主成分、因子分析步骤
因子分析︱使用Stata做主成分分析
![因子分析︱使用Stata做主成分分析](https://img.taocdn.com/s3/m/179a940332687e21af45b307e87101f69f31fb4b.png)
因子分析︱使用Stata做主成份分析因子分析是一种常用的多变量数据分析方法,可以用于降维、变量筛选和构建综合指标等方面。
在实际应用中,Stata是一款功能强大的统计软件,可以方便地进行因子分析。
本文将介绍如何使用Stata进行主成份分析。
首先,我们需要准备好需要进行因子分析的数据。
假设我们有一份包含10个变量的数据集,每一个变量都代表了某种特征或者指标。
我们希翼通过因子分析来找出这些变量的共同因素,并将其转化为更少的几个主成份。
在Stata中,我们可以使用“factor”命令来进行主成份分析。
首先,我们需要加载数据集。
假设我们的数据集名为“data”,我们可以使用以下命令加载数据:```use data```接下来,我们可以使用“factor”命令进行主成份分析。
以下是一个示例命令:```factor var1-var10, pcf```在上述命令中,“var1-var10”表示我们要进行因子分析的变量范围,而“pcf”表示使用主成份法进行因子分析。
执行该命令后,Stata会输出一份关于因子分析结果的报告。
报告中的一项重要指标是共同度(communality),它表示每一个变量与所有因子的相关程度。
共同度越高,说明变量与因子之间的关联越强。
我们可以根据共同度来判断每一个变量对应的主成份是否合适。
此外,报告还会给出每一个主成份的解释方差比例(proportion of variance explained)。
解释方差比例表示每一个主成份能够解释原始数据中的多少方差。
通常,我们希翼选择解释方差比例较高的主成份,以便更好地代表原始数据。
在进行因子分析后,我们还可以使用“rotate”命令对主成份进行旋转,以便更好地解释数据。
Stata提供了多种旋转方法,如方差最大旋转(varimax rotation)和直角旋转(orthogonal rotation)等。
我们可以根据需要选择合适的旋转方法。
除了使用命令行进行因子分析,Stata还提供了可视化工具来匡助我们更好地理解和解释数据。
主成分分析、因子分析步骤
![主成分分析、因子分析步骤](https://img.taocdn.com/s3/m/debd886716fc700abb68fce8.png)
主成分分析、因子分析步骤最大收敛性迭代次数:默认25.(3)因子旋转(Rotation)对话框设置因子旋转的方法,常选择“最大方差法”。
“输出”框中的“旋转解”。
(4)因子得分(Scores)对话框设置“保存为变量”,则可将新建立的因子得分储存至数据文件中,并产生新的变量名称。
(5)选项(Options)对话框设置2结果分析(1)KMO及Bartlett’s检验(很、Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。
共同度低说明在因子中的重要度低。
一般的基准是<0.4就可以认为是比较低,这时变量在分析中去掉比较好。
(3)解释的总方差至此已经将5个问项降维到两个因子,在数据文件中可以看到增加了2个变量,fac1_1、fac2_1,即为因子得分。
(4)成分矩阵与旋转成分矩阵成分矩阵是未旋转前的因子矩阵,从该表中并无法清楚地看出每个变量到底应归属于哪个因子。
旋转后的因子矩阵,从该表中可清楚地看出每个变量到底应归属于哪个因子。
此表显示旋转后原始的所有变量与新生的2个公因子之间的相关程度。
一般的,因子负荷量的绝对值0.4以上,认为是显着的变量,超过0.5时可以说是非常重要的变量。
如味道与饭量关于因子1的。
=-0.010*X1+0.425*X2-0.038*X3+0.408*X4-0.316*X5因子2的分数=0.447*X1-0.036*X2+0.424*X3+0.059*X4-0.371*X5(6)因子转换矩阵元件转换矩阵元件 1 21 .723 -.6912 .691 .723撷取方法:主体元件分析。
转轴方法:具有Kaiser正规化的最大变异法。
因子转换矩阵是主成分形式的系数。
(7)因子得分协方差矩阵,【得分】:“保存为变量”【方法】:“回归”;再选中“显示因子得分系数矩阵”。
第五章 因子分析和主成分分析
![第五章 因子分析和主成分分析](https://img.taocdn.com/s3/m/7e3a352edd36a32d73758190.png)
3. 子得分
计算因子得分的途径是用原有变量来描述因子, 第j个因子在第i个样本上的值可表示为: Fji = j1xi1 + j2xi2 +…+ jpxip (j = 1,2,…,k) 式中,xi1,xi2,…,xip分别是第1,2,…,p个原 有变量在第i个样本上的取值,j1,j2,…,jp分别 是第j个因子和第1,2,…,k个原有变量间的因子值 系数。可见,它是原有变量线性组合的结果(与因子 分析的数学模型正好相反),因子得分可看作各变量 值的加权(j1,j2,…,jp)总和,权数的大小表示了 变量对因子的重要程度。
用数据矩阵X的p个列向量(即p个指标向量)X1, X2,…,Xp作线性组合,得综合指标向量: F1 a11 X 1 a21 X 2 ... a p1 X p F a X a X ... a X 2 12 1 22 2 p2 p ...... Fp a1 p X 1 a2 p X 2 ... a pp X p 简写成: Fi = a1iX1 + ai2X2 +…+apiXp i = 1,2,…,p
2. 因子旋转(正交变换)
所谓因子旋转就是将因子载荷矩阵A右乘一个正交 矩阵T后得到一个新的矩阵A*。它并不影响变量Xi的 共同度hi2,却会改变因子的方差贡献qj2。因子旋转 通过改变坐标轴,能够重新分配各个因子解释原始 变量方差的比例,使因子更易于理解。
设p维可观测向量X满足因子模型:X = AF +ε。T为 正交阵,则因子模型可写为 X = ATT'F +ε = A*F* +ε 其中A* = AT,F* = T'F。 易知,∑ = AA' + D = A*A*' + D(其中A* = AT)。这 说明,若A,D是一个因子解,任给正交阵T,A* = AT, D也是因子解。在这个意义下,因子解是不惟一的。 由于因子载荷阵是不惟一的,所以可对因子载荷 阵进行旋转。目的是使因子载荷阵的结构简化,使 载荷矩阵每列或行的元素平方值向0和1两极分化, 这样的因子便于解释和命名。
因子分析、主成分分析
![因子分析、主成分分析](https://img.taocdn.com/s3/m/4e06ca9db04e852458fb770bf78a6529657d354f.png)
通过主成分分析,可以研究多个变量之间的相关性,揭示变量
之间的内在联系。
多元回归分析
03
在多元回归分析中,主成分分析可以用来消除变量间的多重共
线性,提高回归分析的准确性和稳定性。
金融数据分析
风险评估
在金融数据分析中,主成分分析可以用来评估投资组合的风险, 通过提取主要因子来反映市场的整体波动。
市场趋势分析
主成分分析案例:金融数据分析
总结词
主成分分析用于金融数据分析中,能够 降低数据维度并揭示主要经济趋势。
VS
详细描述
在金融领域,主成分分析被广泛应用于股 票、债券等资产组合的风险评估和优化。 通过对大量金融数据进行主成分分析,可 以提取出几个关键主成分,这些主成分代 表了市场的主要经济趋势。投资者可以利 用这些信息进行资产配置和风险管理。
特征提取
主成分分析能够提取出数据中的 主要特征,突出数据中的主要变 化方向,有助于揭示数据的内在 规律。
数据可视化
降低数据维度后,数据的可视化 变得更加容易,有助于直观地理 解和分析数据。
多元统计
多元数据描述
01
主成分分析可以用来描述多元数据的总体特征,提供对多元数
据分布的整体理解。
多元相关分析
02
目的
通过找出影响观测变量的潜在结构, 更好地理解数据的意义,简化复杂数 据的分析,并解决诸如多重共线性等 问题。
因子分析的原理
1 2 3
基于相关性
因子分析基于观测变量之间的相关性,通过找出 这些相关性背后的公因子来解释变量之间的依赖 关系。
降维
通过提取公因子,将多个观测变量的复杂关系简 化为少数几个潜在因子的线性组合,实现数据的 降维。
因子分析和主成分分析的方法步骤
![因子分析和主成分分析的方法步骤](https://img.taocdn.com/s3/m/d56ae34f0740be1e650e9abc.png)
因子分析和主成分分析的方法步骤
一、主成分分析
步骤(详细步骤见算法大全低二十九章:多元分析)
1)对原始数据进行标准化处理
2)计算相关系数矩阵R
3)计算特征值和特征向量
(要对特征向量进行正则化,即特征向量值/sqrt(对应的特征值),这一步需要自己计算)
4)根据累计贡献率得到主成分P,计算综合评价值
5)②计算综合得分
二、因子分析
步骤(详细步骤见算法大全低二十九章:多元分析)
1.选择分析的变量
2.计算所选原始变量的相关系数矩阵
3.提出公共因子
4.因子旋转
5.计算因子得分
用SPSS解决步骤:
注:以上为主成分分析和因子分析对应的操作步骤,对得到的结果进行相应的分析可以参考《SPSS 统计分析高级教程》中的主成分分析和因子分析。
卫生统计学:主成分分析与因子分析
![卫生统计学:主成分分析与因子分析](https://img.taocdn.com/s3/m/221ca4e3970590c69ec3d5bbfd0a79563c1ed4de.png)
通常先对x作标准化处理,使其均值为 零,方差为1.这样就有
x i a i1 f1 a i2 f2 a im fm e i
假定〔1〕fi的均数为 i22 0,方差为1; 〔2〕ei的均数为0,方差为δi; 〔3〕 fi与ei相互独立.
那么称x为具有m个公共因子的因子模型
〔2〕δi称为特殊方差〔specific variance〕,是不能由公共因子解 释的局部
▪ 因子载荷〔负荷〕aij是随机变量xi与 公共因子fj的相关系数。
▪设
p
g
2 j
a
2 ij
i1
j 1, 2 ,..., m
▪ 称gj2为公共因子fj对x的“奉献〞, 是衡量公共因子fj重要性的一个指标。
根本思想:使公共因子的相对负荷 〔lij/hi2〕的方差之和最大,且保持 原公共因子的正交性和公共方差总和 不变。
可使每个因子上的具有最大载荷的变量 数最小,因此可以简化对因子的解释。
〔2〕斜交旋转〔oblique rotation〕
因子斜交旋转后,各因子负荷发生 了较大变化,出现了两极分化。各 因子间不再相互独立,而彼此相关。 各因子对各变量的奉献的总和也发 生了改变。
ai2j
g
2 j
i1
▪ 极大似然法〔maximum likelihood factor〕
▪ 假定原变量服从正态分布, 公共因子和特殊因子也服从正态分 布,构造因子负荷和特殊方差的似 然函数,求其极大,得 factor〕
▪ 设原变量的相关矩阵为 R=(rij),其逆矩阵为R-1=(rij)。 各变量特征方差的初始值取为逆 相关矩阵对角线元素的倒数, δi’=1/rii。那么共同度的初始值 为(hi’) 。
数据分析中的因子分析和主成分分析
![数据分析中的因子分析和主成分分析](https://img.taocdn.com/s3/m/85465c98a48da0116c175f0e7cd184254b351bfd.png)
数据分析中的因子分析和主成分分析在数据分析领域,因子分析和主成分分析是两种常用的多变量分析方法。
它们可以用来处理大量的数据,找出数据的内在规律,并将数据简化为更少的变量。
本文将介绍因子分析和主成分分析的定义、应用以及它们在数据分析中的区别和联系。
一、因子分析因子分析是一种用于研究多个变量之间的潜在因素结构及其影响的统计方法。
它通过将多个观测变量转化为少数几个无关的因子,来解释变量之间的相关性。
因子分析的基本思想是将多个相关观测变量归因于少数几个潜在因子,这些潜在因子不能被观测到,但可以通过观测变量的变化来间接地推断出来。
因子分析通常包括两个主要步骤:提取因子和旋转因子。
提取因子是指确定能够解释原始变量方差的主要共性因子,常用的方法有主成分分析法和最大似然估计法。
旋转因子是为了减少因子之间的相关性,使得因子更易于解释。
常用的旋转方法有正交旋转和斜交旋转。
因子分析的应用非常广泛,可以用于市场研究、社会科学调查、心理学、金融等领域。
例如,在市场研究中,因子分析可以用来确定消费者购买行为背后的潜在因素,从而更好地理解市场需求。
二、主成分分析主成分分析是一种通过线性变换将原始变量转化为一组线性无关的主成分的统计方法。
主成分是原始变量的线性组合,具有较大的方差,能够尽可能多地解释原始数据。
主成分分析的主要思想是将原始变量投影到一个新的坐标系中,使得新坐标系上的第一主成分具有最大方差,第二主成分具有次最大方差,以此类推。
通过选择解释原始数据方差较多的前几个主成分,我们可以实现数据的降维和主要信息提取。
主成分分析在数据降维、特征提取和数据可视化等领域有广泛的应用。
例如,在图像处理中,主成分分析可以用来压缩图像数据、提取重要特征,并且可以在保留图像主要信息的同时减少存储空间的需求。
三、因子分析和主成分分析的区别和联系因子分析和主成分分析在某些方面有相似之处,但也存在明显的区别。
首先,因子分析是用于研究多个观测变量之间的潜在因素结构,而主成分分析是通过线性变换将原始变量转化为一组线性无关的主成分。
主成分分析、因子分析
![主成分分析、因子分析](https://img.taocdn.com/s3/m/e5046a9f83d049649b66582a.png)
主成分分析在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。
多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便。
如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的。
盲目减少指标会损失很多信息,容易产生错误的结论。
因此需要找到一个合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。
由于各变量间存在一定的相关关系,因此有可能用较少的综合指标分别综合存在于各变量中的各类信息。
主成分分析与因子分析就属于这类降维的方法。
主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。
主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关.通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。
最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。
因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。
如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
2. 问题描述下表1是某些学生的语文、数学、物理、化学成绩统计:首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系。
主成分分析和因子分析
![主成分分析和因子分析](https://img.taocdn.com/s3/m/a3cd86662b160b4e767fcfb8.png)
SPSS操作:分析——描述统计——描述
第4题
朗莱曾分析美国联邦政府雇员人数(Y)与国民总产出 隐含平减指数(X1),国民总产出(X2),失业人数( X3),武装力量人数(X4),14岁及以上非慈善机构人 口数(X5),时间变量(X6)等的关系,数据如下。他 利用了美国47—62年数据(如下)做多元线性回归。现 请你重新做下朗莱的工作,判断有无多重共线性,如有 ,试用主成分法回归分析消除多重共线性。
计算各企业经济效益的综合得分
由综合得分可排出企业经济效益的名次。
九章第2题
在企业经济效益的评价中,涉及的指标往往很多.为了简化系 统结构,抓住经济效益评价中的主要问题,可利用主成分分析法进 行综合评价。在对我国部分省,市,自治区独立核算的工业企业的 经济效益评价中,涉及到9项指标,用主成分分析进行综合评价。
第一主成分的方差为3.686,第二主成分的 方差为1.237 根据成分矩阵得到两个主成分的线性方程:
计算两个主成分对应的值:
两个主成分对应值如下表:
做标准化的因变量与主成分的线性回归:
原始变量均值和标准差如下表:
第5题
经济工作者希望通过国内总产值x1,存储量x2, 消费总量x3,去预测进口总额y,为此收集了某地区 共计十一年的有关数据,利用主成分估计建立回归 方程。
第一主成分得分
2.858915 3.756416 -0.54939 -1.73507 -3.08695 0.320264
主成分分析、因子分析
![主成分分析、因子分析](https://img.taocdn.com/s3/m/d41c04a2f9c75fbfc77da26925c52cc58bd6901c.png)
这些方法可用于揭示数据中的潜在结构或模式, 这些结构或模式可能不容易通过直接观察原始变 量来发现。
辅助决策制定
通过识别最重要的变量和潜在因子,主成分分析 和因子分析可以为决策制定提供有价值的见解。
主成分分析与因子分析概述
主成分分析(PCA)
一种线性降维技术,通过正交变换将原始特征 空间中的线性相关变量转换为新的正交特征空 间中的线性无关变量,称为主成分。
主成分分析优缺点
01
缺点
02
主成分解释性较差,不易于理解每个主成分 的具体含义。
03
对异常值和缺失值敏感,可能导致结果的不 稳定。
04
在某些情况下,主成分可能无法完全反映原 始数据的所有信息。
02 因子分析
CHAPTER
因子分析原理
公共因子与特殊因
子
因子分析试图用少数几个公共因 子和特殊因子描述原始变量的关 系。公共因子对所有变量都有影 响,而特殊因子只对个别变量起 作用。
05 结论与展望
CHAPTER
研究结论
主成分分析能够有效降低数 据维度,提取主要特征,简
化数据结构。
因子分析能够揭示变量之间 的内在关系,发现潜在因子
,解释数据变异。
主成分分析与因子分析在数 据处理、特征提取、模式识 别等领域具有广泛应用价值 。
研究不足与展望
在高维数据处理方面,主成分分析与因子分析 的计算效率有待提高,可以研究更加高效的算
案例二:因子分析在市场细分中的应用
01 02 03
背景介绍
市场细分是企业根据消费者需求、购买行为等方面的差异 ,将整体市场划分为若干个具有相似特征的子市场的过程 。因子分析是一种从多个变量中提取公共因子的统计方法 ,可以帮助我们更好地理解和描述市场细分的结构。
数据分析知识:数据分析中的因子分析和主成分分析
![数据分析知识:数据分析中的因子分析和主成分分析](https://img.taocdn.com/s3/m/fe3d750486c24028915f804d2b160b4e767f81a6.png)
数据分析知识:数据分析中的因子分析和主成分分析数据分析是一门应用数学的新兴学科,在大数据、人工智能和互联网技术的推动下,日益受到企业和科学家的青睐。
数据分析的基本任务是研究数据间的关系,找出隐藏在数据背后的规律和模式,为决策提供支持和指导。
因子分析和主成分分析是常用的数据分析方法,在广泛的领域中得到了应用和发展。
因子分析和主成分分析是两种线性变换技术,即将多维数据降维,从而减少数据冗余和噪声,提取数据的本质信息,简化数据的处理和分析。
它们的具体实现方式不同,但是目标相同:寻找数据背后的共性因素,构建潜在变量模型,提高数据的可解释性和预测性。
一、因子分析因子分析是一种结构方程模型,旨在研究一组观测变量之间的关系,找出其中的基本因素,以便于描述和解释数据中的变化。
它可以用于数据降维、变量筛选、因果推断、模式识别、分类聚类、信用评估、意见调查等方面。
因子分析的基本思路是将若干观测变量表示成少数几个共同的因素,从而减少变量的数量和复杂度。
这些因素具有一定的统计意义和实际意义,反映了数据中的基本结构和变化。
因子分析的前提是变量之间存在相关性和模式,但是不了解具体的本质方式和机制。
因子分析的方法流程如下:1、确定因子个数:可以通过特征值、平行分析、KMO检验等方法,来选择合适的因子个数。
2、提取因子:可以使用主成分分析和极大似然估计等方法,将原始变量投影到因子空间中。
3、旋转因子:可以使用正交旋转和斜交旋转等方法,来调整因子间的关系,使因子间的相关性更清晰和明确。
4、解释因子:可以使用重载矩阵、公共度、因子载荷、因子得分等方法,来识别每个因子的内涵和实际意义,并解释数据中的变化。
基于以上步骤,因子分析可以将原始数据转化为因子得分并展示数据的本质结构和变化,从而更好地理解数据的特点和规律。
同时,因子分析可以消除冗余信息和噪声,提高数据的清晰度和稳定性,有利于数据清洗、预测和模型构建。
二、主成分分析主成分分析是一种多元统计技术,在数据分析领域中具有重要的应用和价值。
主成分分析与因子分析
![主成分分析与因子分析](https://img.taocdn.com/s3/m/22bc2157852458fb770b5684.png)
在实际工作中,为了全面的分析问题,往往会收集很多变量,这些变量之间通常都会存在大量重复信息,如果直接用来分析,不但计算繁琐,模型复杂,而且还有一个更严重的问题就是共线性问题,前面提到过共线性问题会导致模型误差增大,失去意义。
当面对变量过多时,通常的处理方法是降维,即设法将原来众多具有一定相关性的变量,重新组合成一组新的互相无关的综合变量,这些综合变量要尽可能多的反映原有变量的信息。
降维的方法有很多,其中最常用的就是主成分分析和因子分析一、主成分分析(Principal Component Analysis,PCA)1.基本思路设有n个原始变量,如果将它们都用散点图表示,会发现一些变量是存在某种线性关系的,这就是共线性,我们可以利用这个特点,创建一个变量Yi,使它成为某些原始变量的线性组合结果Yi =β+β1x1+...βnxn,这样处理之后,n个原始变量就转化为i个新变量,这i个新变量不同程度的反映了原始变量的信息,并且互不相关,这就解决了共线性问题。
那么接下来的问题是,n个变量的线性组合有很多种,我们取哪种结果作为新变量呢?经典的方法就是根据方差来判断,方差越大,变异越大,而我们的目的并不是消除变异,而是用尽可能少的新变量表示大部分原始变量,因此变异信息也必须尽量完整的反映。
我们将新变量按照方差大小排序,最大者也就是包含变异最多的为第一主成分,以此类推,通常只取前面几个最大的主成分,这样虽然损失部分信息,但是抓住了主要变异,如果全都取的话是没有意义的,因为原则上有多少个原始变量,就可以提取多少个主成分,但是这样做违背了降维的目的,多数情况下,取钱2-3个主成分就可以代表90%以上的变异信息,其余的可以忽略不计。
2.计算过程前面讲了PCA的基本思路,现在用具体数学算法来加以实现<1>数据标准化由于每个变量都有自己的数量级和量纲,首先要对变量进行标准化处理以消除这方面的差异<2>计算协方差矩阵或相关系数矩阵对于一维数据,也就是一个变量的数据,我们可以用均值、方差、标准差来描述,而协方差用于衡量两个变量的总体误差,如果多于两个变量,那就要用协方差矩阵来表示。
主成分分析与因子分析
![主成分分析与因子分析](https://img.taocdn.com/s3/m/8219a514cd1755270722192e453610661ed95aa6.png)
主成分分析与因⼦分析主成分分析,主成份是原始变量的线性组合,在考虑所有主成份的情况下主成份和原始变量间是可以逆转的。
即“简化变量”,将变量以不同的系数合起来,得到好⼏个复合变量,然后在从中挑⼏个能表⽰整体的复合变量就是主成份,然后计算得分。
因⼦分析,公共因⼦和原始变量的关系是不可逆转的,但是可以通过回归得到。
是将变量拆开,分成公共因⼦和特殊因⼦。
过程是:因⼦载荷计算,因⼦旋转,因⼦得分。
主成份分析主成份分析需要知道两变量之间的相关性,⽣成协⽅差举证和相关新矩阵,对应的⽣成的新向量矩阵Y还有特征值λi,对应是第I个新向量对总体信息的贡献率为λi/(λ1+λ2+...+λn),对应的还有⼀个累积贡献率。
确定主成份的个数的⽅法有:特征值⼤于1(要求原始数据的每⼀个变量⾄少能贡献1各单位的变异)、陡坡检验法(陡坡图中开始平坦的点之前的点的个数)、累积解释变异⽐例法(即(λ1+...+λi)/(λ1+λ2+...+λn)>70%)。
同时也可以知道主成分分析对应的⼏个难点①是使⽤协⽅差矩阵还是相关系数矩阵②如何确定主成份的个数。
当数据中不同变量的度量单位不同并且数值相差较⼤就⽤标准化后的相关系数矩阵,当数值相差不⼤并且指标的权重不⼀样时,考虑⽤协⽅差矩阵。
对于个数的确定就是我们⼀些边界问题是否1左右的也可以囊括进主成份中,是否难以确定开始变平坦的是那个点,是否70%不够。
等⼏个问题。
主成分分析可以⽤两个过程步完成PROC FACTORS 、PROC PRINCOMP。
后者能处理的数据量⼤⼀些,效率⾼⼀些,,前者输出的内容丰富些,还可以做旋转因⼦。
以下是主成分分析过程;proc princomp data=sashelp.cars out=car_component;var mpg_city mpg_highway weight wheelbase length;run;输出结果:先是输出统计结果,再是输出相关性矩阵,这⾥princomp步默认使⽤的是相关系数矩阵,实际应⽤过程中,可以通过cov选项来指定使⽤的矩阵。
主成分分析与因子分析法分解
![主成分分析与因子分析法分解](https://img.taocdn.com/s3/m/6324b4a1e53a580216fcfe5f.png)
假定语文成绩
x2
(X1) 和数学成
绩 (X2)分别为 标准化后的分数, 右图为其散点图, 椭圆倾斜为45度。
•• • • • • • • • • • • •• •• • • •• • • • •• • • • • •• • • • • • •
x1
如果将坐标轴 X1 和 X2 旋转45º ,那么点在新坐标
因子模型的表达式为:
x1 a11 F1 a12 F2 a1m Fm e1 x2 a21 F1 a22 F2 a2 m Fm e2 x p a p1 F1 a p 2 F2 a pm Fm e p
(二)因子分析法的模型
狭义的因子分析法常与主成分分析法在处理方法上有相类 似之处,都要对变量规格化,并找出原始变量规格化后的 相关矩阵。其主要不同点在于建立线性方程组时所考虑的 方法,因子分析是以回归方程的形式将变量表示成因子的 线性组合,而且要使因子数m小于原始变量维数p,从而简 化了模型结构。 其步骤为: 将原始数据标准化→求标准化数据的相关矩阵→求相 关矩阵的特征值和特征向量→计算方差贡献率与累计方差 贡献率→确定因子→因子旋转→用原始的线性组合求各因 子得分→求综合得分→得分排序
(一)计算相关系数矩阵 (二)计算特征值与特征向量 (三)计算主成分贡献率及累计贡献率 (四)计算主成分载荷
(一)计算相关系数矩阵
r11 r 21 R rp1 r12 r22 rp 2 r1 p r2 p rpp
(2)
22
且
var( Yi ) α i Σαi cov( Yi , Y j ) αi Σα j
主成分分析与因子分析法ppt课件
![主成分分析与因子分析法ppt课件](https://img.taocdn.com/s3/m/835d049d51e2524de518964bcf84b9d528ea2cda.png)
事实上,以上问题在平时的研究中,也会经 常遇到。它所涉及的问题可以推广到对企业、 对学校、对区域进行分析、评价、排序和分 类等。
比如对n个样本进行综合评价,可选的描述样 本特征的指标很多,而这些指标往往存在一 定的相关性(既不完全独立,又不完全相 关),这就给研究带来很大不便。若选指标 太多,会增加分析问题的难度与复杂性,选 指标太少,有可能会漏掉对样本影响较大的 指标,影响结果的可靠性。
在各种线性组合中方差达到最大者。
满足上述约束得到的合成变量Y1, Y2, …, Yp分别称为 原始变量的第一主成分、第二主成分、…、第 p 主成分,
而且各成分方差在总方差中占的比重依次递减。在实际研究
工作中,仅挑选前几个方差较大的主成分,以达到简化系统
结构的目的。
24
24
三、主成分分析的计算步骤
25
21
(二) 主成分分析的基本思想
假如对某一问题的研究涉及 p 个指标,记为X1,X2, …,
Xp,由这 p 个随机变量构成的随机向量为X=(X1, X2, …,
Xp),设 X 的均值向量为,协方差矩阵为。设Y=(Y1, Y2 ,
… , Yp)为对 X 进行线性变换得到的合成随机向量,即
Y1 11
主成分分析法与因子分析法
1
主要内容
➢ 主成分分析法 ➢ 因子分析法 ➢ 附:主成分分析法与因子分析法的区别
2
主成分分析法
(Principal Components Analysis,PCA) ➢ 主成分分析法概述 ➢ 主成分分析的基本原理 ➢ 主成分分析的计算步骤
3
一、主成分分析概述
4
引子
假定你是一个公司的财务经理,掌握了公 司的所有数据,这包括众多的变量,比如 固定资产、流动资金、每一笔借贷的数额 和期限、各种税费、工资支出、原料消耗、 产值、利润、折旧、职工人数、职工的分 工和教育程度等等。
数据分析中的主成分分析和因子分析比较
![数据分析中的主成分分析和因子分析比较](https://img.taocdn.com/s3/m/08b32f3fa36925c52cc58bd63186bceb19e8ed1e.png)
数据分析中的主成分分析和因子分析比较在数据分析领域,主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis)是常用的降维技术。
它们可以帮助我们理解和处理高维数据,找到其中的主要特征与隐藏结构。
本文将对主成分分析和因子分析进行比较,并探讨它们的应用场景和优缺点。
一、主成分分析(PCA)主成分分析是一种广泛应用于数据降维的统计方法。
其主要目标是将原始变量转换为一组无关的主成分,这些主成分按重要性递减排列。
主成分分析的基本思想是通过线性变换,将原始变量映射到一个新的坐标系中,在新的坐标系下保留下最重要的特征。
主成分分析的步骤如下:1.标准化数据:将原始数据进行标准化处理,确保各变量具有相同的尺度和方差。
2.计算相关系数矩阵:计算标准化后的数据的相关系数矩阵,用于度量变量之间的线性关系。
3.计算特征值和特征向量:通过对相关系数矩阵进行特征值分解,得到特征值和对应的特征向量。
4.选择主成分:按照特征值降序排列,选择前k个特征值对应的特征向量作为主成分。
5.映射数据:将原始数据映射到主成分空间,得到降维后的数据。
主成分分析的优点包括:1.降维效果好:主成分分析能够有效地降低数据维度,减少冗余信息,保留主要特征。
2.无信息损失:主成分之间相互无关,不同主成分之间不会出现信息重叠。
3.易于解释:主成分分析的结果可以通过特征向量进行解释,帮助我们理解数据背后的规律和因果关系。
二、因子分析(Factor Analysis)因子分析是一种用于解释变量之间相关性的统计方法。
它假设多个观察变量共同受到一个或多个潜在因子的影响。
通过因子分析,我们可以发现隐藏在多个观察变量背后的共同因素,并将原始数据转换为更少数量的因子。
因子分析的基本思想是通过寻找协方差矩阵的特征值和特征向量,找到一组潜在因子,使得在这组因子下观察变量之间的协方差最小。
因子分析的步骤如下:1.设定因子个数:根据实际情况和需要,设定潜在因子的个数。
主成份因子分析
![主成份因子分析](https://img.taocdn.com/s3/m/8632f70e5f0e7cd184253639.png)
关于运动员十项全能成绩的主要因素分析SPSS没有提供单独的主成分分析方法,而是混在因子分析当中,下面通过一个例子来讨论主成分分析与因子分析的实现方法及相关问题。
一、问题提出男子十项全能比赛包含100米跑、跳远、跳高、撑杆跳、铅球、铁饼、标枪、400米跑、1500米跑、110米跨栏十个项目,总分为各个项目得分之和。
为了分析十项全能主要考察哪些方面的能力,以便有针对性的进行训练,研究者收集了134个顶级运动员的十项全能成绩单,将通过因子分析来达到分析目的。
二、分析过程变量视图:数据视图(部分):菜单选择(分析->降维->因子分析):打开因子分析的主界面,将十项成绩选入”变量“框中(不要包含总分),如下:点击”描述“按钮,打开对话框,选中”系数“和”KMO和Bartlett球形度检验“:上图相关解释:”系数“:为变量之间的相关系数阵列,可以直观的分析相关性。
”KMO和Bartlett球形度检验“:用于定量的检验变量之间是否具有相关性。
点击”继续“,回到主界面,点击”抽取“,打开对话框。
”方法“ =>”主成分“,”输出“=>”未旋转的因子解“和”碎石图“,”抽取“=>”基于特征值“,其余选择默认。
解释:①因子抽取的方法:选取默认的主成分法即可,其余方法的计算结果可能有所差异。
②输出:”未旋转的因子解”极为主成分分析结果。
碎石图有助于我们判断因子的重要性(详细介绍见后面)。
③抽取:为抽取主成分(因子)的方法,一般是基于特征值大于1,默认即可。
点击”继续“,回到主界面,点击”确定“,进入分析。
输出的主要表格如下:(1)相关性检验因子分析要求变量之间有相关性,所以首先要进行相关性检验。
首先输出的是变量之间的相关系数矩阵:可以直观的看到,变量之间有相关性。
但需要检验,接着输出的是相关性检验:上图有两个指标:第一个是KMO值,一般大于0.7就说明不了之间有相关性了。
第二个是Bartlett球形度检验,P值<0.001。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分分析、因子分析步骤不同点主成分分析因子分析概念具有相关关系的p个变量,经过线性组合后成为k个不相关的新变量将原数据中多个可能相关的变量综合成少数几个不相关的可反映原始变量的绝大多数信息的综合变量主要目标减少变量个数,以较少的主成分来解释原有变量间的大部分变异,适合于数据简化找寻变量间的内部相关性及潜在的共同因素,适合做数据结构检测强调重点强调的是解释数据变异的能力,以方差为导向,使方差达到最大强调的是变量之间的相关性,以协方差为导向,关心每个变量与其他变量共同享有部分的大小最终结果应用形成一个或数个总指标变量反映变量间潜在或观察不到的因素变异解释程度它将所有的变量的变异都考虑在内,因而没有误差项只考虑每一题与其他题目共同享有的变异,因而有误差项,叫独特因素是否需要旋转主成分分析作综合指标用,不需要旋转因子分析需要经过旋转才能对因子作命名与解释是否有假设只是对数据作变换,故不需要假设因子分析对资料要求需符合许多假设,如果假设条件不符,则因子分析的结果将受到质疑因子分析1 【分析】→【降维】→【因子分析】(1)描述性统计量(Descriptives)对话框设置KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。
(2)因子抽取(Extraction)对话框设置方法:默认主成分法。
主成分分析一定要选主成分法分析:主成分分析:相关性矩阵。
输出:为旋转的因子图抽取:默认选1.最大收敛性迭代次数:默认25.(3)因子旋转(Rotation)对话框设置因子旋转的方法,常选择“最大方差法”。
“输出”框中的“旋转解”。
(4)因子得分(Scores)对话框设置“保存为变量”,则可将新建立的因子得分储存至数据文件中,并产生新的变量名称。
(5)选项(Options)对话框设置2 结果分析(1)KMO及Bartlett’s检验KMO 和Bartlett 的检验取样足够度的Kaiser-Meyer-Olkin 度量。
.515Bartlett 的球形度检验近似卡方 3.784df 6Sig. .706当KMO值愈大时,表示变量间的共同因子愈多,愈适合作因子分析。
根据Kaiser的观点,当KMO>0.9(很棒)、KMO>0.8(很好)、KMO>0.7(中等)、KMO>0.6(普通)、KMO>0.5(粗劣)、KMO<0.5(不能接受)。
(2)公因子方差公因子方差起始撷取卫生 1.000 .855饭量 1.000 .846等待时间 1.000 .819味道 1.000 .919亲切 1.000 .608撷取方法:主体元件分析。
Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。
共同度低说明在因子中的重要度低。
一般的基准是<0.4就可以认为是比较低,这时变量在分析中去掉比较好。
(3)解释的总方差第二列统计的值是各因子的特征值,即各因子能解释的方差,一般的,特征值在1以上就是重要的因子;第三列%是各因子的特征值与所有因子的特征值总和的比,也称因子贡献率;第四列是因子累计贡献率。
如因子1的特征值为2.451,因子2的特征值为1.595,因子3,4,5的特征值在1以下。
因子1的贡献率为49.0%,因子2的贡献率为31.899%,这两个因子贡献率累积达80.9%,即这两个因子可解释原有变量80.9%的信息,因而因子取二维比较显著。
至此已经将5个问项降维到两个因子,在数据文件中可以看到增加了2个变量,fac1_1、fac2_1,即为因子得分。
(4)成分矩阵与旋转成分矩阵成分矩阵是未旋转前的因子矩阵,从该表中并无法清楚地看出每个变量到底应归属于哪个因子。
旋转后的因子矩阵,从该表中可清楚地看出每个变量到底应归属于哪个因子。
此表显示旋转后原始的所有变量与新生的2个公因子之间的相关程度。
一般的,因子负荷量的绝对值0.4以上,认为是显著的变量,超过0.5时可以说是非常重要的变量。
如味道与饭量关于因子1的负荷量高,所以聚成因子1,称为饮食因子;等待时间、卫生、亲切关于因子2的负荷量高,所以聚成因子2,又可以称为服务因子。
(5)因子得分系数矩阵元件评分系数矩阵元件1 2卫生-.010 .447饭量.425 -.036等待时间-.038 .424。
因子1的分数=-0.010*X1+0.425*X2-0.038*X3+0.408*X4-0.316*X5因子2的分数=0.447*X1-0.036*X2+0.424*X3+0.059*X4-0.371*X5(6)因子转换矩阵元件转换矩阵元件 1 21 .723 -.6912 .691 .723撷取方法:主体元件分析。
转轴方法:具有 Kaiser 正规化的最大变异法。
因子转换矩阵是主成分形式的系数。
(7)因子得分协方差矩阵看各因子间的相关系数,若很小,则因子间基本是两两独立的,说明这样的分类是较合理的。
主成分分析1 【分析】——【降维】——【因子分析】(1)设计分析的统计量【相关性矩阵】中的“系数”:会显示相关系数矩阵;【KMO和Bartlett的球形度检验】:检验原始变量是否适合作主成分分析。
【方法】里选取“主成分”。
【旋转】:选取第一个选项“无”。
【得分】:“保存为变量”【方法】:“回归”;再选中“显示因子得分系数矩阵”。
2 结果分析(1)相关系数矩阵相关性矩阵食品衣着燃料住房交通和通讯娱乐教育文化相关食品 1.000 .692 .319 .760 .738 .556 衣着.692 1.000 -.081 .663 .902 .389 燃料.319 -.081 1.000 -.089 -.061 .267 住房.760 .663 -.089 1.000 .831 .387 交通和通讯.738 .902 -.061 .831 1.000 .326 娱乐教育文化.556 .389 .267 .387 .326 1.000 两两之间的相关系数大小的方阵。
通过相关系数可以看到各个变量之间的相关,进而了解各个变量之间的关系。
由表中可知许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。
(2)KMO及Bartlett’s检验KMO 与Bartlett 检定Kaiser-Meyer-Olkin 测量取样适当性。
.602Bartlett 的球形检定大约卡方62.216df 15显著性.000根据Kaiser的观点,当KMO>0.9(很棒)、KMO>0.8(很好)、KMO>0.7(中等)、KMO>0.6(普通)、KMO>0.5(粗劣)、KMO<0.5(不能接受)。
(3)公因子方差Communalities起始擷取食品 1.000 .878衣着 1.000 .825燃料 1.000 .841住房 1.000 .810交通和通讯 1.000 .919娱乐教育文化 1.000 .584擷取方法:主體元件分析。
Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。
共同度低说明在因子中的重要度低。
一般的基准是<0.4就可以认为是比较低,这时变量在分析中去掉比较好。
80.9%,即这两个因子可解释原有变量80.9%的信息,因而因子取二维比较显著。
(5)成分矩阵(因子载荷矩阵)元件矩阵a元件1 2食品.902 .255衣着.880 -.224燃料.093 .912住房.878 -.195交通和通讯.925 -.252娱乐教育文化.588 .488撷取方法:主体元件分析。
a. 撷取2 个元件。
该矩阵并不是主成分1和主成分2的系数。
主成分系数的求法:各自主成分载荷向量除以主成分方差的算数平方根。
则第1主成分的各个系数是向量(0.925,0.902,0.880,0.878,0.588,0.093)除以568.3后才得到的,即(0.490,0.478,0.466,0.465,0.311,0.049)才是主成分1的特征向量。
第1主成分的函数表达式:Y1=0.490*Z交+0.478*Z食+0.466*Z衣+0.465*Z住+0.311*Z娱+0.049*Z燃(6)因子得分因子得分显示在SPSS的数据窗口里。
通过因子得分计算主成分得分。
(7)主成分得分主成分的得分是相应的因子得分乘以相应方差的算数平方根。
即:主成分1得分=因子1得分乘以3.568的算数平方根主成分2得分=因子2得分乘以1.288的算数平方根【转换】—【计算变量】(8)综合得分及排序综合得分是按照下列公式计算:综合得分Y为:【数据】——【排序个案】。