灰色关联分析(1)

合集下载

灰色关联分析法

灰色关联分析法

灰色关联分析法灰色关联分析法是一种用于研究多个指标之间相关性的统计方法。

它通过计算不同指标之间的关联度来确定它们之间的关系强度。

本文将介绍灰色关联分析法的原理、应用领域以及优点和局限性。

灰色关联分析法最早由中国科学家陈进才于1981年提出,并广泛应用于工程和管理学科领域。

它的核心思想是通过将不同的指标序列转化为灰色级数形式,然后计算各指标之间的关联系数,以揭示它们之间的关系。

灰色关联分析法的基本步骤包括:首先,将各指标序列归一化,使得数据位于相同的量纲范围内;其次,构建灰色级数模型,将指标序列转化为灰色级数;然后,计算各指标之间的关联系数,确定关联度;最后,利用关联度进行综合评价,得出最终的结论。

灰色关联分析法在许多领域具有广泛的应用。

在经济管理领域,它可以用于评估企业绩效、判断市场趋势、研究产业发展等。

在工程领域,它可以用于分析工艺参数对产品质量的影响、评估设备可靠性等。

在环境科学领域,它可以用于评估生态环境质量、分析污染物传输和扩散等。

灰色关联分析法具有一些优点。

首先,它可以对多指标间的关联进行定量分析,较为客观地反映指标之间的关系。

其次,它适用于小样本数据的分析,不依赖于大样本假设。

此外,它对序列变化的敏感性较高,能够较好地发现序列间的规律性或趋势。

然而,灰色关联分析法也存在一些局限性。

首先,它对数据的要求较高,需要有较为完整的时间序列数据。

其次,它假设指标之间的关系是线性的,对非线性关系的分析有一定局限性。

此外,灰色关联分析法对指标权重的确定也有一定的主观性,可能引入一定的误差。

综上所述,灰色关联分析法作为一种多指标关联分析方法,在多个领域得到了广泛应用。

它通过计算不同指标之间的关联程度,为决策提供了科学的依据。

然而,使用灰色关联分析法时需要充分考虑相关因素,避免误导决策。

未来,随着数据技术的不断发展,灰色关联分析方法也将继续完善和应用于更多的领域中。

灰色关联分析详解+结果解读

灰色关联分析详解+结果解读

灰色关联分析1、作用对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。

因此,灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度。

2、输入输出描述输入:特征序列为至少两项或以上的定量变量,母序列(关联对象)为 1 项定量变量。

输出:反应考核指标与母序列的关联程度。

3、案例示例案例:分析 09-18 年内,影院数量,观影人数,票价、电影上线数量这些因素对全年电影票房的影响。

其中电影票房是母序列,影院数量,观影人数,票价、电影上线数量是特征序列。

4、案例数据灰色关联分析案例数据5、案例操作Step1:新建分析;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;step4:选择【灰色关联分析】;step5:查看对应的数据数据格式,【灰色关联分析】要求特征序列为定量变量,且至少有一项;要求母序列为定量变量,且只有一项。

step6:设置量纲处理方式(包括初值化、均值化、无处理)、分辨系数(ρ越小,分辨力越大,一般ρ的取值区间为 ( 0 ,1 ),具体取值可视情况而定。

当ρ≤ 0.5463 时,分辨力最好,通常取ρ = 0.5 )step7:点击【开始分析】,完成全部操作。

6、输出结果分析输出结果 1:灰色关联系数图表说明:关联系数代表着该子序列与母序列对应维度上的关联程度值(数字越大,代表关联性越强)。

输出结果 2:关联系数图分析:输出结果 1 和输出结果 2 是一样的,输出结果 1 用了表格形式来呈现关联系数,输出结果 2 用了图表形式来呈现关联系数。

图表很直观地展现了,大多数年份的银幕数量和电影上线数量对票房影响更大。

灰色关联度分析

灰色关联度分析

灰色关联度分析一、 灰色关联分析及理论对于两系统之间的因素,其随时间或不同对象而变化的关联性的大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即变化程度较高,即可谓二者的关联度较高;反之,则较低。

因此,灰色关联度分析方法,是根据因素之间发展趋势的相似或相异程度,即“灰色关联度”作为衡量因素之间关联程度的一种方法。

灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定方法,去寻求系统各子系统(或因素)之间数值的关系。

因此,灰色关联度分析对于一个系统的发展变化态势提供了量化的度量,非常适合动态历程分析。

灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。

根据R 的数值,进行排序。

(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。

此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。

选定最优指标集后,可构造矩阵D (矩阵略)式中ikj 为第i 个期货公司第k 个指标的原始数值。

(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。

设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈ikC 。

ikk k i ki k j j j j C --=21,m i,2,1=,n k ,,2,1 =(矩阵略)(3)计算综合评判结果 根据灰色系统理论,将],,,[}{**2*1*n C C C C=作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i kkkii kki k k k ii k k kiCC C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。

灰色关联分析

灰色关联分析

灰色关联分析灰色关联分析是一种常用于研究和预测多个影响因素之间关联程度的方法。

该分析方法可以通过对各个因素的数值进行比较,得出它们之间的关联强度,从而为决策提供依据。

下面将详细介绍灰色关联分析的原理、应用以及优势。

灰色关联分析的原理基于灰色系统理论,该理论是中国科学家陈纳德于1982年提出的一种对部分已知和部分未知信息进行分析的数学方法。

灰色关联分析将各个影响因素的数据进行标准化处理,然后计算各个因素之间的关联度。

通过对关联度进行排序,即可得出影响因素之间的关联程度大小。

灰色关联分析在各个领域都有广泛的应用,比如经济学、管理学、环境科学等。

在经济学领域,可以使用灰色关联分析来研究不同经济指标之间的关联程度,从而预测未来的经济趋势。

在管理学中,可以利用灰色关联分析来研究不同管理指标之间的关联程度,进而指导管理决策。

在环境科学领域,可以运用灰色关联分析来分析各个环境因素对生态系统的影响程度,以及控制污染等。

灰色关联分析相对于其他分析方法有一些独特的优势。

首先,它不要求数据分布满足正态分布等数学假设,可以对数据进行较好的处理。

其次,灰色关联分析可以处理样本量较小的情况,对于样本量不足的数据分析也有较好的适用性。

此外,由于灰色关联分析能够捕捉到数据之间的内在联系,因此对于某些非线性关系的分析,其结果可能更加准确。

然而,灰色关联分析也存在一些限制和不足之处。

首先,该分析方法依赖于数据的稳定性,对于非稳态的数据可能会导致分析结果不准确。

其次,灰色关联分析无法处理存在时间滞后效应的数据。

此外,该方法对数据的标准化要求较高,如果数据质量较差或者存在异常值,也会影响分析结果。

综上所述,灰色关联分析是一种研究和预测多个影响因素之间关联程度的有效方法。

它的原理基于灰色系统理论,可以在各个领域中广泛应用。

灰色关联分析相对于其他分析方法有一些独特的优势,但也存在一定限制。

在实际应用中,我们应该结合具体情况,合理选择分析方法,并充分考虑其适用性和局限性,以提高分析和决策的准确性。

灰色关联度方法介绍

灰色关联度方法介绍

灰色关联度方法介绍一、灰色关联度方法的概念灰色关联度方法是一种常用的分析方法,它是将各个因素之间的关系转化为数学模型进行计算,从而得出它们之间的相关程度。

灰色关联度方法主要应用于多因素分析和决策评价等领域。

二、灰色关联度方法的原理灰色关联度方法是基于灰色系统理论的,它通过对数据进行处理,将数据转化为一组序列,然后通过对这些序列进行比较,得出各个因素之间的相关程度。

具体来说,它主要包括以下步骤:1. 数据预处理:将原始数据进行标准化处理,使得各个因素之间具有可比性。

2. 灰色关联度计算:通过对标准化后的数据进行加权平均值计算,并与参考序列进行比较,得出各个因素与参考序列之间的相关程度。

3. 灰色预测模型建立:根据各个因素与参考序列之间的相关程度建立预测模型,并对未来趋势进行预测。

三、灰色关联度方法的应用1. 多因素分析:在复杂多变的环境下,往往需要考虑多种因素的影响,灰色关联度方法可以通过对各个因素之间的关系进行分析,得出它们之间的相关程度,从而帮助决策者进行有效的决策。

2. 决策评价:在决策过程中,需要对各种方案进行评价,灰色关联度方法可以通过对各种方案之间的比较,得出它们之间的相关程度,从而帮助决策者选择最优方案。

3. 经济预测:在经济预测中,需要考虑多种因素的影响,灰色关联度方法可以通过对各个因素之间的关系进行分析,得出它们之间的相关程度,并建立预测模型进行未来趋势预测。

四、灰色关联度方法的优缺点1. 优点:(1)能够充分考虑多个因素之间的相互作用和影响。

(2)具有较高的精确性和可靠性。

(3)能够处理样本数据量较小、数据质量较差等问题。

2. 缺点:(1)需要对数据进行标准化处理,增加了计算复杂度。

(2)依赖于参考序列的选择和权重设置,在实际应用中可能存在一定误差。

(3)不适用于非线性系统和高维数据分析。

五、灰色关联度方法的发展趋势随着计算机技术的不断发展和数据处理能力的提高,灰色关联度方法在多因素分析、决策评价和经济预测等领域得到了广泛应用。

灰色关联分析法讲解

灰色关联分析法讲解
(1)系统因素不完全明确 (2)因素关系不完全清楚 (3)系统的结构不完全知道 (4)系统的作用原理不完全明了。
“非唯一性”
目标非唯一 灰靶思想
目标可约束
目标可接近 信息可扩充 方案可改善 关系可协调 思维可多向 认识可深化 途径可优化
灰色系统理论研究灰元、灰数、灰关系 灰数——指信息不完全的数。
灰关联分析法
(一)什么是灰色系统
灰色系统理论是1982年由邓聚龙创立的一门边缘性学科 (interdisciplinary)
灰色系统用颜色深浅反映信息量的多少。说一个系统是黑色的, 就是说这个系统是黑洞洞的,信息量太少;说一个系统是白色的, 就是说这个系统是清楚的,信息量充足。
这种处于黑白之间的系统,就是灰色系统,或说信息不完全的系 统,成为灰色系统或简称会系统(grey system)。
如“这个人的年龄18岁左右” “今天的气温10 - 15度之间” 灰元——指信息不完全的元素。如“货币”是灰元。
货币的两种功能:流通手段和价值尺度 灰关系——指信息不完全的关系。例:多种经济成份并存、一国两制
换轨思维
例1:小司马光灵机一动,换个角度处置眼前的危急场面。其实, 他砸碎的不完全是一口现实生活中看得见摸得着的缸,同时也打破 了一种旧的思维模式。当我们打破旧思维,再将我们的思路重新组 装的时候,结果一定是一幅好风光。 爱迪生是美国的大发明家。他的一切发明都是和他的思维活跃分不 开的。
例2:一天,爱迪生在实验室里工作,急需知道一个灯泡容量的数 据。由于手头忙不开,他便递给助手一个没有上灯口的玻璃灯泡, 吩咐助手把灯泡的容量数据量出来。过了很久,爱迪生手头的活早 已干完,助手仍未将数据送来。爱迪生只好亲自去找助手,一进门, 就看到助手正忙于计算,桌上演算纸已经推了一大迭。爱迪生忙问: “还需多长时间?”助手说:“一半还没完呢。”爱迪生明白了。 原来,他的助手用软尺测量灯泡的周长、斜度,正在用复杂的公式 计算呢!小伙子还把程序说给爱迪生听,证明自己的思路没错。爱 迪生不等他说完,便拍拍他的肩膀说:“别白忙了,小伙子,瞧我 这么干。”说着,他往灯泡里面注满了水,交给助手:“把这里的 水倒在量杯里,马上告诉我它的容量。”助手听到后,脸马上就红 了。

灰色关联分析

灰色关联分析

灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。

它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。

原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。

在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。

最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。

灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。

灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。

2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。

3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。

4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。

5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。

适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。

它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。

优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。

《灰色关联分析法》课件

《灰色关联分析法》课件
3
计算关联度
4
确定各个因素对评估对象的贡献程度。
5
确定因素集合和影响因素
精确定义评估的因素及其关联程度。
计算关联系数
衡量因素之间的关联程度。
排序、评价和综合比较
综合评价并排序所得的关联度。
灰色关联分析法 实例分析
案例1 :消费者购买行为分析
研究消费者购买决策中的因素关联性,指导 市场策略制定。
案例2 :市场竞争态势分析
灰色关联分析法 PPT课件
灰色关联分析法是一种综合多因素、多层次、多角度的综合评判方法,用于 处理数据量小、不完备、不确定的问题。
灰色关联分析法 简介
1 灰色关联分析法
2 基本原理
综合评判方法,处理不完备、不确定的问题。
灰色系统理论,关联度的测度。
灰色关联分析法 步骤
1
数据标准化处理
2
使不同类型的数据具备可比性。
分析市场上不同竞争因素之间的关联程度。
灰色关联分析法 应用领域
经济管理
用于分析经济发展中的关联因素。
生态环境
评估环境因素对生态系统的和优化。
市场分析
研究市场竞争态势和市场需求。
灰色关联分析法 优缺点
优点
• 有效分析多层次、多因素的问题 • 适用于小样本、不完备数据的分析
缺点
• 无法对因果关系进行分析 • 灰色关联度的确定较为主观
灰色关联分析法 总结
灰色关联分析法是一种有效的综合评判方法,应用广泛,但也存在一些局限性。在具体应用中需要根据 问题特点和数据情况进行调整和优化。

灰色关联分析法及其应用案例ppt课件

灰色关联分析法及其应用案例ppt课件
灰色关联分析方法灰色关联分析方法应用实例灰色关联分析方法灰色关联分析方法一关联分析概述一关联分析概述社会系统经济系统农业系统生态系统等抽象系统包含有多种因素这些因素哪些是主要的哪些是次要的哪些影响大哪些影响小那些需要抑制那些需要发展那些事潜在的哪些是明显的这些都是因素分析的内容
关联分析概述 关联系数与关联度 应用实例
1
1 (1(1),1(2),1(3),1(4),1(5),1(6)) (1, 0.955, 0.894, 0.848, 0.679, 0.583)
同理有
2 (2 (1),2 (2),2 (3),2 (4),2 (5),2 (6)) (1, 0.982, 0.602, 0.615, 0.797, 0.383)
1(5) 1(6)
因此,我们有
1(1)

1.4 1(1) 1.4

1.4 0 1.4

1
1(2)

1.4 1(2) 1.4

1.4 0.066 1.4

0.955
SUCCESS
THANK YOU
2019/5/6
1 (3)

1.4 1(3) 1.4

1.4 0.166 1.4
3 (3(1),3(2),3(3),3(4),3(5),3(6)) (1, 0.933, 0.52, 0, 49, 0.4, 0.34)
关联系数的数很多,信息过于分散,不便于比较,为此有

要将各个时刻关联系数集中为一个值,求平均值便是做这种

息处理集中处理的一种方法。ri
1 N
N
i (k)
k 1
关联度的一般表达式为:
无量纲化的方法常用的有初值化与均值化,区间相对值化。 初值化是指所有数据均用第1个数据除,然后得到一个新的数 列,这个新的数列即是各个不同时刻的值相对于第一个时刻

灰色关联分析方法

灰色关联分析方法

灰色关联分析方法灰色关联分析方法(Grey Relational Analysis,GRA)是一种多指标决策方法,它用于研究因素之间的关联程度。

与传统的关联分析方法相比,灰色关联分析方法具有较强的适用性和灵活性。

它可以用于分析多个指标之间的关联程度,对于复杂决策问题具有较强的应用能力。

灰色关联分析方法的基本思想是将系统的各个指标转化为灰色数列,再利用灰色关联度来评估指标之间的关联程度。

该方法可以对多个指标进行综合评价,找出各个指标之间的关联程度,并根据关联程度来进行排序和决策。

灰色关联分析方法的具体步骤如下:1. 数据预处理:将原始数据进行标准化处理,以确保各指标在同一数量级上进行比较。

2. 构建灰色数列:将标准化后的数据转化为灰色数列,通过建立灰色微分方程来描述数据序列的发展趋势。

3. 确定关联度测度:根据灰色数列的特点,选择适当的关联度测度方法来计算指标之间的关联程度。

4. 计算关联度:根据所选择的关联度测度方法,计算每个指标与其他指标之间的关联度。

5. 排序和决策:根据计算得到的关联度值进行排序,并作出相应的决策。

灰色关联分析方法的优点有以下几个方面:1. 适用性广泛:灰色关联分析方法适用于各种类型的指标数据,包括定量指标和定性指标。

2. 考虑了指标之间的时序关系:灰色关联分析方法考虑了指标数据的时序性,能够更好地反映指标之间的演变趋势。

3. 简单易行:灰色关联分析方法不需要过多的统计方法和复杂的计算过程,容易被理解和操作。

4. 提供了多指标综合评价的能力:灰色关联分析方法可以将多个指标之间的关联程度综合考虑,对于决策问题的综合评价有着较好的效果。

然而,灰色关联分析方法也存在一些限制和局限性:1. 灵敏度不高:由于灰色关联分析方法只考虑了指标之间的线性关联程度,对于非线性关系的刻画较为困难,灵敏度较低。

2. 依赖于初始数据:灰色关联分析方法对初始数据的选取较为敏感,不同的初始数据可能导致不同的关联度结果。

灰色关联分析法(灰色综合评价法)

灰色关联分析法(灰色综合评价法)

灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。

在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。

因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。

设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。

(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。

因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。

设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。

(3) 确定各指标值对应的权重。

可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。

(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。

灰色关联分析

灰色关联分析

灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述与比较的方法,其基本思想是通过确定参考数据列与若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向与速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学与自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度与相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列与影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。

灰色关联分析

灰色关联分析

1 灰色关联分析1.1 理论提出灰色关联分析理论是我国学者邓聚龙教授于20世纪70 年代末、80 年代初提出的,它以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统为研究对象,通过对已知信息的加工提取有价值的信息,形成对系统运行规律的确切描述[1]。

灰色关联分析方法对样本量的多少和样本有无规律同样适用,计算量少,且不会出现量化结果与定性分析结果不符的情况,具有数理统计方法(回归分析、方差分析、主成分分析等)所不可比拟的优点[2]。

1.2 基本原理关联度表征两个事物之间的关联程度。

灰色关联分析是通过计算灰色关联度,用灰色关联度来描述因素间关系的强弱、大小和次序的多因素分析技术[3]。

灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密,曲线越接近,相应序列之间关联度就越大,反之就越小[2]。

1.3 灰色关联分析过程1.3.1 确定参考序列和比较序列选取系统特征序列0000((1),(2),,())X x x x n =为参考序列,已知存在m 个因素序列与0X 相关。

设(1,2,,)i X i m =为系统因素,其观测数据为()i x k ,1,2,3,,k n =,则称((1),(2),,())i i i i X x x x n =为因素i X 的行为序列。

可用矩阵m n X ⨯表示比较序列如下:111212122212()n n ij m n m m mn x x x x x x X x x x x ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦1.3.2 数据序列无量纲化原始数据因其量纲不一定相同,且有时数值的大小相差悬殊,不能直接运用。

因此,需要运用一定的方法对原始数据作无量纲化处理,将其转化为可直接运用的数据序列,然后才可以进行比较。

对于和参考序列负相关的因素序列,还需将其转化为正相关。

常用的方法是通过算子作用(初值化、均值化和区间值化),初始化原始数据,得到初值像分别为0000((1),(2),,())Y y y y n =和 ((1),(2),,()),(1,2,,)i i i i Y y y y n i m ==。

《灰色关联分析》课件

《灰色关联分析》课件
发展趋势
未来,灰色关联分析将更加注重多变量关联度分析和不确定性因素的考虑。
参考文献
1 1. 黄小刚. 灰色关联分析及其应用[M]. 科学出版社, 1996. 2 2. 程志刚, 倪洪涛. 灰色关联分析原理与应用[M]. 中国水利水电出版社, 2010.
灰色关联分析的应用实例
市场营销
灰色关联分析可用于评估不同市场策略的关联度和 效果,帮助制定更具针对性的营销计划。
投资决策
灰色关联分析可用于评估不同投资方案的回报率和 风险关联度,帮助投资者做出明智的决策。
结论与展望
灰色关联分析的重要性
灰色关联分析能够揭示变量之间的关联关系,指导决策者制定合理的决策和策略。
《灰色关联分析》PPT课 件
在这个课程中,我们将深入介绍灰色关联分析的原理、应用和计算方法,并 探讨其在市场营销和投资决策等领域的实际应用。
灰色关联分析简介
定义
灰色关联分析是一种基于灰色系统理论的数据分析方法,用于研究变量之间的关联性。
应用场景
灰色关联分析广泛应用于市场营销、投资决策、工程管理等领域,帮助分析师做出权衡和决 策。
灰色关联度计算方法
1
基本思想
灰色关联度计算基于变量间的相关程度,通过比较变量序列之间的关联程度来评 估其相似度。
2
灰色关联度计算公式
灰色关联度计算公式包括特征标准化和关联系数计算两个步骤,可用于定量分析 变量之间的关联度。
3
数值解释
灰色关联度值越大,表示变量之间的关联程度越高,相应的影响更为显著。
数据预处理
1 数据归一化
通过数据归一化处理,将不同量纲的数据转化为相同的量纲,以便计算和比较。
2 构建关联系数矩阵
构建关联系数矩阵是灰色关联分析的关键步骤,用于计算变量之间的关联度。

灰色关联度分析法

灰色关联度分析法

灰色关联度分析法引言灰色关联度分析法是一种用于揭示变量之间关联程度的方法。

它可以在缺乏足够数据的情况下,通过对变量之间的相关性进行评估,帮助分析人员做出决策。

在本文中,我们将介绍灰色关联度分析法的原理和应用,并探讨其在实际问题中的价值和局限性。

一、灰色关联度分析法的原理灰色关联度分析法是在灰色系统理论基础上发展起来的一种关联性分析方法。

灰色关联度分析法的核心思想是通过模糊度量的方法,将样本数据的数量化描述量和次序特征结合起来,通过计算变量间的关联度,得出它们之间的相关性。

具体而言,灰色关联度分析法的步骤主要包括以下几个方面:1. 数据标准化:将原始数据进行归一化处理,以消除变量之间的量纲差异,使其具有可比性。

2. 确定参考序列:在给定的多个序列中,根据研究目标和实际需求,选择一个作为参考序列,其他序列将与之进行比较。

3. 计算关联度指数:通过计算每个序列与参考序列之间的关联度指数,来评估它们之间的关联程度。

关联度指数的计算通常有多种方法,如灰色关联度、相对系数法等。

4. 判别等级:根据关联度指数的大小,将序列划分为几个等级,以便更直观地评估变量之间的关联程度。

二、灰色关联度分析法的应用灰色关联度分析法在许多领域和问题中都有广泛的应用。

下面将介绍一些典型的应用情况:1. 经济领域:灰色关联度分析法可以用于评估经济指标之间的关联性,识别影响经济发展的主要因素,帮助政府和企业做出相应的调整和决策。

2. 工业制造业:在工业制造领域,灰色关联度分析法可以用于优化生产工艺,提高产品质量,降低成本。

通过分析不同因素对产品质量的影响程度,可以找出关键因素,并制定相应的改进措施。

3. 市场调研:在市场调研中,灰色关联度分析法可以用于分析消费者行为和市场趋势,预测产品的需求量和销售额。

通过对多个变量之间的关联性进行评估,可以为企业的市场营销决策提供有价值的参考和支持。

4. 环境管理:在环境管理领域,灰色关联度分析法可以用于评估各种环境因素对生态系统的影响程度,为环境保护和可持续发展提供科学依据。

灰色关联分析

灰色关联分析

在实际问题中,许多因素之间的关系是灰色的,人们很难分清哪些因素是主导因素,哪些因素是非主导因素;哪些因素之间关系密切,哪些不密切。

灰色关联分析,为我们解决这类问题提供了一种行之有效的方法。

一、灰色关联分析概述我们知道,统计相关分析是对因素之间的相互关系进行定量分析的一种有效方法。

但是,我们也注意到相关系数具这样的性质: xy yx r r =,即因素y 对因素x 的相关程度与因素x 对因素y 的相关程度相等。

暂且不去追究因素之间的相关程度究竟有多大。

单就相关系数的这种性质而言,也是与实际情况不太相符的。

譬如,在国民经济问题研究中,我们能将农业对工业的关联程度与工业对农业的关联程度等同看待吗?其次,由于地理现象与问题的复杂性,以及人们认识水平的限制,许多因素之间的关系是灰色的,很难用相关系数比较精确地度量其相关程度的客观大小。

为了克服统计相关分析的上述种种缺陷,灰色系统理论中的灰色关联分析给我们提供了一种分析因素之间相互关系的又一种方法。

灰色关联分析,从其思想方法上来看,属于几何处理的范畴,其实质是对反映各因素变化特性的数据序列所进行的几何比较。

用于度量因素之间关联程度的关联度,就是通过对因素之间的关联曲线的比较而得到的。

设x 1,x 2,…,x N 为N 个因素,反映各因素变化特性的数据列分别为{x 1(t)},{x 2(t)},…{x N (t)},t=1,2,…,M 。

因素j x 对i x 的关联系数定义为min maxmax ()1,2,3,,(1)()ij ij k t t M t k ξ∆+∆==∆+∆(5)式中,ξij (t)为因素j x 对i x 在t 时刻的关联系数;max min ()|()()|,max max (),min min ();ij i j ij ij j jj j t x t x t t t ∆=-∆=∆∆=∆k 为介于[0,1]区间上的灰数。

不难看出,△ij (t)的最小值是min ∆,当它取最小值时,关联系数()ij t ξ取最大值max ()1;()ij ij it t ξ=∆的最大值为max ∆,当它取最大值时,关联系数()ij t ξ取最小值min max 1min ()1ij i t k k ξ⎛⎫∆=+ ⎪+∆⎝⎭,即()ij t ξ是一个有界的离散函数。

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤---------------研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度——曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。

灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1> 曲线越接近,相应序列之间的关联度就越大,反之就越小 2> 灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。

灰色系统关联分析的具体计算步骤如下 1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列——影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1) 初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2) 均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3) 区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi) 参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ?(0,1),常取0.5.实数第二级最小差,记为Δmin。

两级最大差,记为Δmax。

为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。

记为Δoi(k)。

所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。

因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其中,
T
H (V) bij b jk vi
b b nj nk j k
m m
m m G b1 j b1k j k
则 H (V) GW
max f 2 GV T s.t. 1, 0
组合赋权的方法即为如下最优化问题: 求解,得
rij (cij c ji),i, j =1, 2, , n,i j
,则主观权重模型的目标函数课写成 ,其最优解为
n qij j 1 wi n n , i 1, 2, qij i 1 j 1
T w n)
T f1 w Rw
,n
最小平方法主观权重为 W主 =(w1,w2
灰色关联法及其应用
主要内容
一、灰色系统理论
二、灰色关联分析
三、案例应用
一、灰色系统理论
1、灰色系统理论基本概念
灰色系统理论是我国学者邓聚龙教授于1982年创 立,是一种研究生少数据、贫信息不确定性问题的新方 法。灰色系统理论以“部分信息已知、部分信息未知” 的“小样本”、“贫信息”不确定性系统为研究对象, 主要通过对“部分”已知信息的生成、开发,提取有价 值的信息,实现对系统运行行为、演化规律的正确描述 和有效监控。
1i m 1i m
式(1)和(2)中 i 1, 2,
, m ;j 1, 2,
,n。

sij
min min bij 1 max max bij 1
i j i j
bij 1 max max bij 1
i j
min min bij 1 为所有评价指标差值的最小值; i j
z [0.8181 0.5502 0.6641 0.6004 0.5473]
由y1的值最大,因而其为最佳选择方案。
W客 0.1362 0.1011 0.1469 0.1320 0.1236 0.1171 0.1259 0.1171
W主 0.0693 0.1765 0.3411 0.0938 0.0651 0.1367 0.0730 0.0446
* 1 0.5023


T


T
* 2 0.4976
一、灰色系统理论
2、灰色系统理论主要内容 灰色系统理论经过二十年的发展,现已基本建立起集系统 分析、评估、建模、预测、决策、控制、优化技术于一体的一 门新兴学科的结构体系。主要内容包括: (1)以灰色代数系统、灰色方程、灰色矩阵等为基础的理 论体系; (2)以序列算子和灰色序列生成为基础的方法体系; (3)以灰色关联空间和灰色聚类评价为依托的分析、评价 模型体系; (4)以GM(1,1)为核心的预测模型体系; (5)以多目标智能灰靶决策为标致的决策模型体系; (6)以多方法融合创新为特色的灰色组合模型体系; (7)以灰色规划、灰色投入产出、灰色博弈、灰色控制为 主体的优化模型体系。
二、灰色关联分析
数理统计中的回归分析、方差分析、主成分分析等都是用 来进行系统分析的方法、这些方法都有下述不足之处: (1)要求有大量数据,数据量少就难以找出统计规律; (2)要求样本服从某个典型的概率分布,要求各因素数据 与系统特征数据之间呈线性关系且各因素之间彼此无关,这种 要求往往难以满足; (3)计算量大,一般要靠计算机帮助; (4)可能出现量化结果与定性分析结果不符的现象,导致 系统的关系和规律遭到问去和颠倒。 灰色关联分析方法弥补了采用数理统计方法作系统分析所 导致的缺憾。它对样本量的多少和样本有无规律都同样适合, 而且计算量小,十分方便,更不会出现量化结果与定性分析结 果不符合的情况 。
二、灰色关联分析
aij min{aij } 1 i m aij } min{aij } max{ 1 i m 1 i m bij 1
max{aij } min{aij } 0
1i m 1i m
(1)
max{aij } min{aij } 0
max max bij 1 为所有评价指标差值的最大值。 i j
灰色关联系数构成灰色关联矩阵 S (sij )mn
(4)计算灰色挂连读 设W为各评价指标的权重,则灰色关联度为:
z SW
根据灰色关联决策的准则, 值越大,则备选方案 愈接近 最优方案 ,故其为备选方案中的最佳方案。
+ + + T B (b1,b2, bn)
n n min f1 (cij w j wi ) i 1 j 1
n wj 1 s.t. j 1 wi 0 (i , j 1, 2, , n)
若记 R(rij )nn ,其中
QR 1 ( qij ) nn
m 2 rii n 2 cij , i 1
GW客 * 1 (GW客 )2 (GW主 )2 GW主 * 2 2 (GW )2 ( G W ) 主 客

* * W 1 W客 2 W主
三、案例分析
整车分拨中心选择与 评价指标体系
地理位置P
市场M
成本C
时间T
交 通 状 况 A1
市 场 辐 射 面 A2
1i m 1i m
max{aij } aij 1i m aij } min{aij } max{ 1i m 1i m bij 1
max{aij } min{aij } 0
1i m 1i m
(2 )
max{aij } min{aij } 0
- T B (b1,b2, bn)
b (b1i,b2i, bmi ) b max ( b , b , b ) 其中 i i min 1i 2i mi
②计算距离 采用欧氏距离公式计算各样本点到参考样本点的距离,分 别为:
Dj m + 2 (bij -bi) i 1 Dj n - 2 (bij -bi) i 1
市 场 销 售 量 M1
销 售 商 数 量 M2
管 理 成 本 C1
运 输 成 本 C2
仓 储 时 间 T1
运 输 分 拨 时 间 T2
P(1~5分) 分拔 中心 P1 4.0 3.5 4.3 4.1 4.4 P2 3.8 4.3 3.9 4.0 4.0
M M1 / 辆 24000 22500 23800 24000 23500 M2 / 个 8 7 8 7 6
则组合权重为:
V = 0.1029 0.1386 0.2435 0.1130 0.0945 0.1268 0.0996 0.0810


T
(2)备选方案灰色关联度的计算
0.5249 0.3333 S 0.8182 0.6000 1.0000
0.3333 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000 0.3846 0.4545 0.4545 0.3333 0.7895 1.0000 0.6000 0.5000 1.0000 0.5000 0.3333 0.4545 0.5556 0.3333 0.6250 0.5556 0.3333 0.5556 0.4167 0.4545 1.0000 0.3333 0.4545 1.0000 0.3333 0.5000 0.5000
C/元 C1 450 480 470 500 465 C2 100 120 150 120 135 T1
T/天 T2 2.0 1.5 2.5 2.0 2.0
A1 A2 A3 A4 A5
15 18 15 20 18
(1)评价指标权重确定
通过前面公式求得:
1 1 1 1 1 0.5 0.5556 0 0 1 0 0.5 0.4 0.6 0.4 1 B 0.8889 0.2 0.8667 1 0.6 0 1 0 0.6667 0.4 1 0.5 0 0.6 0 0.5 0.4 0.6667 0 0.7 重:W客 ( w1 , w2 令
W 1W客 2 W主
, wn ) T
主观权重:W主 =(w1,w2
U (W客 , W主 ), (1, 2 ) T
T w n)
12 22 1
1
n i m j m k
则 W = U 构造目标函数 令
Cj
+ D j Dj
Dj
cj越大,表明样本点与最优样本点的相对距离越近。然后对 cj 做归一化处理,即 Cj T w n W ( w , w , w ) 则 客 1 2 n j Cj j =1 即为求得权重。
(2)主观权重确定----最小平方法 决策者对评价对象的评价指标的重要性进行逐个比较,得 出比较矩阵 C (Cij )nn ,cii 1 ,cij 1c ji ,从而评价指标的权 重问题可表示为主观权重模型:
相关文档
最新文档