全等三角形综合测试题

合集下载

2024年八年级数学上册《全等三角形》及答案解析

2024年八年级数学上册《全等三角形》及答案解析

第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A. B.C. D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC的长是()A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.5m2 B.2m2 C.5m2 D.4m22二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°0<x<180,∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB= 50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个【答案】B【分析】根据全等形的定义,全等三角形的判定与性质,即可判断.【详解】解:能够完全重合的两个图形叫做全等形,即形状和大小相同的两个图形是全等形,故①②说法错误;全等三角形能够完全重合,所以全等三角形的周长相等,面积相等,故③说法正确;若△ABC≌△DEF,∠A的对应角为∠D,所以∠A=∠D,故④说法正确;说法正确的有③④,共2个.故选:B.【点睛】本题考查全等形,理解能够完全重合的两个图形叫做全等形是解题关键.2.下列各组图形中,是全等形的是()A. B.C. D.【答案】B【分析】本题考查全等形,掌握能完全重合的两个图形是全等形是解题的关键.【详解】观察发现:A,C,D选项中两个图形不能完全重合,不是全等形;B选项中两个图形能完全重合,是全等形,故选B.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm【答案】C【分析】此题考查了全等三角形的性质,解题的关键熟练掌握性质的应用.根据全等三角形的对应边相等,再利用线段和差即可求解.【详解】∵△ABC≌△EBD,∴BE=AB=2cm,BC=BD=5cm,∴CE=BC-BE=3cm,故选:C.4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL【答案】B【分析】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.直接利用全等三角形的判定方法即可得出答案.【详解】解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠DCO=90°,在△ABO和△DCO中,∠ABO=∠DCOBO=OC=CO∠BOA=∠COD,∴△ABO≌△DCO ASA∴证明△ABO≌△DCO的依据的是ASA,故选:B.5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D【答案】B【分析】本题考查三角形全等的判定,先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断即可,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,HL是解题的关键.【详解】解:∵AC∥DF,∴∠A=∠D,∵AC=DF,A、添加BC=DE,不能判定△ABC≌△DEF;B、添加AE=DB,能判定△ABC≌△DEF;C、添加∠A=∠DEF,不能判定△ABC≌△DEF;D、添加∠ABC=∠D,不能判定△ABC≌△DEF;故选:B.6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对【答案】C【分析】本题主要考查三角形全等的判定定理,角平分线的性质,熟练掌握三角形全等的判定方程是解题的关键.根据全等三角形的判定分别证明△AOP≌△BOP(SAS),Rt△P AE≌Rt△PBF HL,△OEP≌△OFP (AAS),即可得到答案.【详解】解:∵OP平分∠MON,∴∠AOP=∠BOP,∵OA=OB,OP=OP,∴△AOP≌△BOP(SAS);∴AP=BP,∵OP平分∠MON,PE⊥OM,PF⊥ON∴PE=PF,∵PE⊥OM于点E,PF⊥ON于点F,∴Rt△P AE≌Rt△PBF HL;∵OP平分∠MON,∴∠AOP=∠BOP,又∵∠OEP=∠OFP=90°,OP=OP,∴△OEP≌△OFP(AAS).∴图中全等三角形有3对故选C.7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点【答案】B【分析】本题考查的是三角形的角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:要使洒水龙头到草坪三条边的距离相等,则洒水龙头的位置应选在三角形三条角平分线的交点,故选:B8.如图,在△ABC 中,CD 平分∠ACB ,DE ⊥BC 于点E ,S △ABC =30,DE =4,BC =10,则AC 的长是()A.5B.6C.7D.8【答案】A 【分析】本题主要考查了角平分线的性质定理.过点D 作DF ⊥AC 于点F ,根据角平分线的性质可得DE =DF =4,再由S △ABC =S △DBC +S △DAC ,即可求解.【详解】解:如图,过点D 作DF ⊥AC 于点F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,DE =4,∴DE =DF =4,∵S △ABC =S △DBC +S △DAC ,S △ABC =30,BC =10,∴30=12DE ×BC +12DF ×AC ,∴30=12×4×10+12×4×AC ,∴AC =5,故选:A .9.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF ,给出下列五个结论:①DE =DF ;②BC =2DB ;③AD ⊥BC ;④AB =3BF ;⑤S △ADB =2S △BDF ;其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A 【分析】本题考查了全等三角形判定和性质,角平分线的性质,等腰三角形的判定和性质,由角平分线的性质和平行线的性质可证∠ACB=∠ABC,可得AC=AB,由等腰三角形的性质可得AD⊥BC,CD= BD,由“ASA”可证△CDE≌△BDF,可得S△CDE=S△BDF,CE=BF,DE=DF,即可求解.【详解】解:∵BC恰好平分∠ABF,∴∠ABC=∠CBF,∵BF∥AC,∴∠ACB=∠CBF,∴∠ACB=∠ABC,∴AC=AB,且AD是△ABC的角平分线,∴AD⊥BC,BC=2DB,故②,③正确,符合题意;在△CDE和△BDF中,∠ACB=∠CBF CD=BD∠CDE=∠BDF,∴△CDE≌△BDF ASA,∴S△CDE=S△BDF,CE=BF,DE=DF,故①正确,符合题意;∵AE=2BF,∴AC=3BF=AB,故④正确,符合题意;∵BD=CD,∴S△ADB=S△ACD,∵AE=2BF,∴S△ADB=S△ACD=3S△CDE=3S△BDF,故⑤错误,不符合题意;故选:A.10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.52m2 B.2m2 C.5m2 D.4m2【答案】A【分析】本题主要考查平行线间的距离,全等三角形的判定与性质,过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,证明△CDA≌△AEB(AAS),得出AE=CD=2m,AD=BE=m,CF=DE=AD+AE=m+2m=3m,再根据=S四边形DEFE-S△ACD×2-S△BCF求解即可【详解】解:过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,则∠CDA=∠AEB=90°,如图,∵a∥b∥c,相邻两条平行线间的距离为m,∴BF⊥直线c,CD=2m,BE=BF=m,∵∠CAB=90°,∠CDA=90°∴∠DCA+∠DAC=90°,∴∠DCA=∠EAB,在△CDA和△AEB中,∠DCA=∠EAB∠CDA=∠AEBAC=AB,∴△CDA≌△AEB(AAS),∴AE=CD=2m,AD=BE=m,∴CF=DE=AD+AE=m+2m=3m∴△ABC的面积=S四边形DEFE -S△ACD×2-S△BCF=3m×2m-12×2m×m×2-12×3m×m=52m2故选:A二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.【答案】130°/130度【分析】本题考查了全等三角形的性质与判定,邻补角的定义,掌握全等三角形的性质与判定是解题的关键.证明△ADC≌△ABE AAS得出∠ADC=∠ABE,根据邻补角即可求解.【详解】解:∵在△ADC和△ABE中,∠C=∠E∠A=∠AAD=AB,∴△ADC≌△ABE AAS,∴∠ADC=∠ABE,∵∠CDE=50°,∴∠ADC=180°-50°=130°,∴∠ABE=130°.故答案为:130°.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.【答案】105【分析】本题考查了全等图形的性质和四边形内角和公式,解题的关键在于熟练掌握全等图形的性质.根据全等的性质求出∠D=∠D ,利用四边形的内角和公式求出∠A的度数即可.【详解】解:∵四边形ABCD≌四边形A B C D .∴∠D=∠D ,∵∠D =105°,∴∠D=105°,∵∠B=90°,∠C=60°,∴∠A=360°-90°-60°-105°=105°,故答案为:105.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.【答案】∠BAD=∠CAE【分析】在△ABE与△ACD中,已知AE=AD,∠AED=∠ADE,即已知一角及角的一边对应相等,根据“AAS”的判定方法,可以添加已知边的对角对应相等即可.本题考查了全等三角形的判定定理:AAS:两角及其中一个角的对边对应相等的两个三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知结合图形及判定方法选择条件是正确解答本题的关键.【详解】解:可添加一个条件:∠BAD=∠CAE,使△ABD≌△ACE.理由:在△ABD与△ACE中,∠BAD=∠CAE∠AED=∠ADEBD=CE,∴△ABD≌△ACE(AAS).故答案为∠BAD=∠CAE14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.【答案】12【分析】根据平移的性质可得AC=A C ,BC=B C ,AC∥A C ,证明△ADC≌△C DA ,得到AD=C D,则S△C DC =12S△ACC,再推出S△ABC=S△ACC=24,则S△C DC=12S△ACC=12.【详解】解:由平移的性质可得AC=A C ,BC=B C ,AC∥A C ,∴∠DCA=∠DA C ,∠DAC=∠DC A ,∴△ADC≌△C DA ASA,∴AD=C D,∴S△C DC =12S△ACC,∵BC=CC ,△ABC的面积为24,∴S△ABC=S△ACC=24,∴S△C DC =12S△ACC=12.故答案为:12.【点睛】本题主要考查了平移的基本性质,全等三角形的性质与判定,三角形中线的性质,熟知平移的性质是解题的关键:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.【答案】52°/52度【分析】本题考查与角平分线有关的三角形的内角和定理.过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.【详解】解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵点M、N是∠ABC与∠ACB三等分线的交点,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=66°,∴∠ABC+∠ACB=180°-∠A=180°-66°=114°,∴∠MBC+∠MCB=23∠ABC+∠ACB=76°,在△BMC中,∠BMC=180°-∠MBC+∠MCB=180°-76°=104°∴∠BMN=12∠BMC=52°.故答案为:52°.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.【答案】3或7或10【分析】本题考查全等三角形的性质,关键是要分情况讨论.分情况,当E在线段AB上,或当E在线段AB延长线上,由HL即可求解.【详解】解:∵CA⊥AB,BM⊥AB,∠CAB=∠DBE=90°,∵ED=CB,当E在线段AB上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3tcm,∴BE=AB-AE=15-3tcm,∴15-3t=6,∴t=3;若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∴AE=0,∴t=0(舍去),当E在线段AB延长线上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3t=AB+BE=15+6=21(cm),∴t=7,若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∵AE=3t=AB+BE=15+15=30(cm),∴t=10,∴当t=3或7或10秒时,△DEB与△BCA全等.故答案为:3或7或10.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.【答案】见解析【分析】本题考查了全等三角形的判定与性质,由∠1=∠2可得∠EAD=∠BAC,再根据条件AB=AE,∠C=∠D,可利用AAS证明△ABC≌△AED AAS,再根据全等三角形对应边相等即可得出结论.【详解】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,∠C=∠D∠BAC=∠EADAB=AE,∴△ABC≌△AED AAS,∴BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.【答案】(1)见解析(2)BC∥AD,理由见解析【分析】本题考查了全等三角形的判定与性质,解决本题的关键是得到△ABC≌△CDA.(1)利用SAS证明△ABC≌△CDA即可;(2)由△ABC≌△CDA,得∠BCA=∠CAD,进而可以判断BC与AD的位置关系.【详解】(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,AB=CD∠BAC=∠ACDAC=CA,∴△ABC≌△CDA SAS;(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.【答案】(1)4;△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF(2)证明见解析【分析】本题主要考查了全等三角形的性质与判定,找出判定三角形全等的条件是解题的关键.(1)结合已知条件,再根据全等三角形的四个判定方法,即可找出所有的全等三角形;(2)先证明△AME≌△CNF SSS,即可证明∠MAE=∠NCF.【详解】(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,理由如下:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS;(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS,∴∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.【答案】(1)详见解析(2)125°【分析】本题考查了平行线性质和全等三角形的性质和判定的应用,证得△ABC≌△CDE是解题的关键.(1)根据平行线求出∠ACD=∠CDE,∠ACB=∠CED,再说明∠B=∠CDE,最后结合AC=CE运用AAS即可证明结论;(2)根据全等三角形性质得出∠A=∠E=55°,进而根据平角定义即可解答.【详解】(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE AAS.(2)解:∵∠A=55°,∵△ABC≌△CDE,∴∠A=∠ECD=55°,∴∠BCD=180°-∠ECD=180°-55°=125°.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.【答案】(1)∠ACE=37°(2)证明见解析(3)15【分析】本题主要考查了邻补角的性质、角平分线的性质与判定定理、三角形的面积等知识点,灵活运用相关知识点成为解答本题的关键.(1)根据邻补角的定义和垂直的定义可得∠ACD=74°、∠CHE=90°,进而得到∠ECH=37°,然后根据∠ACE=∠ACD-∠ECH即可解答;(2)如图:过E点分别作EM⊥BF于M,EN⊥AC与N,根据角平分线的性质定理以及角平分线的定义可得EM=EH、CE平分∠ACD、EN=EH,最后根据角平分线的判定定理即可解答;(3)根据S△ACD=S△ACE+S△CED结合已知条件可得EM=3,最后运用三角形的面积公式即可解答.【详解】(1)解:∵∠ACB=106°,∴∠ACD=180°-106°=74°,∵EH⊥BD,∴∠CHE=90°,∵∠CEH=53°,∴∠ECH=90°-53°=37°,∴∠ACE=∠ACD-∠ECH=74°-37°=37°.(2)证明:如图:过E点分别作EM⊥BF于M,EN⊥AC与N,∵BE平分∠ABC,∴EM=EH,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD )⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴S △ABE =12AB ⋅EM =15.22.问题提出:如图1,在四边形ABCD 中,∠BAD 与∠BCD 互补,∠B 与∠D 互补,AB =AD ,∠BAD =x °0<x <180 ,∠ACB =y °,数学兴趣小组在探究y 与x 的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y 757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y 与x 之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB 到E ,使BE =DC ,连接AE ,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x +y =135,AC =10,求四边形ABCD 的面积.【答案】(1)60,100,15;(2)y =90-12x ,理由见详解;(3)S 四边形ABCD =50【分析】(1)观察表格发现:x 每增加10,y 减小5,由此即可得出α、β、θ的值.(2)根据表格猜想:y =90-12x .延长CB 到E ,使BE =DC ,连接AE ,则可得△ABE ≌△ADE ,进而可得AE =AC ,∠EAB =∠CAD ,则可得∠EAC =x °.在△AEC 中,根据三角形内角和定理即可得出y 于x 之间的关系式.(3)延长CB 到E ,使BE =DC ,连接AE .由(2)得△ABE ≌△ADE ,则S △ABE =S △ADE ,进而可得S 四边形ABCD =S △AEC .由x +y =135,y =90-12x 可得x =90,y =45.则可得∠EAC =90°,∠AEC =∠ACE =45°,进而可得AE =AC =10,可得S △AEC 的值,即可得S 四边形ABCD 的值.【详解】(1)观察表格发现:x每增加10,y减小5,∴α=65-5=60,β=80+2×10=100,θ=40-3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90-12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,y=90-1x.2(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,∴S四边形ABCD∵x+y=135,y=90-1x,2x=135,∴x+90-12解得x=90,y=45,∴∠EAC=90°,∠AEC=∠ACE=45°,∴AE=AC=10,×10×10=50,∴S△AEC=12∴S=50.四边形ABCD【点睛】本题考查了数字类探索规律问题,以及全等三角形的判定和性质,三角形内角和定理.熟练掌握以上知识,证明出y与x之间的关系式是解题的关键.23.(1)【问题解决】如图①,∠AOB =∠DFE =90°,OC 平分∠AOB ,点F 在OC 上,∠DFE 的两边分别与OA ,OB 交于点D ,E .当FE ⊥OB ,FD ⊥OA 时,则FD 与FE 的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F 作两条相互垂直的射线FM ,FN ,分别交OA ,OB 于点M ,N ,判断FM 与FN 的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD ,如图③所示,∠DAB =∠DCB =90°,AC 是∠DAB 的平分线,AB =50m ,AD =30m ,直接写出该空地的面积.【答案】(1)FD =FE ;(2)FM =FN ,理由见详解;(3)1600m 2【分析】(1)根据“角平分线上的点到角两边的距离相等”可得FD =FE ;(2)先根据四边形内角和等于360°可得∠DFE =90°,由∠DFE =∠FMN =90°可得∠DFM =∠EFN ,再根据ASA 证明△DFM ≌△EFN ,则可得FM =FN ;(3)过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点.由(2)得△CFD ≌△CEB ,则可得FD =EB ,S △CFD =S △CEB ,进而可得S 四边形ABCD =S 四边形AECF .证明△ACF ≌△ACE (,则可得AF =AE ,由AE =AB -BE 、AF =AD +DF 可求得BE 的长,进而可得AF 、AE 的长,由此可得S 四边形AECF 的值,即可得S 四边形ABCD 的值.【详解】(1)解:∵OC 平分∠AOB ,点F 在OC 上,且FE ⊥OB ,FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°-∠FDO -∠FEO -∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,∠FDM =∠FENFD =FE ∠DFM =∠EFN,∴△DFM ≌△EFN (ASA ),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB,∴FD=EB,S△CFD=S△CEB,∴S四边形ABCD =S四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB-BE,AF=AD+DF,∴AB-BE=AD+DF,∴50-BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质,熟练掌握以上知识,正确的作出辅助线是解题的关键.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.【答案】(1)见解析;(2)见解析;(3)补全图形见解析,∠PCO=∠PDO或∠PCO+∠PDO=180°【分析】本题是三角形综合题目,考查了全等三角形的判定与性质、角平分线的性质等知识,本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键,属于中考常考题型.(1)先证明△DOE≌△COF(SAS),得∠PEC=∠PFD,再证△CPE≌△DPF(AAS),得PE=PF,然后证△OPE≌△OPF(SSS),得∠POE=∠POF,即可得出结论;(2)先证明△OCF≌△ODE(ASA),可得OF=OE,由(1)可得OP平分∠AOB;(3)过点P分别作PM⊥OA于M,PN⊥OB于N,分两种情况进行求解即可.【详解】解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P分别作PM⊥OA于M,PN⊥OB于N,∵OP是∠AOB的平分线,∴PM=PN,∠PMC=∠PND=90°,当PC=PD1时,在Rt△PMC和Rt△PND1中,PC=PD1,PM=PN∴Rt△PMC≌Rt△PND1(HL),∴∠PCO=∠PD1O;当PC=PD2时,同理得Rt△PMC≌Rt△PND2HL,∴∠PCM=∠PD2N;∵∠PD2N+∠PD2O=180°,∴∠PCO+∠PD2O=180°,综上所述,∠PCO与∠PDO的数量关系为∠PCO=∠PDO或∠PCO+∠PDO=180°;25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.【答案】(1)见解析;(2)50;(3)①见解析;63【分析】(1)证明△ABC≌△DAE AAS,即可得证;(2)同(1)法得到△AEP≌△BAG,△CBG≌△DCH,分割法求出图形面积即可;(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,易证△AFB≌△DP A,△AFC ≌△EQA,得到DP=AF,EQ=AF,再证明△DPG≌△EQG AAS,即可得出结论;②根据全等三角形的性质,求出AG的长,进而利用面积公式进行求解即可.【详解】解:(1)证明:∵∠BAD=90°,∴∠BAC+∠DAE=90°,∵BC⊥CA,DE⊥AE,∴∠ACB=∠DEA=90°,∴∠BAC+∠ABC=90°,∴∠ABC=∠DAE,在△ABC和△DAE中,∠ACB=∠DEA∠ABC=∠DAEBA=AD∴△ABC≌△DAE AAS,∴BC=AE.(2)由模型呈现可知,△AEP≌△BAG,△CBG≌△DCH,∴AP=BG=3,AG=EP=6,CG=DH=4,CH=BG=3,则S实线围成的图形=12×4+6×3+6+4+3-12×3×6-12×3×6-12×3×4-12×3×4=50.(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q.图3由【模型呈现】可知,△AFB≌△DP A,△AFC≌△EQA,∴DP=AF,EQ=AF∴DP=EQ,∵DP⊥AG,EQ⊥AG∴∠DPG=∠EQG=90°,在△DPG和△EQG中,∠DPG=∠EQG∠DGP=∠EGQDP=EQ∴△DPG≌△EQG AAS,∴DG=GE.②由①可知,BF=AP,FC=AQ,∴BC=BF+FC=AP+AQ,∵BC=21,∴AP+AQ=21,∴AP+AP+PG+GQ=21,由①△DPG≌△EQG得∴PG=GQ,∴AP+AP+PG+PG=21,∴AP+PG=10.5,∴AG=10.5,∴S△ADG=1×10.5×12=63.2。

初中数学三角形全等证明综合题(含答案)

初中数学三角形全等证明综合题(含答案)

七年级下册数学三角形全等证明综合题北师版一、单选题(共9道,每道11分)1.如图,AE=BF,AD∥BC,AD=BC,试说明DF=CE,小明是这样做的,老师扣他了3分,大家帮他找一下,他到底那个地方扣分了?证明:∵AE=BF∴AE -EF= BF-EF,即AF=EB①又∵AD∥BC∴∠C=∠D②在△ADF和△BCE中③ ∴△ADF≌△BEC(SAS)④ ∴DF=CE 上面过程中出错的序号有()A.①②③④B.②③④C.①②③D.③④答案:B试题难度:三颗星知识点:证明题的书写步骤及定理应用考察2.已知如下左图,△ABC中,AB=AC,AD是角平分线,BE=CF,图中全等的三角形有()对A.1B.2C.3D.4答案:C试题难度:三颗星知识点:全等三角形的个数3.如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系,并证明.小红在做这道题目的时候部分分析思路如下:猜测AP和AQ的数量关系应该是相等的,证明线段AP=AQ,将这两条线段放到两个三角形中,即证明__≌__,题中已知BP=AC,CQ=AB,采取的判定方法是__,此时需要找的第三组条件=__.①△APD≌△QAE ②△APB≌△QAC ③SAS ④SSS ⑤AP=AQ⑥∠ABP=∠QCA ⑦∠PAB=∠AQC ⑧∠BPA=∠CAQA.①③⑧B.②③⑦C.②③⑥D.②④⑤答案:C试题难度:三颗星知识点:三角形全等解题思路4.已知,如图∠ACE=90°,AC=CE,B为AE上一点,ED⊥CB于D,AF⊥CB交CB的延长线于F.求证:DF=CF-AF.小强在做这道题目的时候部分分析思路如下:从图中知道DF=CF-CD,只需证明AF=CD,即证明△ACF≌△CED,题中已知AC=CE,ED⊥CB,AF⊥CB,采取的判定方法是AAS,此时需要找的第三组条件__=__.因为ED⊥CB,所以__+__=90°,而∠ACE=90°,即__+__=90°,根据等量代换即可得到第三组条件.①∠CAF=∠CED ②∠ACF=∠CED ③∠DBE+∠BED=90°④∠DCE+∠DEC=90° ⑤∠ACF+∠CAF=90° ⑥∠ACF+∠FCE=90°A.①③⑤B.①③⑥C.②④⑤D.②④⑥答案:D试题难度:三颗星知识点:三角形全等解题思路5.如图,在中,,AB=12,则中线AD的取值范围是()A.7<AD<17B.C.5<AD<12D.答案:B试题难度:三颗星知识点:倍长中线法6.如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.则下列式子正确的是()A.AB-AC<PB-PCB.AB-AC≧PB-PCC.AB-AC=PB-PCD.AB-AC>PB-PC答案:D试题难度:三颗星知识点:截长补短法7.已知△ABC,∠BAD=∠CAD,AB=2AC,AD=BD,下列式子中正确的是()A.AB=2ADB.AD=CDC.AD⊥BDD.DC⊥AC答案:D解题思路:利用翻折的思想来进行解决,在AB上截取AE=AC,在AB上截取AE=AC,连接DE,∵AB=2AC,∴AE=BE,又∵AD=BD,∴DE⊥AB,再证明△ADE≌ADC,∴∠ACD=∠AED=90°,即DC⊥AC.试题难度:三颗星知识点:折叠与全等8.如图,已知△ABC,BD=EC≠DE,则对于AB+AC与AD+AE的大小关系正确的是()A.AB+AC=AD+AEB.AB+AC≧AD+AEC.AB+AC>AD+AED.AB+AC≦AD+AE答案:C解题思路:利用平移的思想来进行解题,可以将△AEC平移至BD处,使EC与BD重合,假设为△BDF,DF与AB交于点G,则可先证△BDF≌△ECA,则在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,即AB+AC>AD+AE.解:过点B和D作BF∥AE,DF∥AC,BF与DF交于点F,DF 与AB交于点G,则△BDF≌△ECA(ASA),∴BF=AE,DF=AC,在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,二式相加可得BG+FG+ DG+AG>BF+ AD 即AB+AC>AD+AE.试题难度:三颗星知识点:平移与全等9.如图,EF分别是正方形ABCD的边BC、CD上的点,且∠EAF=45°,AH⊥EF,H为垂足,则下列说法中正确的是()A.直接证明△ABE和△AHE全等可以证明AH=ABB.EF=BE+DFC.AE=AFD.∠AEB=∠AFE答案:B解题思路:利用旋转的思想来进行解题,延长EB使得BH=DF,易证△ABH≌△ADF(SAS)可得∠EAH=∠EAF=45°,进而求证△AEH≌△AEF可得EF=BE+DF解:延长EB到点H,使得BH=DF,连接AH,可得△ABH≌△ADF(SAS),∴∠DAF=∠BAH,AF=AH,∠EAH=∠EAF=45°∴△AEG≌△AEF(SAS)∴EF=EH=BE+DF试题难度:三颗星知识点:旋转与全等。

三角形全等测试题及答案

三角形全等测试题及答案

三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。

答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。

答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。

()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。

()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。

答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。

答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。

证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。

10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。

证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。

全等三角形基本模型综合训练(一)(解析版)

全等三角形基本模型综合训练(一)(解析版)

全等三角形基本模型综合训练(一)1.如图,A 点坐标(0,4),B 为x 轴上一动点,将线段AB 绕点B 顺时针旋转90°,得到BC ,连接OC ,则B 在运动过程中,线段OC 的最小值是( )A .4B .2C .2D .3【答案】C 【详解】解:过点C 作CD ⊥x 轴于点D ,⊥⊥CDB =90°又线段AB 绕点B 顺时针旋转90°,⊥⊥ABC =90°,AB =BC⊥⊥ABO +⊥CBD =90°,⊥BCD +⊥CBD =90°,⊥⊥ABO =⊥BCD由图可知,⊥AOB =90°,⊥⊥AOB =⊥CDB⊥△AOB ⊥⊥BDC (AAS ),⊥OB =CD ,OA =BD =4,令点B (x ,0)①当x >0时,如图1,在Rt △COD 中OC 22CD OD +224x x ++()2228x ++()⊥当x =-2时,OC 有最小值,又x >0⊥x =-2不符合题意,舍去②当x <0时,如图2,在Rt⊥COD 中OC 22CD OD +()224x x -++()2228x ++()⊥当x =-2时,OC 有最小值,且最小值为2,故选:C .2.如图,在ABC ∆中,40A ∠=︒,60C ∠=°,D 为AC 边上一点,DE BC ⊥于点E .若AD BD =,2BE =,则AB 的长为( )A 3B .2C .3D .4【答案】D【详解】解:如图,作DF ⊥AB 于点F ,⊥ AD =BD⊥△ADB 是等腰三角形,⊥ABD =⊥A =40°⊥AB =2AF =2BF⊥40A ∠=︒,60C ∠=°,⊥⊥ABC =180°-⊥A -⊥C =80°,⊥ ⊥DBE =⊥ABC -⊥ABD =40°⊥⊥DBE =⊥ABD⊥DE BC ⊥⊥ ⊥DE =DF⊥BD =BD⊥Rt △BDF ⊥Rt △BDE (HL )⊥BF =BE =2⊥AB =2BF =4,故选:D3.如图,Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠,交BC 于点D ,10AB =,15ABD S ∆=,则CD 的长为( )A .3B .4C .5D .6【答案】A 【详解】解:过点D 作DF ⊥AB 于点F ,⊥10AB =,15ABD S ∆=,⊥1152AB DF ⋅=,⊥110152DF ⨯=,得DF =3, ⊥90C ∠=︒,AD 平分BAC ∠,DF ⊥AB ,⊥CD =DF =3,故选:A .4.正方形ABCD 的边长为4,点E 是射线AD 上的一个动点,连结CE ,以CE 为边往右侧作正方形CEFG ,连结DF 、DG .(1)当点E在AD延长线上,且DE=AD时,DG=________.(2)当点E在线段AD上,且△DGF为等腰三角形时,DG=________.【答案】454或542【详解】解:(1)过点F作FH⊥AD交AD延长线于点H,⊥四边形ABCD是正方形,且DE=AD,⊥DE=AD=CD,⊥ADC=⊥CDE=90°,⊥△EDC是等腰直角三角形,⊥⊥DCE=⊥DEC=45°,⊥四边形CEFG是正方形,⊥CG=CE=EF,⊥GCE=⊥CEF=90°,⊥⊥DCG=⊥DEF=135°,⊥△DCG⊥△DEF,⊥DG=DF,⊥⊥DEC=45°,⊥CEF=90°,⊥⊥HEF=45°,⊥△EHF是等腰直角三角形,⊥CE=EF,⊥DE=CD=EH=FH=4,在Rt△DFH中,FH=4,DH=8,⊥DG=DF22+=4845(2)当点E与点A重合时,DG=DF,⊥DG=DE=DC=4;当DG=GF时,过点G作GI⊥CD于点I,⊥四边形CEFG是正方形,⊥CG=GF=CE,⊥GCE=90°,⊥DG=GC,CD=2,⊥CI=DI=12⊥DCE+⊥ICG=90°,⊥IGC+⊥ICG=90°,⊥⊥DCE=⊥IGC,⊥△DCE⊥△IGC,⊥IG=DC=4,⊥DG=GC22+=2425点E与点D重合时,DF=GF,此时,FG=FD=DC=4,⊥DG224442;综上,△DGF为等腰三角形时,DG=4或542故答案为:4或5425.如图,在边长为3的正方形ABCD中,点E是AB的中点,点F在BC上,且BF=2CF,DE,AF相交于点G,则DG的长为___________.958【详解】如图,延长DG、CB,二线交于点H,⊥四边形ABCD是正方形,E是AB的中点,⊥⊥DAE=⊥HBE=90°,AE=BE,⊥⊥AED =⊥BEH⊥△DAE ⊥△HBE ,⊥BH =AD =3,⊥BF =2CF ,BC =3,⊥BF =2,CF =1,⊥FH =FB +BH =3+2=5,CH =FH +CF =1+5=6,⊥四边形ABCD 是正方形,⊥⊥DCH =90°,AD ∥BC ,⊥△DAG ⊥△HFG ,DH 22223635CD CH ++=⊥35DG AD GH FH ==,⊥38DG DH =, ⊥333588DG DH ==⨯958958 6.如图,△ABC 中,AB =AC ,点 D 在 AC 上,连接 BD ,△ABD 的中线 AE 的延长线交 BC 于点 F ,⊥F AC =60°,若 AD =5,AB =7,则 EF 的长为__________.【答案】23【详解】解:延长AE 至点G ,使得AE =EG ,⊥E 是BD 的中点,⊥BE =DE ,在△ADE 和△GBE 中,DE BE AED GEB AE GE =⎧⎪∠=∠⎨⎪=⎩⊥⊥ADE ⊥⊥GBE (SAS ), ⊥AD =GB =5,⊥G=⊥F AC =60°,过点B 作BH ⊥GE 于点H ,在Rt ⊥BGH 中,⊥GBH =180°﹣90°﹣60°=30°,⊥GH =12BG =52,BH 22555()322-=, 在Rt ⊥ABH 中,AH 225117(3)22-,⊥AG =AH +GH =8,⊥AE =GE =4, 过点D 作DM AB 2AC =EF ,交BC 于点M .⊥12BE EF BD DM == , 设EF =x ,则DM =2x ,⊥DM AB 2AC =EF ,⊥225DM CD AF CA ==+,⊥AF =7x ,⊥AE =7x ﹣x =6x =4,⊥x =23,⊥EF =23, 故答案为:23. 7.如图,将矩形ABCD 绕着点B 逆时针旋转得到矩形GBEF ,使点C 恰好落到线段AD 上的E 点处,连接CE ,连接CG 交BE 于点H .(1)求证:CE 平分⊥BED ;(2)取BC 的中点M ,连接MH ,求证:MH ∥BG ;(3)若BC =2AB =4,求CG 的长.【答案】(1)见解析;(2)见解析;(3)7【解析】(1)⊥四边形ABCD 是矩形,⊥BC =BE ,DE ∥BC ,⊥⊥BEC =⊥BCE ,⊥BCE =⊥DEC ,⊥⊥BEC =⊥DEC ,⊥CE 平分⊥BED .(2)过点C 作CN ⊥BE ,垂足为N ,⊥四边形ABCD 是矩形,⊥CD ⊥DE ,⊥CE 平分⊥BED ,⊥CD =CN ,⊥矩形ABCD 绕着点B 逆时针旋转得到矩形GBEF ,⊥CD =BG ,⊥GBH =⊥CNH =90°,⊥CN =BG ,⊥BHG =⊥NHC ,⊥△BHG ⊥△CHN ,⊥HG =HC ,⊥H 是GC 的中点,⊥BC 的中点是M ,⊥MH 是△BGC 中位线,⊥MH ∥BG .(3)过点C 作CN ⊥BE ,垂足为N ,⊥四边形ABCD 是矩形,BC =2AB =4,矩形ABCD 绕着点B 逆时针旋转得到矩形GBEF ,⊥GB ⊥BH ,GB =BM =2,⊥MH 是△BGC 中位线,⊥MH =1,⊥⊥HBM =⊥QGB ,⊥GB =BM =2,⊥BHM =⊥GQB ,⊥△QBG ⊥△HMB ,⊥QB =MH =1,GQ =BH 3QC =5,⊥CG 22(3)52827+=.8.如图,在正方形ABCD 中,点E 是CD 中点,连接AE .过点C 作CF AE ⊥,交AE 的延长线于点F ,连接DF .过点D 作DG DF ⊥交AF 于点G .若2DF =,则正方形ABCD 的边长为________.10【详解】解:⊥四边形ABCD 是正方形,⊥AD =CD ,⊥ADC =90°,⊥⊥DAE +⊥AED =90°,⊥CF ⊥AE ,⊥⊥ECF +⊥CEF =90°,⊥⊥DAE =⊥ECF ,同理,⊥⊥ADG +⊥GDE =90°,⊥GDE +⊥CDF =90°,在⊥AGD 与⊥CFD 中,DAE ECF AD CD ADG CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,⊥⊥AGD ⊥⊥CFD (ASA ),⊥DG =DF ,AG =CF ,⊥DG ⊥DF ,⊥⊥DGF 是等腰直角三角形,⊥2222GF DG DF +=过点D 作DK ⊥AE 于点K ,则122DK GK GF === , 在⊥DKE 与⊥CFE 中,DEK CEF DKE CFE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥⊥DKE ⊥⊥CFE (AAS ),⊥DK =CF ,⊥2AG CF DK GK ====⊥22AK =⊥2210AD AK DK +10.9.已知:如图,AC ⊥BD ,AE 、BE 分别平分⊥CAB 和⊥ABD ,点E 在CD上.用等式表示线段AB 、AC 、BD 三者之间的数量关系,并证明.【答案】AC +BD =AB ,理由见见解析【详解】解:AC +BD =AB ,证明如下:在BA 上截取BF =BD ,连接EF ,如图所示:⊥AE 、BE 分别平分⊥CAB 和⊥ABD ,⊥⊥EAF =⊥EAC ,⊥EBF =⊥EBD ,在⊥BEF 和⊥BED 中,BF BD EBF EBD BE BE =⎧⎪∠=∠⎨⎪=⎩,⊥BEF BED ≌(SAS ),⊥⊥BFE =⊥D ,⊥AC ⊥BD ,⊥⊥C +⊥D =180°,⊥⊥AFE +⊥BFE =180°,⊥⊥AFE +⊥D =180°,⊥⊥AFE =⊥C ,在⊥AEF 和⊥AEC 中,EAF EAC AFE C AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥AEF AEC ≌(AAS ),⊥AF =AC ,⊥AF +BF =AB ,⊥AC +BD =AB .10.如图1,ΔΔRt ABF Rt CBE ≌,90ABC ∠=︒,点E ,F 分别在边AB,BC 上,点M 为AF 中点.(1)请直接写出线段CE 与BM 的关系;(2)连接EF ,将EBF ∆绕点B 逆时针旋转至如图2位置,请写出CE 与BM 的关系,并说明理由;(3)在EBF ∆绕点B 旋转的过程中,当B ,C ,E 三点共线时,若3BC =,2EF =CM 的长.【答案】(1)2CE BM = ,CE BM ⊥;(2)2CE BM = ,CE BM ⊥,理由见解析;(3)13CM =10【解析】(1)2CE BM =,CE BM ⊥,理由如下,设BM 与CE 相交于点N ,如图,⊥Rt ABF Rt CBE ≅△△,⊥ABC =90°,⊥AF =CE ,⊥A =⊥C ,⊥⊥A +⊥AFB =90°,⊥M 为AF 的中点,⊥BM =AM =FM =12AF ,⊥BM =12CE ,即2BM =CE ,⊥AFB =⊥CBM ,⊥⊥C +⊥CBM =90°,⊥⊥CNB =90°,⊥BM ⊥CE ,故BM 与CE 的关系为:2CE BM =,CE BM ⊥,(2)2CE BM =,CE BM ⊥,理由如下:证明:延长AB 至点N ,使NB AB =,连接NF⊥M 为AF 的中点,B 为AN 中点⊥BM 为ANF 的中位线⊥2NF BM =⊥90ABC ∠=︒,90EBF ∠=︒,⊥ABE ABF CBF ABF ∠+∠=∠+∠,⊥ABE CBF ∠=∠,⊥90ABC ∠=︒,AB BC BN ==,⊥CBA ABE CBN CBF ∠+∠=∠+∠,⊥CBE NBF ∠=∠,又⊥BE BF =,⊥()CBE NBF SAS ≅△△,⊥NF CE =,⊥2CE BM =,⊥BM 为ANF 的中位线,⊥BM FN ∥,⊥MBA N ∠=∠,⊥CBE NBF ≅△△,⊥ECB N ∠=∠,⊥MBA ECB ∠=∠,⊥90MBA CBM ∠+∠=︒,⊥90ECB CBM ∠+∠=︒,⊥CE BM ⊥,综上2CE BM =且CE BM ⊥;(3)当点E 在CB 的延长线上时,如图,⊥⊥ABC =⊥ABE =90°,AB =BC =3,BE =BF ,⊥在等腰Rt ⊥BEF 中,有EF 22,又⊥EF 2⊥BE =BF =1,⊥AF =AB -EF =3-1=2,⊥M 为AF 的中点,⊥FM =12AF =1,⊥22223213CM BC BM ++=当点E 在CB 上时,如图,同理可求得BF =BE =1,⊥AF =AB +BF =3+1=4,⊥M 为AF 的中点,⊥FM =12AF =2,⊥BM =FM -BF =2-1=1, ⊥22223110CM BC BM ++ 即CM 1310.11.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分⊥BAD .(1)推理证明:如图1,若120DAB ∠=︒,且90D ∠=︒,求证:AD AB AC +=;(2)问题探究:如图2,若120DAB ∠=︒,试探究AD 、AB 、AC 之间的数量关系;(3)迁移应用:如图3,若90DAB ∠=︒,AD =2,AB =4,求线段AC 的长度.【答案】(1)见解析;(2)AD AB AC +=;(3)32AC =【解析】(1)证明:⊥AC 平分BAD ∠,⊥12DAC BAC DAB ∠=∠=∠, 又⊥120DAB ∠=,⊥60DAC BAC ∠=∠=,又⊥180B D ∠+∠=,90D ∠=,⊥90B D ∠=∠=,⊥30ACD ACB ∠=∠=︒,⊥12AD AC =,12AB AC =, ⊥AD AB AC +=.(2)解:AD AB AC +=;过点C 作CE AD ⊥于点E ,过点C 作CF AE ⊥的延长线于点F ,⊥AC 平分BAD ∠,⊥CE CF =,90DEC CFB ∠=∠=,⊥180D ABC ∠+∠=,而180ABC FBC ∠+∠=,⊥D FBC ∠=∠,在BFC △与DEC 中D FBC DEC BFC CE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥()AAS BFC DEC ≌,⊥DF BF =,⊥AD AB AE DE AF BF AE AF +=++-=+,由(1)知AE AF AC +=,⊥AD AB AC +=.(3)过点C 作CM AB ⊥于点M ,过点C 作CN AD ⊥的延长线于点N ,由(2)知:CDN CBM ∆∆≌,⊥DN BM =,⊥AD AB AN DN AM BM AN AM +=-++=+,而90DAB ∠=︒,AC 平分BAD ∠,⊥45NAC MAC ACN ∠=∠=∠=︒,⊥2AN AM NC AC ===,⊥2AD AB AN AM +=+=, 又2AD =,4AB =,⊥32AC =12.如图,点F 在四边形ABCD 的边AB 上.(1)如图1,当四边形ABCD 是正方形时,过点B 作BE CF ⊥,垂足为O ,交AD 于点.E 求证:BE CF =;(2)当四边形ABCD 是矩形,6AD =,8AB =时,①如图2,点P 是BC 上的一点,过点P 作PE CF ⊥,垂足为O ,点O 恰好落在对角线BD 上,求OC OE 的值; ②如图3,点P 是BC 上的一点,过点P 作PE CF ⊥,垂足为O ,点O 恰好落在对角线BD 上,延长EP 、AB 交于点G,当2BG =时,请直接写出DE 的值.【答案】(1)证明见解析;(2)①34;②83. 【解析】(1)证明:四边形ABCD 是正方形,AB BC ∴=,90A FBC ∠=∠=︒,BE CF ⊥于点O ,90BOC ∴∠=︒,90ABE OBC BCF ∴∠=︒-∠=∠,ABE ∴⊥()BCF ASA , BE CF ∴=.(2)解:①如图2,过O 作OM AD ⊥于点M ,ON CD ⊥于点N ,则90OMD OND ∠=∠=︒,四边形ABCD 是矩形,6BC AD ∴==,8AB CD ==,90MDN A BCD ∠=∠=∠=︒,∴四边形OMDN 是矩形,90MON ∴∠=︒,PE CF ⊥于点O ,90COE ∴∠=︒,90CON EOM EON ∴∠=∠=︒-∠,90ONC OME ∠=∠=︒,ONC ∴⊥OME ,OC ON OE OM ∴=, OND BCD ∠=∠,//ON BC ∴, DON ∴⊥DBC △,ON OD BC BD ∴=,同理OM OD AB BD =, ON OM BC AB ∴=,ON BC OM AB ∴=,6384OC BC OE AB ∴===; ②如图3,连接CE 、CG ,90ABC ∠=︒,18090PBG ABC ∴∠=︒-∠=︒,90PBG POC ∴∠=∠=︒,BPG OPC ∠=∠,BPG ∴⊥OPC ,PB PG PO PC ∴=,PB PO PG PC ∴=,OPB CPG ∠=∠,OPB ∴⊥CPG △,CBD OGC ∴∠=∠, 34OC OE =,6384CB CD ==;OC CB OE CD ∴=, 90COE BOD ∠=∠=︒,COE ∴⊥BOD ,CDB OEC ∴∠=∠,90OGC OEC CBD CDB ∴∠+∠=∠+∠=︒,90ECG ∴∠=︒,90BCG DCE BCE ∴∠=∠=︒-∠,90CBG CDE ∠=∠=︒,CBG ∴△⊥CDE △,34BG CB DE CD ∴==,4482333DE BG ∴==⨯=. 13.将一块足够大的直角三角板的直角顶点P 放在边长为1的正方形ABCD 的对角线AC 上滑动,一条直角边始终经过点B ,另一条直角边与射线DC 交于点E .(1)当点E 在边DC 上时(如图1),求证:①⊥PBC ⊥⊥PDC ;②PB =PE .(2)当点E 在边DC 的延长线上时(如图2),(1)中的结论②还成立吗?如果不成立,请说明理由;如果成立,请给予证明.【答案】(1)①见解析;②见解析(2)(1)中的结论②仍然成立,证明见解析【解析】(1)①⊥四边形ABCD 是正方形,⊥BC =CD ,⊥BCP =⊥DCP=45°,又⊥CP =CP ,⊥⊥PBC ⊥⊥PDC ,②过点P 分别作PF ⊥BC 于点F ,PG ⊥CD 于点G ,易证四边形PFCG 为正方形,⊥⊥BFP =⊥EGP=90°,PF =PG ,⊥⊥EPG+⊥EPF=90°=⊥BPF+⊥EPF ,⊥⊥BFP =⊥EGP ⊥⊥PGE ⊥⊥PFB (ASA),⊥PB =PE .(2)PB =PE 成立,证明:设PE 交BC 于点O ,⊥⊥BPE =⊥BCE=90°,⊥BOP =⊥COE ,⊥⊥PBC =⊥PEC ,由(1)得:⊥PBC =⊥PDC ,⊥⊥PDC =⊥PEC ,PB =PD ,⊥PE =PD=PB ,故(1)中的结论②仍然成.14.在ABC 中,22BAC ABC ACB ∠=∠=∠,D 是BC 所在直线上的一个动点(点D 不与点B 、点C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF .(1)观察发现:如图1,当点D 在线段BC 上时,①BC 、CF 的位置关系为___________;②BC 、CD 、CF 之间的数量关系为___________.(2)探究证明:如图2,当点D 在线段CB 的延长线上时,(1)中的两个结论是否仍然成立?请说明理由.(3)问题解决:如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE .若62AB =4BC CD =时,直接写出GE 的长.【答案】(1)①BC CF ⊥,②BC CF CD =+;(2)(1)中结论①成立,②不成立,理由见解析; (3)310【解析】(1)①在正方形ADEF 中,AD =AF ,⊥DAF =90°,⊥⊥BAC =90°,⊥⊥BAC =⊥DAF =90°⊥⊥BAD =⊥CAF ,在△DAB 与△F AC 中,AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩,⊥⊥DAB ⊥⊥F AC (SAS ),⊥⊥ABD =⊥ACF ,⊥⊥ACB +⊥ACF =⊥ACB +⊥ABD =180°-⊥BAC =90°,⊥BC ⊥CF ;故答案为:BC ⊥CF ;②由①知,△DAB ⊥⊥F AC ,⊥BD =CF ,⊥BC =BD +CD ,⊥BC =CF +CD ;故答案为:BC =CF +CD ;(2)(1)中结论①成立.②不成立.理由如下:⊥四边形ADEF 是正方形:⊥AD AF =,90DAF ∠=︒.⊥22BAC ABC ACB ∠=∠=∠,180BAC ABC ACB ∠+∠+∠=︒,⊥90BAC ∠=︒,45ABC ACB ∠=∠=︒,⊥AB AC =,BAC DAF ∠=∠,⊥BAD CAF ∠=∠,⊥()SAS DAB FAC △△≌,⊥135ABD ACF ∠=∠=︒,=CF BD . ⊥45ACB ∠=︒,⊥1354590DCF ACF ACB ∠=∠-∠=︒-︒=︒,⊥CF BD ⊥. ⊥BC CD BD =-,⊥BC CD CF =-.⊥(1)中结论①成立.②不成立.(3)如图,作AH BC ⊥于点H ,EM BD ⊥于点M ,EN CF 于点N .易证90BAC ∠=︒,45ABC ACB ∠=∠=︒,⊥AB AC =,⊥BH CH =,⊥6212sin 452AB BC ==︒,⊥6AH BH CH ===. ⊥4BC CD =,3CD =,⊥9DH =.由(2)得BC CF ⊥,15CF BD ==.⊥BC CF ⊥,EM BD ⊥,EN CF ,⊥四边形CMEN 是矩形,⊥NE CM =,EM CN =. ⊥90AHD ADE EMD ∠=∠=∠=︒,⊥90ADH EDM ∠+∠=︒,90EDM DEM ∠+∠=︒,⊥ADH DEM =∠∠. ⊥AD DE =,⊥()ADH DEM AAS △△≌,⊥9EM DH ==,6DM AH ==, ⊥9CN EM ==,9669EN CM DH DM CH ==+-=+-=.⊥45ABC ∠=︒,⊥45BGC ∠=︒,⊥12CG BC ==,⊥1293GN CG CN =-=-=. ⊥2239310EG +=15.【探究建模】已知正方形ABCD ,E ,F 为平面内两点.(1)如图1,当点E 在边AB 上时,DE ⊥DF ,且B ,C ,F 三点共线.求证:AE =CF ;(2)【类比应用】如图2,当点E 在正方形ABCD 外部时,DE ⊥DF ,AE ⊥EF ,且E ,C ,F 三点共线.①(1)中的结论AE=CF还成立吗?请说明理由;②猜想并证明线段AE,CE,DE之间的数量关系.【答案】(1)见解析;(2)①成立,理由见解析;②EA+EC2,证明见解析【解析】(1)证明:⊥四边形ABCD是正方形,⊥DA=DC,⊥A=⊥ADC=⊥DCB=90°,⊥DE⊥DF,⊥⊥EDF=⊥ADC=90°,⊥⊥ADE=⊥CDF,在⊥DAE和⊥DCF中,ADE CDF AD CDA DCF∠=∠⎧⎪=⎨⎪∠=∠⎩,⊥⊥DAE⊥⊥DCF(ASA),⊥AE=CF.(2)解:①(1)中的结论AE=CF还成立.证明:⊥四边形ABCD是正方形,⊥DA=DC,⊥DAB=⊥ADC=⊥DCB=⊥DCF=90°,⊥DE⊥DF,⊥⊥EDF=⊥ADC=90°,⊥⊥ADE=⊥CDF,⊥AE⊥EF,⊥⊥AEF=90°,⊥⊥DAE+⊥DCE=180°,⊥⊥DCF+⊥DCE=180°,⊥⊥DAE=⊥DCF,在⊥DAE和⊥DCF中,ADE CDFAD CDDAE DCF∠=∠⎧⎪=⎨⎪∠=∠⎩,⊥⊥DAE⊥⊥DCF(ASA),⊥AE=CF.②解:结论:EA+EC2.理由:由①知,⊥DAE⊥⊥DCF(ASA),⊥AE=CF,DE=DF,∥ADE=∥CDF,⊥∥EDF=90°,⊥⊥DEF为等腰直角三角形,⊥EF2⊥FC+EC2.⊥AE+EC2.。

(完整版)全等三角形判定综合练习题

(完整版)全等三角形判定综合练习题

全等三角形判定练习题1、如图(1):AD ⊥BC ,垂足为D ,BD =CD 。

求证:△ABD ≌△ACD2、如图(2):AC ∥EF ,AC =EF ,AE =BD 。

求证:△ABC ≌△EDF 。

3、 如图(3):DF =CE ,AD =BC ,∠D =∠C 。

求证:△AED ≌△BFC 。

FE (图2)DCBAFEDC(图1)DCBA4、 如图(4):AB =AC ,AD =AE ,AB ⊥AC ,AD ⊥AE .求证:(1)∠B =∠C ,(2)BD =CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE 。

求证:AC ⊥CE 。

E(图4)DCBAE(图5)DCBA6、如图(6):CG =CF ,BC =DC ,AB =ED ,点A 、B 、C 、D 、E 在同一直线上。

求证:(1)AF =EG ,(2)BF ∥DG .7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN =BC 。

求证:(1)MN 平分∠AMB ,(2)∠A =∠CBM 。

GFE(图6)DC BANM(图7)CBA8、如图(8):A 、B 、C 、D 四点在同一直线上,AC =DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE =CF 。

求证:AM 是△ABC 的中线。

FE(图8)DC B AMFE(图9)CBA10、如图(10)∠BAC =∠DAE ,∠ABD =∠ACE ,BD =CE . 求证:AB =AC 。

11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点。

求证:PA =PD .12、如图(12)AB ∥CD ,OA =OD ,点F 、D 、O 、A 、E 在同一直线上,AE =DF . 求证:EB ∥CF 。

全等三角形测试题含答案

全等三角形测试题含答案

《全等三角形》整章水平测试题(一)一、认认真真选,沉着应战!1.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 2.下列各条件中,不能作出惟一三角形的是() A .已知两边和夹角 B .已知两角和夹边 C .已知两边和其中一边的对角 D .已知三边4.下列各组条件中,能判定△ABC ≌△DEF 的是( ) A .AB =DE ,BC =EF ,∠A =∠D B .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F5.如图,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC , 则∠BCM :∠BCN 等于() A .1:2B .1:3C .2:3D .1:4 6.如图, ∠AOB 和一条定长线段A ,在∠AOB 内找一点P ,使P到OA 、OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH , 使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平 分线OP ,与NM 交于P .(4)点P 即为所求. 其中(3)的依据是( )A .平行线之间的距离处处相等B .到角的两边距离相等的点在角的平分线上C .角的平分线上的点到角的两边的距离相等D .到线段的两个端点距离相等的点在线段的垂直平分线上7.如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰5 8.如图,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件, 余下的一个为结论,则最多可以构成正确的结论的个数是( ) A .1个B .2个C .3个D .4个9.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上 取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同 一条直线上,如图,可以得到EDC ABC ≅,所以ED =AB ,因 此测得ED 的长就是AB 的长,判定EDC ABC ≅的理由是( ) A .SAS B .ASA C .SSS D .HL10.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度ACB DFEN AMCB FCEABD数为( )A .80°B .100°C .60°D .45°. 二、仔仔细细填,记录自信!11.如图,在△ABC 中,AD=DE ,AB=BE ,∠A=80°, 则∠CED=_____.12.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DE F 的边中必有一条边等于______.13. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.14. 如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.D E15. 如图,AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你补充条件___________.(填写一个你认为适当的条件即可)17.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.19. 如右图,已知在ABC 中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △ 的周长为cm .20.在数学活动课上,小明提出这样一个问题:∠B =∠C =900,E 是 BC 的中点,DE 平分∠ADC ,∠CED =350,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______. 三、平心静气做,展示智慧!21.如图,公园有一条“Z ”字形道路ABCD ,其中AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =, M 为BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.22.如图,给出五个等量关系:①AD BC =②AC BD =③CE DE =④D C ∠=∠EA B C D'A 'B 'D 'CC B⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明. 已知: 求证: 证明:23.如图,在∠AOB 的两边OA ,OB 上分别取OM =ON ,OD =OE , DN 和EM 相交于点C .求证:点C 在∠AOB 的平分线上. 四、发散思维,游刃有余!24. (1)如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石 铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和 是b 平方米,这条小路一共占地多少平方米?参考答案一、1—5:DCDCD 6—10:BCBBA 二、 11.100°12.4cm 或9.5cm13.1.5cm 14.4 15.略16.15AD << 17. 互补或相等 18. 180 19.15 20.350三、 21.在一条直线上.连结EM 并延长交CD 于'F 证'CF CF =.22.情况一:已知:AD BC AC BD ==,求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠) 证明:在△ABD 和△BAC 中AD BC AC BD ==∵, AB BA =ABDC EOM NAGFC BDE(图1)∴△ABD ≌△BAC∴CAB DBA ∠=∠AE BE =∴ ∴AC AE BD BE -=-即CE ED =情况二:已知:D C DAB CBA ∠=∠∠=∠,求证:AD BC =(或AC BD =或CE DE =) 证明:在△ABD 和△BAC 中D C ∠=∠,DAB CBA ∠=∠AB AB =∵∴△ABD ≌△BAC ∴AD BC =23.提示:OM =ON ,OE =OD ,∠MOE =∠NOD ,∴△MOE ≌△NOD ,∴∠OME =∠OND ,又DM =EN ,∠DCM =∠ECN ,∴△MDC ≌△NEC ,∴MC =NC ,易得△OMC ≌△ONC (SSS )∴∠MOC =∠NOC ,∴点C 在∠AOB 的平分线上.四、24. (1)解:ABC △与AEG △面积相等过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延长线于N ,则AMC ∠=90ANG ∠=四边形ABDE 和四边形ACFG 都是正方形90180BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,,180EAG GAN BAC GAN ∠+∠=∴∠=∠ACM AGN ∴△≌△1122ABCAEG CM GN S AB CM S AE GN ∴===△△,ABC AEGS S ∴=△△(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和∴这条小路的面积为(2)a b +平方米.BD。

全等三角形综合题

全等三角形综合题

养习惯·树态度一.解答题(共17小题)1.如图1,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在正方形ABCD内部,延长AF交CD于点G.(1)请判断线段GF与GC的大小关系是_________.(2)若将图1中的正方形改成矩形,其他条件不变,如图2,那么线段GF与GC之间的大小关系是否改变?并证明你的结论.(3)若将图1中的正方形改为平行四边形,其他条件不变,如图3,那么线段GF与GC之间的大小关系是否会改变?并证明你的结论.2.在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.(1)若AB=AC,∠BAC=90°那么①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是_________(直接写出结论)②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.3.在四边形ABCD中,对角线AC平分∠DAB.(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.4.(1)如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,BD交AC于E,G为BC上一点,且∠BCG=∠DCA,过G点作GH⊥CG交CB于H.求证:CD=CG;(2)如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,AD交BC于点E,连接CD,过点C作CG⊥CD,交AD于点G.若AD=CG,求证:AB=AC+BH.6.把两个全等的直角三角板的斜边重合,组成一个四边形ABCD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的结论下,若将M、N分改在CA、BC的延长上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)7.问题背景:某课外学习小组在一次学习研讨中,得到了如下命题:如图①,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若CM=DN,则∠BON=108°.该小组提出了一个大胆的猜想:如图②,在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若DM=EN,则∠BON=108°.请问他们的猜想是否正确?若正确,请写出解答过程;若不正确,请说明理由.8.已知:如图,在Rt△ABC中,∠CAB=90°,AB=AC,D为AC的中点,过点作CF⊥BD交BD的延长线于点F,过点作AE⊥AF于点.(1)求证:△ABE≌△ACF;(2)过点作AH⊥BF于点H,求证:CF=EH.9.如图,在△ABC和ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.10.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠MBN)绕着点B旋转时,它的两边分别交边AD,DC所在直线于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如题图1),请直接写出AE,CF,EF之间的数量关系.(2)当∠MBN绕B点旋转到AE≠CF时(如题图2),(1)中的结论是否仍成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,并说明理由.(3)当∠MBN绕B点旋转到AE≠CF时(如题图3和题图4),请分别直接写出线段AE,CF,EF之间的数量关系.11.已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:BE=CF,EF=|BE﹣AF|;②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件_________,使①中的两个结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).12.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是_________、_________.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是_________、_________.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.14.问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE 于点F,BD⊥AE于点D.证明:△ABD≌△CAF;归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为_________.15.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,求证:△ACE≌△DCB.(2)如图1,若∠ACD=60°,则∠AFB=_________;如图2,若∠ACD=90°,则∠AFB=_________;(3)如图3,若∠ACD=β,则∠AFB=_________(用含β的式子表示)并说明理由.16.如图1,已知AM∥BN,AC平分∠MAB,BC平分∠NBA.(1)过点C作直线DE,分别交AM、BN于点D、E.求证:AB=AD+BE;(2)如图2,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线的长度之间存在何种等量关系?请你给出结论并加以证明.2014年09月12日1054166241的初中数学组卷参考答案与试题解析一.解答题(共17小题)1.(2014•潮安区模拟)如图1,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F 在正方形ABCD内部,延长AF交CD于点G.(1)请判断线段GF与GC的大小关系是FG=CG.(2)若将图1中的正方形改成矩形,其他条件不变,如图2,那么线段GF与GC之间的大小关系是否改变?并证明你的结论.(3)若将图1中的正方形改为平行四边形,其他条件不变,如图3,那么线段GF与GC之间的大小关系是否会改变?并证明你的结论.考点:四边形综合题;直角三角形全等的判定.专题:证明题;分类讨论.分析:(1)判定直角三角形△ECG和△EFG全等,和全等三角形对应边相等的性质;(2)判定直角三角形△ECG和△EFG全等,和全等三角形对应边相等的性质;(3)判定△ECG和△EFG全等,根据全等三角形对应边相等性质即可证明.解答:解:(1)∵E是BC的中点∴BE=CE∵将△ABE沿AE折叠后得到△AFE∴BE=EF,∴EF=EC;同样,在折叠中,∠B=∠EFA=90°又∵∠C=∠B,∠EFG=∠EFA∴∠C=∠EFG=90°∵EG=EG,∴△ECG≌△EFG∴FG=CG;(2)不会改变.证明:连接EG∵E是BC的中点∴BE=CE∵将△ABE沿AE折叠后得到△AFE∴BE=EF,∴EF=EC;同样,在折叠中,∠B=∠EFA=90°又∵∠C=∠B,∠EFG=∠EFA∴∠C=∠EFG=90°∵EG=EG,∴△ECG≌△EFG∴FG=CG;(3)不会改变.证明:连接EG、FC∵E是BC的中点∴BE=CE∵将△ABE沿AE折叠后得到△AFE∴BE=EF,∠B=∠AFE∴EF=EC∴∠EFC=∠ECF∵矩形ABCD改为平行四边形∴∠B=∠D∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D∴∠ECD=∠EFG∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF∴∠GFC=∠GCF∴△ECG≌△EFG∴FG=CG即(1)中的结论仍然成立.点评:本题考查了学生对直角三角形全等的判定,考查了全等三角形对应边相等的性质.3.(2010•海沧区质检)在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.(1)若AB=AC,∠BAC=90°那么①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是CF=BD,CF⊥BD(直接写出结论)②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.考点:全等三角形的判定与性质.分析:(1)①根据正方形和等边三角形的性质得出AD=AF,∠BAC=∠DAF=90°,求出∠BAD=∠CAF,证△BAD≌△CAF,推出BD=CF,∠B=∠ACF,求出∠FCB=90°即可;②求出∠BAD=∠CAF,证△BAD≌△CAF,推出BD=CF,∠B=∠ACF,求出∠FCB=90°即可;(2)在BD上截取AM=AC,连接AM,与(1)证明过程类似证MAD≌△CAF即可求出答案.解答:(1)①CF=BD CF⊥BD,解:结论还成立,CF=BD CF⊥BD,理由是:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=90°,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴CF=BD,∠B=∠ACF,∵∠BAC=90°,∴∠B+∠BCA=90°,∴∠ACF+∠ACB=90°,∴CF⊥BD,故答案为:CF=BD,CF⊥BD.②解:结论还成立,理由是由①知,∠BAC=FAD=90°,∴∠BAC+∠CAD=∠FAD+∠CAD,∴∠BAD=∠FAC,∵在△BAD和△CAF中,∴△BAD≌△CAF,∴CF=BD,∠B=∠ACF,∵∠BAC=90°,∴∠B+∠BCA=90°,∴∠ACF+∠ACB=90°,∴CF⊥BD,即①的结论还成立.(2)解:当∠ACB=45°时,CF⊥BD理由是:如图1,当∠BAC>90°,过点A作AM⊥CA交BC于M,则AM=AC,由(1)同理可证明△FAC≌△MAD,∴∠ACF=∠AMD=45°,∴∠FCB=90°,即CF⊥BD.点评:本题考查了全等三角形的性质和判定,正方形的性质,主要培养学生的推理能力,本题具有一定的代表性,证明过程类似,透过做此题培养了学生的发散思维能力.4.(2008•宣武区二模)在四边形ABCD中,对角线AC平分∠DAB.(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.考点:全等三角形的判定与性质.分析:(1)由AC平分∠DAB,∠DAB=120°,可得∠CAB=∠CAD=60°,又由∠B=∠D=90°,即可得∠ACB=∠ACD=30°,根据直角三角形中30°角所对的直角边等于斜边的一半,即可得AB+AD=AC;(2)首先过C点分别作AD和AB延长线的垂线段,垂足分别为E、F,由AC平分∠DAB,可得CE=CF,又由∠B与∠D互补,可证得△CED≌△CFB,则可得AD+AB=AE+AF,又由AE+AF=AC,则可得线段AB、AD、AC有怎样的数量关系为AB+AD=AC;(3)首先过C点分别作AB和AD延长线的垂线段,垂足分别是E、F,与(2)同理可得△CEB≌△CFD,则可得∠G=∠DAC=∠CAB=45°,即可求得线段AB、AD、AC有怎样的数量关系为AB+AD=AC.解答:证明:(1)在四边形ABCD中,∵AC平分∠DAB,∠DAB=120°,∴∠CAB=∠CAD=60°.又∵∠B=∠D=90°,∴∠ACB=∠ACD=30°.∴AB=AD=AC,即AB+AD=AC.(2)AB+AD=AC.证明如下:如图②,过C点分别作AD和AB延长线的垂线段,垂足分别为E、F.∵AC平分∠DAB,∴CE=CF.∵∠ABC+∠D=180°,∠ABC+∠CBF=180°,∴∠CBF=∠D.又∵∠CED=∠CFB=90°,∴△CED≌△CFB.∴ED=BF.∴AD+AB=AE+ED+AB=AE+BF+AB=AE+AF.∵AC为角平分线,∠DAB=120°,∴∠ECA=∠FCA=30°,∴AE=AF=AC,∴AE+AF=AC,∴AB+AD=AE+AF=AC.∴AB+AD=AC.(3)AB+AD=AC.证明如下:如图③,过C点分别作AB和AD延长线的垂线段,垂足分别是E、F.∵AC平分∠DAB,∵CE⊥AD,CF⊥AF,∴CE=CF.∵∠ABC+∠ADC=180°,∠ADC+∠EDC=180°,∴∠ABC=∠EDC.又∵∠CED=∠CFB=90°.∴△CFB≌△CED(AAS).∴CB=CD.延长AB至G,使BG=AD,连接CG.∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,∴∠CBG=∠ADC.∴△GBC≌△ADC(SAS).∴∠G=∠DAC=∠CAB=45°.∴∠ACG=90°.∴AG=AC.∴AB+AD=AC.点评:此题考查了全等三角形的判定与性质,四边形的性质,直角三角形的性质等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.5.(1)如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,BD交AC于E,G为BC上一点,且∠BCG=∠DCA,过G点作GH⊥CG交CB于H.求证:CD=CG;(2)如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,AD交BC于点E,连接CD,过点C作CG⊥CD,交AD于点G.若AD=CG,求证:AB=AC+BH.考点:全等三角形的判定与性质.专题:证明题.分析:(1)由AD⊥BD得到∠ADB=90°,而∠ACB=90°,∠AED=∠BEC,根据三角形内角和得∠CAD=∠DBC,再根据等角的余角相等得到∠BCG=∠DCA,然后利用“ASA”可判断△ADC≌△BCG,则CD=CG;(2)延长EC到F使CF=CE,由△AGC≌△BCD得到AG=BD,由CG=BD可代换得到AG=CG,则∠GAC=∠GCA,而∠CGD=45°,所以∠GAC=22.5°,再利用AC⊥BC,CF=CE,得到△AEF为等腰三角形,于是∠FAC=∠EAC=22.5°,利用∠CAB=45°,∠ABC=45°可计算出∠FAB=67.5°,∠F=67.5°,得到∠F=∠FAB,所以AB=BF,而BF=BC+CF=AC+CE,即有AB=AC+CE,只要证出BH=CD即可.解答:(1)解:∵AD⊥BD,∴∠ADB=90°,∵∠ACB=90°,∠AED=∠BEC,∴∠CAD=∠DBH,∵∠BCG=∠DCA,∵在△ACD和△BGC中∴△ACD≌△BGC(ASA),∴CD=CG;(2)证明:延长EC到F使CF=CE,如图,∵△AGC≌△BCD∴AG=BD,∵CG=BD,∴AG=CG,∴∠GAC=∠GCA,∵△CDG为等腰直角三角形,∴∠CGD=45°,∴∠GAC=22.5°,∵AC⊥BC,CF=CE,∴△AEF为等腰三角形,∴∠FAC=∠EAC=22.5°,∵△ABC为等腰直角三角形,∵∠CAB=45°,∠ABC=45°,∴∠FAB=22.5°+45°=67.5°,∴∠F=180°﹣45°﹣67.5°=67.5°,∴∠F=∠FAB,∴AB=BF,而BF=BC+CF=AC+CE,∴AB=AC+CE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.6.把两个全等的直角三角板的斜边重合,组成一个四边形ABCD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的结论下,若将M、N分改在CA、BC的延长上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)考点:全等三角形的判定与性质.专题:证明题;几何综合题.分析:(1)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;(2)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可;(3)在CB截取BE=AM,连接DE,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可.解答:(1)AM+BN=MN,证明:延长CB到E,使BE=AM,∵∠A=∠CBD=90°,∴∠A=∠EBD=90°,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠MDA,DM=DE,∵∠MDN=∠ADC=60°,∴∠ADM=∠NDC,∴∠BDE=∠NDC,∴∠MDN=∠NDE,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(2)AM+BN=MN,证明:延长CB到E,使BE=AM,连接DE,∵∠A=∠CBD=90°,∴∠A=∠DBE=90°,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠MDN=∠BDC,∴∠MDA=∠CDN,∠CDM=∠NDB,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠MDA=∠CDN,DM=DE,∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°,∴∠NDM=∠ADC=∠CDB,∴∠ADM=∠CDN=∠BDE,∵∠CDM=∠NDB∴∠MDN=∠NDE,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(3)BN﹣AM=MN,证明:在CB截取BE=AM,连接DE,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠ADN=∠ADN,∴∠MDA=∠CDN,∵∠B=∠CAD=90°,∴∠B=∠DAM=90°,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠ADM=∠CDN,DM=DE,∵∠ADC=∠BDC=∠MDN,∴∠MDN=∠EDN,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BN﹣BE=BN﹣AM,∴BN﹣AM=MN.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力,运用了类比推理的方法,题目比较典型,但有一定的难度.7.问题背景:某课外学习小组在一次学习研讨中,得到了如下命题:如图①,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若CM=DN,则∠BON=108°.该小组提出了一个大胆的猜想:如图②,在正五边形ABCDE中,M、N分别是DE、EA上的点,BM与CN相交于点O,若DM=EN,则∠BON=108°.请问他们的猜想是否正确?若正确,请写出解答过程;若不正确,请说明理由.考点:全等三角形的判定与性质;三角形的外角性质;多边形内角与外角.专题:证明题.分析:连接EC、BD,由正五边形推出∴∠CBD=∠CDB=∠ECD=∠DEC=36°,△BCD≌△CDE,证出△CEN≌△BDM推出∠ECN=∠DBM,根据∠BON=∠OBC+∠OCB即可求出答案.解答:结论:猜想正确证明:连接EC、BD,∵五边形ABCDE为正五边形,∴∠BCD=∠CDE=∠DEA=108°,BC=CD=DE,∴∠CBD=∠CDB=∠ECD=∠DEC=36°,△BCD≌△CDE,∴∠NEC=∠BDM=∠BCE=72°,BD=EC,又∵DM=EN,∴△CEN≌△BDM,∴∠ECN=∠DBM,∴∠BON=∠OBC+∠OCB=∠DBC+∠ECB=36°+72°=108°,∴∠BON=108°.点评:本题主要考查对全等三角形的性质,三角形的外角性质,多边形的内角和外角等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.8.已知:如图,在Rt△ABC中,∠CAB=90°,AB=AC,D为AC的中点,过点作CF⊥BD交BD的延长线于点F,过点作AE⊥AF于点.(1)求证:△ABE≌△ACF;(2)过点作AH⊥BF于点H,求证:CF=EH.考点:全等三角形的判定与性质.专题:证明题.分析:(1)利用直角关系得出∠BAE=∠CAF,∠ABD=∠DCF,即可得出△ABE≌△ACF,(2)由△ABE≌△ACF,得出AE=AF,再由等腰直角三角形得出AH=EH,再证得△ADH≌△CDF即可得出CF=EH解答:证明:(1)∵AE⊥AF,∠CAB=90°,∴∠EAF=∠CAB=90°∴∠EAF﹣∠EAC=∠CAB﹣∠EAC即∠BAE=∠CAF,∵CF⊥BD,∴∠BFC=90°=∠CAB,∴∠BDA+∠ABD=90°,∠DCF+∠FDC=90°,∵∠ADB=∠FDC,∴∠ABD=∠DCF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),(2)∵由(1)知△ABE≌△ACF,∴AE=AF,∵∠EAF=90°,∴∠AEF=∠AFE=45°,∵AH⊥BF,∴∠AHF=∠AHE=90°=∠CFH,∴∠EAH=180°﹣∠AHE﹣∠AEF=45°=∠AEF,∴AH=EH,∵D为AC中点,∴AD=CD,在△ADH和△CDF中,,∴△ADH≌△CDF(AAS),∴AH=CF,∴EH=CF.点评:本题主要考查了全等三角形的判定与性质,解题的关键是能根据角和边的关键得出三角形全等.9.如图,在△ABC和ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.考点:全等三角形的判定与性质.专题:证明题.分析:(1)求出∠BAD=∠BAC,根据SAS证出△BAD≌△CAE即可;(2)根据全等推出∠DBA=∠C,根据等腰三角形性质得出∠C=∠ABC,根据平行线性质得出∠ABC=∠DFB,推出∠DFB=∠DBF,根据等腰三角形的判定推出即可.解答:(1)证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠EAC,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS);(2)证明:∵△BAD≌△CAE,∴∠DBA=∠C,∵AB=AC,∴∠C=∠ABC,∵DF∥BC,∴∠DFB=∠ABC=∠C=∠DBA,即∠DFB=∠DBF,∴DF=CE.点评:本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质和判定等知识点,主要考查学生运用性质进行推理的能力,题目比较典型,是一道比较好的题目.10.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠MBN)绕着点B旋转时,它的两边分别交边AD,DC所在直线于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如题图1),请直接写出AE,CF,EF之间的数量关系.(2)当∠MBN绕B点旋转到AE≠CF时(如题图2),(1)中的结论是否仍成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,并说明理由.(3)当∠MBN绕B点旋转到AE≠CF时(如题图3和题图4),请分别直接写出线段AE,CF,EF之间的数量关系.考点:全等三角形的判定与性质.专题:证明题.分析:(1)AE+CF=EF,证法与(2)相同;(2)延长EA到G,使AG=FC,证△GAB≌△FCB,推出∠GBA=∠FBC,GB=FB,AG=CF,求出∠GBE=30°,证△GBE和△FBE全等即可;(3)在AE上取AM=CF,证△ABM和△BCF全等,证△BME和△BFE全等即可;图4与图3证法类似.解答:解:(1)AE+CF=EF;(2)成立.理由是:延长EA到G,使AG=FC,∵GA=FC,∠GAB=∠FCB=90°,AB=CB,∴△GAB≌△FCB(SAS),∴∠GBA=∠FBC,GB=FB,AG=CF,∵∠FBC+∠FBA=60°,∴∠GBA+∠FBA=60°,即:∠GBF=60°∵∠EBF=30°,∴∠GBE=30°,∵GB=FB,∠GBE=∠FBE,BE=BE,∴△GBE≌△FBE,∴GE=FE∵GE=AG+AE,∴EF=AE+CF;(3)图3:AE﹣CF=EF;图4:AE+EF=CF.点评:本题主要考查对全等三角形的性质和判定的理解和掌握,能熟练地运用性质进行推理是解此题的关键.11.已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点(不重合),且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①若∠BCA=90°,∠a=90°,请在图1中补全图形,并证明:BE=CF,EF=|BE﹣AF|;②如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立;(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求证明).考点:全等三角形的判定与性质.分析:(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF 即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.解答:(1)①如图,E点在F点的左侧,∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;(2)EF=BE+AF.理由是:∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.点评:本题考查了全等三角形的性质和判定的应用,本题比较典型,证明过程类似.12.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是AB=AP、AB⊥AP.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是BQ=AP、BQ⊥AP.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.考点:全等三角形的判定与性质.分析:(1)由于AC⊥BC,且AC=BC,边EF与边AC重合,且EF=FP,则△ABC与△EFP是全等的等腰直角三角形,根据等腰直角三角形的性质得到∠BAC=∠CAP=45°,AB=AP,则∠BAP=90°,于是AP⊥AB;(2)延长BO交AP于H点,可得到△OPC为等腰直角三角形,则有OC=PC,根据“SAS”可判断△ACP≌△BCO,则AP=BO,∠CAP=∠CBO,利用三角形内角和定理可得到∠AHO=∠BCO=90°,即AP⊥BO;(3)BO与AP所满足的数量关系为相等,位置关系为垂直.证明方法与(2)一样.解答:解:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立.证明:如图,∵∠EPF=45°,∴∠CPQ=45°.∵AC⊥BC,∴∠CQP=∠CPQ,CQ=CP.在Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP(SAS)∴BQ=AP;延长QB交AP于点N,∴∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,∴∠BQC=∠APC.在Rt△BCQ中,∠BCQ+∠CBQ=90°,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.点评:本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质.14.问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE 于点F,BD⊥AE于点D.证明:△ABD≌△CAF;归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为5.考点:全等三角形的判定与性质.分析:图2,求出∠BDA=∠AFC=90°,∠ABD=∠CAF,根据AAS证两三角形全等即可;图③根据已知和三角形外角性质求出∠ABE=∠CAF,∠BAE=∠FCA,根据ASA证两三角形全等即可;图④求出△ABD的面积,根据△ABE≌△CAF得出△ACF与△BDE的面积之和等于△ABD的面积,即可得出答案.解答:证明:图②,∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠ABD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,∵,∴△ABD≌△CAF(AAS);图③,∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,∵,∴△ABE≌△CAF(ASA);图④,解:∵△ABC的面积为15,CD=2BD,∴△ABD的面积是:×15=5,由图3中证出△ABE≌△CAF,∴△ACF与△BDE的面积之和等于△ABE与△BDE的面积之和,即等于△ABD的面积,是5,故答案为:5.点评:本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,主要考查学生的分析问题和解决问题的能力,题目比较典型,证明过程有类似之处.15.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,求证:△ACE≌△DCB.(2)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;(3)如图3,若∠ACD=β,则∠AFB=180°﹣β(用含β的式子表示)并说明理由.考点:全等三角形的判定与性质.分析:(1)求出∠ACE=∠DCB,根据SAS证出两三角形全等即可;(2)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB=180°﹣(∠EAB+∠DBC),代入求出即可;(3)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB=180°﹣(∠EAB+∠DBC),代入求出即可.解答:(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∵,∴△ACE≌△DCB;(2)解:∵∠ACD=60°,∴∠CDB+∠DBC=∠ACD=60°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=60°,∴∠AFB=180°﹣60°=120°;当∠ACD=90°时,∵∠ACD=90°,∴∠CDB+∠DBC=∠ACD=90°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=90°,∴∠AFB=180°﹣90°=90°;故答案为:120°,90°;(3)解:当∠ACD=β时,∠AFB=180°﹣β,理由是:∵∠ACD=β,∴∠CDB+∠DBC=∠ACD=β,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=β,∴∠AFB=180°﹣(∠CAE+∠DBC)=180°﹣β;故答案为:180°﹣β.点评:本题考查了全等三角形的性质和判定,三角形的外角性质,三角形的内角和定理,解此题的关键是找出已知量和未知量之间的关系.。

2022-2023学年人教版 八年级上册《全等三角形》综合测试卷

2022-2023学年人教版 八年级上册《全等三角形》综合测试卷

人教版八年级上册《全等三角形》综合测试卷满分:100分姓名:___________班级:___________考号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列各组图形中不是全等形的是()A.B.C.D.2.如图,一块三角形玻璃裂成①、②、③三块,现需要划一块同样大小的三角形玻璃,为了方便只需带上一块,号码和依据是()A.①SAS B.②ASA C.③AAS D.③ASA 3.如图,△ABC≌△ADE,若∠E=70°,∠D=30°,∠CAD=35°,则∠BAD=()A.40°B.45°C.50°D.55°4.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°5.如图,若△ABC≌△DEF,BC=7,CF=5,则CE的长为()A.1 B.2 C.2.5 D.36.如图,点B,E,C,F在同一条直线上,已知AB=DE,AC=DF,添加下列条件还不能判定△ABC≌△DEF的是()A.∠ABC=∠DEF B.∠A=∠D C.BE=CFD.BC=EF7.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC 于点D,若CD=5,AB=12,则△ABD的面积是()A.15 B.30 C.45 D.608.如图,在△ABC中,∠C=90°∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D到直线AB 的距离是()A.6cm B.8cm C.10cm D.14cm 9.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.①②③④B.①②④C.①②③D.②③④二.填空题(共6小题,满分24分,每小题4分)11.如图,在△ABC中,∠C=90°,AC=8,DC=AD,BD平分∠ABC,则点D到AB的距离等于.12.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是.13.如图,△ADE≌△BCF,AD=8cm,CD=6cm,则BD的长为cm.14.如图,AC⊥BC,AD⊥BD,垂足分别是C,D,(若要用“HL”得到Rt△ABC≌Rt△BAD,则应添加的条件是.(写一种即可)15.在正方形网格中,∠AOB的位置如图所示,点P,Q,M,N是四个格点,则这四个格点中到∠AOB两边距离相等的点是点.16.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=34°,则∠3=.三.解答题(共7小题,满分46分)17.(5分)已知:如图,点A、E、F、C在同一条直线上,AD∥CB,∠1=∠2,AE=CF.求证:△ADF≌△CBE.18.(5分)如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF.19.(6分)问题:已知线段AB、CD相交于点O,AB=CD.连接AD、BC,请添加一个条件,使得△AOD≌△COB小明的做法及思路小明添加了条件:∠DAB=∠BCD.他的思路是分两种情况画图①、图②,在两幅图中,都作直线DA、BC,两直线交于点E由∠DAB=∠BCD,可得∠EAB=∠ECD∵AB=CD,∠E=∠E∴△EAB≌△ECD,∴EB=ED,EA=EC图①中ED﹣EA=EB﹣EC,即AD=CB图②中EA﹣ED=EC﹣EB,即AD=CB又∵∠DAB=∠BCD,∠AOD=∠COB∴△AOD≌△COB(1)数学老师说:小明的做法不正确,请你给出解释;(2)请你重新添加一个满足问题要求的条件,并说明理由.20.(7分)如图,已知点E,D,A,B在一条直线上,BC∥EF,∠C=∠F,AD=1,AE=2.5,AB=1.5.(1)试说明:△ABC≌△DEF.(2)判断DF与AC的位置关系,并说明理由.21.(7分)已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC 的面积.22.(7分)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.23.(9分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF ⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中圆与椭圆不可能完全重合,∴不是全等形.故选:B.2.解:只需带上碎片③即可.理由:碎片③中,可以测量出三角形的两角以及夹边的大小,三角形的形状即可确定.故选:D.3.解:∵∠B=70°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵△ABC≌△ADE,∴∠EAD=∠BAC=80°,∴∠EAC=∠EAD﹣∠DAC=80°﹣35°=45°,故选:B.4.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.5.解:∵BC=7,CF=5,∴BF=7﹣5=2,∵△ABC≌△DEF,∴EF=CB,∴EF﹣CF=CB﹣CF,∴EC=BF=2,故选:B.6.解:已知AB=DE,AC=DF,添加的一个条件是∠ABC=∠DEF,根据条件不可以证明△ABC≌△DEF,故选项A符合题意;已知AB=DE,AC=DF,添加的一个条件是∠A=∠D,根据SAS 可以证明△ABC≌△DEF,故选项B不符合题意;已知AB=DE,AC=DF,添加的一个条件是EB=CF,可得得到BC=EF,根据SSS可以证明△ABC≌△DEF,故选项C不符合题意;已知AB=DE,AC=DF,添加的一个条件是BC=EF,根据SSS 可以证明△ABC≌△DEF,故选项D不符合题意;故选:A.7.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,∴DC⊥AC,∵DE⊥AB,DC⊥AC,∴DE=DC=5,∴△ABD的面积=×AB×DE=×12×5=30,故选:B.8.解:过D作DE⊥AB,交AB于点E,∵BD平分∠ABC,DC⊥CB,DE⊥BA,∴DE=DC=6厘米,则点D到直线AB的距离是6厘米,故选:A.9.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.10.解:∵BC恰好平分∠ABF,∴∠FBC=∠ABC∵BF∥AC,∴∠FBC=∠ACB,∴∠ACB=∠ABC=∠CBF,在△ABC中,AD是△ABC的角平分线,∠ACB=∠ABC,∴△ABC为等腰三角形,∴CD=BD,(故②正确),CA=AB,AD⊥BC(故③正确),∵∠ACB=∠CBF,CD=BD,∴Rt△CDE≌Rt△BDF(AAS),∴DE=DF,(故①正确),BF=CE,CA=AB=AE+CE=2BF+BF =3BF,(故④正确),故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:如图,过点D作DH⊥AB,垂足为H,∵AC=8,DC=AD,∴DC=2,∵BD平分∠ABC,∠C=90°,DH⊥AB,∴CD=DH=2,∴点D到AB的距离等于2,故答案为2.12.解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS).∴∠DAC=∠BAC,即∠QAE=∠PAE.故答案为:SSS.13.解:∵△ADE≌△BCF,∴AD=BC=8cm,∵BD=BC﹣CD,CD=6cm,∴BD=8﹣6=2(cm).故答案为:2.14.解:若添加AC=BD,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);若添加BC=AD,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL).故答案为:AC=BD或BC=AD.15.解:由图形可知,点M在∠AOB的角平分线上,∴点M到∠AOB两边距离相等,故答案为:M.16.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠2=34°,∵∠3=∠1+∠ABD,∠1=22°,∴∠3=56°,故答案为:56°.三.解答题(共7小题,满分46分)17.证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,∴△ADF≌△CBE(ASA).18.证明:在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL).19.解:(1)可画出下面的反例:图中,AB=CD,DA∥BC,小明的证明方法就错误了,理由直线AD与BC没有交点.(2)答案不唯一,如OA=OC.理由如下:∵AB=CD,OA=OC,∴AB﹣OA=CD﹣OC,即OB=OD.在△AOD和△COB中,∴△AOD≌△COB(SAS).20.(1)证明:∵BC∥EF,∴∠B=∠E,∵AD=1,AE=2.5,∴DE=AE﹣AD=2.5﹣1=1.5,∵AB=1.5,∴AB=DE,∵∠C=∠F,∴△ABC≌△DEF(AAS);(2)DF∥AC.∵△ABC≌△DEF,∴∠BAC=∠EDF,∵∠BAC+∠DAC=∠EDF+∠ADF=180°,∴∠DAC=∠ADF,∴DF∥AC.21.解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;(2)作DF⊥AC于F,DH⊥BC于H,如图2,∵BD平分∠ABC,DE⊥AB,DH⊥BC,∴DH=DE=2,∵CD平分∠ACB,DF⊥AC,DH⊥BC,∴DF=DH=2,∴△ADC的面积=DF•AC=×2×4=4.22.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q 的运动速为cm/s或cm/s.23.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.。

全等三角形测试题及答案

全等三角形测试题及答案

全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。

4. SAS全等条件指的是_________。

三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。

()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。

()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。

8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。

若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。

五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。

10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。

答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。

8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。

全等三角形综合练习题含答案

全等三角形综合练习题含答案

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )°°°°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBA =OC D.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.8、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2.能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。

2022—2023学年青岛版数学八年级上册第1章《全等三角形》综合检测

2022—2023学年青岛版数学八年级上册第1章《全等三角形》综合检测

第1章全等三角形综合检测(满分100分,限时60分钟)一、选择题(每小题3分,共36分)1.下列各组图形中,不是全等形的是( )A B C D2.(2021四川攀枝花中考)如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带去最省事.( )A.①B.②C.③D.①③3.(2019辽宁丹东中考)如图,点C在∠AOB的边OA上,用尺规作出了CP∥OB,作图痕迹中,是( )A.以点C为圆心,OD的长为半径的弧B.以点C为圆心,DM的长为半径的弧C.以点E为圆心,DM的长为半径的弧D.以点E为圆心,OD的长为半径的弧4.(2021山东莘县期中)如图是两个全等三角形,图中字母表示三角形的边长,则∠α的度数为( )A.50°B.58°C.60°D.72°5.(2022山东昌乐期中)如图,测河两岸A,B两点的距离时,先在AB的垂线BF上取C,D两点,使CD=BC,再过点D作出BF的垂线DE,当点A,C, E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,测得ED的长就是A,B两点的距离.判定△EDC≌△ABC的依据是( )A.ASAB.SSSC.AASD.SAS6.(2021山东巨野期中)如图所示,△ABD≌△CDB,下面四个选项中,不一定成立的是( )A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.AD+AB=CD+BDD.AD∥BC7.(2021山东阳谷期中)一个三角形由六个元素组成,即三条边和三个角,那么关于判定三角形全等的说法,正确的是( )A.六对元素必须相等,才可以判定三角形全等B.任意三对元素相等,即可判定三角形全等C.至少三对元素相等,且必有一组边相等,才可以判定三角形全等D.两个直角三角形全等,只需任意两对元素相等即可8.(2021山东寿光期中)根据下列已知条件,不能画出唯一的△ABC的是( )A.AB=5,BC=3,AC=6B.AB=10,BC=20,∠B=80°C.∠A=50°,∠B=60°,AB=4D.∠A=50°,∠B=60°,∠C=70°9.(2021陕西陇县期末)如图,AB⊥CD,且AB=CD,CE⊥AD于E,BF⊥AD于F.若CE=6,BF=3,EF=2,则AD的长为( )A.7B.6C.5D.410.(2022贵州黔西南州期末)如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥OB于点C,BD、AC都经过点E,则图中全等的三角形共有( )A.3对B.4对C.5对D.6对11.(2022山东单县期中)如图,已知线段AC、BD相交于点O,从下列条件:①点O是线段AC的中点;②点O是线段BD的中点;③AB=DC;④AB ∥DC中选两个仍不能说明△ABO≌△CDO的是( )A.①②B.①③C.③④D.①④12.(2022山东潍坊潍城期末)如图,已知锐角∠AOB,根据以下要求作图:(1)在射线OA上取点C和点E,以点O为圆心,OC,OE的长为半径画弧,分别交射线OB于点D,F;(2)连接CF,DE交于点P.则各项结论错误的是( )A.CE=DFB.点P在∠AOB的平分线上C.PE=PFD.若∠AOB=60°,则∠CPD=120°二、填空题(每小题3分,共15分)13.(2021山东阳谷期中)当三角形的三条边的长度确定后,它的形状和大小就被确定了,三角形的这种特性称为三角形的.14.(2020湖南怀化中考)如图,在△ABC和△ADC中,AB=AD,BC=DC, ∠B=130°,则∠D= °.15.已知∠α>∠β,作∠AOB=∠α,再以∠AOB的边OB为一边作∠BOC=∠β,则∠AOC= .(用∠α,∠β表示)16.(2022山东肥城期末)如图,在正方形网格中,∠1+∠2+∠3= .17.(2022独家原创)如图,在△ABC中,∠ACB=90°,AC=BC,∠BAC的平分线AD交BC于点D,过点B作BE⊥AD交AD的延长线于E,AC、BE的延长线相交于点F.若AD=6,则BE的长为.三、解答题(共49分)18.(2021湖南衡阳中考)(6分)如图,点A、B、D、E在同一条直线上, AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.19.(2022山东临清期中)(8分)如图,D是△ABC的边AC上一点,点E 在AC的延长线上,EC=AD,过点E作EF∥AB,且使EF=AB,连接DF.DF与BC相等吗?为什么?20.(2021河北正定期中)(8分)如图,已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.(用尺规作图,保留作图痕迹,不写作法)请你根据所学的知识,说明尺规作图作出∠ABC=∠α,用到的是三角形全等判定方法中的,作出的△ABC是唯一的,依据是三角形全等判定方法中的.21.(2021山东阳谷期中)(8分)如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.22.(2022山东聊城东昌府期中)(8分)已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过点A的直线作垂线,垂足分别为点E、F.(1)如图1,当过A的直线与斜边BC不相交时,求证:①△ABE≌△CAF;②EF=BE+CF;(2)如图2,当过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,试求EF的长.图1 图223.(2022山东高密期中)(11分)如图1所示,BD、CE是△ABC的高,点P在BD的延长线上,AC=BP,点Q在CE上,QC=AB.(1)判断:∠1 ∠2(用“>”“<”或“=”填空);(2)探究:AP与AQ之间的关系;(3)若把(1)中的△ABC改为钝角三角形,AC>AB,∠A是钝角,其他条件不变,试探究AP与AQ之间的关系,请画出图形并直接写出结论.图1 备用图答案全解全析一、选择题1.D直接利用全等形的定义即可得出答案.D选项中的两个图形大小不相等,故不全等.故选D.2.C由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以最省事的做法是带③去.3.C根据“作一个角等于已知角”的步骤可得答案.4.A如图,根据三角形的内角和定理可得∠β=180°-58°-72°=50°.因为两个三角形全等,所以∠α=∠β=50°,故选A.5.A根据题意得AB⊥BC,DE⊥CD,∴∠ABC=∠EDC=90°,∵BC=CD,∠ACB=∠ECD,∴根据“ASA”可判定△EDC≌△ABC.6.C∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,周长相等,AB=CD,AD=BC,∠ADB= ∠CBD,∴AD+AB=CD+BC,AD∥BC,选项C不一定成立.7.C根据全等三角形的判定方法“SAS”“ASA”“AAS”“SSS”可知,至少三对元素相等,且必有一组边相等,才能判定三角形全等.8.D选项A,已知三边,且满足任意两边之和大于第三边,所以能作出三角形,且能画出唯一的△ABC;选项B,已知两边及其夹角,满足SAS,所以能画出唯一的△ABC;选项C,AB是∠A,∠B的夹边,满足ASA,所以能画出唯一的△ABC;选项D,三个角分别相等的三角形有无数个,所以不能画出唯一的△ABC.故选D.9.A∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠A+∠D=90°,∠C+∠D=90°,∠CED=∠AFB=90°,∴∠A=∠C.在△ABF和△CDE中,∴△ABF≌△CDE(AAS),∴AF=CE=6,BF=DE=3,∴AD=AF-EF+DE=6-2+3=7.故选A.10.B△OED≌△OEC(AAS),△AED≌△BEC(ASA),△OAE≌△OBE(SAS),△OAC≌△OBD(SAS).11.B选项A,∵点O是线段AC的中点,点O是线段BD的中点, ∴OA=OC,OB=OD,∵∠AOB=∠COD,∴△ABO≌△CDO(SAS);选项B,∵点O是线段AC的中点,AB=DC,∴OA=OC,已知∠AOB=∠COD,由SSA不能判定△ABO≌△CDO;选项C,∵AB∥DC,∴∠B=∠D,∠A=∠C,∵AB=DC,∴△ABO≌△CDO(ASA);选项D,∵点O是线段AC的中点,∴OA=OC,∵AB∥DC,∴∠B=∠D,∠A=∠C,∴△ABO≌△CDO(AAS).12.D由作图,得OE=OF,OC=OD,所以OE-OC=OF-OD,即CE=DF,选项A正确;在△EOD与△FOC中,所以△EOD≌△FOC(SAS),所以∠OED=∠OFC,ED=FC,在△ECP与△FDP中,所以△ECP≌△FDP(AAS),所以PE=PF,所以ED-PE=FC-PF,即PD=PC,连接OP,在△OCP与△ODP,所以△OCP≌△ODP(SSS),所以∠COP=∠DOP,所以点P在∠AOB的平分线上,选项B、C正确;若∠AOB=60°,没有条件判定OC⊥CF,OD⊥DE,所以无法判定∠CPD=120°,选项D错误.二、填空题13.稳定性解析因为三角形具有稳定性,所以三角形的三条边的长度确定后,它的形状和大小就被确定了.14. 130解析在△ADC和△ABC中,所以△ADC≌△ABC(SSS),所以∠D=∠B=130°.15.∠α+∠β或∠α-∠β解析当OC在∠AOB内部时,∠AOC=∠α-∠β;当OC在∠AOB外部时,∠AOC=∠α+∠β.所以∠AOC=∠α+∠β或∠α-∠β.16.135°解析如图,在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠3+∠1=90°,∵∠2=45°,∴∠1+∠2+∠3=135°.17.3解析∵BE⊥AD,∴∠AEB=90°,∵∠ACB=90°,∴∠AEB=∠ACB,∵∠ADC=∠BDE,∴∠CAD=∠CBF,在△ACD和△BCF中,∴△ACD≌△BCF(ASA),∴BF=AD.∵AD平分∠BAF,∴∠BAE=∠FAE,在△BAE和△FAE中,∴△BAE≌△FAE(ASA),∴BE=EF,∴BE=BF=AD=3.三、解答题18.证明∵AC∥DF,∴∠CAB=∠FDE.∵BC∥EF,∴∠CBA=∠FED.在△ABC和△DEF中,∴△ABC≌△DEF(ASA).19.解析DF=BC,理由如下:∵EF∥AB,∴∠E=∠A,∵EC=AD,∴EC+CD=AD+CD,即ED=AC.在△EFD和△ABC中,∴△EFD≌△ABC(SAS),∴DF=BC.20.解析如图,△ABC即为所求.尺规作图作出∠ABC=∠α,用到的是三角形全等判定方法中的“SSS”,作出的△ABC是唯一的,依据是三角形全等判定方法中的“SAS”.21.证明方法一:因为△ABC≌△DEF,所以AB=DE,∠B=∠E,因为AM、DN分别是△ABC、△DEF的对应边上的高,所以AM⊥BC,DN⊥EF,所以∠AMB=∠DNE=90°.在△ABM和△DEN中,所以△ABM≌△DEN(AAS),所以AM=DN.方法二:因为△ABC≌△DEF,所以BC=EF,S△ABC=S△DEF,所以BC·AM=EF·DN,所以AM=DN.22.解析(1)证明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°.∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC.在△ABE和△CAF中,∴△ABE≌△CAF(AAS).②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF.(2)同(1)可证△ABE≌△CAF(AAS),∴AE=CF=3,BE=AF=10,∴EF=AF-AE=10-3=7.23.解析(1)=.提示:设CE、BD交于点F,∵BD、CE是△ABC的高,∴∠BEF=∠CDF=90°,∵∠BFE=∠CFD,∠1=90°-∠CFD,∠2=90°-∠BFE, ∴∠1=∠2.(2)结论:AP=AQ,AP⊥AQ.证明:在△QAC和△APB中,∴△QAC≌△APB(SAS),∴AQ=AP,∠QAC=∠P,∵∠DAP+∠P=90°,∴∠DAP+∠QAC=90°,即∠QAP=90°,∴AQ⊥AP.(3)AP=AQ,AP⊥AQ,图形如图所示.提示:∵BD、CE是△ABC的高,∴BD⊥AC,CE⊥AB,∴∠1+∠CAE=90°,∠2+∠DAB=90°, ∵∠CAE=∠DAB,∴∠1=∠2.在△QAC和△APB中,∴△QAC≌△APB(SAS),∴AQ=AP,∠QAC=∠P,∵∠PDA=90°,∴∠P+∠PAD=90°,∴∠QAC+∠PAD=90°,∴∠QAP=90°,∴AQ⊥AP.故AP=AQ,AP⊥AQ.。

初中数学全等三角形判定综合练习(附答案)

初中数学全等三角形判定综合练习(附答案)

初中数学全等三角形判定综合练习一、单选题1.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A. CB CD =B. BAC DAC ∠=∠C. BCA DCA ∠=∠D. 90B D ∠=∠=︒2.如图,已知ABC DCB ∠=∠,添加下列所给的条件不能证明ABC DCB △≌△的是( )A. A D ∠=∠B. AB DC =C. ACB DBC ∠=∠D. AC BD =3.如图,点,D E 分别在线段,AB AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下的哪个条件仍不能判定ABE ACD ≅△△( )A.B C ∠=∠B.AD AE =C. BD CE =D.BE CD =4.某同学把一块三角形的玻璃打碎成了三块(如图所示),现在要到玻璃店去配一块与原来完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.带①②③去5.如图,BF EC B E =∠=∠请问添加下面哪个条件不能判断ABC DEF ≅△△( )A.A D ∠=∠B.AB ED =C.//DF ACD.AC DF =6.如图,点B E C F 、、、在同一条直线上,//AB DE ,AB DE =,要用SAS 证明ABC DEF ≅△△,可以添加的条件是( )A .A D ∠=∠B .//AC DF C .BE CF =D .AC DF =7.下列各图中a b c ,,为三角形的边长,则甲、乙、丙三个三角形和左侧ABC △全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙8.如图,点D E ,分别在线段AB AC ,上,CD 与BE 相交于O 点,已知AB AC =,现添加以下的哪个条件仍不能判定ABE ACD ≅△△?( )A.B C ∠=∠B.AD AE =C. BD CE =D.BE CD =9.如图所示的是用直尺和圆规作一个角等于已知角 的示意图,则说明'''A O B AOB ∠=∠的依据 是( )A.S.A.SB.S.S.S.C.A.A.S.D.A.S.A.10.如图,AOB ∠是一个任意角,在边OA OB ,上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与M N ,重合,过角尺顶点C 的射线OC 便是AOB ∠的平分线这种方法所用的三角形全等的判定方法是( )A.S.A.S.B.S.S.S.C.A.S.A.D.A.A.S.11.如图,AB AD =,BC CD =,点E 在AC 上,则全等三角形共有( )A.1对B.2对C.3对D.4对12.如图,在ABC △和DEF △中,,B E C F ,,在同一直线上,AB DE =,AC DF =,要使ABC DEF ≅△△,还需要添加的一个条件是( )A.EC CF =B.BE CF =C.B DEF ∠=∠D.//AC DF13.如图,ABC △中,AB AC =,EB EC =,则由“S.S.S.”可以判定( )A.ABD ACD ≅△△B.ABE ACE ≅△△C.BDE CDE ≅△△D.以上答案都不对14.如图,点E 在ABC △的外部,点D 在边BC 上,DE 交AC 于点F .若12∠=∠,E C ∠=∠,AE AC =,则( )A.ABC AFE ≅△△B.AFE ADC ≅△△C.AFE DFC ≅△△D.ABC ADE ≅△△15.下列条件能判 断两个三角形全等的是( )A.有两边对应相等B.有两角对应相等C.有一边一角对应相等D.能够完全重合16.如图,全等的两个三角形是( )A.③④B.②③C.①②D.①④17.如图,点,,,B E C F 在同一条直线上,//,AB DE AB DE = ,要用“边角边”证明ABC DEF ≅△△,可以添加的条件是( ).A.A D ∠=∠B.//AC DFC.BE CF =D.AC DF =18.如图,点P 是AB 上任一点,ABC ABD ∠=∠,从下列各条件中补充一个条件,不一定能推出APC APD ≅△△.的是( )A.BC BD =B.ACB ADB ∠=∠C.AC AD =D. CAB DAB ∠=∠二、证明题19.如图:点C D 、在AB 上,且//AC BD AE FB AE BF ==,,.求证://DE CF .20.如图,已知CA CB =,AD BD =,M N ,分别是CB CA ,的中点,求证:DN DM =.21.如图,已知AB AE =,12∠=∠,B E ∠=∠.求证:BC ED =.22.如图,90A D ∠=∠=︒,AC DB =,AC DB ,相交于点O .求证:OB OC =.23.如图(1)在ABC △中,90ACB AC BC ∠=︒=,,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E 。

全等三角形测试题共三套附答案

全等三角形测试题共三套附答案

全等三角形姓名一.填空题(每题3分,共30分)1.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC是对应角,其对应边:_______.2.如图,△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_________.3. 已知:如图,△ABC≌△FED,且BC=DE.则∠A=__________,A D=_______.4. 如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.5. 已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.6.已知:如图 , AC⊥BC于C , DE⊥AC于E , AD⊥AB于A , BC=AE.若AB=5 , 则AD=___________.7.已知:△ABC≌△A’B’C’,△A’B’C’的周长为12cm,则△ABC的周长为 .8.如图, 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB≌△A EC , 根据是_________再证△BDE≌△______ , 根据是__________.4321EDBA9.如图,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是____________.10.如图,在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.AB CD12AA'B CC'二.选择题(每题3分,共30分)11、下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CAD C.BE=DC D.AD=DE14. 图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ15. 下列说法中不正确的是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F , 则图中相等的角共有(除去∠DFE=∠BFC)()A.5对B.4对C.3对D.2对CDEABO17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是 ( )A.70°B. 85°C. 65°D. 以上都不对18. 已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF19.如图 , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为()A.50°B.30°C.45°D.25°20. 如图 , ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC= ()A.70°B.80°C.100°D.90°三.解答题(每题8分,共40分)21. 已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB.22. 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B的距离.写出你的证明.23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.25.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.FGE D CB A答案1.BC 和BC,CD 和CA,BD 和AB2.AB 和AC,AD 和AE,BD 和CE3. ∠F,CF4.AC, ∠CAE5. ∠ADC,AD6.57.128.ASA DEC SAS9. ∠B=∠C10.40℃ 11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B 21.由ASA 可证 22. 因为AC=CD EC=BC ∠ACB=∠ECD 所以 △ABC ≌△CED AB=ED 23.证△ABC ≌△FED 得∠ACB=∠F 所以AC ∥DF 24.证△BED ≌△CFD 得∠E=∠CFD 所以CF ∥BE 25.由AAS 证△ABC ≌△CED AC=EF.全等三角形 B 卷(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,AD ⊥BC ,D 为BC 的中点,则△ABD ≌_________.4. 如图4,△ABC ≌△AED ,若AE AB =,︒=∠271,则=∠2 .图1图25.如图5,已知AB ∥CD ,AD ∥BC ,E.F 是BD 上两点,且BF =DE ,则图中共有 对全等三角形.6.如图6,四边形ABCD 的对角线相交于O 点,且有AB ∥DC ,AD ∥BC ,则图中有___对全等三角形.7.“全等三角形对应角相等”的条件是 .8.如图8,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.9.若△ABC ≌△A ′B ′C ′,AD 和A ′D′分别是对应边BC 和B ′C ′的高,则△ABD ≌△A ′B ′D ′,理由是_______________.10.在Rt △ABC 中,∠C =90°,∠A.∠B 的平分线相交于O ,则∠AOB =_________. 二.选择题:(每题3分,共24分)11.如图9,△ABC ≌△BAD ,A 和B.C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为 ( )A.4cmB.5cmC.6cmD.以上都不对 12.下列说法正确的是 ( ) A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )图5 图6A EB O FC 图8 A CD 图9A.∠AB.∠BC.∠CD.∠B 或∠C 14.下列条件中,能判定△ABC ≌△DEF 的是( ) A.AB =DE ,BC =ED ,∠A =∠D B.∠A =∠D ,∠C =∠F ,AC =EF C.∠B =∠E ,∠A =∠D ,AC =EF D.∠B =∠E ,∠A =∠D ,AB =DE15.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A.AD >1 B.AD <5 C.1<AD <5 D.2<AD <10 16.下列命题正确的是 ( ) A.两条直角边对应相等的两个直角三角形全等; B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( )A.3对B.4对C.5对D.6对18.如图11,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点图10图 11B DOCAC. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点三.解答题(共46分)19. (8分)如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.20. (7分)如图, ∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?21. (7分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.AB E CD22. (8分)如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.23. (8分)已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 互相平分.ABEO FDCACDB24. (8分)如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A.C作BD的垂线,垂足分别为E.F,求证:EF=CF-AE.答案1.△ADC2. ∠B=∠C或AF=DC3.704.27°5.36.37.两个三角形全等8.72°9.HL 10.135°11.B 12.D 13.A 14.D 15.C 16.A 17.D 18.D 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △AMC≌△CON 21.先证△ABC≌△DBC得∠ABC=∠DCB,再证△ABE≌△CED 22.垂直 23. 先证△ABE≌△DFC得∠B=∠D,再证△ABO≌△COD 24.证△ABF≌△BCF图 5人教课标版八年级(上)数学检测试卷全等三角形 C 卷(考试时间为90分钟,满分100分)一.填空题:(每题3分,共30分)1.如图1,若△ABC ≌△ADE ,∠EAC=35°,则∠BAD=_________度.2.如图2,沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm ,DM=5cm ,∠DAM=300,则AN= cm ,NM= cm ,∠NAM= .3.如图3,△ABC ≌△AED ,∠C=85°,∠B=30°,则∠EAD= .4.已知:如图4,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF , (1)若以“SAS ”为依据,还须添加的一个条件为________________. (2)若以“ASA ”为依据,还须添加的一个条件为________________. (3)若以“AAS ”为依据,还须添加的一个条件为________________.5.如图5,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,则△______≌△_______..ABCDE图1ABCDMN 图2A9. 如图9,AB=CD ,AD=BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若︒=∠60ADB ,EO=10,则∠DBC= ,FO= .10. 如图10,△DEF ≌△ABC ,且AC >BC >AB 则在△DEF 中,______< ______< _____.图 10二.选择题(每题3分,共30分)11. 在ABC ∆和C B A '''∆中,下列各组条件中,不能保证:C B A ABC '''∆≅∆的是( ) ① B A AB ''= ② C B BC ''= ③ C A AC ''= ④ A A '∠=∠⑤ B B '∠=∠ ⑥ C C '∠=∠A. 具备①②③B. 具备①②④C. 具备③④⑤D. 具备②③⑥12. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边ABCDEFA. 一定全等B. 一定不全等C. 不一定全等D. 面积相等14. 如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的15A. 150°B.40°C.80°D. 90°A . 三边对应平行的两个三角形是全等三角形B . 有一边相等,其余两边对应平行的两个三角形是全等三角形C . 有一边重合,其余两边对应平行的两个三角形是全等三角形D. 有三个角对应相等的两个三角形是全等三角形18.下列说法错误的是()A. 全等三角形对应边上的中线相等B. 面积相等的两个三角形是全等三角形C. 全等三角形对应边上的高相等D. 全等三角形对应角平分线相等19.已知:如图,O为AB中点,BD⊥CD,AC⊥CD,OE⊥CD,则下列结论不一定成立的是()A. CE=EDB. OC=ODC. ∠ACO=∠ODBD. OE=21CDA BCED A BCDEF12A DB CEF20.如图,已知在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A..90°-∠A B. 90°-21∠A C. 180°-∠A D. 45°-21∠A 三.解答题(共40分)21.(8分)如图,△ABC ≌△ADE ,∠E 和∠C 是对应角,AB 与AD 是对应边,写出另外两组对应边和对应角;22.(8分)如图,A 、E 、F 、C 在一条直线上,△AED ≌△CFB ,你能得出哪些结论?23.(7分)如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由..3421DCBAFEDCBA24.(8分)如图,AB ∥CD ,AD ∥BC ,那么AD=BC ,AB=BC ,你能说明其中的道理吗?25.(9分)如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.CE DB AO答案1.35°2.7,5,30°3.504.BC=EF, ∠ACB=∠F, ∠A=∠D5.ACD,AED6.28°7.58.SAS9.60°,10 10.ED,EF,DF11.B 12.C 13.C 14.A 15.D 16.D 17.C 18.B 19.D 20.B 21.AE 和AC,ED 和BC, ∠B 和∠D, ∠BAC 和∠DAE 22.AD=BC,AE=CF,DE=BF,AD ∥BC, △ACD ≌△ACB,AB ∥CD 等 23.相等, △AOB ≌△DOC 24.连AC,证△ADC ≌△ABC25.(1)证DE=EC (2) 设BE 与CD 交于F,通过全等证DF=CF.B。

全等三角形综合测试经典题

全等三角形综合测试经典题

B c D E 1234图2A 图1Dc B A 43F B c D E 图3A 第8题全等三角形综合检测题——经典一、填空题:1、如图,已知∠3=∠4,要说明△ABC ≌△DCB ,(1)若以“SAS ”为依据,则需添加一个条件是 ;(2)若以“AAS ”为依据,则需添加一个条件是 ;(3)若以“ASA"为依据,则需添加一个条件是 。

2、如图,若∠1=∠2,,3=∠4,则图中共有全等三角形 对,它们分别是3F 在一条直线上,AB ∥DE,AC ∥DF ,AC =DE ,若BE =3cm,则CF =4、若DEF ABC ∆≅∆,△DEF 周长为28 cm,DE=9 cm ,EF=12 cm ,则AB= ,BC=5、已知DEF ABC ∆≅∆,∠A=52°,∠B=31°,ED=10,那么∠F= ,AB=6、如图,在△ABC 和△DEF 中,AB ∥DE ,可以推出 = ,然后加上条件AB=DE 和 可得到DEF ABC ∆≅∆,根据是7、如图,△ABD ≌△ACD ,AD 、BC 交于点D,则∠ABD= 。

8、如图,若∠1=∠2,∠3=∠4,则△ ≌△ ,根据是9、如图,∠xoy,分别在ox ,oy 上截取OA =OB ,OC =OD 。

连AD 、BC 相交于E 点。

则射线OE 与∠xoy 的关系为 。

10、如图,AB =CD ,AD =CB,O 为AC 上一点,过O 任作直线EF 分别交AD 、BC 于E 、F,要使BE =FD ,则应满足的条件是 .11、等边△ABC 中,D 、E 为BC 、AC 上两点,且BD =CE,连AD 、BE 交于O ,则∠DOE = 。

二、选择题:12、已知△ABC ≌△DEF ,若∠A =500,∠C =300,则∠E 的度数为 ( )A 、300B 、500C 、600D 、100013、如图,若AC =BD ,AB =DC ,则图中全等三角形的对数是( )A 、1对B 、2对C 、3对D 、4对14、小颖同学不小心把一块三角形的玻璃打碎(如图),现在他要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去配A 、(1)B 、(2)C 、(3)D 、(1)和(2)第6题 C D E 第7题 A B C D 第11题 第10题 第9题 第1题 第2题 第3题O 6题Dc B A (1)(2)(3) E F D B C A 15、如图,在△ABC 中,AD 是△BAC 的角平分线,DE ⊥AB,DF ⊥AC,垂足分别为E 、F,下面给出四个结论:①DA 平分∠EDF ;②AE =AF ;③AD ⊥BC ;④BD =CD ,其中正确的结论有( )A 、1个B 、2个C 、3个D 、4个16、下列说法正确的是( )⑴ 形状相同的两个图形是全等形 ⑵ 对应角相等的两个三角形是全等形⑶ 全等三角形的面积相等 ⑷ 若DEF ABC ∆≅∆,MNP DEF ∆≅∆,则MNP ABC ∆≅∆A 、0个B 、1个C 、2个D 、3个17、若BCD ABC ∆≅∆, AB=6cm,BD=7cm ,AD=4cm,那么BC 的长为( )A 、6 cmB 、5 cmC 、4cmD 、不能确定18、若AD=BC ,∠A=∠B ,直接能利用“SAS ”证得△ADF ≌ △BCE 的条件是( )A 、AE=BFB 、DF=CEC 、AF=BED 、∠CEB=∠DFA19、下列能够确定△ABC 的形状和大小的是( )A 、AB=4,BC=5,∠C=60°B 、AB=6,∠C=60°,∠B=70°C 、∠C=60°,∠B=70°,∠A=50°D 、AB=4,BC=5,CA=1020、如图所示,已知OA=OB ,则再加上下列哪个条件后,不能..判断△AOC ≌△BOD 的是( ) A 、∠A=∠B B 、∠C=∠DC 、AC=BD D 、OC=OD 21、如图所示,已知AB=AC,BD=CE ,则图中共有( )组全等三角形A 、4B 、5C 、6D 、7 22、以下能够判定两个直角三角形全等的情况有( )⑴ 两个锐角和一个锐角的对边对应相等 ⑵ ⑶ 一个锐角和它的对边对应相等 ⑷ 两条直角边对应相等⑸ 两边对应相等 ⑹ 斜边和一条直角边相等A 、3B 、4C 、5D 、623、如图:AB =CD ,BC =DA ,O 为AC 中点,过O 的直线BA 、DC 的延长线于E 、F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、选择题 2.到三角形三边距离相等的点是
3.下列条件中,能判定^ ABC^A DEF 的是()
A . 2
B . 3
C . 4
8.下列命题:①全等三角形的对应边上的中线、高、对应角的平分线对应等;②两边和其中一边上的中线
上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三
第十二章
全等三角形综合测试题
1如图,△ ABC^A BAD 如果 AB=6cm BD=5cm AD=4cm 那么BC 的长是()
A . 4cm
B. 4cm
C. 4cm D .无法确定 A .三条中线的交点
B .三条高的交点
C .三条角平分线的交点
D .不能确定
A . / B=/ E ,/ A=/ D, AB=ED
B . / A=/ D,/ C=/ F , AC=EF C. / B=/ E ,/ A=/ D, AC=EF D . AB=DE BC=ED / A=/ D
4.如图,△ ABC 中, / B=/ C, BD=CE BE=CF 若/ A=50,则/ DEF 的度数是(
A . 75 .70°
C . 65° .60°
5.如图,在四边形 ABCD 中, AD// BC 若/ DAB 的角平分线
AE 交CD 于 E ,连接BE,且BE 边平分/ ABC 则以下命题不 正确的个数是① BC+AD=AB ②E 为CD 中点;③/ AEB=90
;® 令S 四边形ABCD ⑤BC =CE ( A . 0个 C. 2个
6.如图,BC AE 是锐角△ ABF 的高,相交于点
D,若 AD=BF AF=7, CF=2 则 BD 的长为() 7.如图,在长方形 ABCD 中, AB=4, AD=6延长 BC 到点 E ,使 CE=2 连接DE 动点P 从点B 出发, 以每秒2个单位的
速度沿BC- CD- DA 向终点A 运动,设点P 的运动时间为 t 秒,当t 的值为(
)秒时.△ ABP 和△ DCE 全等. A . 1 B. 1 或 3 C. 1 或 7 D.
(或第三边 角形全等:④两边和其中一边上的高(或第三边上的高 )对应相等的两个三角形全等.其中正确命题的个数
A. 1 B . 2 C . 3 D
9.如图,在四边形 ABCD 中,对角线 AC 平分/ BAD
AB>AD 下列结论中正确的是() A. AB-AD>CB-CD B . AB-AD=CB-CD C. AB-AD<CB-CD D . AB-AD 与 CB-CD 的大小关系不确定
第4题 第5题
点 D, C , A 在同一直线上,/ A :/ ABC / ACB=3 5: 10,若^ EDC^A ABC 则/ BCE 的度数为
19.在△ ABC 中,AB = 10 , AC = 6 , AD 是BC 边上的中线,贝U AD 的取值范围是 20.如图,G H 分别是四边形 ABCD 的边 AD AB 上的点.CD=CB=2 / D=/ DCB2 B=90°, / GCH=45 ,则^ AGH 的周
长为 三、解答题
21.如图,点 B F 、C 、E 在一条直线上,FB=CE AB// ED, AC// FD, AD 交BE 于O 求证:AD 与BE 互相平分.
10.如图, AD >△ ABC 的角平分线,DF 丄AB, 垂足为F , DE=D(G ^ ADG^n ^ AED 的面积分别为
积为( A. 12
二、填空题
11.已知,在△ ABC^n ^ DEF 中,
/ A=/ D,/ C=/ F ,需要增加条件① AC=DF ②BC=EF ③/ B=/ E ;④AB=DE 上述增 加的条件中不能使△ ABC^^ DEF 的是
12.如图, 13.如图, △ ABC 三个内角的平分线交于点 0,点D 在CA 的延长线上,且DC=BC 若/ D=20 ,则/ ABC 的度数为
14.如图, AC 平分/ BAD / B+Z D=180° ,CEIAD 于点 E , AD=10cm AB=7cm 那么 DE =
15.如图, 直角坐标系中 A (2, -1 ) , B (-1 , 1), / BAC=90 , AB=AC 则 C 点坐标为
16.如图, 在^ ABC^n ^ DBC 中 , / ACB 玄 DBC=90 , E 是 BC 中点,DEX AB 于 F ,且 AB=DE 若 BD=8cm 贝U AC= 17.如图,/ B=/ C=90° , E 是 BC 的中点,AD=AB+CD / CED=35 ,则/
EAB=
A 、
B 两点分别作 AM 丄OQ 于点M, BN1OQ 于点 N, 若 AM=9 BN=4,则
D
第9题 第10题 C 第12题 第13题
D
51和39,则△ EDF 的面
ON 交干点Q.且OA=OB 过
MN 的长为
第16题图 第17题图 第18题图 第20题图
22.已知点D E分别在AB AC上, AB=AC,BE和CD相交于点F,
23.如图,BE CF是^ ABC的高,且BP=AC CQ=AB试说明AP与AQ的数量关系和位置关系
24. (1)如图1,以^ ABC的边AB AC为边分别向外作正方形ABDE和正方形ACFG连接EQ试判断△ ABC与△ AEG面积之间的关系,并说明理由。

(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成•已知中间的所有正方形
的面积之和是a平方米,
__ ________________________________________ 2 2
25.如图所示,直线AB交x轴于点A (a, 0),交y轴于点B (0, b),且a、b满足(a+b) +(a- 4) = 0
(1)如图1,若C的坐标为(-1 , 0),且AhU BC于点H, AH交OB于点P,试求点P的坐标;
(2)如图2,连接OH求证:/ OHP=45 ;
(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD过D作DNU DM交x轴于N点,当M点在y 轴正半轴上运动的过程中,式子S^BDM-S △AD N的值是否发生改变如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.
s_o 刍c0 £。

相关文档
最新文档