔABC ≌Rt ΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相等;(如图) (2)到角的两边距离相等的点在角平分线上.(如图)A O BC DE 几何表达式举例: (1)∵OC 平分∠AOB 又∵CD ⊥OA CE ⊥OB ∴ CD = CE (2) ∵CD ⊥OA CE ⊥OB又∵CD = CE∴OC 是角平分线 13.线段垂直平分线的定义: 垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图) A B E FO 几何表达式举例: (1) ∵EF 垂直平分AB ∴EF ⊥AB OA=OB (2) ∵EF ⊥AB OA=OB ∴EF 是AB 的垂直平分线A B C G EFA B C G E FA B C E F G14.线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)A BCMNP几何表达式举例:(1) ∵MN是线段AB的垂直平分线∴PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都是60°.(如图)AB C(1)AB CD(2)AB C(3)几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)(3)有一个角等于60°的等腰三角形是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)AB C(1)AB C(2)(3)ABC(4)几何表达式举例:(1) ∵∠B=∠C∴AB = AC(2) ∵∠A=∠B=∠C∴ΔABC是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC是等边三角形(4) ∵∠C=90°∠B=30°∴AC =21AB17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AEEFMOABCNG18.勾股定理及逆定理:(1)直角三角形的两直角边a 、b 的平方和等于斜边c 的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)ABC几何表达式举例:(1) ∵ΔABC 是直角三角形∴a2+b2=c2 (2) ∵a2+b2=c2∴ΔABC 是直角三角形19.Rt Δ斜边中线定理及逆定理: (1)直角三角形中,斜边上的中线是斜边的一半;(如图) (2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)DA BC几何表达式举例:∵ΔABC 是直角三角形 ∵D 是AB 的中点∴CD = 21AB(2) ∵CD=AD=BD∴ΔABC 是直角三角形练习题:一、选择题1.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
勾股定理典型例题详解及练习(附答案)
典范【2 】例题常识点一.直策应用勾股定理或勾股定理逆定理例1:如图,在单位正方形构成的网格图中标有AB.CD.EF.GH四条线段,个中能构成一个直角三角形三边的线段是()A. CD.EF.GHB. AB.EF.GHC. AB.CD.GH D. AB.CD.EF勾股定理说到底是一个等式,而含有未知数的等式就是方程.所以,在应用勾股定理求线段的长时常经由过程解方程来解决.勾股定理表达式中有三个量,假如前提中只有一个已知量,必须设法求出另一个量或求出别的两个量之间的关系,这一点是应用勾股定理求线段长时须要明白的思绪.方程的思惟:经由过程列方程(组)解决问题,如:应用勾股定理及其逆定理求线段的长度或解决现实问题时,经常应用勾股定理中的等量关系列出方程来解决问题等.例3:一场罕有的大风事后,黉舍那棵老杨树折断在地,此刻,张先生正和占明.清华.绣亚.冠华在楼上凭栏远眺.清华启齿说道:“先生,那棵树看起来挺高的.”“是啊,有10米高呢,如今被风拦腰刮断,惋惜呀!”“但站立的一段似乎也不矮,有四五米高吧.”冠华兴趣勃勃地说.张先生心有所动,他说:“适才我跑过时用脚步量了一下,发明树尖距离树根正好3米,你们能求出杨树站立的那一段的高度吗?”占明想了想说:“树根.树尖.折断处三点依次相连后构成一个直角三角形.”“勾股定理必定是要用的,并且不动笔墨生怕是不行的.”绣亚补充说.几位男孩子走进教室,绘图.盘算,不一会就得出了答案.同窗们,你算出来了吗?思绪剖析:1)题意剖析:本题考核勾股定理的应用2)解题思绪:本题症结是卖力审题抓住问题的本质进行剖析才能得出准确的解答常经由过程作帮助线结构直角三角形将它们转化为直角三角形问题等.解题后的思虑:分类评论辩论思惟是解题时常用的一种思惟办法,同窗们假如控制了这种办法,可以使思维的层次性.周密性.灵巧性得到造就,才能在解题中真正做到不重不漏.常识点三.勾股定理及其逆定理的正逆混用例6:(1)图甲是由四个雷同的直角三角形与中央的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两条直角边的和是5,求中央小正方形的面积.(2)现有一张长为6.5cm.宽为2cm的纸片,如图乙,请你将它朋分成6块,再拼合成一个正方形.(请求:先在图乙中画出朋分线,再画出拼成的正方形并标明响应数据)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出 结论. 解析:设正方形的边长为 1,则图(1)、图(2)中的总线路长分别为 AB+BC+CD=3,AB+BC+CD=3 图(3)中,在 Rt△ABC 中
3.用于证明平方关系的问题; 2. 在理解的基础上熟悉下列勾股数
4.利用勾股定理,作出长为 的线段。
满足不定方程 x2+y2=z2 的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以 x,y,z 为三边长的三
角形一定是直角三角形。
熟悉下列勾股数,对解题是会有帮助的:
①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41. 如果(a,b,c)是勾股数,当 t>0 时,以 at,bt,ct 为三角形的三边长,此三角形必为直角三角形。
举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则 AB 的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且 BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB 的长是 4.
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中
,所以
。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中
,所以
。
方法三:将四个全等的直角三角形分别拼成如图(3)—1 和(3)—2 所示的两个形状相同的正方形。
所以 (2)在 Rt△ABC 中, ∵BC=500m,AC=1000m ∴∠CAB=30° ∵∠DAB=60° ∴∠DAC=30° 即点 C 在点 A 的北偏东 30°的方向 总结升华:本题是一道实际问题,从已知条件出发判断出△ABC 是直角三角形是解决问题的关键。本题涉及平行 线的性质和勾股定理等知识。
中,
.
根据勾股定理,在
中,
.
∴
.
总结升华:利用勾股定理计算线段的长,是勾股定理的一个重要应用.
构造直角三角形以便应用勾股定理.
当题目中没有垂直条件时,也经常作垂线
举一反三【变式 1】如图,已知:
,
,
于 P. 求证:
.
思路点拨: 图中已有两个直角三角形,但是还没有以 BP 为边的直角三角形. 因此,我们考虑构造一个以 BP 为一 边的直角三角形. 所以连结 BM. 这样,实际上就得到了 4 个直角三角形. 那么根据勾股定理,可证明这几条线段的平 方之间的关系.
.
hing at a time and All things in their being are good for somethin
..
∴图(4)的连接线路最短,即图(4)的架设方案最省电线. 总结升华:在实际生产工作中,往往工程设计的方案比较多,需要运用所学的数学知识进行计算,比较从中选出 最优设计.本题利用勾股定理、等腰三角形的判定、全等三角形的性质.
.
hing at a time and All things in their being are good for somethin
..
,所以
。
知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边; 2.已知直角三角形的一条边,求另两边的关系;
和 1 的直角三角形
(1)作直角边为 1(单位长)的等腰直角△ACB,使 AB 为斜边;
(2)以 AB 为一条直角边,作另一直角边为 1 的直角
。斜边为 ;
(3)顺次这样做下去,最后做到直角三角形
,这样斜边 、 、 、 的长度就是
、 、 、 。 总结升华:(1)以上作法根据勾股定理均可证明是正确的;(2)取单位长时可自定。一般习惯用国际标准的单
∴S 四边形 ABCD=S△ABE-S△CDE= AB·BE- CD·DE=
类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题
3、如图所示,在一次夏令营活动中,小明从营地 A 点出发,沿北偏东 60°方向走了 沿北偏西 30°方向走了 500m 到达目的地 C 点。 (1)求 A、C 两点之间的距离。 (2)确定目的地 C 在营地 A 的什么方向。
要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2, b2=c2-a2 , c2=(a+b)2-2ab 知识点二:用面积证明勾股定理
经典例题透析 类型一:勾股定理的直接用法
1、在 Rt△ABC 中,∠C=90°
(1)已知 a=6, c=10,求 b, (2)已知 a=40,b=9,求 c; (3)已知 c=25,b=15,求 a.
思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC 中,∠C=90°,a=6,c=10,b=
解析:连结 BM,根据勾股定理,在
中,
.
而在
中,则根据勾股定理有
.
∴ 又∵ ∴ 在 ∴
(已知), .
中,根据勾股定理有 , .
【变式 2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形 ABCD 的面积。
hing at a time and All things in their being are good for somethin
..
知识点及例题 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为 c,那么 a2+b2=c2.即直角三角形中两直角边的平方和等 于斜边的平方.
在(3)—1 中,甲的面积=(大正方形面积)—(4 个直角三角形面积),
在(3)—2 中,乙和丙的面积和=(大正方形面积)—(4 个直角三角形面积),
所以,甲的面积=乙和丙的面积和,即:
.
方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
分析:如何构造直角三角形是解本题的关键,可以连结 AC,或延长 AB、DC 交于 F,或延长 AD、BC 交于点 E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长 AD、BC 交于 E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。
(2) 在△ABC 中,∠C=90°,a=40,b=9,c=
(3) 在△ABC 中,∠C=90°,c=25,b=15,a= 总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化
为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。
举一反三 【变式】一辆装满货物的卡车,其外形高 2.5 米,宽 1.6 米,要开进厂门形状如图的某工厂,问这辆卡车能否通 过该工厂的厂门?
.
hing at a time and All things in their being are good for somethin
..
【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于 CH.如图所示,点 D 在离厂门中线 0.8 米处,且 CD⊥AB, 与地面交于 H. 解:OC=1 米 (大门宽度一半), OD=0.8 米 (卡车宽度一半) 在 Rt△OCD 中,由勾股定理得:
(提问:勾股定理)
∴ AC=
=
=
答:最短路程约为10.77cm.
≈10.77(cm)(勾股定理).
类型四:利用勾股定理作长为 的线段
5、作长为 、 、 的线段。
思路点拨:由勾股定理得,直角边为 1 的等腰直角三角形,斜边长就等于 ,直角边为
斜边长就是 ,类似地可作 。 作法:如图所示
CD=
=
=0.6米,
CH=0.6+2.3=2.9(米)>2.5(米).
因此高度上有 0.4 米的余量,所以卡车能通过厂门.
(二)用勾股定理求最短问题 4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄 A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案, 如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
到达 B 点,然后再
思路点拨:把实际问题中的角度转化为图形中的角度,利用勾股定理求解。 解析:(1)过 B 点作 BE//AD ∴∠DAB=∠ABE=60° ∵30°+∠CBA+∠ABE=180° ∴∠CBA=90° 即△ABC 为直角三角形 由已知可得:BC=500m,AB= 由勾股定理可得:
.
hing at a time and All things in their being are good for somethin
..
∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE= = 。 ∵DE2= CE2-CD2=42-22=12,∴DE= = 。
同理
∴图(3)中的路线长为
图(4)中,延长 EF 交 BC 于 H,则 FH⊥BC,BH=CH
由∠FBH=
及勾股定理得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此图中总线路的长为 4EA+EF= 3>2.828>2.732
,
.
hing at a time and All things in their being are good for somethin
的长. 解析:作 ∴