国内外数控技术发展(1).doc

合集下载

数控发展趋势

数控发展趋势

数控发展趋势一数控技术简介数控机床是以数控系统为代表的新技术对传统机械制造产业的渗透形成的机电一体化产品;其技术范围覆盖很多领域:1机械制造技术;2信息处理、加工、传输技术:3自动控制技术;4伺服驱动技术;5传感器技术:6软件技术等;计算机对传统机械制造产业的渗透,完全改变了制造业;制造业不但成为工业化的象征,而且由于信息技术的渗透,使制造业犹如朝阳产业具有广阔的发展天地;数控技术的应用不但给传统制造业带来了性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业IT、汽车、轻工、医疗等的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势;从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面;数控机床是以数控系统为代表的新技术对传统机械制造产业的渗透形成的机电一体化产品;其技术范围覆盖很多领域:1机械制造技术;2信息处理、加工、传输技术:3自动控制技术;4伺服驱动技术;5传感器技术:6软件技术等;计算机对传统机械制造产业的渗透,完全改变了制造业;制造业不但成为工业化的象征,而且由于信息技术的渗透,使制造业犹如朝阳产业具有广阔的发展天地;二数控技术国内外现状1 开放结构的发展数控技术从发明到现在,已有近50年的历史;按照电子器件的发展可分为五个发展阶段:电子管数控,晶体管数控,中小规模IC数控,小型计算机数控,微处理器数控;从体系结构的发展,可分为以硬件及连线组成的硬数控系统、计算机硬件及软件组成的CNC数控系统,后者也称为软数控系统:从伺服及控制的方式可分为步进电机驱动的开环系统和伺服电机驱动的闭环系统;数控系统装备的机床大大提高了加工精度、速度和效率;人类发明了机器,延长和扩展人的手脚功能:当出现数控系统以后,制造厂家逐渐希望数控系统能部分代替机床设计师和操作者的大脑,具有一定的智能,能把特殊的加工工艺、管理经验和操作技能放进数控系统,同时也希望系统具有图形交互、诊断功能等;首先就要求数控系统具有友好的人机界面和开发平台,通过这个界面和平台开放而自由地执行和表达自己的思路;这就产生了开放结构的数控系统;机床制造商可以在该开放系统的平台上增加一定的硬件和软件构成自己的系统;目前,开放系统有两种基本结构:1CNC+PC主板:把一块PC主板插入传统的CNC机器中,PC板主要运行实时控制,CNC主要运行以坐标轴运动为主的实时控制;2PC+运动控制板:把运动控制板插入PC机的标准插槽中作实时控制用,而PC机主要作非实时控制;开放结构在90年代初形成;对于许多熟悉计算机应用的系统厂家,往往采用第2方案;但目前主流数控系统生产厂家认为数控系统最主要的性能是可靠性,象PC机存在的死机现象是不允许的;而系统功能首先追求的仍然是高精高速的加工;加上这些厂家长期已经生产大量的数控系统:体系结构的变化会对他们原系统的维修服务和可靠性产生不良的影响;因此不把开放结构作为主要的产品,仍然大量生产原结构的数控系统;为了增加开放性,主流数控系统生产厂家往往采用1方案,即在不变化原系统基本结构的基础上增加一块PC板,提供键盘使用户能把PC和CNC联系在一起,大大提高了人机界面的功能比较典型的如FANUC的150/160/180/210系统;有些厂家也把这种装置称为融合系统fusionsystem;由于它工作可靠,界面开放,越来越受到机床制造商的欢迎;2 软件伺服驱动技术伺服技术是数控系统的重要组成部分;广义上说,采用计算机控制,控制算法采用软件的伺服装置称为“软件伺服”;它有以下优点:1无温漂,稳定性好;2基于数值计算,精度高;3通过参数对设定,调整减少;4容易做成ASIC电路;70年代,美国GATTYS公司发明了直流力矩伺服电机,从此开始大量采用直流电机驱动;开环的系统逐渐由闭环的系统取代;但直流电机存在以下缺点:1电动机容量、最高转速、环境条件受到限制;2换向器、电刷维护不方便;交流异步电机虽然价格便宜、结构简单,但早期由於控制性能差,所以很长时间没有在数控系统上得到应用;随着电力电子技术的发展,1971年,德国西门子的发明了交流异步机的矢量控制法;1980年,德国人Leonhard为首的研究小组在应用微理器的矢量控制的研究中取得进展,使矢量控制实用化;从70年代末,数控机床逐渐采用异步电机为主轴的驱动电机;如果把直流电机进行“里翻外”的处理,即把电驱绕组装在定子,转子为永磁部分,由转子轴上的编码器测出磁极位置,这就构成了永磁无刷电机;这种电机具有良好的伺服性能;从80年代开始,逐渐应用在数控系统的进给驱动装置上;为了实现更高的加工精度和速度,90年代,许多公司又研制了直线电机;它由两个非接触元件组成,即磁板和线卷滑座:电磁力直接作用于移动的元件而无需机械连接,没有机械滞后或螺距周期误差,精度完全依赖于直线反馈系统和分级的支承,由全数字伺服驱动,刚性高,频响好,因而可获得高速度;但由于它的推力还不够大,发热,漏磁及造价也影响了它的广泛应用;对现代数控系统,伺服技术取得的最大突破可以归结为:交流驱动取代直流驱动、数字控制取代模拟控制、或者把它称为软件控制取代硬件控制;这两种突破的结果产生了交流数字驱动系统,应用在数控机床的伺服进给和主轴装置;由于电力电子技术及控制理论、微处理器等微电子技术的快速发展,软件运算及处理能力的提高,特别是DSP的应用,使系统的计算速度大大提高,采样时间大大减少;这些技术的突破,使伺服系统性能改善、可靠性提高、调试方便、柔性增强;大大推动了高精高速加工技术的发展;3 CNC系统的连网数控系统从控制单台机床到控制多台机床的分级式控制需要网络进行通信;网络的主要任务是进行通信,共享信息;这种通信通常分三级:1工厂管理级;一般由以太网组成;2车间单元控制级;一般由DNC功能进行控制;通过DNC功能形成网络可以实现对零件程序的上传或下传:读、写CNC的数据:PLC数据的传送;存贮器操作控制;系统状态采集和远程控制等;更高档次的DNC还可以对CAD/CAM/CAPP以及CNC的程序进行传送和分级管理;CNC与通信网络联系在一起还可以传递维修数据,使用户与NC生产厂直接通信:进而,把制造厂家联系一起,构成虚拟制造网络;3现场设备级;现场级与车间单元控制级及信息集成系统主要完成底层设备单机及I/0控制、连线控制、通信连网、在线设备状态监测及现场设备生产、运行数据的采集、存储、统计等功能,保证现场设备高质量完成生产任务,并将现场设备生产运行数据信息传送到工厂管理层,向工厂级提供数据;同时也可接受工厂管理层下达的生产管理及调度命令并执行之;因此,现场级与车间级是实现工厂自动化及CIMS系统的基础;传统的现场级大多是基于PLC的分布式系统;其主要特点是现场层设备与控制器之间的连接是一对一,即一个I/0点对设备的一个测控点;所谓I/0接线方式为传递4-20ma模拟量信息或24VDC开关信息;这种系统的缺点是:信息集成能力不强、系统不开放、可集成性差、专业性不强、可靠性不易保证、可维护性不高;现场总线是以单个分散的、数字化、智能化的测量和控制设备作为网络节点,用总线相连接,实现相互交换信息,共同完成自动控制功能的网络系统与控制系统;因此,现场总线是面向:工厂底层自动化及信息集成的数字网络技术;现场总线技术的主要特点为:它是数控系统通信向现场级的延伸、数字化通信取代4-20ma模拟信号、应用现场总线技术,要求现场设备智能化可编程或可参数化:它集现场设备的远程控制、参数化及故障诊断为一体:由于现场总线具有开放性、互操作性、互换性、可集成性,因此是实现数控系统设备层信息集成的关键技术;它对提高生产效率、降低生产成本非常重要;目前在工业上采用的现场总线有PROFIBUS-DP,SERCOS,JPCN-1,Deviconet,CAN,hterbus—S,Marco等;有的公司还有自己的总线,比如FANUC的FSSB,I/OLINK相当于JPCN—1,YASKAWA的MOTIONLINK等;目前比较活跃的是Prof主bus-DP,为了允许更快的数据传送速度,它由0SI的七层结构省去3-7层构成;西门子最新推出802D的伺服控制就是由PROFIBOUS-DP控制的;4功能不断发展和扩大WIDTH=200 align=right BBCOLOR=e5ebba BORDERCOLIRIGHT=006600BORDER=1>快速移动速度m/min分辨率μm2401100101NC技术经过50年的发展,已经成为制造技术发展的基础;这里以FANUC最先进的CNC控制系统15i/150i为例说明系统功能的发展;这是一台具有开放性,4通道、最多控制轴数为24轴、最多联动轴数为24轴、最多可控制4个主轴的CNC系统;其快速移动速度与分辨率关系如右表;它的技术特点反映了现代NC发展的特点:开放性:系统可通过光纤与PC机连接,采用Window兼容软件和开发环境;功能以高速、超精为核心,并具有智能控制;特别适合于加工航空机械零件,汽车及家电的高精零件,各种模具和复杂的需5轴加工的零件;15i/150主具有高精纳米插补功能;即使系统的设定编程单位为1μm,通过纳米插补也可提供数字伺服以1nm为单位的指令,平滑了机床的移动量,提高了加工表面光洁度,大大减少加工表面的误差;当分辨率为时,快速可达240m/min速度;系统还具有高速高精加工的智能控制功能:1预计算出多程序段刀具轨迹,并进行预处理;2智能控制,计及机床的机械性能,可按最佳的进率和最大的允许加速度工作,使机床的功能得到最大的发挥;以便降低加工时间,提高效率,同时提高加工精度;3系统可在分辨率为1nm时工作,适用于控制超精机械;高级复杂的功能:15i/150i可进行各种数学的插补,如直线、圆弧、螺旋线、渐开线、螺旋渐开线、样条等插补;也可以进行NURBS非均匀有理B样条插补;采用NURBS插补可以人人减少NC程序的数据输入量,减少加工时间,特别适用模具加工;NURBS插补不需任何硬件;强力的联网通信功能;适应工厂自动化需要,支持标准FA网络及DNC的连接;1工厂干线或控制层通信网络:由PC机通过以太网控制多台15i/150i组成的加工单元,可以传送数据、参数等;2设备层通信网络:15i/150i采用I/0LINK与日本标准JPCN-1相对应的一种现场总线;3通过RS-485接口传送I/0信号:或且也可采用PRELLBUS—DP符合欧洲1标准EN50170以12Mbps进行高速通信;具有高速度内装的PMC有的厂商称为PLC,以减少加工的循环的时间:1梯形图和顺序程序由专用的PMC处理器控制,这种结构可进行快速大规模顺序控制;2基本PMC指令执行时间为:;最大步数:32,000步;3可以用C语言编程;32位的C语言处理器可作为实时多任务运行;它与梯形图计算的PMC处理器并行工作;4可在PC机上进行程序开发;先进的操作:性和维修性;(1)具有触摸面板,容易操作;2可采用存储卡来改变输入输出三数控发展趋势1、高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体;高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力;为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会CIRP将其确定为21世纪的中心研究方向之一;在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工;近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联系方式拼装,使构件的强度、刚度和可靠性得到提高;这些都对加工装备提出了高速、高精和高柔性的要求;从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右;目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床;美国CINCINNATI公司的HYPERMACH机床速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60 000r/min;加工薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12000r/mm和1g;在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~μm,并且超精密加工精度已开始进入纳米级μm;在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h 以上,表现出非常高的可靠性;为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大;2、轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高;一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢件时,5轴联动加工可比3轴联动加工发挥更高的效益;但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出很多,加之编程技术难度较大,制约了5轴联动机床的发展;当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头构造大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小;因此促进了复合主轴头类5轴联动机床和复合加工机床含5面加工机床的发展在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工;德国DMG公司展出DMUVOUTION系列加工中心,可5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制;3、智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等;为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题;目前许多国家对开放式数控系统进行研究,如美国的NGCThe Next Generation Work-Station/Machine Control、欧共体的OSACAOpen System Architecture for Control within Automation Systems、日本的OSECOpen System Environment for Controller,中国的ONCOpen Numerical Control System等;数控系统开放化已经成为数控系统的未来之路;所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象数控功能,形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品;目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心;网络化数控装备是近两年国际着名机床博览会的一个新亮点;数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元;国内外一些着名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山骑马扎克MAZAK公司展出的“CYBERPRODUCTION Center”智能生产控制中心,简称CPC;日本大尉Okuma机床公司展出“IT plaza”信息技术广场,简称IT广场;德国西门子Siemens公司展出的Open Manufacturing Environment开放制造环境,简称OME等,反映了数控机床加工向网络化方向发展的趋势;4、重视新技术标准、规范的建立如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范OMAC、OSACA、OSEC的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临;我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定;数控标准是制造业信息化发展的一种趋势;数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何how加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要;为此,国际上正在研究和制定一种新的CNC系统标准ISO14649STEP-NC,其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化;STEP-NC的出现可能是数控技术领域的一次,对于数控技术的发展乃至整个制造业,将产生深远的影响;首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上;而在新标准下,NC程序可以分散在互联网上,这正是数控技术开放式、网络化发展的方向;其次,STEP-NC数控系统还可大大减少加工图纸约75%、加工程序编制时间约35%和加工时间约50%;目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划;参加这项计划的有来自欧洲和日本的20个CAD/CAM/CAPP/CNC用户、厂商和学术机构;美国的STEP Tools公司是全球范围内制造业数据交换软件的开发者,他已经开发了用作数控机床加工信息交换的超级模型Super Model,其目标是用统一的规范描述所有加工过程;目前这种新的数据交换格式已经在配备了SIEMENS、FIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证;。

国内外数控机床发展现状分析

国内外数控机床发展现状分析

国内外数控机床发展现状分析摘要:简述了国内数控机床近年来的发展。

近年国内数控机床发展迅速,产量不断增加,但高端产品数量太少,无法与国外数控机床竞争。

而国外数控机床迅猛发展,尤其是西门子和发那科则占据了绝大部分世界市场。

我国数控机床产业也在迅速发展,与国际先进水平之间的差距是有缩小的趋势的,但是还存在诸多问题有待解决。

当今世界,工业发达国家对机床工业高度重视,竟相发展机电一体化、高精、高效、高自动化先进机床,以加速工业和国民经济的发展。

如今国内数控机床发展迅速,年产量逐年攀升,但所产机床精度等方面达不到要求。

长期以来,欧、美、亚在国际市场上相互展开激烈竞争,已形成一条无形战线,特别是随微电子、计算机技术的进步,数控机床在20世纪80年代以后加速发展,各方用户提出更多需求,早已成为四大国际机床展上各国机床制造商竞相展示先进技术、争夺用户、扩大市场的焦点。

虽然大力发展装备制造业已成为全社会的共识,但国内绝大多数重要机械制造装备的数字化控制系统却不是中国造。

尤其是关系国家战略地位和体现国家综合国力水平的高档数控机床,它的“大脑”和“心脏”却要大部分从国外引进。

专家呼吁,以数控机床为代表的“中国制造”不能没有创造,开发自主知识产权的数控系统迫在眉睫。

一、国内数控机床发展现状1.1 国内数控机床近几年发展我国的数控机床无论从产品种类、技术水平、质量和产量上都取得了很大的发展,在一些关键技术方面也取得了重大突破。

据统计,目前我国可供市场的数控机床有1500种,几乎覆盖了整个金属切削机床的品种类别和主要的锻压机械。

这标志着国内数控机床已进入快速发展的时期。

近年来我国机床行业不断承担为国家重点工程和国防军工建设提供高水平数控设备的任务。

如国产XNZD2415型数控龙门混联机床充分吸取并联机床的配置灵活与多样性和传统机床加工范围大的优点,通过两自由度平行四边形并联机构形成基础龙门,在并联平台上附加两自由度串联结构的A、C轴摆角铣头,配以工作台的纵向移动,可完成五自由度的运动。

国内外数控系统现状及发展趋势

国内外数控系统现状及发展趋势

国内外数控系统现状及发展趋势
数控系统是一种通过计算机控制机床运动的自动控制系统,其发展经历了几个阶段。

目前,国内外数控系统的最新发展趋势包括:
1. 智能化:随着人工智能技术的发展,数控系统也在向智能化方向发展。

智能化包括自适应控制、智能优化算法、故障诊断等方面。

2. 高速化:数控系统的高速化主要表现在快速的加工速度和高精度。

目前,高速、高精度的五轴联动数控系统已经成为主流。

3. 大数据:数控系统也需要应用大数据技术进行数据分析和处理,以实现更好的加工效率和质量控制。

4. 可视化:数控系统的可视化技术已经越来越成熟,这使得操作人员可以更直观、更方便地进行操作和控制。

5. 云计算:通过云计算技术,可以将数控系统的数据存储、计算和处理移到云端,实现远程监控和管理。

总之,随着数控系统技术的不断发展,其应用领域也在不断拓展,未来数控系统将成为工业自动化和智能制造的核心技术之一。

- 1 -。

数控发展史

数控发展史

数控系统发展简史及趋势1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。

它与人类在农业、工业社会中创造的那些只是增强体力劳动的工具相比,起了质的飞跃,为人类进入信息社会奠定了基础。

6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床。

从此,传统机床产生了质的变化。

近半个世纪以来,数控系统经历了两个阶段和六代的发展。

1.1、数控(NC)阶段(1952~1970年)早期计算机的运算速度低,对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。

人们不得不采用数字逻辑电路"搭"成一台机床专用计算机作为数控系统,被称为硬件连接数控(HARD-WIRED NC),简称为数控(NC)。

随着元器件的发展,这个阶段历经了三代,即1952年的第一代--电子管;1959年的第二代--晶体管;1965年的第三代--小规模集成电路。

1.2、计算机数控(CNC)阶段(1970年~现在)到1970年,通用小型计算机业已出现并成批生产。

于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(CNC)阶段(把计算机前面应有的"通用"两个字省略了)。

到1971年,美国INTEL公司在世界上第一次将计算机的两个最核心的部件--运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微处理器(MICROPROCESSOR),又可称为中央处理单元(简称CPU)。

到1974年微处理器被应用于数控系统。

这是因为小型计算机功能太强,控制一台机床能力有富裕(故当时曾用于控制多台机床,称之为群控),不如采用微处理器经济合理。

而且当时的小型机可靠性也不理想。

早期的微处理器速度和功能虽还不够高,但可以通过多处理器结构来解决。

由于微处理器是通用计算机的核心部件,故仍称为计算机数控。

到了1990年,PC机(个人计算机,国内习惯称微机)的性能已发展到很高的阶段,可以满足作为数控系统核心部件的要求。

浅谈数控技术的发展现状及趋势(1)

浅谈数控技术的发展现状及趋势(1)

浅谈数控技术的发展现状及趋势摘要:随着计算机业的快速发展,数控技术也发生了根本性的变革,是近年来应用领域中发展十分迅速的一项综合性的高新技术,文章结合国内外情况,分析了数控技术的发展趋势。

数控技术是一门集计算机技术、自动化控制技术、测量技术、现代机械制造技术、微电子技术、信息处理技术等多学科交叉的综合技术,是近年来应用领域中发展十分迅速的一项综合性的高新技术。

它是为适应高精度、高速度、复杂零件的加工而出现的,是实现自动化、数字化、柔性化、信息化、集成化、网络化的基础,是现代机床装备的灵魂和核心,有着广泛的应用领域和广阔的应用前景。

关键字:数控技术现状趋势一、国内外数控技术的发展现状随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。

在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。

目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。

在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理。

长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机床运动控制器。

加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。

CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。

在复杂环境以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。

数控技术研究现状及发展趋势

数控技术研究现状及发展趋势
0O 0/ i 果 是计 算机 的发 明 与应 用 . 算 机 及控 4 0 rm n 以 上 快 速 移 动 速 度 由 过 去 计
1 . 数控 机床 的开 放性和 联 网管理 5 数 控 机 床 的 开 放 性 和 联 网 管理 已 是使 用 数 控 机 床 的基 本要 求 . 它不 仅 是 提 高数 控 机 床开 动 率 、 生产 率 的必 要 手 段 . 且 是 企 业 合 理 化 、 佳 化 利 用 这 而 最 些 制造 手 段 的 方法 。因此 . 计算 机 集 成 制 造 、 络 制 造 、 地 诊 断 、 拟制 造 、 网 异 虚 异 行 工 程 等 等 各 种 新 技 术 都 在 数 控 机 床 基础 上 发 展 起来 .这必 然 成 为 2 1世
设 备家 族 .每年全 世 界 的产量 有 1 ~ 0 用 内装 式 主轴 电机 0 2
确 提 出 了在 军 工 企 业 中投 入 68亿 元 . . 用 于 对 12 18万 台 机 床 的 数 控 化 改 ቤተ መጻሕፍቲ ባይዱ— .
造。
微 米 级机 床 达 到 00 0 mm左 右 .纳 米 . 5 0 为 l m( .0 0 1 n 00 0 0 mm) 数 控 系 统 和 机 的 床 已有 产 品 数控 中两 轴 以上 插补 技术 大 大 提高 . 米 级插 补 使 两轴 联 动 出 的 纳
化 水平 和 国际竞 争 能力 的重要 性 . 并提 出 了发 展 我 国数控 技 术及 装备 的 几点 看 法。
关 键 词 : 控 技 术 ; 状 ; 势 数 现 趋 中 图 分 类 号 :0 29 F 6 . 文献 标识 码 : A
1 国 内外 数 控 技 术 发 展 状 况
40 0/ i 0 rr n提 高 到 80 0 1 0 rm n a 0 ~ 00 O/ i . 铣 床 和 加 工 中 心 主 轴 转 速 由40 0 8 0 0 0 0

1.1 数控技术的发展

1.1 数控技术的发展

数控技术的发展一、数控技术的基本概念自从上20世纪中叶数控技术创立以来,它给机械制造业带来了革命性的变化,数控技术是提高产品质量、提高劳动生产率必不可少的物质手段;是国家的战略技术,基于它的相关产业是体现国家综合国力水平的重要基础性产业。

机床数控技术:“用数字化信息对机床运动及其加工过程进行控制的一种方法”。

数控机床是采用了数控技术的机床。

数控机床是一个装有程序控制系统的机床,该系统能够逻辑地处理具有使用代码,或其它符号编码指令规定的程序。

二、数控技术的产生1.世界上第一台数控机床世界上第一台数控机床于1952年诞生,美国麻省理工学院为一台立式铣床装上了一套采用电子管元件的数控装置,成功地实现了同时控制三轴的运动,而这台机床则被认为是世界上第一台数控机床。

2.数控技术发展的几个重要阶段第一代数控(1952-1959年):采用电子管构成的硬件数控系统;第二代数控(1959-1965年):采用晶体管电路为主的硬件数控系统;第三代数控(1965年开始):采用小、中规模集成电路的硬件数控系统;第四代数控(1970年开始):采用大规模集成电路的小型通用电子计算机数控系统;第五代数控(1974年开始):用微型计算机控制的系统;第六代数控(1990年开始):采用工控PC机的通用CNC系统。

三、数控技术的发展趋势数控技术不仅给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业的发展起着越来越重要的作用。

尽管十多年前就出现了高精度、高速度的趋势,但是科学技术的发展是没有止境的,高精度、高速度的内涵也在不断变化,目前正在向着精度和速度的极限发展。

从目前世界上数控技术发展的趋势来看,主要有如下几个方面:1.机床的高速化、精密化、智能化、微型化发展随着汽车、航空航天等工业轻合金材料的广泛应用,高速加工已成为制造技术的重要发展趋势。

高速加工具有缩短加工时间、提高加工精度和表面质量等优点,在模具制造等领域的应用也日益广泛。

数控机床的现状和发展趋势

数控机床的现状和发展趋势

我国数控机床的现状和发展数控机床是数字控制机床是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。

数控机床具有广泛的适应性,加工对象改变时只需要改变输入的程序指令;加工性能比一般自动机床高,可以精确加工复杂型面,因而适合于加工中小批量、改型频繁、精度要求高、形状又较复杂的工件,并能获得良好的经济效果。

因而了解和提升数控机床对我国的制造业的发展至关重要。

一.国内外数控机床的发展(1)我国数控机床的发展我国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。

建国初期在1958—1979年间为第一阶段,第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,主要存在的问题是盲目性大,缺乏实事求是的科学精神。

改革开放,从1979年至今为第二阶段。

在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国家(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。

在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、多轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。

至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。

(2)国外数控技术的发展数控机床的起源1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。

数控技术的发展及国内外现状

数控技术的发展及国内外现状
的优 势 。
4总 结
Байду номын сангаас
1 9 4 8 年 ,美同帕森斯公 司接受 美国空军 委托 , 研制直升飞机螺旋 桨叶片轮廓检验用样板 的加工设备 。由于样板形状复杂 多样 ,精度要 求 高,一般加T设备难 以适应 ,于是提出采用数字 脉冲控制机床 的设 想 。1 9 4 9 年 ,该公司与美 国麻省理工学 院( M I T ) 开始共 同研 究 ,并于 1 9 5 2 年试制成功第一 台三坐标数控铣床 ,当时的数控装置采用 电子管 元 件。1 9 5 9 年 ,数控装置采用 了晶体管元件和印刷 电路板 ,出现带 自 动换刀装置的数控机床 , 称为加工中心( M C M a c h i n i n g C e n t e r ) , 使数控 装 置进入 了第二代 。6 0 年代末 ,先后 出现了南一 台计算机直接控制多 台机床的直接数控系统( 简称 D N C 1 ,又称群控系统 ;采用小型计算机控 制的计算机数控 系统( 简称 C N C ) ,使数控装置进入 了以小型计算机化为 特征的第 四代。 1 9 7 4 年 ,研制成功使用微处理器和半导体存贮 器的微 型计算机数 控装置( 简称 M N C 1 ,这是第五代数控系统。2 0 世纪8 O 年代初 ,随着计算 机软 、硬件技 术的发展 ,出现 了能进行人机对话 式 自动编制程序 的数 控装置 ;数控装 置愈趋小 型化 ,可 以直接安装在机床上 ;数控机床 的 自动化程度进一步提 高,具有 自 动监控刀具破损和 自动检测工件 等功 能。2 o t / t 纪9 0 年代后期 ,出现了P C + C N C 智能数控系统,即以P C 机为控 制系统 的硬件部分 , 在P c 机上安装N C 软件 系统 ,此种方式系统维护方 便, 易于实现网络化制造。

数控技术国内外现状

数控技术国内外现状

数控技术国内外现状数控技术是制造业的重要组成部分之一,可以替代传统的手工操作,提高生产效率和产品质量,从而满足广大消费者对高品质、高精度、高效率的需求。

本文将探讨数控技术在国内外的现状,并对未来的发展趋势进行预测。

一、国外现状在欧美发达国家,数控技术的应用已经非常广泛,尤其是在汽车、航空航天、船舶、能源等行业的制造中,数控机床已经成为不可或缺的设备。

与此同时,随着工业机器人的进一步发展和普及,数控技术已经被引入到了更广泛的领域中,包括精密电子、医疗器械、生命科学等。

在海外市场上,德国、日本、美国等国家拥有数控技术领域的发达产业链和成熟的技术体系,占据了世界市场的主导地位。

二、国内现状中国数控技术行业也在近年来得到了长足的发展,尤其是在高速铁路、航空航天等领域。

可以说,中国的制造业已经完成了从简单的代工加工到独立开发生产的重要转型。

同时,政府也鼓励了国内企业的创新能力和自主研发能力,通过资金补贴、税收优惠等政策,使得数控技术产业得到了快速发展。

然而,尽管中国的数控机床市场正在快速蓬勃发展,但与发达国家的数控技术水平相比,依然存在很大差距。

中国的数控技术和生产装备的精度和质量控制还需要提高,同时,与国际先进水平相比,中国数控机床的结构和控制系统设计也需要进一步提高。

在这种情况下,尤其需要强调自主研发能力,提高对关键核心技术的掌握,才能够向世界领先水平挺进。

三、未来发展趋势从国内外数控技术产业的现状来看,未来几年数控技术的应用领域将会进一步扩大,而且在自主研发和技术能力提升方面也会得到更大的关注。

随着人工智能、云计算等新技术的不断成熟,数控技术产业链也将发生重大改变,控制系统将更加智能化、灵活化,并且更加集成化。

同时,新材料、新加工方式等新技术的应用将推动数控技术产业更加多样化和创新化。

在国内市场方面,数控市场需求也将会进一步提升,在机械加工、汽车、电子、航空航天、高铁、半导体等产业下的需求对数控设备和技术的发展都具有十分重要的推动作用。

数控技术的发展

数控技术的发展

数控技术的发展数控机床最早产生于美国,是军备竞赛的产物.是为解决航空与航天技术方面的大型和复杂零件的单件、小批量生产而发展起来的。

1952年美国PAR-SONS公司与麻省理工学院(MIT)合作试制了世界上第一台三坐标数控立式铣床。

此后数控系统经历了两个阶段和六代产品的发展。

这六代是指电子管数控系统、晶体管数控系统、集成电路数控系统、型计算机数控系统、微处理器数控系统和基于工业PC机的通用CNC系统。

前三代为第一阶段,数控系统主要是由硬件联结构成,称为硬件数控;后三代称为计算机数控,称为CNC系统,其功能主要由软件完成,又称为软件数控。

我国于1958年由清华大学和北京机床研究所研制了第一台电子管控制的数控机床,同样经历了六代发展历史。

在由20世纪50年代初到70年代末近30年当中,数控机床尽管经历了五代历史,但由于其价格昂贵、加工费用高、故障率高、应用技术复杂和各项配套措施尚在发展中等等,其实际应用的普及率并不高。

近20年来,随着微电子技术及相关技术的发展,特别是微处理器技术的应用,使数控机床的性能价格比有了极大的提高,实际应用普及率越来越高,使得数控机床已成为现代机械制造技术的基础。

随着科学技术的发展,世界先进制造技术的兴起和不断成熟,对数控技术提出了更高的要求。

数控系统的主要发展目标为:进一步降低价格,增加可黑性,拓宽功能,提高操作宜人性,提高集成性,提高系统柔性和开放性。

出了数控系统的主要发展趋势。

(1)数控系统新一代数控系统应是开放式的数控系统,要求应用标准组件(如PC卡、标准元器件、标准驱动系统和数据库等),应用开放的模块化结构来构成系统的硬、软件使系统便于组合、扩展和升级,并且应使系统硬件和软件相分离,使系统能提{柔性的、易适应的控制功能.并易为用户所掌握。

根据这种要求,目前趋向于采用基于PC机的硬件构成形式通过这种形式使应用PC软件(如MSWin-dows),PC工具和PC硬件成为可能,以便于提高功能、降低价格。

国内外数控技术的发展现状与趋势

国内外数控技术的发展现状与趋势

国内外数控技术的发展现状与趋势一、本文概述数控技术,即数控加工编程技术,是现代制造业的核心技术之一,它涉及到计算机编程、机械设计、自动控制等多个领域。

随着科技的飞速发展,数控技术在国内外都取得了显著的进步,广泛应用于航空航天、汽车制造、模具加工等各个行业。

本文将对国内外数控技术的发展现状与趋势进行深入探讨,以期了解数控技术的最新发展动态,为相关领域的从业者提供有益的参考。

本文将回顾数控技术的起源与发展历程,从最初的简单数控系统到现在的高度智能化、网络化数控系统,阐述数控技术在国内外的发展历程和主要成就。

接着,本文将重点分析国内外数控技术的现状,包括数控系统、数控机床、数控编程软件等方面的发展情况,以及数控技术在各个行业的应用现状。

同时,本文还将探讨数控技术发展中的关键问题,如精度与效率、智能化与自动化、开放性与标准化等。

在趋势分析方面,本文将关注数控技术的前沿动态,探讨数控技术的未来发展方向。

随着、大数据、云计算等新一代信息技术的快速发展,数控技术将如何实现与这些技术的深度融合,提高加工精度、效率和智能化水平,将是本文关注的重点。

本文还将分析数控技术在绿色制造、智能制造等领域的应用前景,以及国内外数控技术市场竞争格局的变化趋势。

本文旨在全面梳理国内外数控技术的发展现状与趋势,为相关领域的从业者提供有价值的参考信息,推动数控技术的持续创新与发展。

二、数控技术的历史回顾数控技术,即数字控制技术,其发展历程可以追溯到20世纪40年代末。

初期的数控技术主要应用于军事工业,例如美国为了制造飞机叶片而研发的数控铣床。

随着计算机技术的飞速发展和普及,数控技术也逐步实现了电子化、信息化和智能化。

20世纪50年代,数控技术开始进入商业应用领域,主要用于机床加工和自动化生产线。

此时,数控系统多为硬件连线式,编程复杂,灵活性差。

进入60年代,随着计算机软件技术的发展,数控系统开始采用软件编程,大大提高了编程的灵活性和效率。

浅论数控技术的发展趋势

浅论数控技术的发展趋势

浅论数控技术的发展趋势数控技术是用数字化信号对设备运行及其加工过程进行控制的一种自动化技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域,包括机械制造技术;信息处理、加工、传输技术;自动控制技术;伺服驱动技术;传感器技术;软件技术等。

1.数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。

从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面。

1.1高速、高效、高精、高可靠性趋势明显效率、质量是先进制造技术的主体。

高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。

为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为2l世纪的中心研究方向之一。

1.2轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光浩度高,而且效率也大幅度提高。

一般认为,l台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动mT可比3轴、联动加工发挥更高的效益。

1.3机床产品的模块化发展更加突出为满足用户日益增多的个性化要求,各制造厂把产品的模块化设计作为一个有效措施。

在EM02005展会上的许多产品都呈现模块化档势。

机床的许多功能部件也已经标准化,甚至Magerle公司的磨削中心也是模块结构,可按具体工件的磨削工艺过程扩装相应部件,准确重构一台适用的磨床。

机床的模块化昭示着可重构生产系统有了坚实基础,必将得到快速发展。

1.4生产系统智能化是制造技术的发展方向由于市场多变和用户个性化要求增多,很多工业产品都是多品种、小批量生产模式,即使是大批量和平的汽车工业,也要经常变换型号。

数控技术的现状及发展趋势

数控技术的现状及发展趋势

数控技术的现状及发展趋势作者:李袭桐摘要:数控技术主要是通过计算机以及数字化技术实现机床运转,达到加工的智能化以及自动化的目的。

这种技术本身是一种集多种功能于一体的高新技术,具备高精度、柔性自动化等优势。

该技术主要应用于数控机床领域中,能够加工出复杂的、精密的零件。

因此,数控技术被视为先进制造技术的研发基础,本文就当前数控技术的发展现状以及其未来的发展趋势进行综合性分析。

关键词:数控技术;现状;发展趋势一、数控技术的基本发展现状分析上世纪80年代,我国数控机床制造业处于高速发展阶段,实现了产品从传统生产向数控化的转型。

但是从数控技术的整体发展状况来看,技术水平还相对较低,生产的产品质量不佳。

上世纪90年代,数控机床的生产经历了最萧条的时期,生产能力降至50%。

1995年,国家扩大内需,机床市场得以启动,数控系统以及数控设备获得了较大的投资,一定程度上促进了数控设备的生产。

1999年以后,数控设备市场的发展呈现出繁荣的景象,但是也存在一些问题,主要表现为产品的技术水平较低,在激烈的市场竞争中难以立足;其次,产品的联网技术没有完全推广使用,没有较强的自行开发能力,与高技术水平的产品相比,数控设备的生产主要依靠引进图纸等方式进行产品的组装。

随着近年来的发展,虽然缩小了我国同其他国家在数控机床领域发展的差距,但是我国数控机床的利用率低和开动率低等各种问题依旧存在。

二、数控技术在发展的过程中存在的问题分析(一)数控技术的发展缺乏创新我国的数控技术在发展的过程中很大程度上依赖于国外的数控技术,大部分内容缺少创新,在很多方面只是一味的模仿甚至是改进国外的技术,应用中出现问题时,无法自行解决,必须邀请专家进行解决,这一缺陷在很大程度上限制了我国数控技术的发展。

从总体上来看,我国的数控技术没有形成整体的创新能力。

目前我国在数控技术领域的发展主要是将引进国外的先进技术作为一条捷径,但是如果不对国外的先进技术进行研究,无法从根本上提升我国的数控技术水平。

数控系统的国内外发展及应用现状

数控系统的国内外发展及应用现状

精选文库-- 数控技术大作业题目数控系统的国内外发展及应用现状专业学号学生指导教师提交日期2012年5月21日摘要数控系统是一种利用数字信号对执行机构的位移、速度、加速度和动作顺序等实现自动控制的控制系统。

数控系统已经实现纳米插补与控制技术,并广泛地运用机器人、智能化加工技术和CAD/CAM技术,数控系统本身也从封闭转向开放式,并朝着高速、高精度化、网络化、环保化的方向发展。

关键词:数控系统开放式研究现状发展趋势目录一、国外数控系统现状 (4)1.美国A- B 公司 (4)2.日本FANUC公司 (5)3.德国SIEMENS公司 (6)二、国内数控系统现状 (7)1.华中数控 (7)2.广州数控 (9)3.北京航天数控 (9)三、国内外数控系统比较 (10)四、结论 (10)参考文献 (11)数控系统是一种利用数字信号对执行机构的位移、速度、加速度和动作顺序等实现自动控制的控制系统。

从1952 年美国麻省理工学院研制出第1 台实验性数控系统,到现在已走过了半个世纪。

数控系统也由第一代电子管的硬联接数控发展到第五代MPCNC的软联接数控。

数控系统已经实现纳米插补与控制技术,并广泛地运用机器人、智能化加工技术和CAD/CAM技术,数控系统本身也从封闭转向开放式,并朝着高速、高精度化、网络化、环保化的方向发展。

一、国外数控系统现状国外数控系统发展总体趋势如下:1.新一代数控系统向OG化和开放式体系结构方向发展。

2.驱动装置向交流、数字化方向发展。

3.增强通信功能,向网络化发展。

4.数控系统在控制性能上向智能化发展。

在国际市场,德国、美国、日本等几个国家基本掌控了中高档数控系统。

国外的主要数控系统制造商有西门子(Siemens)、发那克(FANUC)、三菱电机(Mitsubishi Electric)、海德汉(HEIDENHAIN)、博世力士乐(Bosch Rexroth)、日本大隈(Okuma)等。

下面对几个主要系统进行功能介绍与应用分析。

数控近年的发展趋势

数控近年的发展趋势

数控近年的发展趋势
数控(Numerical Control)技术是指通过计算机或其他数字设备控制机床进行加工的技术。

近年来,数控技术在工业制造领域取得了许多重要的发展,以下是数控近年来的主要发展趋势:
1. 高速化:随着计算机性能的提升和控制算法的优化,数控机床的加工速度不断提高。

高速数控机床能够实现更快的加工速度,提高生产效率。

2. 多轴化:传统的数控机床一般只能实现三轴(X、Y、Z)的控制,而现代数控机床可以实现多轴控制,例如五轴、六轴等,使得机床在加工复杂曲面时更加灵活和精准。

3. 智能化:数控机床逐渐智能化,通过传感器、机器视觉等技术实现自动化加工过程的监控和控制。

智能数控机床能够自动调整加工参数、识别工件零件、检测工件质量等,提高加工精度和一致性。

4. 网络化:数控机床与计算机网络的结合使得机床能够实现与其他设备、系统的联网通信,实现远程监控和远程控制。

这使得生产过程更加灵活和便捷,并为工业互联网的发展提供了基础。

5. 数据化:传感器和控制系统的发展使得数控机床能够实时采集和分析加工数据,获取加工过程中的各项参数和状态信息。

这些数据能够用于质量控制、过程
优化、故障诊断等,提高生产效率和产品质量。

6. 柔性化:柔性数控制造是指数控机床能够快速适应不同的加工任务和工件,实现生产线的柔性调度和灵活组织。

柔性数控制造能够提高生产效率和资源利用率,并满足个性化、定制化生产的需求。

总的来说,数控技术正在不断发展,趋向于高速化、多轴化、智能化、网络化、数据化和柔性化。

这些发展趋势将进一步提升数控机床的加工能力、精度和效率,推动制造业的升级和转型。

数控技术现状及发展趋势

数控技术现状及发展趋势

数控技术现状及发展趋势前言数控机床是制造业实现自动化、柔性化、集成化生产的基础,其水平高低和拥有量多少是衡量一个国家工业现代化的重要标志。

工业发达国家把数控机床视为具有高技术附加值和高利润的重要出口产品。

数控机床已成为关系到国家战略地位和体现国家综合国力的重要基础性产品。

数控机床集机械制造技术、信息技术、微电子技术和自动化技术等为一体,随着科学技术的发展而不断地发展与创新。

作为一本数控机床教材如何在众多的技术内容中抓住本质、提取精华、突出重点,少而精地奉献给读者,是本书的编写难点,也是特色所在。

本书编写既注重应用性,又考虑到理论基础,同时还考虑其最新技术,理论叙述力求通俗易懂。

内容是以数控加工信息流为主线顺序展开,先后阐述了数控编程的基础及方法、计算机数控装置的硬软件、数控装置的轨迹控制原理、数控机床的伺服系统工作原理,同时还叙述了数控技术的基本概念、数控机床的检测装置、数控机床的机械结构、数控机床的故障诊断、数控自动编程以及数控技术的发展等内容。

1国内外数控技术发展状况20世纪人类社会最伟大的科技成果是计算机的发明与应用,计算机及控制技术在机械制造设备中的应用是世纪内制造业发展的最重大的技术进步。

自从1952年美国第1台数控铣床问世至今已经历了50个年头。

数控设备包括:车、铣、加工中心、镗、磨、冲压、电加工以及各类专机,形成庞大的数控制造设备家族,每年全世界的产量有10~20万台,产值上百亿美元。

“十五“刚刚开始,国防科工委就明确提出了在军工企业中投入6.8亿元,用于对1.2 -1.8万台机床的数控化改造。

目前,国际上最大的数控系统生产厂是日本FANUC公司,1年生产5万套以上系统,占世界市场约40%左右,其次是德国的西门子公司约占15%以上,再次是德海德汉尔、西班牙发格、意大利菲地亚、法国的NUM、日本的三菱、安川。

国产数控系统厂家主要有华中数控、北京航天机床数控集团、北京凯恩帝、北京凯奇、沈阳艺天、广州数控、XX 新方达、成都广泰等,国产数控生产厂家规模都较小,年产都还没有超过300~400套。

数控技术的发展历史和特点

数控技术的发展历史和特点

1 绪论1.1 数控技术的发展历史和特点在二十世纪中期,数控技术开始从发达国家发展起来。

1948年,John T.Parson 开发了第一台数控机床,翻开了制造业的新篇章。

五十年代,NC技术开始进入快速发展阶段,迎来了被称为“第二次工业革命”的时代。

70年代计算机控制技术(DNC,CNC)的出现加快了数控机床发展的步伐,具有代表性的是GE FANUC Automation公司推出第一台CNC数控装置(1973年)。

80年代是计算机技术迅速发展时期,也促进了CNC的性能提高。

尤其是苹果公司推出人机图形交互功能的PC机以后,不仅出现了相应的CNC系统,而且导致CAD/CAM技术的出现,实现了计算机辅助设计与辅助制造的一体化。

90年代技术上的最大进展莫过于信息技术的长足进步,信息高速公路和互联网的出现,使世界在20世纪的最后十年里发生了巨大的变化。

计算机硬件、软件、通讯技术的进步把制造业带进了新的发展阶段。

数控机床的控制系统出现了“以PC机为平台、开放式结构、无产权”的发展趋势,1995年Manufacturing Data System公司推出的CNC,可实时收集数据,可实现借助于互联网远程通讯。

1.1.1数控加工的特点数控加工是采用数字信息对零件的加工过程进行定义,并控制机床进行自动加工的一种自动化加工方法,它具有以下几个方面的特点:(l)具有复杂形状加工能力复杂形状零件的加工在飞机、汽车、船舶、模具、动力设备和国防军工等产品的制造过程中占有重要地位,复杂形状零件的加工质量直接影响这些产品的整体性能。

数控加工过程中刀具运动的任意可控性使得数控加工能完成普通加工难以完成或者根本无法进行的复杂曲面加工。

(2)高精度数控加工使用数字程序来控制刀具的运动实现自动加工,排除了人为的误差因素,而且加工误差还可以由数控系统通过软件技术进行补偿校正,因此采用数控加工可以极大地提高零件的加工精度。

(3)高效率数控加工的生产效率一般比普通加工高2~3倍,在加工复杂零件时生产效率可以提高十几倍甚至几十倍。

浅谈数控技术的国内外分析与发展趋势的展望

浅谈数控技术的国内外分析与发展趋势的展望

浅谈数控技术的国内外分析与发展趋势的展望摘要:新中国成立后,我国的工业化在六十多年的时间里得到长足发展,在日新月异的全球化潮流中勇创佳绩,已经成为了拥有独立且最为完整工业体系的国家。

“十四五”规划,我国开启了全面建设社会主义现代化国家新征程,也是我国制造强国建设的关键五年,我国的工业化正在逐步向“内生增长、创新驱动、智能绿色、协同开放”方向加快升级转变。

工业的发展离不开制造业的不断革新进步,而制造业又是我国的经济支柱性产业。

在“中国制造”向“中国智造”不断前行的征途上,对科学技术的依赖性越来越强,制造业潜能不断被发掘,数控技术就是推动制造业向智能化方向进一步发展的催化剂。

关键词:数控技术;现状;发展趋势数控技术是先进制造技术的核心,是在机械制造业中新兴的综合性技术,集合了微电子和计算机技术、信息处理技术、精密检测技术、自动控制技术、光机电技术、网络通信技术等高新技术于一体,不断推动传统制造业转型升级,同时也对数控技术不断优化提出新要求。

谋求进步就要理清发展脉络,本文将浅谈数控技术的发展现状,并对未来发展趋势做出合理预测。

一、数控技术的发展现状分析(一)国外数控技术发展自上世纪九十年代中期开始,国外数控技术大致经历了两阶段式发展。

第一阶段称为NC(Number control即数字控制),是由操作者自己运用文本符号等编程进而实现机器自动化运行。

第二阶段称为CNC(Computer number control即计算机数值控制),是通过计算机中高效的系统控制软件进行机器运行数值计算,直接发出运行和控制指令。

1952年,在美国麻省理工学院研制成功的电子管数控系统开启先河,随后又创造出晶体管数控系统,但由于装备零件昂贵难以得到广泛推广,科学家开始向集成电路控制系统研究,并在之后生产出小型计算机、微型计算机数控系统,随着信息处理技术和精度控制技术的不断发展,创造出开发式数控系统,不仅能够在不同平台运行,还可以与其他系统相互配合实现操作目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国内外数控技术发展
20世纪人类社会最伟大的科技成果是计算机的发明与应用,计算机及控制技术在机械制造设备中的应用是世纪内制造业发展的最重大的技术进步。

自从1952年美国第1台数控铣床问世至今已经历了50个年头。

数控设备包括:车、铣、加工中心、镗、磨、冲压、电加工以及各类专机,形成庞大的数控制造设备家族,每年全世界的产量有10~20万台,产值上百亿美元。

世界制造业在20世纪末的十几年中经历了几次反复,曾一度几乎快成为夕阳工业,所以美国人首先提出了要振兴现代制造业。

90年代的全世界数控机床制造业都经过重大改组。

如美国、德国等几大制造商都经过较大变动,从90年代初开始已出现明显的回升,在全世界制造业形成新的技术更新浪潮。

如德国机床行业从2000年至今已接受3个月以后的订货合同,生产任务饱满。

我国数控机床制造业在80年代曾有过高速发展的阶段,许多机床厂从传统产品实现向数控化产品的转型。

但总的来说,技术水平不高,质量不佳,所以在90年代初期面临国家经济由计划性经济向市场经济转移调整,经历了几年最困难的萧条时期,那时生产能力降到50%,库存超过4个月。

从1995年“九五”以后国家从扩大内需启动机床市场,加强限制进口数控设备的审批,投资重点支持关键数控系统、设备、技术攻关,对数控设备生产起到了很大的促进作用,尤
其是在1999年以后,国家向国防工业及关键民用工业部门投入大量技改资金,使数控设备制造市场一派繁荣。

从2000年8月份的上海数控机床展览会和2001年4月北京国际机床展览会上,也可以看到多品种产品的繁荣景象。

但也反映了下列问题:
(1)低技术水平的产品竞争激烈,互相靠压价促销;
(2)高技术水平、全功能产品主要靠进口;
(3)配套的高质量功能部件、数控系统附件主要靠进口;(4)应用技术水平较低,联网技术没有完全推广使用;
(5)自行开发能力较差,相对有较高技术水平产品主要靠引进图纸、合资生产或进口件组装。

当今世界工业国家数控机床的拥有量反映了这个国家的经济能力和国防实力。

目前我国是全世界机床拥有量最多的国家(近300万台),但我们的机床数控化率仅达到1.9%左右,这与西方工业国家一般能达到20%的差距太大。

日本不到80万台的机床却有近10倍于我国的制造能力。

数控化率低,已有数控机床利用率、开动率低,这是发展我国21世纪制造业必须首先解决的最主要问题。

每年我们国产全功能数控机床3000~4000台,日本1年产5万多台数控机床,每年我们花十几亿美元进口7000~9000台数控机床,即使这样我国制造业也很难把行业中数控化率大幅度提上去。

因此,国家计委、经贸委从“八五”、“九五”就提出数控化改造的方针,在“九五”期间,我协会也曾做过调研。

当时提出数控化改造的设备可达8~10万台,需投入80~100亿资金,但得到的经济效益将
是投入的5~10倍以上。

因此,这两年来承担数控化改造的企业公司大量涌现,甚至还有美国公司加入。

“十五”刚刚开始,国防科工委就明确提出了在军工企业中投入6.8亿元,用于对1.2~1.8万台机床的数控化改造。

数控技术经过50年的2个阶段和6代的发展:第1阶段:硬件数控(NC)第1代:1952年的电子管第2代:1959年晶体管分离元件第3代:1965年的小规模集成电路。

第2阶段:软件数控(CNC)第4代:1970年的小型计算机第5代:1974年的微处理器第6代:1990年基于个人PC机(PC-BASEO)第6代的系统优点主要有:
(2)基于PC平台,技术进步快,升级换代容易;
(3)提供了开放式基础,可供利用的软、硬件资源丰富,使数控功能扩展到很宽的领域(如CAD、CAM、CAPP,连接网卡、声卡、打印机、摄影机等);
(4)对数控系统生产厂来说,提供了优良的开发环境,简化了硬件。

目前,国际上最大的数控系统生产厂是日本FANUC公司,1年生产5万套以上系统,占世界市场约40%左右,其次是德国的西门子公司约占15%以上,再次是德海德汉尔,西班牙发格,意大利菲地亚,法国的NUM,日本的三菱、安川。

国产数控系统厂家主要有华中数控、北京航天机床数控集团、北京凯恩帝、北京凯奇、沈阳艺天、广州数控、南京新方达、成都广泰等,国产数控生产厂家规模都较小,年产都还没有超过300~400
套。

近10年数控机床为适应加工技术发展,在以下几个技术领域都有巨大进步。

(1)高速化由于高速加工技术普及,机床普遍提高各方面速度,车床主轴转速由3000~4000r/min提高到8000~10000r/min,铣床和加工中心主轴转速由4000~8000r/min提高到12000r/min、24000r/min、40000r/min以上快速移动速度由过去的10~20m/min提高到48m/min、60m/min、80m/min、120m/min在提高速度的同时要求提高运动部件起动的加速度,其已由过去一般机床的0.5G(重力加速度)提高到1.5~2G,最高可达15G,直线电机在机床上开始使用,主轴上大量采用内装式主轴电机。

(2)高精度化数控机床的定位精度已由一般的0.01~0.02mm提高到0.008mm左右,亚微米级机床达到0.0005mm左右,纳米级机床达到0.005~0.01μm,最小分辨率为1nm(0.000001mm)的数控系统和机床已有产品。

数控中两轴以上插补技术大大提高,纳米级插补使两轴联动出的圆弧都可以达到1μ的圆度,插补前多程序段预读,大大提高插补质量,并可进行自动拐角处理等。

(3)复合加工、新结构机床大量出现如5轴5面体复合加工机床,5轴5联动加工各类异形零件。

也派生出各新颖的机床结构,包
括6轴虚拟轴机床,串并联铰链机床等。

采用特殊机械结构,数控的特殊运算方式,特殊编程要求。

(4)使用各种高效特殊功能的刀具使数控机床“如虎添翼”。

如内冷钻头由于使高压冷却液直接冷却钻头切削刃和排除切屑,在钻深孔时大大提高效率。

加工钢件切削速度能达1000m/min,加工铝件能达5000m/min。

(5)数控机床的开放性和联网管理,已是使用数控机床的基本要求,它不仅是提高数控机床开动率、生产率的必要手段,而且是企业合理化、最佳化利用这些制造手段的方法。

因此,计算机集成制造、网络制造、异地诊断、虚拟制造、异行工程等等各种新技术都在数控机床基础上发展起来,这必然成为21世纪制造业发展的一个主要潮流。

相关文档
最新文档