求最值问题的五种方法
求最值问题的五种方法
求最值问题的五种方法
求最值问题是多种数学模型中的经典概念,可以应用于科学研究、工程
设计和经济管理等领域,具有重要的现实意义。
通常,有五种方法可以解决
求最值问题,即解析法、穷举法、单纯形法、回归法和数值方法。
首先,解析法是指根据问题的函数关系或其它变量的规律,以求解一次
高阶算式或一组方程组的方法来解决求最值问题,它是对问题进行分析求解,速度较快,但它的适用范围较窄,只适用于问题的算式表达既简单又复杂的
情况。
其次,穷举法是一种采用暴力枚举方式搜索全部可能解以解决问题的方法。
它有利于深入了解问题,适用性较广,但缺点是计算量较大,容易出现
数量级爆炸,效率较低。
第三,单纯形法是指使用单纯形法对求最值问题进行分析求解,能够有
效获得求最值问题的解,同时它也能用来求解约束优化问题,简单易操作,
但需要注意的是,得到的解可能不是最优解。
第四,回归法是指使用统计学中的回归分析方法来重建散点数据,以寻
求最优的函数。
回归法的优势在于能够得到较好的拟合性能,它能够清楚的
表达模型之间的统计关系,并且能够根据数据自动学习模型,但是其缺点是
可能出现较多的陷阱,作出决策时要非常小心。
最后,数值方法是指利用数值计算技术,通过迭代的方式寻找函数取得
最值的方法。
它的优势在于十分适用于大规模的求解,它也支持多种求最值
方法,可以处理许多强约束优化问题,但缺点是它的计算量较大,时间消耗
比较大。
以上就是解决求最值问题常用的五种方法,它们各有利弊,依据各自的
特点,在不同环境下可以有选择性的使用,以达到最优求解效果。
有关函数最值问题的十二种解法
本稿件适合高三高考复习用有关函数最值问题 的十二种解题方法与策略贵州省龙里中学高级教师 洪其强(551200)一、消元法:在已知条件等式下,求某些二元函数(,)f x y 的最值时,可利用条件式消去一个参量,从而将二元函数(,)f x y 化为在给定区间上求一元函数的最值问题。
例1、已知x 、y R ∈且223260x y x +-=,求222x y +的值域。
解:由223260x y x +-=得222360y x x =-+≥,即02x ≤≤。
2222392262()22x y x x x +=-+=--+∴当32x =时,222xy +取得最大值92;当0x =时,222x y +取得最小值0。
即222x y +的值域为90,2⎡⎤⎢⎥⎣⎦二、判别式法:对于某些特殊形式的函数的最值问题,经过适当变形后,使函数()f x 出现在一个有实根的一元二次方程的系数中,然后利用一元二次方程有实根的充要条件0∆≥来求出()f x 的最值。
例2、求函数22()1xf x x x =++的最值。
解:由22()1xf x x x =++得 []2()()2()0f x x f x x f x +-+=,因为x R ∈,所以0∆≥,即[]22()24()0f x f x --≥,解得22()3f x -≤≤。
因此()f x 的最大值是23,最小值是-2。
三、配方法:对于涉及到二次函数的最值问题,常用配方法求解。
例3、求2()234x x f x +=-在区间[]1,0-内的最值。
解:配方得 2224()2343(2)33x x x f x +=-=--+[]1,0x ∈- ,所以 1212x ≤≤,从而当223x =即22log 3x =时,()f x 取得最大值43;当21x =即0x =时()f x 取得最小值1。
四、辅助角公式:如果函数经过适当变形化为()sin cos f x a x b x =+(a、b均为常数),则可用辅助角公式sin cos arctan )ba xb x x a+=+来求函数()f x 的最值。
高中数学函数求最值常用方法总结
高中数学中的函数最值求解问题是学习中的难点,在解决函数最值问题的时候要经过全方位的考虑,结合函数的定义域,将各种可能出现的结果进行分析,最终求得准确的计算结果。
在数学学习的过程中活跃的数学思维非常重要,它不仅可以改善学习方法,而且可以帮助学生掌握更多的解题技巧,进而提高解题速度和学习效率。
本文总结了一些求函数最值的常用方法如下:一、利用一次函数的单调性【例题1】 已知 x , y , z 是非负实数,且 x + 3y + 2z = 3 , 3x + 3y + z = 4 ,求函数 w = 2x - 3y + z 的最值 .解:得 y = 5/3 (1 - x), z = 2x - 1∴ w = 9x - 6又 x , y , z 非负,依一次函数 w = 9z - 6 的单调性可知当 x = 1/2 时,Wmin = -3/2 ,当 x= 1 时,Wmax = 3 .注:再求多元函数的条件最值时,通常是根据已知条件消元,转化为一元函数来解决问题.对于一次函数 y = kx + b ( k ≠ 0 ) 的最值,关键是指出自变量的取值范围,即函数的定义域,当一次函数的定义域是闭区间时,其最值在闭区间的端点处取得 .二、利用二次函数的性质【例题2】 设 α , β 是方程 4x^2 - 4kx + k + 2 = 0 的两个实数根,当 k 为何值时 α^2 + β^2 有最小值?解:∵ α , β 为方程的两个实数根,∴ α + β = k , αβ = 1/4 ( k + 2 ) ,令 y = α^2 + β^2 , 则有又由原方程由实数根可知,∴ k ≤ -1 或 k ≥ 2 .而二次函数的顶点 (1/4,-17/16)不在此范围内,根据二次函数的性质知,y 是以 k = 1/4 为对称轴,开口向上的,定义域为 (-∞,-1]∪[2,+∞)的抛物线,比较 k = -1 及 k = 2 时 y 的值知,当 k = -1 时,有 ymin = 1/2 .注:利用二次函数的性质求最值时,不能机械地套用最值在顶点处取得 . 首先要求出函数的定义域,然后在看顶点是否在函数的定义域内,最后再根据函数的单调性来判定 . 【例题3】 如图所示,抛物线 y = 4 - x^2 与直线 y = 3x 交于 A , B 两点,点 P 在抛物线上由 A 运动到 B,求 △APB 的面积最大时点 P 的坐标 .分析:由于 A , B 为定点,所以 AB 长为定值,欲使 △APB 的面积最大,须使 P 到 AB的距离最大 .解:设 P 点坐标为 (x0 , y0),∵ A , B 在直线 y = 3x 上,∴联立抛物线与直线方程,可得xA = -4 , xB = 1 ,∴ -4 ≤ x0 ≤ 1 ,则有∴当 x = -3/2 时,d 取最大值,△APB 面积最大,此时 P 点坐标为 (-3/2 , 7/4).注:在解决实际问题时要注意确定自变量取值范围的方法,本题是由直线与抛物线的交点来确定的,这样才能确定定义域内的最值 .三、利用二次方程的判别式欲求函数 y = f(x) ( x ∈ R ) 的极值,如果可以把函数式整理成关于 x 的二次方程, 注意到 x 在其定义域内取值,即方程有实根,所以可以通过二次方程的判别式 △ ≥ 0 来探求 y 的极大值与极小值 .【例题4】 已知 0 ≤ x ≤ 1 , 求的最值 .解: 原式可化为∵ x ∈ R ,∴解得 y ≤ 1/4 或 y ≥ 9/16 ,即函数 y 的值域为 y ≤ 1/4 或 y ≥ 9/16 ,∴ y极大 = 1/4,y极小 = 9/16 .当 y = 1/4 时,代入原函数解析式得 x = 1 ∈ [ 0 , 1 ] ;当 y = 9/16 时,代入原函数解析式得 x = -1 [ 0 , 1 ] .又 x = 0 时 , y = 2/3 ,∴ 当 x = 0 时,y 取极大值 2/3 .注:① 由判别式确定的是函数的值域,由值域得到的是函数的极值而不是最值;② 对有些函数来说,极值与最值相同,而有的函数就不一定,如本题中的极大值比极小值还小,这是因为极值是就某局部而言;③ 若要求函数在给定的定义域内的最值,一定要注意极值是否在此定义域内取得, 即要注意验根 .四、利用重要不等式【例题5】 设 x , y , z ∈ R+ , 且 2x + 4y + 9z = 16 .求 6√x + 4√y + 3√z 的最大值 .解:令 u = 6√x + 4√y + 3√z ,∴ u ≤ 4√23 ,( 其中当 9/x = 1/y = 1/9z 时,即当 x = 144/23 , y = 16/23 , z = 16/207 时取等号) 故注:这里是应用柯西不等式,在应用公式时,如何构造出已知条件等式 2x + 4y + 9z = 16,颇具技巧性和解题意义 .五、利用三角函数的有界性对于三角函数的极值,通常是利用三角函数的有界性来求解问题的,如正、余弦函数的最大(小)值很明显:y = asinx + bcosx (a , b ≠ 0)引入辅助角 θ,则其最值也一目了然 . 而对于其它的类型或用同角关系式、或用万能公式、或用正余弦定理作转化,变为二次函数问题来求解 .【例题6】 求的最值 .解法一: (利用降幂公式)解法二: (用判别式法)注: 本例还可以用万能公式等方法来求解 .六、利用参数换元对于有些函数而言,直接求极值比较复杂或不方便,这时可根据题目的特点作变量代换,然后运用前面的几种方法来解决问题.在换元时,一定要注意新的变量的取值范围 . 【例题7】 求函数 y = x + √( 1 - x ) 的极值 .解:原函数变为∵ t = 1/2 ∈ [ 0 , +∞ ) ,∴ 当 t = 1/2 ,即 x = 3/4 时,ymax = 5/4 .注: 这种换元虽然十分简单,但具有代表性 .七、利用复数的性质【例题8】 已知复数 z 满足 | z | = 2 , 求 | 1 + √3 i + z | 的极值 . 解法一:设 z = 2(cosθ + isinθ) (∵ | z | = 2)故 | 1 + √3 i + z |max = 4 , | 1 + √3 i + z |min = 0 .解法二:依据 | z1 | - | z2 | ≤ | z1 + z2 | ≤ | z1 | + | z2 | ,有 | 1 + √3 i | - | z | ≤ | 1 + √3 i + z | ≤ | 1 + √3 i | + | z | ,即 2 - 2 ≤ | 1 + √3 i + z | ≤ 2 + 2 ,∴ | 1 + √3 i + z |max = 4 , | 1 + √3 i + z |min = 0 .注:求复数模的最值通常可用代数法,三角法(解法一),复数模的性质及其公式 | z1 | - | z2 | ≤ | z1 + z2 | ≤ | z1 | + | z2 | , 此外还有数形结合方法等,但以上两种方法最为简捷.八、利用数形结合有些代数和三角问题,若能借助其几何背景,予以几何直观,这时求其最值常能收到直观、明快,化难为易得功效.【例题9】 求的最值 .解: 将函数式变形为其几何意义是在直角坐标系中,动点 P(cosx , sinx)和定点 A(-2 ,-1)连线的斜率,动点 P 的轨迹为单位圆,如下图所示:知 kAB 最小,kAC 最大,显然 kAB = 0 ,又 tgθ = |OB|/|AB| = 1/2 ,tg∠A = tg2θ = 2tgθ/(1 - tg^2 θ)= 4/3 ,即 kAC = 4/3 ,故 ymin = 0 , ymax = 4/3 .注:形如 [f(x) - a] / [g(x) - b] 的函数式,通常都可视作点 (g(x) ,f(x) ) 与点 (b , a)的连线的斜率 .运用数形结合的思想解题,关键是要进行合理的联想和类比,将代数式通过转化、变形、给予几何解释,通常这种转化与变形的过程常是一种挖掘和发现的过程,如本例需要挖掘 .。
三角函数求最值五种题型
三角函数求最值五种题型一、最值问题的一般解法:求解三角函数的最值问题可以分为以下五种题型:基本最大、基本最小、最大最小(上下界)、最大、最小。
1.基本最大:即求函数的最大值,通常通过对函数进行求导并令导数为零来求得。
这种情况下,需求导数在给定区间内的零点,并进行极值判断来确定最值。
2.基本最小:与基本最大相反,求函数的最小值,同样需要对函数进行求导并求导数为零,进行极值判断来确定最值。
3.最大最小(上下界):在给定区间内求函数的最大最小值,需将区间的端点以及函数的驻点和不可导点的值进行比较,以确定最大最小值。
4.最大:在给定区间内寻找函数的最大值。
可以通过对函数进行求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最大值。
5.最小:在给定区间内寻找函数的最小值。
同样可以通过求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最小值。
二、详细解答五种题型:以下是对上述五种题型的详细解答:1.基本最大:Example 1: 求函数f(x) = sin(x)的最大值。
解:首先求得导数f'(x) = cos(x),令cos(x) = 0,解得x = π/2 + kπ,其中k为整数。
然后对于x = π/2 + kπ,求得对应的函数值f(x) = sin(π/2 +kπ) = (-1)^k,即奇数项取最大值为1,偶数项取最小值为-1所以函数f(x) = sin(x)的最大值为12.基本最小:Example 2: 求函数f(x) = cos(x)的最小值。
解:同样求导得到f'(x) = -sin(x),令-sin(x) = 0,解得x = kπ,其中k为整数。
然后对于x = kπ,求得对应的函数值f(x) = cos(kπ) = (-1)^k,即奇数项取最小值为-1,偶数项取最大值为1所以函数f(x) = cos(x)的最小值为-13.最大最小(上下界):Example 3: 在区间[0, 2π]内,求函数f(x) = 2sin(x) + cos(x)的最大最小值。
用基本不等式求最值六种方法
用基本不等式求最值六种方法一.配项例1:设x>2,求函数y=x+92x-的最小值解析:y=x-2+92x-+2≥8 当x-2=92x-时,即x=5时等号成立例2:已知a,b是正数,满足ab=a+b+3,求ab的最小值法1:ab=a+b+3≥当a=b3即ab≥9当a=b=3时等号成立。
法2:已知可化为(a-1)(b-1)=4.又ab=(a-1)+(b-1)+5≥9当a-1=b-1=2时等号成立,即a=b=3二.配系数例3:设0<x<1,求解析:当三.重复使用不等式例4:已知a>b>0,求2a+16()a b b-的最小值解析:2a+16()a b b-=2a b b-+()+16()a b b-≥4(a-b)b+16()a b b-≥当时,等号成立。
四.平方升次例5:当x>0时,求函数的最大值。
解析:y2=x2+4-x2≤4+[x2)2]=8 当,即时,y取得最大值.五.待定系数法例6:求y=2sinx(sinx+cosx)的最大值。
解析:y=2sin 2x+2sinxcosx=2 sin 2x+2sin (cos )x a x a (a>0) ≤2 sin 2x+222sin cos x a x a+ =a+22(21)sin a a xa+- 若为定值,则221a a +-=0,+1,所以y 时成立。
六. 常值代换 例7:已知x>0,y>0,且x+2y=3,求1x +1y 的最小值解析:1x +1y =13(x+2y)( 1x +1y )=1+13(2y x +x y )≥1+23当且仅当2y x =x y ,且x+2y=3,即-1),y=32)时,取得最小值为1+23。
梯形中最值问题10种求法
梯形中最值问题10种求法介绍梯形是在数学中常见的几何图形之一,其特点是两边平行,且两边之间有一段不平行的边。
求解梯形中最大或最小值的问题在数学中也是常见的。
本文将介绍10种不同的方法来求解梯形中的最值问题。
方法一:三边法最直接的方法是根据梯形的三个边长来求解最值问题。
根据梯形的性质,最大值出现在底边等于两边之和的情况下,最小值出现在底边等于两边之差的情况下。
方法二:面积法梯形的面积公式是底边和高的乘积再除以2。
因此,可以通过计算梯形的面积来求解最值问题。
最大值出现在底边和高都取最大值的情况下,最小值出现在底边和高都取最小值的情况下。
方法三:相似三角形法利用相似三角形的性质,可以将梯形划分为两个全等的直角三角形和一个矩形。
通过分析这些三角形和矩形的特点,可以求解梯形中的最值问题。
方法四:角平分线法利用梯形的特点,可以通过角平分线将梯形划分为两个全等的直角三角形。
通过分析这些三角形的特点,可以求解梯形中的最值问题。
方法五:垂线法通过在梯形的两个顶点处分别作垂线,可以将梯形划分为两个全等的直角三角形。
通过分析这些三角形的特点,可以求解梯形中的最值问题。
方法六:画图法通过在纸上画出梯形,并标出已知条件,可以通过观察和直觉来求解最值问题。
这种方法适用于简单的梯形情况。
方法七:三角函数法利用三角函数的性质,可以通过计算梯形的两个角度来求解最值问题。
最大值出现在梯形的两个角度最大的情况下,最小值出现在梯形的两个角度最小的情况下。
方法八:导数法将梯形的底边长度或高看作自变量,将梯形的面积看作因变量,可以通过求导数来求解最值问题。
最大值出现在导数等于0的情况下,最小值出现在导数不存在或无穷大的情况下。
方法九:平均值不等式法利用平均值不等式的性质,可以通过分析梯形的边长之间的关系来求解最值问题。
最大值出现在梯形的两个边长之和最大的情况下,最小值出现在梯形的两个边长之和最小的情况下。
方法十:数学公式法通过使用梯形的面积公式和边长之间的关系公式,可以建立一个求解最值问题的数学表达式。
初中数学常见8种最值问题
的方程 3 B.初中数学常见8种最值问题最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题. 这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一. 配方法例 1. (2005 年全国初中数学联赛武汉 CASIO 杯选拔赛)可取得的最小值为.解:原式 由此可知,当时,有最小值 .二. 设参数法例 2. (《中等数学》奥林匹克训练题)已知实数满足 .则 的最大值为.解:设 ,易知,由,得从而,.由此可知,是关于 t 的两个实根.于是,有,解得.故的最大值为 2.例 3. (2004 年全国初中联赛武汉选拔赛)若,则可取得的最小值为( )A. C.D. 6取得最小值 .故选(B ).解:设 ,则从而可知,当时,解:由 得解得由是非负实数,得 , 解得又 ,故, 三. 选主元法例 4. (2004 年全国初中数学竞赛) 实数满足.则 z 的最大值是.解:由 得.代入 消去 y 并整理成以为主元的二次方程,由 x 为实数,则判别式 . 即 ,整理得 解得 .所以,z 的最大值是 .四. 夹逼法例 5. (2003 年北京市初二数学竞赛复赛)是非负实数,并且满足.设,记 为 m 的最小值,y 为 m 的最大值.则.五. 构造方程法例 6. (2000 年山东省初中数学竞赛).于是,因此.已知矩形 A 的边长为 a 和 b ,如果总有另一矩形 B 使得矩形 B 与矩形 A 的周长之比与面积之比都等于 k ,试求 k 的最小值.解:设矩形 B 的边长为 x 和 y ,由题设可得 .从而x 和y 可以看作是关于t 的一元二次方程 的两个实数 根,则 ,因为 ,所以 ,解得,所以 k 的最小值是.六. 由某字母所取的最值确定代数式的最值例 7. (2006 年全国初中数学竞赛)已知为整数,且.若,则的最大值为.解:由得,代入得.而由和可知的整数.所以,当时,取得最大值,为.七. 借助几何图形法例 8. (2004 年四川省初中数学联赛)函数的最小值是.解:显然,若,则.因而,当取最小值时,必然有. 如图1,作线段AB=4,,且AC=1,BD=2.对于AB 上的任一点O,令OA=x,则.那么,问题转化为在 AB 上求一点 O,使 OC+OD 最小.图 1设点 C 关于 AB 的对称点为 E,则 DE 与 AB 的交点即为点 O,此时,.作 EF//AB 与DB 的延长线交于 F.在中,易知,所以,.因此,函数的最小值为5.八. 比较法例 9. (2002 年全国初中数学竞赛)某项工程,如果有甲、乙两队承包天完成,需付180000 元;由乙、丙两队承包天完成,需付150000 元;由甲、丙两队承包天完成,需付160000 元. 现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?解:设甲、乙、丙单独承包各需天完成,则解得又设甲、乙、丙单独工作一天,各需付元,则解得于是,由甲队单独承包,费用是(元);由乙队单独承包,费用是(元);而丙队不能在一周内完成,经过比较得知,乙队承包费用最少.。
有关坐标对称及最值问题5种题型
坐标对称及最值问题是数学中的常见问题,常常出现在函数、几何、三角函数等领域。
这类问题需要运用对称思想,以及寻找最值的方法。
下面列举了5种常见的题型及相应的解法。
题型一:函数的最值对于函数f(x),其最值可能出现在最小值(f(x)min)和最大值(f(x)max)上。
对于这类问题,我们通常需要观察函数的对称性,例如,如果函数是关于原点对称的,那么最小值和最大值可能在左右两侧取得。
解法上,我们通常需要利用导数或其他方法来找到函数的极值点,从而确定最值。
题型二:两点之间的距离在两点之间的距离问题中,如果两个点关于某个轴对称,那么它们之间的距离可以通过简单的轴对称距离公式来计算。
解法上,我们通常需要利用轴对称距离公式,以及两点之间的距离公式来求解。
题型三:圆的半径的最值在圆的半径的最值问题中,如果圆关于某条直线对称,那么我们需要找到圆的半径与对称轴的位置关系,从而确定圆的半径的最值。
解法上,我们通常需要利用圆的半径公式,以及对称轴的位置关系来求解。
题型四:三角形的重心坐标在三角形的重心坐标问题中,如果三个顶点关于某条直线对称,那么我们需要找到重心坐标与对称轴的关系,从而确定重心的坐标。
解法上,我们通常需要利用重心的几何性质,以及对称轴的位置关系来求解。
题型五:椭圆的离心率在椭圆的离心率问题中,如果焦点关于某轴对称,那么我们需要找到椭圆的离心率与对称轴的关系,从而确定椭圆的离心率。
解法上,我们通常需要利用椭圆的离心率公式,以及对称轴的位置关系来求解。
总的来说,坐标对称及最值问题的解法主要依赖于对称性和位置关系。
对于不同类型的题目,我们需要灵活运用这些方法来解决问题。
同时,对于不同类型的题目,也需要进行相应的变化和拓展,以适应更复杂的情况。
希望以上信息对您有所帮助。
如果您有任何具体问题或需要进一步的解释,请随时告诉我。
巧求最值问题八种方法
巧求最值问题八种方法如何求“最值"问题求最大值与最小值是中学数学常见的一种题型,在数学竞赛中作为一个靓点大量存在,解这类题有一定的难度和技巧,所以不少同学为之感叹,这里向大家介绍一些求最值问题的方法与技巧。
一、利用配方求最值例1 :若X,y是实数,则x2 xy y2 3x 3y 1999的最小值是____________ 。
分析:由于是二次多项式,难以直接用完全平方公式,所以用配方法来解更为简捷。
原^式=1(x22xy y2) 1(x26x 9) 1 (y26y 9) 1990=2(x y)21(x 3)21(y 3)21990显然有(x-y) 2> 0, (x-3) 2> 0, (y-3) 2> 0,所以当x-y=0,x-3=0,y-3=0 时,得x=y=3 时, 代数式的值最小,最小是1990;例2,设x为实数,求y=x2x丄3的最小值。
x分析:由于此函数只有一个未知数,容易想到配方法,但要注意只有一个完全平方式完不成,因此要考虑用两个平方完全平方式,并使两个完个平方式中的 x 取值相同。
由于y=x 22x i x - 2 i=(x i )2(依斗)2i ,要求 y 的最小x J x '值,必须有X-仁0,且眉士 0,解得x=1,Vx于是当x=1时,y=x 2x - 3的最小值是-1。
x二、利用重要不等式求最值例3 :若xy=1,那么代数式 丄 二的最小值 x 4y分析:已知两数积为定值,求两数平方和的最 小值,可考虑用不等式的性质来解此题,所以:4角的最小值是1x 4y三、构造方程求最值例 4:已知实数 a 、b 、c 满足:a+b+c=2, abc=4. 求a 、b 、c 中的最大者的最小值.分析:此例字母较多,由已知可联想到用根与 系数的关系,构造方程来解。
解:设c 为最大者,由已知可知,c>0,得:a+b=2-c, ab=4,则 a 、b 可以看作 x 2(2 c )x 40 的两c c1 (xy )2=11 ~4 x1 4y 4(27)2根,因为 a 、b 是实数,所以(2 c )24^ 0,即 c 7c 3 4c 2 4c 16 0, (c 2)( c 2)(c 4) 0,得 c 2 或 c 4,因为 C 是 最大者,所以c的最小值是4.四、构造图形求最值例5:使x 24 (8—x )2—16取最小值的实数X 的值 为______ 」分析:用一般方法很难求出代数式的最值 ,由于 X 24(8一XL16=心―0厂(0一2)28厂(0一4)2,于是可构造图形,转化 为:在x 轴上求一点c (x,0),使它到 『 两点A (0,2)和B (8, 4)的距离 * 和CA+CB 最小,利用对称可求出 C 点坐标,这样,通过构造图形使问 题迎刃而解。
求最值问题的6种解法
求最值问题的6种解法
最值问题是指在一组给定的值中,找出最大值或最小值的问题。
以下是六种常见的解决最值问题的方法:
1. 线性搜索:遍历给定的值,通过比较每个值与当前最值的大小来更新最值。
这种方法简单直接,但效率较低,适用于数据量较小的情况。
2. 排序法:将给定的值进行排序,然后取第一个或最后一个值作为最值。
这种方法的时间复杂度主要依赖于排序算法,适用于需要找到多个最值的情况。
3. 分治法:将给定的值划分成多个子问题,递归地求解每个子问题的最值,然后将子问题的最值合并得到整体的最值。
这种方法适用于问题可以分解成若干小规模相同结构的子问题的情况。
4. 动态规划:根据问题的特点,定义状态和状态转移方程,利用动态规划的思想求解最值问题。
动态规划通常需要使用一个表格来记录中间结果,以减少重复计算。
这种方法适用于问题具有最优子结构和重叠子问题性质的情况。
5. 贪心法:根据局部最优的选择策略,逐步构建全局最优解。
贪心法通常不保证得到全局最优解,但在一些特定问题上表现良好,并且具有较高的执行效率。
6. 深度优先搜索(DFS)或广度优先搜索(BFS):对于给定的值构成的图或树结构,通过搜索遍历所有可能的路径或状态,
找到满足最值条件的路径或状态。
这种方法适用于问题可以抽象成图或树结构的情况。
根据具体问题的特点,选择合适的解法可以提高求解最值问题的效率和准确性。
求最值的16种方法
求最值的16种方法全文共四篇示例,供读者参考第一篇示例:在日常生活和工作中,我们经常会遇到需要求最值的问题,比如找出最大的数值、最小的数值或者最优的解决方案。
有些时候,在求最值的过程中,我们可以通过简单的比较得出结果,但有时候需要一些专门的方法和技巧来解决问题。
本文将介绍16种常见的求最值的方法,希望对大家有所帮助。
一、直接比较法直接比较法是最简单的一种求最值的方法,即通过逐一比较每个元素,找出最大值或最小值。
这种方法适用于小规模的数据和简单的比较需求,代码实现简单易懂,但效率较低。
二、排序法排序法是一种常见的求最值方法,通过对数据进行排序,可以很容易地找到最大值或最小值。
排序的复杂度通常为O(nlog(n)),适用于中等规模的数据。
三、遍历法四、分治法分治法是一种高效的求最值方法,将数据集分成若干个子问题,递归地求解子问题,最后合并得到最值。
这种方法通常用于大规模数据的求解,具有较高的效率。
五、动态规划法动态规划法是一种求解优化问题的经典方法,通过定义状态转移方程和递推关系,逐步求解问题的最优解。
这种方法适用于复杂的问题,如背包问题、最长公共子序列等。
六、贪心算法贪心算法是一种求最值的常用方法,通过每一步选择局部最优解,并最终达到全局最优解。
这种方法通常适用于局部最优解能直接推导到全局最优解的场景。
七、分支界限法分支界限法是一种搜索最优解的方法,通过逐步扩展搜索树,剪枝不满足条件的分支,从而快速找到最值。
这种方法适用于带约束条件的最优解问题。
动态规划法是一种通过子问题的解来求解原问题的方法,通常适用于规模较小且具有重叠子问题的情况。
九、蒙特卡罗法蒙特卡罗法是一种通过大量的随机模拟来求解问题的方法,通过估计解的概率分布来找出最值。
十、模拟退火法模拟退火法是一种基于物理学原理的求解最优解的方法,通过模拟金属退火过程,寻找全局最优解。
十一、遗传算法遗传算法是一种模拟生物进化过程的求解方法,通过选择、交叉和变异等操作,不断优化解的质量。
求最值的方法
求最值的方法【导言】在很多问题中,我们需要求最大值或最小值,比如优化问题、最优化问题或计算机视觉中的物体检测问题等。
而经典的求最值方法主要有枚举法、贪心算法、分治法、动态规划和深度优先搜索等。
本文将对这些方法进行详细的介绍,并结合实际例子进行说明。
【正文】一、枚举法枚举法是一种最基础的求最值方法。
它的求解思路是,对问题中所有可能的情况进行遍历,并得出最优解。
由于枚举法的过程中会穷尽所有情况,所以它具有很高的准确性。
但由于它的计算复杂度很高,因此只适用于问题空间较小的情况。
代码示例:```int maxSubArray(vector<int>& nums) {int res = nums[0], sum = 0;for (int i = 0; i < nums.size(); ++i) {sum = max(sum + nums[i], nums[i]);res = max(res, sum);}return res;}```二、贪心算法贪心算法是一种基于贪心策略的求最值方法。
贪心策略简单来说就是,每一步都选择当下最优的解。
贪心算法通常能够得到局部最优解,在一定条件下能够得到全局最优解。
由于它只考虑了当前的最优解,因此不能保证在所有情况下都能够得到最优解。
```struct Item{int value;int weight;};bool cmp(const Item &w1, const Item &w2){double r1 = (double)w1.value / w1.weight;double r2 = (double)w2.value / w2.weight;return r1 > r2;}double fractionalKnapsack(int N, std::vector<Item> &items, int W){std::sort(items.begin(), items.end(), cmp);return res;}```三、分治法分治法是一种递归求解问题的方法。
巧求“最值”问题八种方法
Байду номын сангаас
4 + 4 一 1 ≥ O,( 4 2 ( 一 2 ( 一 4 9 0, O f c 6 f )f )f ) - 得 < ≤
2或 c 4 因 为 C 最 大 者 , 以 c 最 小 值 是 4 ≥ , 是 所 的 .
4 构 造 图 形 求 最 值
例 5 使  ̄z +4  ̄( 一 41 取最 小值 的 实 / 4 / 8 ) - 6 -
・
一
正
1
、
,
2
( 1 +( 一 ) 2 的 小 必 有z ) — 一, 一 。 1 要求 最 值,须
、 Z 1
—
所 以 一 — z一 2 令 Y 0 得 o , 一 ,
8
1 , / 一亡 一0 解 得 z , —0 且 ̄ z , 一1 于是 当 z 一1时 , 一
C
一
1 利 用 配 方 求 最 值
例 1 若 z Y是 实 数 , - 一x 4 Y 一 3 , 则 z y - 。 x一 3 + y 19 9 9的 最 小 值 是 ( 98年 数 学 新 蕾 竞 赛 题 ) 19 . 分 析 与 解 :由 于 是 二 次 多 项 式 , 以直 接 用 完 全 平 难 方公 式 , 以用 配 方 法 来 解 更 为 简 捷 . 所
数 z的 值 为 ( 0 6年 全 国初 中数 学 竞 赛 试 题 ) 20 . 分 析 与解 :用 一 般 方 法 很 难 求 出 代数 式 的 最 值 , 由
原式一÷ ( x Y) ÷ ( x 9 4 z 一2y 4 - 4 - z 一6 ) - 4 -
1 1 1
1
于 是 构 造 如 图 所 示 . A( , 作 0 2 关 于 z轴 的 对 称 点 A ( , 2 , ) 0 一 ) 令 直 线 A B 的 解 析 式 为 y— k 4 x -
最值问题的几种解法
最值问题的几种解法舞钢市二中 贾彩霞 邮编 462500初中数学中,不论是中考还是竞赛,"最值"问题都是每年必考的内容.纵观近几年的数学竞赛,"最值"问题不仅出现在解答题中,而且在填空、选择题中也多有涉及,可以说成为了每年竞赛的热点内容.反观近几年的中考,也几乎每年必考.下面笔者就十多年数学教学中所遇到的"最值"问题的常见类型和方法介绍如下:一、 构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解决往往离不开函数。
【例1】已知:x、y、z为实数,且满足⎩⎨⎧=+-=-+3262z y x z y x 那么x2+y2+z2的最小值是多少?解:设w=x2+y2+z2由已知:⎩⎨⎧-=-=x y x z 54 代入w中得: w=3x2-18x+41=3(x-3)2+14故当x=3时,w取最小值14。
二、构造三角形法【例4】函数106422+-++=x x x y 的最小值为 ( ) A .102+ B .113+ C .23 D .62解:答案选C 分析:将原函数式化为22221)3(2+-++=x x y 可见y可以看作是两个直角三角形的斜边的和,于是构造Rt △OAM, Rt △BCM,使OA=2,OM=x,BC=1,BM=3-x (如图),则 ∣AM∣=222+x ,∣CM∣=221)3(+-x A ∴y=∣AM∣+∣CM∣≥∣AC∣ 2=223)12(++=23 O M , M ′ B所以,当AMC三点共线时,有x x -=312得x=2时y最小=23 C二、构造二次方程法:【例3】已知x、y为实数,且满足x+y+m=5,xy+ym+mx=3,求实数m的最大值。
解:由条件等式得:x+y=5-m,x·y=3-m(x+y)=3-m(5-m)=m2-5m+3∴x、y是方程z2-(5-m)z+(m2-5m+3)=0的两个实数根,∴△=〔-(5-m)〕2-4(m2-5m+3)≥0, 即3m2-10m-13≤0解得:-1≤m≤313∴m的最大值是313三、构造方差法【例4】已知:正实数a、b、c、d、e满足等式a+b+c+d+e=8和a2+b2+c2+d2+e2=16,求实数e的最大值。
解“最值问题”的几种方法
综合理论课程教育研究286 学法教法研究最值问题是我们所熟悉的问题,如今,经历了中学乃至大学的知识学习,我们接触到了各种各类的最值问题,同时我们也相应学习了求解各类最值问题的方法,而这些方法也有助于我们解决生活中各式各样的最值问题,下面我就为大家归纳下求解最值问题的几种方法.一、配方法对于可以转换成“一元二次函数型”的函数,我们都可以利用配方法对其最值进行求解.例1 求在区间内的最值.分析 本题看上去较为复杂,包括不同类型指数的运算,但稍加观察的话,你就会发现,此中的函数是可以转化为“一元二次型的函数”又,有取得最大值为;当时,.二、判别式法对于一元二次方程,我们可以利用来判断其是否存在实根,那么对于一个一元二次函数,若其值域不为空集的话,那么我们就可以认为方程的判别式,由此求得原一元二次函数的值域,进而就可以求得该一元二次函数在某定义域内的最值情况.例2 求函数的最值.分析 本题可以利用配方法进行求解,但过程较为繁琐.观察原题,可以发现函数的值域不会为空集,因此可以考虑到利用判别式法进行求解.解法如下:原等式可化为:()可以得到若,则有若,则有于是,则;若,则.会成立,还需要进行一项后续工作,将等号的值代入原方程,观察原方程是否有实数解,即是否有相应的值与对应.若存在,我们就可以直接确定最值了.三、换元法对于一些特殊的函数,我们可以利用换元法对其进行最值求解,基本思想是将某一部分当做一个整体或者用一个新的变量来代替某一整体,达到化繁为简,化陌生为熟悉,从而帮助我们更加便利的解决问题.换元法通常有三角代换和三角代换两种.例3 求函数.分析 对于这类含根号的函数,为了化繁为简,换元法是比较大众的方法.求解如下:,则所隐含的定义域为,于是,我则即时,取得最小值为不等式法求解最值问题主要是利用以下几个重要的不等式及其变形来处理最值问题的.不等式(),其中注意:当且仅当时等号成立.在用不等式求函数的最值时,经常需要配合某些变形技巧,结合已知条件进而进行求解.例4 设,,记中最大数为,则的最小值为多少?分析 本题的计算涉及到对数,准确应用对数的运算性质,认真观察,发现其中的技巧.由已知条件可得所求为中最大的数,不妨设中最大的数为A,则.由于,所以,当且仅当时等号成立,此时为最小,那么A 能否取到最小值2呢?容易知道,当时,,即A 可以取得最小值2,从而的最小值为.五、单调性法求解函数在指定区间的最值的时候,我们应该考查该函数在该指定区间内的单调性情况.如果函数在该区间内是单调的,则该函数的最值在区间的端点上取得.若函数在该区间上并不是单调的,则我们就可以考虑把该区间分割成若干个小的区间,目的是使得该函数在分割的每一个小区间上是单调的,再求出各个小区间上的最值情况,通过比较,得到整个区间上的最值.例5 设函数是奇函数,对于任意均有关系,若时,且.求在上的最大值和最小值.解“最值问题”的几种方法陈 龙(福建省晋江市内坑中学 福建 晋江 362200)【中图分类号】G634.6【文献标识码】A【文章编号】2095-3089(2018) 11-0286-02综合理论课程教育研究学法教法研究 287分析 本题若能确定在上的单调性,其最值也就可以相继求得.下面来考察在上的单调性:设任意且,则.由题设可知,为奇函数,且,,则,则在上单调递减,即在两端点处取得最值.因为,则,进而.又故在上的最大值为,最小值为六、导数法对于基本初等函数以及某些复合函数,我们可以利用导数这一工具有效的对其进行最值求解.设在上是连续,在上是可导,则在上的最大值和最小值就是在内的每个极值与中的最大值与最小值.利用导数的方法进行最值的求解适用性广,在解题例.分析 令由于方差恒大于或者等于0的特征,我们也可以利用方差解决某些的最值问题.例7 确定最大的实数Z,使得实数满足: ,.分析 按照常规的思路,本题不容易攻克,可以巧妙的,构造的方差得,Z .八、三角函数最值的常见求法1.巧用定义域求解三角函数的最值问题,在大多数的题目中,我们必.例8,求值和最小值.分析 此类三角函数可以视作为或的形式,求解其最值值为.2.大多数的数学题型中,题干中所给出的条件都有其特殊的作用和功能,所以,在解题的过程中,我们不能忽视任意一个条件.例求的最小值.分析 个,我们要做的是如何正确的去用好这个已知条件.当然,我们也不能盲目地瞎猜,根据题目要我们求的东西去巧妙地利用好这个已知条件.现最小值.又,即对于一些较为复杂的三角函数,为了求解的方便,我们可以去寻找题干的特点,化繁为简,换元法一般是首选.例10 已知,求的最大值和最小值.分析 对于三角函数,我们应该清楚,其存在着这么一种转化关系:此中就启发我们可以运用换元法快捷简便地解决相应三角函数的最值问题.4.巧引辅助角三角函数是一个特殊的函数,自然也有其独门的“法宝”——辅助角公式,能否巧妙地运用辅助角公式也是能否成功解题的关键.例11 求函数的最值.分析 直观地来看,这是一个分式代数式,分子、分母中均含有三角函数,这无疑给解题增添不少难度,但如果我们对其做一个稍微的变形,情况可能就不一样了:原函数可变为:,观察这个等式的。
(专题一)求函数最值问题常用的10种方法
【练习】(江苏)将边长为1m正三角形薄片,沿一 条平行于底边的直线剪成两块,其中一块是梯形
,记
s
(
梯梯形形周面长积)2 ,则S的最小值是____▲_
设剪成的小正三角形的边长为x
s(x)
(3 x)2
1 (x 1) 3 (1 x)
4 3
(3 1
x)2 x2
2
2
4 2(3x 1)( x 3)
【例aa2b6+≤】ba+2设2≥2bxa,2b≤(yaa,2,+2bz b为为2(正实 a,实数b数); 为,a实+x2-数b≥2)y.+ab3(za=≥00,,b则≥0)y;2
的最小值为________.
xz
解析 y=x+23z,所以xyz2=x2+94zx2z+6xz≥6xz4+xz6xz=3, 当且仅当 x=3z 时取“=”.
【 练 习 】 求y x2 2x 3 ,( x 1)的 最 小值. 2
x1
注:分子转化为分母的形式
七、数形结合法
【例 7】对 a,b∈R,记 max|a,b|=ab,,aa≥<bb,, 函数 f(x) =max||x+1|,|x-2||(x∈R)的最小值是________.
专题一 求函数最值问题常用的十种方法
一、定义法
前提 设函数y=f(x)的定义域为I,如果存在实数 M满足
①对于任意x∈I, ①对于任意x∈I,都
都有_f_(__x_)___≤_M__; 有_f_(__x_)__≥__M___;
条件 ②存在x0∈I,使得 ②存在x0∈I,使得
___f_(__x_0_)__=_M__. ___f_(__x_0_)__=__M___.
高中求最值的方法总结
高中求最值的方法总结三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一。
以下是小编整理的高中求最值的方法总结,欢迎大家前来查阅。
高中求最值的方法总结篇1方法一:利用单调性求最值学习导数以后,为讨论函数的性质开发了前所未有的前景,这不只局限于基本初等函数,凡是由几个或多个基本初等函数加减乘除而得到的新函数都可以用导数作为工具讨论函数单调性,这需要熟练掌握求导公式及求导法则,以及函数单调性与导函数符号之间的关系,还有利用导数如何求得函数的极值与最值。
例1 已知函数,当x∈[-2,2]时,函数f(x)的图象总在直线y=a-e2的上方,求实数a的取值范围。
分析:此题属于恒成立问题,恒成立问题大都转化为最值问题。
解:原问题等价于f(x)>a-e2恒成立,即x2+ex-xex>a-e2在[-2,2]上恒成立,即x2+ex-xex+e2>a在[-2,2]上恒成立。
令g(x)=x2+ex-xex+e2>a-e2,x∈[-2,2],原问题等价于a 下面利用导数讨论g(x)的最小值,求导可得g'(x)=x(1-ex)。
当x∈[-2,0]时,g'(x)≤0,从而g(x)在[-2,0]上单调递减;当x∈(0,2]时,g'(x)<0可知g(x)在(0,2]上也单调递减。
所以g(x)在[-2,2]上单调递减,从而g(x)min=g(2)=2即a∈(-∞,2)评注:本题是求参数的取值范围问题,利用等价转化的思想可化为不等式恒成立问题,进而化为最值问题,再借助于导数讨论函数的单调性求出的最值。
其实高中阶段接触到的最值问题大都可以运用单调性法求得最值。
方法二:利用不等式求最值掌握和灵活运用,│a│+│b│≥│a±b│≥││a│-│b││这一类型的基本不等式,在求一些函数最值问题时通常十分便捷,在解题时务必注意考虑利用不等式求最值的条件限制。
例2 若x∈R,且0 分析:本题可以运用单调性法求最值,但是较麻烦,下面介绍一种新的方法。
三角函数最值问题的十种常见解法
三角函数最值问题的十种常见解法t=sinx+cosx,则y=t+sinx*cosx,利用关系式sinx*cosx≤1可得y≤t+1,而t的取值范围为[-√2,√2],当t=√2时,y取得最大值√2+1.五.利用导数法求极值对于一些复杂的三角函数最值问题,可以利用导数法求解.例如对于y=2sinx+3cosx+4sin2x,求其最大值.分析]解:y'=2cosx-3sinx+8cos2x,令y'=0,得cosx=3/10或cosx=-1/2,代入原式可得y的最大值为(7+8√6)/5.六.利用三角函数的周期性对于周期函数,可以利用其周期性来求解最值问题.例如对于y=3sin(2x+π/6)+4cos(2x-π/3),求其最大值.分析]解:由于sin和cos函数都是周期为2π的函数,因此可以将y化简为y=3sin2x+4cos2x+3√3,利用三角函数的性质可得y的最大值为7+3√3.七.利用三角函数的单调性对于单调函数,可以利用其单调性来求解最值问题.例如对于y=2sinx+3cosx,求其最小值.分析]解:y的导数y'=2cosx-3sinx,y'的符号与sinx和cosx的符号相同,因此y在[π/2,π]上单调递减,在[0,π/2]上单调递增,因此y的最小值为y(π/2)=2.八.利用三角函数的对称性对于一些具有对称性的三角函数,可以利用其对称性来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:y=sin2x+cos2x=1,因此y的最大值为1,最小值也为1.九.利用三角函数的积分性质对于一些三角函数的积分性质,可以利用其求解最值问题.例如对于y=sin2x/x,求其最大值.分析]解:y'=2cos2x/x-sin2x/x²,令y'=0,得x=tanx,代入原式可得y的最大值为2.十.利用三角函数的平均值不等式对于一些三角函数,可以利用其平均值不等式来求解最值问题.例如对于y=sin2x+cos2x,求其最大值和最小值.分析]解:由平均值不等式可得(sin2x+cos2x)/2≥sinx*cosx,因此y的最大值为1,最小值也为1.sin x+\cos x=1+2\sin x\cos x$,设$t=\sin x+\cos x$,则$2\sin x\cos x=\frac{t^2-1}{2}$,$\therefore y=\frac{t+\frac{t^2-1}{2}}{2}=\frac{t^2+t-1}{4}$,其中$t\in[-\sqrt{2},\sqrt{2}]$。
函数最值的求解方法及应用
函数最值的求解方法及应用函数最值问题是数学中常见且重要的问题。
函数的最值包括最大值和最小值,通常涉及函数的图像及其性质。
本文将介绍几种常见的函数最值的求解方法,并通过实例说明其应用。
一、函数最值的求解方法1.导数法导数法是求函数最值的常用方法。
对于定义在闭区间[a,b]上的函数f(x),其最值一定发生在函数的驻点或者区间的端点处。
-首先,求出f(x)的导数f'(x)。
-然后,求出f'(x)=0的解,即找到函数的驻点。
-最后,比较函数在驻点及端点处的取值,找到最大值和最小值。
2.二次函数的最值对于二次函数f(x)=ax^2+bx+c(a≠0),可以通过求导数的方法得到它的最值。
- 首先,求出f'(x)=2ax+b=0的解,即找到函数的驻点。
-如果a>0,则驻点为极小值点,此时f(x)的最小值为f(驻点)。
-如果a<0,则驻点为极大值点,此时f(x)的最大值为f(驻点)。
3.梯度下降法梯度下降法是一种可用于求解无约束最优化问题的迭代算法。
它的基本思想是通过迭代的方式逐步接近函数的最值。
-首先,选择任意一个起始点x_0。
-然后,根据函数的梯度(即导数的向量),沿着梯度的反方向更新参数x。
-重复上述步骤,直到满足停止条件为止。
二、函数最值的应用1.经济学中的应用函数最值在经济学中有重要的应用。
例如,生产函数描述了产出与生产要素之间的关系,通过求函数最值可以确定生产要素的最佳配置方案,实现最大化的产出。
供求函数描述了市场上商品的供给和需求关系,通过求函数最值可以确定市场的平衡价格和数量。
2.优化问题的求解优化问题是数学中的一个重要分支,涉及到在一定约束条件下求解一些目标函数的最值。
例如,在资源有限的情况下,如何合理分配资源以最大化利润或最小化成本是一个常见的优化问题。
3.最大似然估计最大似然估计是概率统计中的一种参数估计方法,通过求解似然函数的最值来选择模型的参数。
似然函数描述了给定参数下观测数据出现的可能性,通过求似然函数的最大值可以得到最优的参数估计值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求最值问题的五种方法
作者:高留顺
来源:《教育教学论坛》2013年第40期
摘要:最值问题是高中数学问题中较为综合的问题,一般在高三第二轮复习时,许多老师常作为重要专题进行讲解.在高考试题中,它也是热点。
关键词:中学数学;求值问题;教学方法
中图分类号:G712 文献标志码:A 文章编号:1674-9324(2013)40-0173-02
我们在复习这部分内容时,熟练掌握求最值的各种方法是十分重要的,下面我们给出求最值的常用方法,希望对同学们学习这部分内容有所启示。
一、配方法
例1 求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值和最小值。
解法1:y=7-4sinxcosx+4cos2x-4cos4x
=8-4sinxcosx-1+4cos2x-4cos4x
=8-2sin2x-(1-sin22x)
=7-2sin2x+sin22x
=6+(1-sin2x)2
ymax=10,ymin=6。
解法2:y=7-4sinxcosx+4cos2x-4cos4x
=7-2sin2x+4cos2x(1-cos2x)
=7-2sin2x+4cos2xsin2x
=7-2sin2x+sin22x
=6+(1-sin2x)2
ymax=10,ymin=6。
点评:本题主要考查了三角恒等变换和三角函数与二次函数相关知识,所考方法和知识点都是常规的,高考试题中许多题目并不偏不怪。
二、数形结合法
例2 求函数y=■的最值。
解:将函数式变形为y=■,只需求函数u=■的最值。
把u看成两点A(2,■),B(cosx,sinx)连线的斜率,(B即为单位圆上的点),
则当直线AB为单位圆的切线时,其斜率为最大或最小。
设过A点的单位圆的切线方程为y-■=k(x-2),即kx-y+■-2k=0。
则圆心到切线的距离为■=1,解得:k1=■,k2=-■。
从而函数最大值为ymax=■×■=1;最小值为ymin=■×(-■)=-■。
点评:本题是一道十分经典的题目,通过观察函数式的结构特征,找出其几何意义,借助数形结合和解析几何知识完成本题的解答,方法直观性强,运算量较小。
三、代换法
例3 已知函数f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值。
解先求所求函数的定义域,依题意得1≤x≤91≤x2≤9解得x∈[1,3]。
设u=log3x,u∈[0,1],则y=[f(x)]2+f(x2)=(2+log3x)2+2+log3x2
=log32x+6log3x+6
=u2+6u+6
=(u+3)2-3,
∴当u=1时,ymax=13。
点评:换元法是一种常用的解题方法,这种方法的本质其实就是化归,使所求式子化归成简洁的形式,使问题的解决更加简单。
四、均值不等式法
例4 若x>0,y>0,且2x2+■=8,求x■的最大值。
解:令t=x■,两边平方得:
t2=(x■)2=x2(6+2y2)=3·2x2(1+■)≤3×(■)2=3·(■)2,
所以t≤■■。
当且仅当2x2=1+■时,即x=■,y=■等号成立,
故x■的最大值为■■。
点评:均值不等式求最值是一种常用的方法,但在实际做题时,为满足“正”“定”“等”三个条件,我们往往因题而宜地进行“拆、拼、凑”等变换。
这些技巧的熟练运用,对于提高思维的灵活性和严密性大有好处.
五、单调性法
例5 求函数y=4sin2xco s2+■的最值.
解:函数y=4sin2xcos2x+■=sin22x+■,
令t=sin22x,则t∈[0,1],于是y=t+■在(0,■]内递减,在[■,1]内递增。
所以当t=■,即sin2xcos2x=■时,ymin=1;无最大值。
点评:对于许多最值问题,因为所求最值的式子积或和为定值,我们易于想到运用均值不等式.但实际上这些题目不具备运用均值不等式的条件,这类题目一般最终要用的函数的单调性。