浮法玻璃的特征缺陷产生原因与消除方法
浮法玻璃缺陷种类分析及处理办法
7.2.2.3 霞石 (1) 外观 为白色颗粒结石,有时在疖瘤内呈半透 明析晶状。 (2) 显微结构 显微镜单偏光下呈羽毛状或阶梯状, 显微镜正交光下,有鲜艳的干涉色。 (3) 可能产生的原因 a. 铝硅质原料中(钾长石)有大颗粒。 b. 钾长石水份偏大,细粉过多造成结团。 c. 原料加工、运输、贮存的过程中引入了铝硅质、 高铝质夹杂,如:粘土质、莫来石、煤矸石、刚玉 石及耐火砖砖屑等。
(4) 采取措施 a. 配合料混合均匀 b. 检查石灰石秤和计算机料方输入,保证准确无 误。 c. 检查石灰石颗粒,是否有大颗粒和细粉过多问题, 吸水的石灰石要晾干再用。 e. 保证玻璃液均化良好,避免局部富钙。 f. 避免来自冷却部边部及后山墙死角处的凉玻璃液 进入成型流,若有,采取措施处理。 g. 保持玻璃液有合理的冷却降温制度。
7.1.3 按显微结构可以分为两大类 (1)非晶态缺陷 气相缺陷(气泡); 玻璃相夹杂物(条纹和疖瘤); 由不均匀应力产生的缺陷; 硌伤和压裂。
(2)晶态缺陷 熔化残留物; 侵蚀的耐火材料; 玻璃熔体的析晶; 锡槽产生的上表面缺陷。
7.2 原料及熔化过程产生的玻璃缺陷及 处理
(3)玻璃板下表面的缺陷 一种类似于玻璃上表面的如气泡(闭口泡)、结石 这样的缺陷; 由锡或裂纹产生的一种下表面缺陷; 一种产生于流道流槽、唇砖或锡槽的下表面开口泡。 光学性质缺陷 a. 玻璃缺少化学均匀性而产生的光学变形(光学 变形角低); b. 麻点如压裂、硌伤等缺陷; c. 由锡槽滴落物产生的光畸变。
①夹杂物(固体夹杂缺陷); ②气泡(气体夹杂缺陷); ③光学变形(非晶体缺陷)。 本部分根据缺陷的类别针对常见缺陷的外观、 产生原因、解决措施,逐一论述。
浮法平板玻璃制备过程中的降低线形缺陷方法研究
浮法平板玻璃制备过程中的降低线形缺陷方法研究引言随着现代工业技术的发展,玻璃制品在建筑、汽车、电子等领域的应用越来越广泛。
作为一种主要的平板玻璃制备技术,浮法法在玻璃行业中扮演着重要的角色。
然而,在浮法平板玻璃制备过程中,线形缺陷的出现严重影响了玻璃品质的稳定性和生产效率。
本文将针对浮法平板玻璃制备过程中的线形缺陷现象展开研究,探讨降低线形缺陷的方法和措施,以提高玻璃品质和工业生产效率。
一、线形缺陷的形成机理浮法平板玻璃制备过程中,线形缺陷主要是由于玻璃溶液中的杂质、气泡等不纯物质引起的。
这些不纯物质在溶液中的存在会导致玻璃熔体的不均匀性,进而在玻璃流动过程中形成线形缺陷。
此外,操作不当、设备故障等因素也可能导致线形缺陷的出现。
二、降低线形缺陷的方法和措施针对线形缺陷在浮法平板玻璃制备过程中的严重影响,研究人员提出了一系列的降低线形缺陷的方法和措施,可以从以下几个方面来改善和控制线形缺陷。
1. 提高原材料质量优质的原材料是制备高质量玻璃产品的基础。
在浮法平板玻璃制备过程中,尽量选用优质的原材料,去除其中的杂质和不纯物质。
同时,加强对原材料的检测和筛选,确保其质量达到标准要求,减少杂质对玻璃溶液的污染。
2. 优化玻璃熔化过程玻璃熔化过程是浮法平板玻璃制备的关键步骤之一。
通过加强熔化过程的控制,可以减少熔化温度不均匀性和熔液流动不稳定性对线形缺陷的影响。
同时,合理调节熔化温度、保持熔液的均匀性,有助于降低线形缺陷的发生。
3. 优化浮法盐浴和液面控制浮法盐浴和液面控制是浮法平板玻璃制备中的重要环节。
通过合理选择盐浴成分、控制浓度和温度等参数,可以提高玻璃流动的稳定性,降低线形缺陷的发生风险。
此外,加强液面控制,确保液面平稳,在一定程度上也能减少线形缺陷的出现。
4. 设备维护和检修设备的正常运行对于降低线形缺陷至关重要。
定期维护和检修设备,确保其正常运转,减少各种故障和意外发生的可能,有助于提高制备过程的稳定性和防止线形缺陷的发生。
浮法玻璃锡缺陷产生的原因及治理措施(论文)
浮法玻璃锡缺陷产生的原因及治理措施(论文)浮法玻璃锡缺陷产生的原因及治理措施文摘:锡槽是浮法玻璃生产线的成型设备。
在成型过程中,由于漂浮介质锡液和保护气体氮和氢的污染,玻璃存在与锡相关的缺陷。
我们通常称之为锡缺陷。
主要有光线畸变点、锡石、彩虹和锡渍。
锡槽玻璃板的缺陷不仅影响产品的合格率,而且限制了浮法玻璃在汽车、涂料等深加工玻璃中的应用。
为了生产高档浮法玻璃,除了控制熔化缺陷外,还应采取措施减少与锡槽有关的缺陷。
根据生产实践经验,论述了锡浴、锡石、锡渍、回火彩虹、锡滴、雾点、光畸变点等玻璃缺陷的特点、来源、形成机理及预防措施。
关键词:锡缺陷的预防和解决常用方法1、锡缺陷的形成机理我们认为锡槽是一种动态平衡系统,它由锡槽结构(入口端、出口端和主体)、锡液、保护气体、玻璃带等元素组成。
在设计方面,我们对每个组成元素都有明确的要求,如锡槽的气密性好、锡液的纯度高、保护气体的纯度为PPM、玻璃成分的合理设计等,我们会按照您的要求去做。
但事实上,锡缺陷仍然存在,甚至非常严重。
为什么?原因是我们认为锡浴是一个静态的理想系统。
首先,即使我们满足上述要求,污染仍然存在,而且一直在进行,但污染程度较轻,速度较慢。
随着时间的推移,累积污染也会造成缺陷:更重要的是,作为一个动态平衡系统,锡浴的组成元素也在发生变化,如引入水、氢和硫的引入,等等。
这些后来引入的系统元素,恰恰是造成锡缺陷的主要原因。
一般由锡引起的浮法玻璃外观缺陷统称为锡缺陷,包括顶锡、滴落物、沾锡、锡结石、钢化彩虹、光畸变点等。
纯锡的熔点为232℃,沸点为2271℃,1093℃时的蒸汽压力为0.002lhg。
这表明锡在玻璃形成温度下非常稳定。
然而,当氧和硫存在时,锡很容易与它们发生反应。
以氧气循环为例。
氧气进入锡槽后,虽然与氢发生反应,但仍有一部分溶解在锡液中形成SnO。
蒸发后,在低温下以Sn和SnO2的形式沉积在镀液顶部,如水袋。
当沉积物遇到氢时,发生还原反应形成锡。
浮法玻璃缺陷产生的原因
SODIUM SULFATE (硫酸钠) :这种缺陷最初看如同一个气泡. 但当你接近用肉眼看时,它呈霜状.在显微镜下,它象一个充满彩色 的玻璃碎片的气泡,也象污染的窗玻璃。它的形状象一支雪茄烟。 这是由于它依然是一个气泡。这种缺陷是在水包上浓缩后落入
玻璃液中。熔化后的缺陷与玻璃液起形成气泡。注意水包周围
Beta 氧化铝 :此缺陷来自于熔化部胸墙,由Mono H构成。此材 料碎片会下落并掉入熔窑里。它看起来如泪珠状。不是圆形而是 椭圆形。有时缺陷很清晰,你可注意到其周围有许多裂纹。它看 上去有点象地图。此缺陷是由于熔窑的冷却工艺而形成的。通常 它是个扁平状。它非常类似于泪珠状的幸运石或小池或小河中的 一块鹅卵石。形状很类似。此缺陷的某些部分呈现多彩反射光, 但交叉伸出的nichols却相当昏暗。注意胸墙的状况或附近的挂 勾砖的状况 。
在桌子周围慢慢地移动。快速移动会发生事故。
如果你掉落一片玻璃,就让之自由落地。按照惯性反应,这样 说可能比实际做要容易。
当某人传给你一片玻璃时要当心。玻璃片可”,最好分成2垛而 不是1垛。为便于以后识别,可标明“二分之一垛”和“二分之 二垛”。
WOLLASTONITE(硅钙石) :这种缺陷是针状长方形晶体。它们 色彩非常亮,这种现象很难描写,但,一旦你发现这种缺陷,你 会知道它是什么。我发现许多缺陷是单一晶体,结石内部有更多 的细线。另外一种类型,看起来象窗玻璃被彩色污染 。这种缺 陷形成区域,前脸墙、流道、背衬砖 AND RESTRICTORS(闸板)。 这种缺陷真是碎块脱落,硅和铝接触,铝有可能是流道胸墙、唇 砖胸墙底部及唇砖,通常长度方向更长。
的玻璃液面,或其它一些地方硫酸盐掉入。
WATER-LEAK BLISTER水泡 :这种类型的缺陷看起来:仅仅在
浮法玻璃几种结石缺陷的处理方法
浮法玻璃几种结石缺陷的处理方法摘要:随着经济的发展,浮法玻璃作为建筑玻璃和产业玻璃的主要原材料,随着后续加工程度的进一步加深,质量要求也越来越高,产品分类也逐渐明细。
利用图像识别分析技术进行在线自动分选是浮法玻璃质量等级划分的主要手段。
浮法玻璃板中出现的结石缺陷严重影响产品质量。
利用偏光显微镜和荧光仪,对浮法玻璃生产中的几种玻璃结石缺陷进行检测,鉴别缺陷类型,分析其晶体结构及组成。
在浮法玻璃生产中,质量控制起着至关重要的作用,这就要求质量检验、质量管理人员要懂得相关的工艺常识、质量检验知识及日常的安全知识,合理、合规的控制产品质量,满足不同客户的质量要求。
关键词:浮法玻璃;结石缺陷;处理方法引言浮法玻璃的生产过程是一个连续系统的工艺流程,从原料粉碎、配合料制备、高温熔化、玻璃液澄清均化到冷却成形、退火切裁等过程,工艺制度的失稳或操作过程的差错,都会造成玻璃缺陷的产生。
浮法玻璃熔制缺陷按其状态的不同分为三类,结石(结晶夹杂物,固体夹杂物)、条纹和节瘤(玻璃态夹杂物)及气泡(气体夹杂物)。
不同类型的结石,其化学组成和矿物组成也各不相同。
根据结石产生原因,结石可分为配合料结石、窑碹结石、耐火材料结石、析晶结石和外来污染物引起的结石。
1我国浮法玻璃工业发展历程1.1探索及中间试验阶段我国从1960年开始,由建材研究院和上海耀华玻璃厂开始探索浮法工艺。
1965年由建材研究院正式开展实验室工作,经上百次小型静态单元试验和六次半连续工艺试验,对浮法工艺中关键问题进行了基本原理的研究和探索性试验,取得了有价值的结果,迈开了浮法试验的第一步。
并在中试期间,获得了表面质量好的浮法玻璃,这是我国浮法发展史中一个重大突破。
期间,还试验了锡槽槽底材质、流槽安装位置、拉边机拉薄试验等一系列内容,为工业性试验提供了比较全面的工艺根据。
当时的国家科委、计委和经委,对浮法工艺的研究、试生产,给予了高度重视和支持。
在1966年试验室工作取得结果后,1967年12月,国家科委批准了浮法中间试验,投资180万元,使浮法研究能及时地进入中间试验阶段。
浮法玻璃退火产生的缺陷及控制
浮法玻璃中退火产生的缺陷及控制河南理工大学张战营一、玻璃的退火玻璃退火的目的是减弱和防止玻璃制品中出现过大的残余内应力和光学不均匀性,稳定玻璃内部的结构。
玻璃的退火可分成两个主要过程:一是玻璃中内应力的减弱或消失,二是防止内应力的重新产生。
玻璃中内应力的减弱和消除是以松弛理论为基础的,所谓内应力松弛是指材料在分子热运动的作用下使内应力消散的过程,内应力的松弛速度在很大程度上决定于玻璃所处的温度。
玻璃在加热或冷却过程中,由于其导热性较差,在其表面层和内层之间必然产生温度梯度,因而在内外层之间产生应力。
这种由于温度梯度存在而产生的内应力称为温度应力或热应力,此种内应力的大小,既取决于玻璃中的温度梯度,又与玻璃的热膨胀系数有关(玻璃的化学成分决定玻璃的热膨胀系数)。
热应力按其存在的特点可分为暂时应力和永久应力。
暂时应力,当玻璃受不均匀的温度变化时产生的热应力,随着温度差的存在而存在,随温度差的消失而消失,被称为暂时应力。
应力的建立和消失过程。
当制品冷却开始时,因为玻璃的外层冷却速度快,所以外部温度比内部温度低,外层收缩大,而这时内层温度较高,且力求阻碍外层收缩,这样造成玻璃外层产生张应力,内部产生压应力。
在张应力过渡到压应力之间存在着中间层,其应力值为零。
当冷却接近结束时,外层体积几乎不再收缩,但此时玻璃内部仍有一定的温度,其体积力求收缩,此时造成外部受压应力,内层受张应力。
由此可见,在冷却结束时,产生的应力恰好和冷却开始时产生的应力性质相反,两者可以得到部分抵消。
冷却全部结束时,即当玻璃的外层温度和内层温度趋向完全一致时,上述两种应力恰好抵消。
我们称这种应力为暂时应力。
永久应力,当温度消失时(制品的表面和内部温度均等于常温时),残留在玻璃中的热应力称为永久应力,又称为内应力。
玻璃中永久应力的成因,是由于在高温的弹塑性阶段热应力松弛而形成的温度变形被“冻结”下来的缘故。
当玻璃板逐渐冷却到室温均衡时,玻璃中残存的应力实际等于玻璃在高温阶段松弛掉的热弹应力,但方向相反。
浮法玻璃特有缺陷及其预防措施
收稿日期:2007-12-11作者简介:禚明(1983-),男,山东省禹城市人,山东轻工业学院材料科学与工程学院硕士研究生,主要从事新型无机功能材料的研究.文章编号:1004-4280(2008)01-0062-03浮法玻璃特有缺陷及其预防措施禚 明,梁忠友,宋秀霞(山东轻工业学院材料科学与工程学院,山东济南250353)摘要:主要介绍了浮法玻璃生产过程中的缺陷,例如虹彩、雾点及压裂等,以及减少、防止出现这些缺陷的措施。
并简要介绍了浮法玻璃的发展史。
关键词:浮法玻璃;缺陷;锡;压裂中图分类号:T Q171 文献标识码:AThe unique defection of float glass and its preventive measureZHUO Ming ,LI ANG Zhong 2y ou ,S ONG X iu 2xia(School of Material Science and Engineering ,Shandong Institute of Light Industry ,Jinan 250353,China )Abstract :This article mainly introduced the defection of float glass from production process ,such as rainbows ,cloud points and com pressive break and s o on.Measures were proposed to reduce and prerent these flaws.This paper als o introduced the history of float glass in brief.K ey w ords :float glass ;defection ;tin ;com pressive break0 引言60年代英国皮尔金顿工业集团在英伦三岛建成世界上首条浮法玻璃生产线,从此先进的浮法玻璃生产工艺很快的取代了传统的垂直引上和平拉法玻璃生产工艺,西方发达国家争相购买其专利技术。
浮法玻璃成型的常见问题及解决措施 (1)
毕业论文(届)题目:浮法玻璃成型的常见问题及解决措施所属系部宋体四号整体居中专业班级姓名学号指导教师完成日期:2017年月日摘要浮法玻璃具有表面整齐、平面度较好,光学性能较强等特点,这些特点使得浮法玻璃具有良好的透明性、明亮性、纯净性,使得浮法玻璃主要应用于建筑门窗,作为天然采光的材料,是一种极富应用的建筑材料。
在浮法玻璃的生产过程中,由于不正当的操作方法和一些异常因素,常常导致事故的发生。
只有通过对这些问题进行正确合理的分析并且及时做出正确的处理,才能减少和预防事故的发生。
本文主要针对在浮法玻璃成型过程中出现的常见事故进行总结和分析,希望对浮法玻璃的成型操作有所指导。
关键词:浮法玻璃成型过程事故处理目录1 成型过程 (5)2 成型过程中的常见问题及解决过程 (5)2.1 调节闸板的断裂 (5)2.1.1 产生的可能原因 (5)2.1.2 处理方法 (5)2.2 流量骤减 (6)2.2.1 故障的产生原因 (6)2.2.2 故障处理 (6)2.3 流量突增 (6)2.3.1 故障的产生原因 (6)2.3.2 故障处理方法 (6)2.4 板下的划伤 (6)2.4.1 故障产生原因 (6)2.4.2 故障处理方法 (7)2.5 玻璃带跑偏 (7)2.5.1 产生的原因 (7)2.5.2 故障处理方法 (7)2.6 锡槽槽内板宽突然变宽 (7)2.6.1 产生的原因 (7)2.6.2 处理方法 (7)2.7 拉边机头漏水 (8)2.8 漏锡 (8)2.9 冷却水包漏水 (8)3 浮法玻璃成型事故与处理方法 (8)3.1 断板 (8)3.2 卷机头 (9)结束语 (9)致谢词 (9)参考文献 (9)浮法玻璃生产的成型过程是在通入保护气体(N2及H2)的锡槽中完成的。
熔融玻璃从池窑中连续流入并漂浮在相对密度大的锡液表面上,在重力和表面张力的作用下,玻璃液在锡液面上铺开、摊平、形成上下表面平整、硬化、冷却后被引上过渡辊台。
7--浮法玻璃缺陷种类
(4) 采取措施 a. 严格控制原料质量,杜绝含铝硅质、高铝质夹杂物的引入。 b. 严格控制钾长石水份。 c. 严格控制钾长石上、下限颗粒组成。 d. 采取措施,均匀调合。 e. 采取措施,保证玻璃液的对流、液面、料堆、温度稳定。 f. 严禁液面的大起大落,减轻对池壁的严重冲刷。 g. 采用优质α-β刚玉砖。 h. 若玻璃中有大的夹杂物,应切除后再进入碎玻璃循环系统。
e. 定期处理后山墙的挂帘子。 f. 提高重油质量,降低水份含量,稳定风量及窑压。
7.2.2.3 霞石 (1) 外观 为白色颗粒结石,有时在疖瘤内呈半透
明析晶状。
(2) 显微结构 显微镜单偏光下呈羽毛状或阶梯状, 显微镜正交光下,有鲜艳的干涉色。
(3) 可能产生的原因 a. 铝硅质原料中(钾长石)有大颗粒。 b. 钾长石水份偏大,细粉过多造成结团。 c. 原料加工、运输、贮存的过程中引入了铝硅质、
f. 重油含硫量过高,水分过大或助燃风量过大,对碹砖的冲击 及侵蚀。
(4) 采取措施 a. 减少熔窑前区粉料的飞散及配合料组成的挥发。 b. 调整火焰角度,减少火焰对碹顶的上扬烧损。 c. 在不影响熔化的前题下,可考虑适当降低熔窑温
度。
d. 在满足澄清的前题下,尽量减少澄清剂芒硝的 用量。
个颗粒的聚合体。结石周围有较宽的扩散层, 在窑内停留时间长的结石,表面瓷化,周边 与玻璃界限不很清晰。
未熔石英
硅砂富集
(2)可能产生原因 a. 硅砂颗粒过大,形成的未熔石英; b. 配合料调合不均匀,局部硅砂富集形成的; c. 配合料输送及窑头料仓贮存过程中的分层; d. 硅砂细粉过多形成的料蛋; e. 助熔剂(Na2CO3 、Na2SO4)过少; f. 跑料或边部切料; g. 熔化温度过低(主要是玻璃液温度); h. 碹顶硅质泥料掉入窑中进入玻璃液。(若以上7
浮法玻璃几种结石缺陷的处理方法
0引言浮法玻璃熔制缺陷按其状态的不同分为三类,结石(结晶夹杂物,固体夹杂物)、条纹和节瘤(玻璃态夹杂物)及气泡(气体夹杂物)。
不同类型的结石,其化学组成和矿物组成也各不相同。
根据结石产生原因,结石可分为配合料结石、窑碹结石、耐火材料结石、析晶结石和外来污染物引起的结石。
本文对三种比较典型的结石缺陷进行分析、化验,提出处理措施。
1玻璃缺陷样品取样分析针对三类缺陷各取样品5个,样品A和样品B类缺陷全位于玻璃板上表面,C类缺陷4个位于玻璃板上表面,1个位于玻璃板中偏上位置,C类缺陷尺寸多为1.0 mm以上缺陷,形状大部分是长条状、少量圆形、规则三角形,尺寸多为1~5 mm;B类缺陷位于玻璃带一侧边部位置,A类、C类缺陷位置不固定。
(1)偏光显微镜分析在偏光显微镜下观察缺陷样品的晶体结构,如图1所示。
A类样品为熔融鳞石英(低温区),B类样品为鳞石英、方石英,C类样品为刚玉结石,部分形成单晶结石、伴有霞石。
图1偏光显微镜下的玻璃缺陷晶体结构(2)荧光成分分析利用金相切割机将缺陷样品切割成尽量小,尽可能去掉没有缺陷的玻璃,利用玛瑙研钵研磨,按照荧光制样标准制取样品1;取同量的正常玻璃用同样的方法制取对比样品2,利用荧光仪测量的数据见表1。
通过对比,可判定缺陷为铝质缺陷。
2缺陷产生原因分析(1)样品A熔融鳞石英缺陷熔融石英结石缺陷的主要来源为石英质流量闸板,其次为高温熔蚀的碹顶硅砖。
流量闸板形成结石的原因有两个,一是持续处于高温环境下的流量闸板发生自身析晶,在受到温度反复波动后剥落进入玻璃液形成结石;二是闸板受到高温熔蚀的剥落物进入玻璃液形成结石。
通过窑炉检查结合窑内拍照发现卡脖靠近冷却部后半部分碹顶有部分区域存在剥落现象,抽出空间冷却水包清理,发现水包上表面凝结物里有一定数量的白色颗粒,与样品A内缺陷相同,偏光镜观察晶相为熔融鳞石英,分析为该区域穿有空间冷却水包,距离碹顶较近、且清理频繁,造成受侵蚀的硅砖表层剥落形成缺陷。
浮法玻璃生产中玻璃的缺陷及处理
程 技术 大 学 ,2012.
4 总 结
由于地质条件复杂 、软弱 围岩 的变化较为频繁等方面 因素 的影 响, 煤矿基建软弱 围岩 的施工过程 中仍然存在 很多的 问题,给施工单位造成 了一定的人员损失、财产损失或者工期延误等 。为了保证施 工安全 ,相关
『41何富连,王宁博,魏 臻 ,卫文彬 ,许华威.采动剧烈影 响软弱 围岩巷 道失 稳机理及支护『J].煤矿 开采 ,2015(05). f51赵 勇,刘建友 ,田四明.深埋隧道软弱 围岩支护体系受力特征 的试 验研 究fJ].岩石力学与工程学报 ,2011(O8).
(8)其他疵滴 。①导 向挡板斑点:上表面细微的斑 点,在玻璃带边缘 。 ② 溅疵滴:一个元素锡 中心核被 一个含 有很 细元素锡粒子圈 围绕 出现 于锡槽 的较热区域。③褐色疵点:很大的褐色滴,出现 于边缘 部位与拉 引 的玻璃 带成角度 。
(9)冷玻璃“拉 引 ”线道 t拉 引线道是ห้องสมุดไป่ตู้出现 在玻璃底 表面 的连 续或 间 断的细小划痕。线条平行于玻璃流动 的方 向。
.
.
现 SnO:。它与顶部斑点有所 不同,是 结晶体 的形状 。 (2)上表面 细气泡 :该疵 点在上表 面 内出现 ,气泡直 径一般 不超 过
0.1mm,在镀银 和边部照 光检查 时较容 易发现 。
(3)幕状伤痕 :以连续、细微擦伤或伤 痕出现在 玻璃带上 。
(4)上表面斑 点:疵 点表现 为一种元素锡 的中心核加上一个 反应 圈,
该疵点可在涂银样板或在检查架上或边部照光时看出疵点处的玻璃表面有严重的痕伤通常情况下疵点是在比锡渣冷的区域形成的但在有的情况下尤其是生产厚玻璃的时候退火窑热端的辊道同样会带来该疵点疵点内有极少量的锡渣等物质
探究浮法玻璃几种结石缺陷的处理方法
探究浮法玻璃几种结石缺陷的处理方法065600摘要:浮法玻璃是一种制作工艺,它是指使用漂浮法制作的玻璃,大致原理是把融化的玻璃液倒在比重大于玻璃液的液体(液态锡)表面使玻璃成型。
不过,在整个生产的过程当中,也会因各种因素导致浮法玻璃的质量没办法达到预期要求,比如原料、熔化、成形、退火等。
关键词:浮法玻璃;结石缺陷;处理一、结石1、粉料结石造成粉料结石的原因是由硅质大颗粒和硅质细颗粒过多形成料团,在配合料熔化过程中未完全熔化而在板面上形成了白色小颗粒,显微镜下能看到残余的未熔石英颗粒[1]。
解决办法:建议严格控制硅质料上限粒度范围(>0.6m的为0),加强进厂粒度检验和使用过程中外观的抽查,发现大颗粒立即处理,避免入窑。
加强对硅质料特别是砂岩粉超细粉的控制,并加强水分控制,提高混合效果,防止细粉高水分大的超细粉料团形成。
2、铝硅质结石造成粉料结石的原因是长石大颗粒、或原料中混入黏土砖块等,如熟砂岩中混入黏土砖块,在熔化过程中未完全熔化形成的铝硅质结石,在板面形成白色或灰白色的小颗粒。
显微镜下是刚玉、霞石晶型。
解决办法:长石是难熔物,虽然用量少,但要严格控制它的粒度范围,进厂时加强原料外观的抽查,避免高铝质的砖块和石子混入原料中[2]。
二、波筋的原因由于与主体玻璃成分黏度不同,在玻璃表面形成了条带状宏观变形缺陷。
1、配合料混合严重不均或配错料,多加了硅质料或长石料,少加了纯碱料,都能引起板面上筋,一般还伴随着上硅质浮渣。
2、由于配合料的输送皮带沾料,多数是硅质细粉,清理卫生的废料人窑所致。
3、硅质料、长石料成分、水分波动大未及时变料,多引入了SiO2、Al2O3等在熔化过程中扩散不均形成的。
波筋的解决办法:严格控制原料成分和水分,及时抽查变料,严禁废料入窑,加强配合料的混合与控制,防止错料入窑[3]。
三、气泡的原因硅质原料中超细粉含量过高,细小颗粒在反应初期过于激烈,在颗粒周围形成了一层泡沫层,澄清困难而形成气泡。
浮法玻璃的特征缺陷产生原因与消除方法
浮法玻璃的特征缺陷产生原因与消除方法一. 概述1952年至1959年间英国皮尔金顿兄弟有限公司创造了浮法玻璃生产工艺,可以看作是平板玻璃制造中的一次革命。
开始时还只打算用它来代替当时流行的成本很高的镜面玻璃制造方法。
不久就发现,它完全可以代替全部或绝大部分各种常用的平板玻璃制造方法。
浮法是一种新型的工业制造方法,它本身已具有全自动化生产的可能条件。
我国也于1970年独自研制成功了“洛阳浮法玻璃工艺技术”。
伴随着我国经济腾飞,浮法玻璃也得到迅猛发展,截止到2005年底,我国已建成140多条浮法玻璃生产线。
浮法的原理是:冷却到1100℃的玻璃液,从玻璃熔窑冷却部经流液道进入锡槽。
锡槽用电加热保持所要求的温度。
为了防止锡的表面层氧化,在锡槽空间充满氮气加一定比例氢气的保护气体。
液态玻璃在自身重量的作用下在锡液的表面铺开。
在表面张力的作用下玻璃层的平衡厚度保持在6~7㎜左右。
当要求玻璃带的厚度小于6㎜时,可在玻璃带的两边用拉边机机头将玻璃拉伸。
要求厚度大于7㎜时拉边机头则设臵成负角度,将玻璃向中部推,从而堆厚。
玻璃带离开锡槽后则由过渡辊台提升辊引入退火窑。
当生产厚度小于平衡厚度的玻璃时,玻璃带要受拉伸的作用。
与传统的引上法类似,玻璃中存在的化学不均匀或热学不均匀都会显示出特别明显的光学畸变。
玻璃板上的厚度差别,表面不平整或玻璃中存在的不均匀物,都会在透视光或反射光中出现光学的不正常现象。
浮法玻璃的像畸变可分为平行于拉制方向、横向或斜向等类。
属于第一类的有不连续线上的变形。
它是在拉制方向的线上断断续续出现的形变。
有时也在连续的线上出现或只有一段变形(脊形歪痕,英文ridge distortion),但出现在玻璃带行进的方向上。
横向形变是在横跨玻璃带的线上出现变形区。
斜向畸变(鲱鱼骨型扭曲变形,英文herringbone distortion)一般出现在玻璃带的两侧而向倾斜的方向发展。
在玻璃带的上面或下面还可能出现线道(拉引线道,英文ream)。
浮法玻璃几种结石缺陷的处理方法
浮法玻璃几种结石缺陷的处理方法摘要:随着社会的进步,浮法玻璃生产中常出现结石、气泡和条纹等缺陷。
其中结石缺陷常导致光散射,使玻璃透光能力降低,还因结石与玻璃体膨胀系数的差异,导致玻璃较大内应力而降低玻璃强度和热稳定性。
玻璃产品均需要分析研究结石成因和来源,以保证较高的成品率和市场竞争力。
关键词:浮法玻璃;几种结石;缺陷;处理方法引言浮法玻璃熔制缺陷按其状态的不同分为三类,结石(结晶夹杂物,固体夹杂物)、条纹和节瘤(玻璃态夹杂物)及气泡(气体夹杂物)。
不同类型的结石,其化学组成和矿物组成也各不相同。
根据结石产生原因,结石可分为配合料结石、窑碹结石、耐火材料结石、析晶结石和外来污染物引起的结石。
1平板玻璃工业发展趋势1.1环保、智能的建筑玻璃有极大的发展空间用于建筑物的特种玻璃将在建筑物实现节能减碳以及零碳建筑、负碳建筑中发挥强大作用。
如低辐射膜、自洁净膜等各种功能的镀膜玻璃、涂膜玻璃等的广泛应用;用于光敏、可切换或电致变色玻璃的智能镜子和高度绝缘的玻璃窗,用于保密区域空间的电屏蔽镀膜玻璃等。
1.2新能源玻璃将大行其道玻璃在新能源方面的作用越来越明显,如光伏压延玻璃、光伏超白浮法玻璃以及发电玻璃,已成为新能源的基础材料,是光伏产业、光热产业不可或缺的材料之一,并在BIPV中大行其道。
2电熔刚玉砖在浮法玻璃熔窑中的应用池底和池壁都是与玻璃液直接接触的部位。
对所有直接接触玻璃液的部位来说,耐火材料最重要的性能就是抗侵蚀性能,即要求耐火材料与玻璃液之间不发生化学反应。
从三元相图上分析在作业温度范围内没有共熔点,并且要求耐火材料与玻璃液间的界面层相对稳定,即耐火材料虽处于被侵蚀状态中,但其表面仍是完整的,不会脱落到玻璃液中产生结石等缺陷。
近年来考核与玻璃液直接接触的电熔耐火材料的质量指标时,除化学成分、理化指标、矿物组成外,还必须考核以下三个指标:抗玻璃侵蚀指数、析出气泡指数与析出结晶指数。
随着对玻璃质量要求越高、熔窑的生产能力越大,电熔砖的使用范围就越广。
浅析浮法玻璃锡缺陷产生的原因及治理措施
浅析浮法玻璃锡缺陷产生的原因及治理措施作者:张磊付少飞来源:《丝路视野》2020年第03期摘要:浮法玻璃产生锡缺陷的原因主要与氧、硫等物质的侵入以及锡恢复冷凝后滴落有关。
硫、氧侵入锡槽后会与锡发生化学反应,形成易挥发的锡化学物,在高温影响下在锡槽顶部汇聚,最终经过冷凝滴落至玻璃表面而形成锡缺陷。
这就要求玻璃制备人员加强过程管控,避免外界物质侵入锡槽环境,通过技术手段将侵入的物质排除,提升所制备玻璃的质量。
关键词:浮法玻璃锡缺陷成因及治理措施浮法玻璃制备过程中常见的问题有表面颗粒污染,如锡类缺陷等。
在玻璃成型阶段,锡槽中的单质锡容易受内部氧气或二氧化硫气体的影响,通过化学反应形成氧化亚锡、硫化亚锡等物质。
这些反應形成的硫化学物往往会因为锡槽高温而挥发至锡槽顶部、过渡辊道以及玻璃表面等众多区域,最终因为冷凝滴落而聚集在玻璃上,形成难以去除、影响玻璃正常使用的锡缺陷。
一、锡缺陷的形成(一)锡缺陷成分分析浮法玻璃产品的锡缺陷主要包括表面滴落聚集物、锡石以及锡灰等,其物质成分主要是锡和锡的化学物,如氧化亚锡或者硫化亚锡。
这些物质是在高温的锡槽中因为氧气或者硫等物质进入其中与锡发生化学反应而产生的,这些化学反应形成的物质或在高温中蒸发至锡槽上部,后续经过冷凝逐渐滴落在玻璃表面,最终形成锡缺陷影响玻璃质量。
玻璃下表面中往往会出现钢化虹彩以及粘锡等问题,其中沾锡问题是由于锡液中溶入了各类化学物导致其表面张力和湿润性能发生改变,最终产生沾锡现象;而钢化虹彩问题则是由于玻璃下表面渗入了二价以及四价的锡离子,导致玻璃结构性能发生变化,在进行热弯和钢化时会产生部分裂纹,这些裂纹会使得玻璃在阳光下发生干涉这种物理现象,形成钢化虹彩。
由此可以确认,锡缺陷的主要成因是氧和硫的侵入。
(二)锡缺陷中的氧、硫来源氧气会与锡槽中的锡发生化学反应,导致浮法玻璃中产生锡缺陷。
氧气进入锡槽与其密封的程度有关,在进行浮法玻璃制备时,施工人员往往无法将锡槽完全密封,导致空气进入到锡槽内部,或者玻璃液中、保护气体中附带了部分氧气进入锡槽中。
浮法玻璃成形缺陷及解决办法
浮法玻璃成形缺陷及解决办法熔融的玻璃经流道、流槽进入锡槽,在锡槽中成形后由过渡辊台进入退火窑,在这一过程中玻璃液(板)要与闸板、唇砖、锡液、拉边机、保护气体过渡辊台等直接接触,同时与锡槽水包、顶盖砖、底砖等密切相关,很容易形成与成形相关的各种缺陷,包括锡石、锡点(顶锡)、光畸变点(脱落物)、粘锡、虹彩、雾点、气泡等,除气泡之外的可统称为锡缺陷,这些成形缺陷严重制约着玻璃的质量等级与加工性能。
本文对其成因及防止措施作些探讨,以期有助于改善浮法玻璃质量。
1锡缺陷的成因分析1.1锡与锡槽中锡化合物的性质纯净的锡的熔点是232℃,沸点为2271℃,在600~1050℃的温度范围内锡具有较低的熔点和较高的沸点,较低的饱和蒸汽压,同时还具有较大的密度和容易还原的性质,以及锡液与玻璃液之间具有较大的浸润角(175°)几乎完全不浸润等性质,锡用来作为玻璃成形的良好载体。
氧化锡SnO2,密度6.7~7.0g/cm3,熔点2000℃,高温时的蒸汽压非常小,不溶于锡液,正常生产时在锡槽的温度条件下为固体,往往以浮渣形式出现在低温区的液面上,通常浮渣都聚集在靠近出口端。
如果氧化严重,浮渣会延伸很长,容易形成玻璃板下表面划伤。
氧化亚锡SnO,熔点为1040℃,沸点为1425℃,固体为蓝黑色粉末,能溶解于锡液中,SnO的分子一般为其聚合物(SnO)x形式。
在中性气氛中SnO只有在1040℃以上才是稳定的,1040℃以下会发生分解反应。
在锡槽的还原性气氛中SnO可以存在,它往往溶解于锡液中和以蒸汽形式存在于气氛中。
硫化亚锡SnS,密度5.27g/cm3,固体为蓝色晶体,熔点为865℃,沸点为1280℃,具有较大的蒸汽压,800℃时为81.3Pa,正常生产时,在高温区易挥发进入气氛,低温区易凝聚滴落。
1.2锡槽中的硫、氧污染循环氧的污染主要来源于气氛中的微量氧和水蒸汽以及从锡槽缝隙漏入和扩散的氧。
在锡槽工况下,它们使锡氧化成SnO和SnO2浮渣,SnO溶解于锡液和挥发进入气氛,并在顶盖、水包处冷凝、聚集而落到玻璃表面。
浮法玻璃成型缺陷及解决方法
浮法玻璃成型缺陷及解决方法(浙江玻璃股份有限公司):本文叙述了玻璃成型过程中所产生的小黑点、小白点及沾锡的原因和形成的机理,提出了克服和解决方法。
成型小黑点小白点沾锡随着社会经济的发展和人们的生活水平的提高,玻璃的应用范围越来越广泛。
尤其是汽车玻璃和电子玻璃的普及,对玻璃原片的质量要求越来越高,如何提高玻璃原片的质量,增强产品在市场上的竞争力,已显得非常重要。
下面着重阐述浮法玻璃在成型过程中所产生的缺陷及解决措施。
通过在线检测反映玻璃上有结石、节瘤,取样在侧面光微观检查,所谓的结石、节瘤就是小黑点,小黑点大小在1.0mm左右或更小。
经过分析,我们认为是锡化物类型夹杂物。
1、形成机理锡槽形成的固态缺陷几乎都与锡和锡的化合物有关,根据锡的价态组成的化合物,分别有SO、SnO、SnS等形式。
2Sn的沸点是2270?以上,在通常情况下冷凝的锡蒸汽不足以形成玻璃缺陷。
当保护气体中含有10ppm以上的氧或硫时,则容易形成易挥发的SnS或SnO (SnS挥发温度为1200?,SnO为1425?)在锡槽高温区和流槽里形成大量的SnS和SnO挥发物。
流道、流槽的密封不严及流量闸板间隙过大时,槽内的保护气体通过这些间隙外逸。
根据气体由高浓度向低浓度扩散原理,窑内气氛中O、SO和外界空气中的O便222通过闸板间隙进入流槽内和锡槽内(当熔窑冷却部窑压较大时更加严重)发生以下反应:2Sn + O ? 2SnO 2SO + H ? S + 2HO 222Sn + S ? SnS第1页SnO、SnS同时又随保护气体从闸板两侧砖缝向外逸出锡槽,遇到温度低于挥发温度时并凝结在耐火砖内表面,长时间越结越多,在气流和重力的作用下,掉落在玻璃液表面,经过流量闸板流入锡槽,夹在玻璃板里,形成小黑点夹杂物。
在锡槽内SnO、SnS同时大多聚集在冷却器上,如拉边机杆、保护气体进入量较大的区域、锡槽顶部,尤其是冷却水包和其上方的锡槽顶部等地方,凝结多了就会滴落在玻璃带表面,形成缺陷。
浮法玻璃成形缺陷及解决办法
浮法玻璃成形缺陷及解决办法熔融的玻璃经流道、流槽进入锡槽,在锡槽中成形后由过渡辊台进入退火窑,在这一过程中玻璃液(板)要与闸板、唇砖、锡液、拉边机、保护气体过渡辊台等直接接触,同时与锡槽水包、顶盖砖、底砖等密切相关,很容易形成与成形相关的各种缺陷,包括锡石、锡点(顶锡)、光畸变点(脱落物)、粘锡、虹彩、雾点、气泡等,除气泡之外的可统称为锡缺陷,这些成形缺陷严重制约着玻璃的质量等级与加工性能。
本文对其成因及防止措施作些探讨,以期有助于改善浮法玻璃质量。
1锡缺陷的成因分析1.1锡与锡槽中锡化合物的性质纯净的锡的熔点是232C,沸点为2271T,在600〜1050C的温度范围内锡具有较低的熔点和较高的沸点,较低的饱和蒸汽压,同时还具有较大的密度和容易还原的性质,以及锡液与玻璃液之间具有较大的浸润角(175°)几乎完全不浸润等性质,锡用来作为玻璃成形的良好载体。
氧化锡Sn02密度6.7〜7.0g/cm3,熔点2000C,高温时的蒸汽压非常小,不溶于锡液,正常生产时在锡槽的温度条件下为固体,往往以浮渣形式出现在低温区的液面上,通常浮渣都聚集在靠近出口端。
如果氧化严重,浮渣会延伸很长,容易形成玻璃板下表面划伤。
氧化亚锡SnO熔点为1040C,沸点为1425C,固体为蓝黑色粉末,能溶解于锡液中,SnO的分子一般为其聚合物(SnO x形式。
在中性气氛中SnO只有在1040C以上才是稳定的,1040C以下会发生分解反应。
在锡槽的还原性气氛中SnO可以存在,它往往溶解于锡液中和以蒸汽形式存在于气氛中。
硫化亚锡SnS,密度5.27g/cm3,固体为蓝色晶体,熔点为865C,沸点为1280C,具有较大的蒸汽压,800C时为81.3Pa,正常生产时,在高温区易挥发进入气氛,低温区易凝聚滴落。
1.2锡槽中的硫、氧污染循环氧的污染主要来源于气氛中的微量氧和水蒸汽以及从锡槽缝隙漏入和扩散的氧。
在锡槽工况下,它们使锡氧化成SnO和SnO2浮渣,SnO溶解于锡液和挥发进入气氛,并在顶盖、水包处冷凝、聚集而落到玻璃表面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浮法玻璃的特征缺陷产生原因与消除方法一. 概述1952年至1959年间英国皮尔金顿兄弟有限公司创造了浮法玻璃生产工艺,可以看作是平板玻璃制造中的一次革命。
开始时还只打算用它来代替当时流行的成本很高的镜面玻璃制造方法。
不久就发现,它完全可以代替全部或绝大部分各种常用的平板玻璃制造方法。
浮法是一种新型的工业制造方法,它本身已具有全自动化生产的可能条件。
我国也于1970年独自研制成功了“洛阳浮法玻璃工艺技术”。
伴随着我国经济腾飞,浮法玻璃也得到迅猛发展,截止到2005年底,我国已建成140多条浮法玻璃生产线。
浮法的原理是:冷却到1100℃的玻璃液,从玻璃熔窑冷却部经流液道进入锡槽。
锡槽用电加热保持所要求的温度。
为了防止锡的表面层氧化,在锡槽空间充满氮气加一定比例氢气的保护气体。
液态玻璃在自身重量的作用下在锡液的表面铺开。
在表面张力的作用下玻璃层的平衡厚度保持在6~7㎜左右。
当要求玻璃带的厚度小于6㎜时,可在玻璃带的两边用拉边机机头将玻璃拉伸。
要求厚度大于7㎜时拉边机头则设置成负角度,将玻璃向中部推,从而堆厚。
玻璃带离开锡槽后则由过渡辊台提升辊引入退火窑。
当生产厚度小于平衡厚度的玻璃时,玻璃带要受拉伸的作用。
与传统的引上法类似,玻璃中存在的化学不均匀或热学不均匀都会显示出特别明显的光学畸变。
玻璃板上的厚度差别,表面不平整或玻璃中存在的不均匀物,都会在透视光或反射光中出现光学的不正常现象。
浮法玻璃的像畸变可分为平行于拉制方向、横向或斜向等类。
属于第一类的有不连续线上的变形。
它是在拉制方向的线上断断续续出现的形变。
有时也在连续的线上出现或只有一段变形(脊形歪痕,英文ridge distortion),但出现在玻璃带行进的方向上。
横向形变是在横跨玻璃带的线上出现变形区。
斜向畸变(鲱鱼骨型扭曲变形,英文herringbone distortion)一般出现在玻璃带的两侧而向倾斜的方向发展。
在玻璃带的上面或下面还可能出现线道(拉引线道,英文ream)。
下面有时还出现“冷玻璃线”(粗筋,英文ripple)。
在保护气体(掺有少量氢的氮气)气氛中,虽然在操作的高温下玻璃是不会与锡发生反应的,可是如果有少量的氧或硫进入系统中就会形成SnO或SnS,一部分挥发进入锡槽的气氛中或凝结在槽顶,最后聚积成滴落在玻璃带上面使玻璃变形。
玻璃上的锡滴坑(英文drip crater)就是这样形成的缺陷,它与小滴的锡或锡的化合物有关。
在显微镜下能分辨出,周围有一道有色的反应环,玻璃表面出现轻微的变形。
浮法玻璃带下方在辊子转动时按转动周期有少量锡的化合物附着在玻璃带上形成印纹,还可能造成微裂纹,称为滚轴印纹(英文roller imprints)或锡印纹(带裂纹的锡渣斑,英文dross spots)。
由于浮法操作的化学变化可能既在玻璃带的下方出现开口气泡,又在上方出现表面气泡,玻璃内部带熔液环的气泡也会使玻璃表面轻微变形。
至于玻璃生产中因原料系统和熔化系统造成的玻璃缺陷,如与平拉法和引上法完全共同的缺陷,像澄清气泡、结石、线道等,限于篇幅,则不在本文讨论之列。
应该说,经过多年的摸索和研究,大部分浮法玻璃的特征缺陷都已在很大程度上解决了,但在浮法研制与发展过程中,有些缺陷还顽固地存在,长期困扰着从事浮法玻璃生产和研究设计的人们。
我们应该感谢浮法玻璃行业的前辈们,由于他们的不懈努力,积累了大量宝贵的经验,才使我们今天能够在面对浮法缺陷的时候能够有成熟的方法消除它,使浮法玻璃的质量日益提高。
二. 浮法玻璃成形缺陷的外观描述、产生原因与消除方法1.锡滴锡滴(英文drip crater)是指掉落到玻璃带上表面含锡的固态或液态物,通常是SnS、SnO2或Sn,也称为“掉锡点”。
掉锡点一般很小,粒径约为0.1~0.5㎜,大部分在0.3㎜左右,肉眼很难从运行的玻璃带上发现它。
切割之后玻璃板在辊道上输送时,用手触摸会有触感。
对静止的玻璃板仔细观察,可发现小黑点。
在50倍的显微镜下观察,看得非常清晰,呈现出两种形状:一种是亮晶晶的小珠,不打光是小黑珠;另一种是带网格的薄膜,网线发亮。
掉锡点虽小,但能使直径约5~10㎜的周围玻璃表面产生严重的光学扭曲,所以又称“光畸变点”,使玻璃成品成为废品。
掉锡点的形态因在锡槽内所处的温度环境而不同。
900℃温度附近区域落下,形成较圆的珠状体,并嵌入玻璃板中,嵌入深度约为其粒径的三分之一左右,冷却后手指甲抠不掉。
低于800℃部位落下,嵌入玻璃板中较浅,冷却后能用指甲抠去。
低于700℃部位落下在玻璃板上成了边缘体,酷似贴膜,无法抠下来。
产生“掉锡点”要同时具备两个因素,一是锡槽气氛中含有挥发的锡化合物,如氧化锡、硫化亚锡和锡金属的蒸汽等;其二是玻璃带尚未硬化时,其上面空间或锡槽顶盖有低温部位,使含锡及锡化合物的挥发物得以冷凝成液体或固体,然后掉落到玻璃带上表面,从而破坏玻璃的平整度。
如果锡液受氧或硫的污染严重,促进锡化合物的大量挥发,再加上锡槽顶盖在高中温区域有许多较冷的砖缝或孔洞(如顶盖支撑砖及组合砖缝、保护气体进气孔、加热元件引出孔、测温元件孔洞等)或水冷却器等,让挥发物得以大量冷凝或沉积,掉锡点就增加。
Pilkington提出了锡槽中氧污染的循环图和硫污染的循环图,并认为由于SnS的挥发量比SnO大几十倍,所以掉锡点主要是由于硫的污染而产生的。
预防掉锡点生成,首先是杜绝氧、水汽以及硫等进入锡槽。
硫的来源可能是玻璃带本身含有的硫化物,或者使用氨分解法制取氢气时因氨中含有硫,所制得的氢气中也含有硫。
降低玻璃原料中含硫原料和使用含硫分低的燃料有助于降低玻璃带本身带入锡槽的硫。
而采用电解水的方法制取氢气则可以避免保护气体带入硫。
硫的另外一个来源还有可能是在过渡辊台安装的二氧化硫装置过于靠近锡槽,导致硫扩散到锡槽内。
对于氧的污染,除了玻璃本身是一个可能的污染源之外,更主要的来源是空气漏入锡槽中。
其次,改进锡槽顶盖结构,减少甚至消除局部低温冷却部位,也很有效果。
对于使用铁—铬—铝电加热元件的锡槽,减少顶盖砖缝,把砖缝上下堵严,甚至热电偶的插入孔也应该上下堵严,就可以消除砖缝的冷凝作用;采用三相硅碳棒作加热元件的锡槽,顶盖是由小砖拼装而成,有很多孔洞缝隙,给掉锡点的冷凝提供了极多机会。
采用高压纯氮气对缝隙进行吹扫可以有效消除掉锡点。
方法是采用脉冲振动原理,使存在于锡槽顶盖或内壁上的凝结物受到震动后自动飘落沉降。
具体来说就是利用锡槽保护气体,产生脉冲振动来对锡槽进行吹扫。
其方法是,在锡槽密封的状态下,瞬间增大或减少氮气的供应量,达到一定时间后将增供或减少的氮气量突然减少或增加,如此反复而产生脉冲振动,对锡槽进行吹扫。
该方法对锡槽的吹扫时间短,吹扫效果好,对生产影响时间短,且对环境没有任何污染。
另外,对冷却器进行定期清扫也可以起到预防掉锡点生成的作用。
采取加大保护气体量、分比例供氢并在高温区将锡槽内污染的保护气体导流排空,将污染物迅速排出锡槽外,也是有效的办法。
但其前提是锡槽气密性要好。
国外有报道向锡槽内通入一定浓度的氯气,使锡槽内壁上的锡沉积物在短时间内得以清除。
氯气处理的作用方式取决于浓度和处理时间的长短,0.07m3/h的给气量足以使小的锡沉积物在与气体接触时流到一起并从顶盖滴落下来。
2.钢化彩虹浮法玻璃钢化彩虹(国外称为“起霜”,英文tempering bloom),是指浮法玻璃在进行钢化或热弯等热加工时,玻璃下表面(成形时与锡液接触的表面)呈现蓝色的荧光,在显微镜下观察是玻璃表面有微皱纹。
它是由玻璃下表面的锡造成的,是一种薄膜干涉现象。
所谓薄膜干涉现象,是指从扩散光源发出的光波,在薄膜两表面反射后相互叠加而产生的干涉现象。
例如太阳光照在肥皂膜或照在漂浮在水面上的油膜时所观察到的彩色条纹,即是薄膜的干涉。
由于微皱纹对光线干涉,反射时呈现蓝色,严重时甚至可使玻璃表面粗糙发毛而不透明。
在生产线上有时从退火窑起直到整个冷端长达几百米的玻璃带都呈现此种蓝色虹彩。
其原因是锡液受到氧的严重污染后,SnO 渗透到玻璃下表面内,形成一层很薄的薄膜。
没有钢化时,由于这层膜太薄,在自然光照射下是观察不到彩虹的。
当玻璃板在氧化气氛中再被加热时,SnO吸收氧进一步氧化成SnO2,体积膨胀,使玻璃表面形成皱纹。
反应过程如下:在540~750℃之间,在中性气氛下,SnO发生岐化反应,反应较完全:2SnO=SnO2+Sn在含氧气氛中:SnO+ O2=SnO2由于SnO吸收了空气中的O2,使得局部体积膨胀,薄膜表面产生了折皱,膜厚增加,因而产生干涉,能观察到彩虹。
所以形成皱纹的条件有三个,其一是表面渗入过量的SnO,其二是在氧化气氛中热加工,第三是热处理温度达到玻璃软化的温度。
如果钢化时严格控制温度使之接近软化温度但玻璃表面未软化,也不出现皱纹。
有试验表明含SnO很少的浮法玻璃,即使加热到软化温度也不出现皱纹。
加强锡槽气密性和提高保护气体纯度后,可以保持锡中氧的浓度在一个可以接受的数值。
锡的氧化物在玻璃中一般都以非晶态的形式存在。
钢化彩虹的形成及其严重程度与玻璃表面的渗锡量有直接的关系。
研究表明,浮法玻璃下表面锡的扩散深度可达12~36μm。
随深度增加,渗锡量逐渐变小。
我国现阶段浮法玻璃下表面的渗锡量大约为60~95μg/㎝2,高质量的合资生产线玻璃下表面渗锡量仅为5~6μg/㎝2。
相应地,钢化彩虹出现的程度要比国内轻微或者根本没有。
要避免玻璃出现热加工彩虹,首先要保证保护气体的供应纯度以及加强锡槽密封,先做到锡槽出口段液面没有SnO2浮渣。
另外国外有专利报道用石墨或无定形的碳与锡液和保护气体接触能使保护气体保持还原状态,从而最大限度减少锡液上锡的氧化物含量,可以防止锡被氧化及恢复保护气体的保护性能,因为碳可以先于锡液被氧化,成为一氧化碳,从而不会形成SnO,也就使与锡液接触的玻璃表面不呈现虹彩。
3.沾锡沾锡(英文tin pick-up),浮法玻璃下表面附着肉眼可见的金属锡,小的直径不足1㎜,大的可成线状、片状甚至带状。
它们与玻璃附着的界面呈现银白色金属光泽,像镜子一样,严重时每平方米玻璃表面锡可以以克计。
虽然这些锡可以剥去,但玻璃表面往往残留有轻微痕迹,而且不胜其烦。
沾锡的玻璃属于废品。
沾锡的机理目前尚不清楚。
从原理上说,金属和玻璃在结构键上不同,二者是互不浸润的。
对易于极化的金属,必须在二者的接触界面处有过渡层,即向玻璃一侧的金属原子呈现非金属行为而与玻璃粘附,向金属一侧的金属原子仍呈金属行为,而与金属结合,使金属得以附着在玻璃表面。
浮法玻璃在成形过程中所渗入下表面的SnO,即引起钢化彩虹的SnO,应不是导致沾锡的过渡层。
因为所有的浮法玻璃下表面内都含有SnO,但不是所有下表面都沾有锡。
实践证实,沾锡是在锡槽出口处才发生的,工厂解决沾锡的办法也是增加玻璃带抬起处的保护气体量,以及掏尽SnO2浮渣。