等边三角形PPT教学课件

合集下载

等边三角形优秀PPT课件

等边三角形优秀PPT课件
数学研究中
等边三角形是数学研究中的重要对 象之一,与三角函数、数列等领域 有密切联系。
03
等边三角形面积与周长计算
面积计算公式推导
等边三角形面积公式
S = (a^2 * sqrt(3)) / 4,其中a为等边三角形的边长。
公式推导
等边三角形可以划分成两个等腰直角三角形,每个直角三角形的面积为(1/2) * a * (a * sqrt(3) / 2),因此等边三角形面积为2 * (1/2) * a * (a * sqrt(3) / 2) = (a^2 * sqrt(3)) / 4。
05
等边三角形相关数学问题探讨
等腰直角三角形与等边三角形关系探讨
定义与性质 等腰直角三角形是两边相等的直角三角形,等边三角形则 是三边都相等的三角形。两者都属于特殊三角形,具有一 些独特的性质。
关联与转化 等腰直角三角形可以通过添加辅助线转化为等边三角形, 从而利用等边三角形的性质解决问题。反之,等边三角形 也可以转化为等腰直角三角形进行求解。
三边相等判定法
定义
判定方法
三边长度相等的三角形称为等边三角 形。
通过测量三角形的三边长度,判断是 否相等来确定是否为等边三角形。
判定定理
若三角形三边长度分别为a、b、c, 且满足a=b=c,则该三角形为等边三 角形。
两角相等判定法
定义
有两个内角相等的三角形 称为等腰三角形,若这两 个内角均为60度,则为等 边三角形。
特点
等边三角形的三个内角均为60°, 具有对称性。
与其他三角形关系
01
02
03
与等腰三角形关系
等边三角形是特殊的等腰 三角形,其中两腰长度相 等且等于第三边。
与直角三角形关系

等边三角形的性质和判定PPT教学课件

等边三角形的性质和判定PPT教学课件

1.5
5140 9766
1.5
6130
1164 7
2.2
7070
1343 3
2.2
8010
1521 9
28
2.2
8950
1700 5
30
2.2
9890
1879 1
➢ 上图采用周边传动刮泥机结构 主要由中心支座、桁架、传动装置、刮板等部分组成,
该机为全桥(或半桥)周边传动刮泥,传动是由电机经行 星摆线针轮减速机直接或通过链条驱动滚轮,以中心支座 为圆心在池壁顶做圆周运行。 ------结构简单,耗电省,运行可靠,目前已广泛推广
3.在△ABC中,∠A=∠B=∠C,你能得到AB=BC=CA 吗?为什么? 你从中能得到什么结论? 三个角都相等的三角形是等边三角形. 4.在△ABC中,AB=AC,∠A=60°.(1)求证:△ABC是 等边三角形; (2)如果把∠A=60°改为∠B=60°或∠C=60°,那么结论 还成立吗? (3)由上你可以得到什么结论? 有一个角是60°的等腰三角形是等边三角形.
将污泥与3-4倍污泥量的水混合而进行沉降分离 (仅适用于消化污泥)
目的:降低污泥中的碱度和粘度,以节省混凝 剂的用量,提高浓缩效果,缩短浓缩时间。
过程:泥水混合—淘洗—沉淀
三、加热加压调理
可使部分有机物分解,亲水性有机胶体物质水解,颗粒 结构改变,从而改善污泥的浓缩与脱水性能
(一)高温加压调理 流程 图5-6
第五章 污泥的浓缩与脱水
第一节 概述 一、污泥的种类
按来源分: 生活污水污泥、工业废水污泥、给水污泥
按污泥从水中的分离过程分: 沉淀污泥(初沉池污泥、混凝沉淀污泥、化学沉
淀污泥)及生物污泥(包括腐殖污泥、剩余活性污泥 )

等边三角形的判定PPT教学课件

等边三角形的判定PPT教学课件

a2=b2+c2-bc,b2=c2+a2-ca,c2=a2+b2-ab,
则△ABC是( D )
A.钝角三角形
B.直角三角形
C.等腰直角三角形 D.等边三角形
2020/12/10
13
3.如图,点D是等边△ABC的边BC上一点, ∠ADE=60°,则∠BAD与∠CDE的大小关系
是( B )
A. ∠BAD>∠CDE B. ∠BAD=∠CDE C. ∠BAD<∠CDE D. 无法确定
定理:有两个角等于60度的三角形 是等边三角形。
2020/12/10
5
练习:如图,△ABC,
(1)如果AB=AC,∠A=60°, △ABC是等边三角形吗?
A
(2)如果AB=AC,∠B=60°,
△ABC是等边三角形吗?
(3)如果AB=AC,∠C=60°,
△ABC是等边三角形吗? B
C
你能用一句话概括上面得到的结论吗?
在△ABE和△DBC中, 在△ABM和△DBN中,
AB=DB
∠BAE=∠BDC
∠ABE=∠DBC BE=BC ∴△ABE≌△DBC
∴∠BAE=∠BDC
2020/12/10
AB=DB ∠ABM=∠DBN=60° ∴△ABM≌△DBN ∴BM=BN ∵∠MBN=60°
∴△BMN是等边三角形。 9
例2:如图,△ABC中,D、E是BC上的点, 且BD=DE=EC=AD=AE,求∠BAC的度数。
2020/12/10
14
4.如图,△ABC中,AB=AC,D、E在BC、 AC上,且AD=AE,∠1=40°,
则∠2=____2_0__°.
此题的一般结论: ∠1=2∠2

《等边三角形的判定》证明课件ppt文档

《等边三角形的判定》证明课件ppt文档

在△ABC中,∵∠ACB=900,∠A=300(已知),B
CD
∴∠B=600(直角三角形两锐角互余).
又∵ ∠ACB=900, (已知),
∴∠ACD=900(平角意义).
在△ABC与△ADC中
∵BC=DC(作图),
∠ACB=∠ACD(已证),
AC=AC(公共边), ∴△ABC≌△ADC(SAS).
驶向胜利 的彼岸
具体做法.
600
C
我能行 1
命题的证明
定理:有一个角是600的等腰三角形是等边三角形.
已知:如图,在△ABC中AB=AC,∠B=600. A 求证:△ABC是等边三角形.
证明:∵AB=AC, ∠B=600(已知), 600
∴∠C=∠B=600.(等边对等角). B
C
∴∠A=600(三角形内角和定理).
等的三角形是等边三角形).
600
C
这又是一个判定靠边三角形的根据之一.
驶向胜利 的彼岸
我能行 3
命题的猜想
1 操作:用两个含有300角的三角
尺,你能拼成一个怎样的三角形?
300
300 300 300
300
300
能拼出一个等边三角形吗?说说你的理由.
由此你想到,在直角三角形中, 300角所对的 直角边与斜边有怎样的大小关系?
∴∠A=∠B(等式性质).
∴ AC=CB(等角对等边).
∴AB=BC=AC(等式性质).
∴ △ABC是等边三角形(等边三角形 意义).
驶向胜利 的彼岸
回顾反思 1
几何的三种语言
定理:有一个角是600的等腰三角形是等边三角形.
在△ABC中,
A
∵AB=AC,∠B=600(已知).

等边三角形PPT优秀课件

等边三角形PPT优秀课件

∵ DE∥BC
B
图13.3-7
C
∴∠ADE=∠B,∠AED=∠C
∴∠A=∠ADE=∠AED
∴⊿ADE是等边三角形
试一试
课本的证明是用判定方法二证明的,你能用判 定方法三来证明例4吗?(提示:先证明有一个 角是60 °,再证明它是等腰三角形)
巩固练习
1.等边三角形是轴对称图形吗?如果是,指
出它的对称轴.
等边三角形PPT优秀课件
☻等边三角形的定义:
三边都相等的三角形叫等边三角 形(也叫正三角形) 。
☻等边三角形的性质
等腰三角形是有两边相等的三角形,而 等边三角形是一种三边都相等的特殊的等 腰三角形。
等边三角形性质与等腰三角形性质有紧 密的联系,可以从中类比而得出。采用类 比这种方法学习新知识,可以进一步了解 新旧知识的联系,更加方便于理解、记忆 和应用。
B
等边 三角形
C
求证:有一个角是60 °的等腰三角形是等边三角形。
假若AB=AC.则∠ B= ∠ C (1)当顶角∠A=60 °时,∠ B= ∠ C= 60 ° ∴ ∠A= ∠ B= ∠ C=60 ° ∴ △ABC是等边三角形.(判定方法2)
(2)当底角∠ B= 60°时,∠ C=60 °, ∠A=180 -60 °x2=60 ° ∴ ∠A= ∠ B= ∠ C=60 ° ∴ △ABC是等边三角形. (判定方法2)
归纳:怎样判断一个三角形是等边三角形?
A
方法一:三角形的三边相等;
方法二:三角形的三角相等;
B
C
方法三:有一个角等于60°的等腰三角形 是等边三角形。
例4:如图,⊿ABC是等边三角形,DE∥BC,
交AB、AC于D、E,
A

人教版等边三角形 (2) PPT

人教版等边三角形 (2) PPT

等边三角形的对称轴是各边高线(中线,或 者所对角的角平分线)所在的直线。
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
总结: 等边三角形的性质
1 . 等边三角形三边相等
2. 等边三角形的内角都相等,且等于60 °
3. 各边上的三线互相重合.(三线合一) 4. 等边三角形是轴对称图形,且有三条 对称轴.
思考
一个三角形满足什 么条件就是等边三 角形?
判定1: 三个角都相等的三角 形是等边三角形。
A
已知: ∠A=∠B=∠C
求证: AB=AC=BC
证明:
B
C
判定2: 有一个角是60。的等腰三角 形是等边三角形
A
已知: AB=AC,∠A=60。
求证: AB=AC=BC
证明:
B
C
一般三角形
等边三角形
人教版 八年级上册
等腰三角形
性质1 等腰三角形是轴对称图形,它有一条对称轴
性质2 等腰三角形的两个底角相等 (等边对等角) 性质3 等腰三角形的顶角平分线与底边上的中线,
底边上的高互相重合 (三线合一)
我们一起学习
用数学画图软件---玲珑画板演示 等腰三角形的性质


一般三角形
等腰三角形
等边三角形
⒈ 三个角都相等的三角形是等边三角形.
等腰三角形
等边三角形
⒉ 有一个角是60°的等腰三角形是等边 三角形.
讨 等边三角形是一种特殊的等腰三角 论 形,你能述说等边三角形与等腰三角
形在定义,性质和判定的异同吗?
有二条边 相等
有三条边 相等
1、两个底角相等 2、三线合一 3、对称轴一条
1、根据定义 2、等角对等边

等边三角形课件共14张PPT

等边三角形课件共14张PPT
2
你能用一句话来
A
描述你的结论吗?
B
C
D
定理
在直角三角形中,如果一个锐角等于30° 那么它所对的直角边等于斜边的一半。
数学式:
A
30°
∵∴B∠CA=C12B=ARBt ∠ ,∠A=30°
C ┓ B 你还能用其它方法证明吗?
“在直角三角形中,如果一个锐角等于30° 那么它所对的直角边等于斜边的一半。”
C D
B
E
A
5、 如图,在△ABC中, ∠ACB= 90°,
∠B= 15°,AB的垂直平分线分别交BC、AB 于D、E。求证:DB=2AC
小结:
❖ 等边三角形的性质: 三边相等,三个角都是600,”三线合一”,三条对 称轴. ❖ 等边三角形的判定: 定义:有三边相等的三角形是等边三角形. 定理:有一个角是600的等腰三角形是等边三角形. 定理:三个角都相等的三角形是等边三角形. ❖ 特殊的直角三角形的性质: 定理:在直角三角形中, 如果有一个锐角等于300, 那么它所对的直角边等于斜边的一半. 定理:在直角三角形中, 如果一条直角边等于斜 边的一半,那么它所对的锐角等于300.
C D
B
E
A
4、 如图,上午9时,一条渔船从A出发,
以12海里/时的速度向正北航行,11时到达
B处,从A、B两处望小岛C,测得
∠NAC=150内有暗礁,问该渔船继续向正北
航行有无触礁的危险?
N
C
D
B
A
4、如图,在△ABC中, AB=AC, ∠BAC= 120°,AC的垂直平分线EF交AC 于点E,交BC于点F。求证:BF=2CF。
练习: 已知:等腰三角形的底角为150,腰长为2a. 求:腰上的高.

等边三角形PPT课件

等边三角形PPT课件

2.请同学用一句话来概括大家找到的结论.
等边三角形的各个角都相等,并且每一个 内角都等于60°.
3.若在等边三角形ABC中,AD⊥BC,
你能找到新的结论吗?
A
∠BAD=∠CAD =30°;

AB=2BD=2DC.
B
D
C
4.如果将图中右边部分中的AC、CD擦掉,你
有新的想法吗?
A

B
D
C
在直角三角形ABD中,30°角所 对的直角边等于斜边的一半.
三等分点, △AED是等边三角形,则
∠BAC为(
)度?
A
B
D
E
C
A
因为 ∠A+∠B+∠C=180°,
所以∠A=∠B=∠C=60°.
B
C
试用推理格式写出整个推理过程
推理过程:
∵ AB=AC (已知)
A
∴∠B=∠C (等边对等角)
同理 ∠A=∠B
∴ ∠A=∠B=∠C
B
C
∵ ∠A+∠B+∠C=180°
(三角形内角和为180°) ∴ ∠A=∠B=∠C = 1830°= 60°.
1、等边三角形是_______对称图形,它有 _______条对称轴,是_________________。
2、已知△ABC中,∠A=∠B=60°,AB=3cm 则△ABC的周长________
3、 △ABC是等腰三角形,周长为15cm且 ∠A=60°,则BC=_______
4、如图, △ABC中,D、E是BC边上的
一、创设情境 1.有两边相等的三角形是等腰三角形,有 三边相等的三角形是等边三角形也称正三 角形.(如图)
2.①等腰三角形是轴对称图形. ②等腰三角形平分线,底边上的 中线和底边上的高互相重合.

等边三角形PPT课件

等边三角形PPT课件

回头看了一眼,朝独自跪在那里的人最后投去悲哀的一瞥。因为挨了四鞭,那人的背还在火辣辣的痛,他的膝盖也跪疼了。不过,这个老人会带着尊严死去,或至少是抱着这样的想法死去。 (节选自《偷书贼》第七章P265~267,略有删改) 致中国读者的信 亲爱的中国读者: ? 谢谢您阅读了这
本《偷书贼》。 ? 我小时候长听故事。我的爸爸妈妈经常在厨房里,把他们小时候的故事告诉我的哥哥、两个姐姐和我,我听了非常着迷,坐在椅子上动都不动。他们提到整个城市被大火笼罩,炸弹掉在他们家附近,还有童年时期建立的坚强友谊,连战火、时间都无法摧毁的坚强友谊。 ? 其中有
所以∠B=600
2
从而∠B=300
B
C
6
逆定理
在直角三角形中锐角是30°。
A
∵ AC⊥BC , BC= 1AB
2
∴ ∠A= 30°
B
C
2021/4/8
7
例1 如图,是屋架设计图的一部分,点D是斜梁
AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4 m ∠A= 30°,立柱BC、DE要多长?
;单创:/c/7radcKIT9fA

本文以小红包为线索,两次设置悬念,把小说情节推向高潮;小说的结尾安排巧妙,出人意料却又在情理之中,引人入胜. 【点评】本题考查对文本、故事情节的理解分析能力和对句子含义、作者感情的理解分析能力.其中第(2)题是重点题目,学生解答时,在理解文章内容主旨的基础上,结合
2
如图,将两个含30°角的三角尺摆放在一起。 你能借助这个图形,找到Rt △ABC的直角 边BC与斜边AB之间的数量关系吗?
A
另证:在BA上截取BE=BC,连接EC
30 ° 30 °
则△BCE是等边三角形,所以

《等边三角形》PPT优质课件

《等边三角形》PPT优质课件

∴∠DBE= 1 ∠ABC=30°.
2
∵DE=DB,∴∠E=∠DBE=30°.
B
D CE
∵∠ACB=∠CDE+∠E,∴∠CDE=∠ACB-∠E=30°.
探索新知
知识点1 等边三角形的性质 【变式】如图,等边三角形ABC的边长为3,点D是AC的中点,点E在BC 的延长线上,若DE=DB,求CE的长.
知识点1 等边三角形的性质
A
BC边上的中线,高和所对角的平分线“三线合一”.
AB边上的中线,高和所对角的平分线“三线合一”.
B
C AC边上的中线,高和所对角的平分线“三线合一”.
等边三角形每条边上的中线、高和所对角的平分线相互重 合,即“三线合一”.
探索新知
知识点1 等边三角形的性质
思考3 把等腰三角形的对称性用于等边三角形,能得到什么结 论?
知识点1 等边三角形的性质
图形 性边 质角
三线 合一
等腰三角形
两条边相等 两个底角相等
底边上的中线、高和顶角 的平分线互相重合
对称 性
1条对称轴
等边三角形
三条边都相等 三个角都相等, 且都是60º 每一边上的中线、高和这一边 所对的角的平分线互相重合
3条对称轴
探索新知
知识点1 等边三角形的性质 例1 如图,△ABC是等边三角形,BD平分∠ABC,延长BC到点E,使 得CE=CD.求证:BD=DE.
有一个角是60°的等腰 三角形是等边三角形.
探索新知
知识点2 等边三角形的判定
例2 如图,△ABC是等边三角形,DE∥BC,分别交AB,AC于点D,E.
求证:△ADE是等边三角形.
证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.

等边三角形的性质与判定(共14张PPT)

等边三角形的性质与判定(共14张PPT)

∴ AB =BC =AC.
证明:∵ △ABC 是等边三角形,
证明:∵ △ABC 是等边三角形, 2.能运用等边三角形的性质和判定进行计算和证
∴ ∠B =∠D,∠C =∠E.
∴ ∠EAD =∠D =∠E.
∴ BC =AC,BC =AB. ∴ AB =BC =AC.
∴ ∠A =∠B =∠C =60°.
A
∵ ∠A=∠B =∠C ,
∴ ∠A =∠B,∠A =∠C . 追问 本题还有其他证法吗?
∴ AB =BC =AC.
∴ BC =AC,BC =AB.
∴ ∠A =∠B =∠C . ∵ DE∥BC,
证明: ∵ △ABC 是等边三角形,
∵ ∠A +∠B +∠C =180°,
∴ ∠A =60°.
B
C
∴ ∠A =∠B =∠C =60°.
等边三角形的性质与判定
课件说明
• 学习目标:
1.探索等边三角形的性质和判定. 2.能运用等边三角形的性质和判定进行计算和证
明. • 学习重点:
探索等边三角形的性质与判定.
变式1 若点D、E 在边AB、AC 的延长线上,且
图形 ∴ BC =AC,BC =AB.


∴ ∠A =∠ABC =∠ACB =60°.
A
∵ DE∥BC,
∴ ∠B =∠ADE,∠C =∠AED.
∴ ∠A=∠ADE =∠AED. ∴ △ADE 是等边三角形. D
E
追问 本题还有其他证法吗? B
C
动脑思考,变式训练
变式1 若点D、E 在边AB、AC 的延长线上,且
DE∥BC,结论还成立吗?
证明:∵ △ABC 是等边三角形,

等边三角形PPT课件

等边三角形PPT课件
等边三角形PPT课件
一、创设情境 1.有两边相等的三角形是等腰三角形,有三边相等的三角形是等边三角形也 称正三角形.(如图)
2.①等腰三角形是轴对称图形. ②等腰三角形的两个底角相等.简写成“等边对等角”. ③等腰三角形的顶角平分线,底边上的中线和底边上的高互相重合.
3.以上等腰三角形的三个结论能传递给等边三角形吗?
二、近代以来交通、通讯工具的进步对人们社会生活的影 响
(1)交通工具和交通事业的发展,不仅推动各地经济文化交 流和发展,而且也促进信息的传播,开阔人们的视野,加快 生活的节奏,对人们的社会生活产生了深刻影响。
[合作探究·提认知] 电视剧《闯关东》讲述了济南章丘朱家峪人朱开山一家, 从清末到九一八事变爆发闯关东的前尘往事。下图是朱开山 一家从山东辗转逃亡到东北途中可能用到的四种交通工具。
依据材料概括晚清中国交通方式的特点,并分析其成因。 提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展; 政府及各阶层人士的提倡与推动。
筹办航空事宜

三、从驿传到邮政 1.邮政 (1)初办邮政: 1896年成立“大清邮政局”,此后又设 , 邮传邮正传式部脱离海关。 (2)进一步发展:1913年,北洋政府宣布裁撤全部驿站; 1920年,中国首次参加 万国。邮联大会
2.电讯 (1)开端:1877年,福建巡抚在 架台设湾第一条电报线,成为中国自 办电报的开端。
轮船正招式成商立局,标志着中国新式航运业的诞生。
(2)1900年前后,民间兴办的各种轮船航运公司近百家,几乎都是
在列强排挤中艰难求生。
2.航空

等边三角形PPT课件2024新版

等边三角形PPT课件2024新版

03
等边三角形面积与 周长计算
面积计算公式推导
01
02
等边三角形面积公式: $S = frac{sqrt{3}}{4}a^{2}$ ,其中 $a$ 为等边三角 形的边长。
推导过程
03
04
05
将等边三角形划分为三 个全等的直角三角形。
利用勾股定理求出直角 三角形的高 $h = frac{sqrt{3}}{2}a$。
等边三角形外心、内心及重心问题
外心性质
等边三角形的外心位于 三条边的垂直平分线的 交点上,且外心到三个 顶点的距离相等。
内心性质
等边三角形的内心位于 三条内角平分线的交点 上,且内心到三边的距 离相等。
重心性质
等边三角形的重心位于 三条中线的交点上,且 重心将每条中线分为两 段,比例为2:1。
等边三角形与圆的关系
06
等边三角形拓展知 识介绍
黄金分割与等边三角形关系
黄金分割点
在等边三角形中,可以通过特定方式 找到黄金分割点,该点将一条边分为 两段,其中较长段与较短段之比等于 整条边与较长段之比。
黄金三角形
等边三角形与黄金分割密切相关,通 过连接等边三角形的各边中点,可以 得到一个较小的等边三角形,这两个 三角形构成黄金三角形。
解:根据面积公式 $S = frac{sqrt{3}}{4}a^{2}$,代入 $S = 16sqrt{3}$cm²,得 $frac{sqrt{3}}{4}a^{2} = 16sqrt{3}$,解得 $a = 8$cm。
解:根据面积公式 $S = frac{sqrt{3}}{4}a^{2}$,代入 $a = 5$cm,得 $S = frac{sqrt{3}}{4} times 5^{2} = frac{25sqrt{3}}{4}$cm²。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
已知:△ABC , AB=AC, ∠A=60°( ∠B=60°
或 ∠C=60°)
求证: △ABC是等边三角形
证明:
B
C
2020/12/12
9
课外活动小组在一次测量活动中,测得
∠APB=60°AP=BP=200cm,他们
便得到了一个结论:池塘最长处不小
于200cm.他们的结论对吗?
A
P )60°
2020/12/12
❖ 2、等边三角形的对称轴有( ) ❖ (A)1条(B)2条(C)3条(D)4条
2020/12/12
14
3、已知△ABC中,∠A=∠B=60°,AB=3cm
则△ABC的周长________
4、 △ABC是等腰三角形,周长为15cm且∠A=60°, 则BC=_______
5、如图, △ABC中,D、E是BC边上的三等分点,
谢谢观看
Thank You For Watching
23
2020/12/12
5
A
B )60° 60(° C
⑴等边三角形的三边都相等
⑵等边三角形的三个内角都相等,并且
每一个角都等于60°你能证明吗?
(3)等边三角形各边上中线,高和所对角的平分线
都三线合一.
(4)等边三角形是轴对称图形,有3条对称轴
2020/12/12
6

思考题
一个三角形满足什么条件 就是等边三角形?
A OP
C B

2020/12/12
12
例2:如图,已知△ABC 是等边三角形,BD 是中线,延长BC至E,使CE=CD, 求证:DB=DE
A
D
B
C
E
课堂练习:教材P54练习
2020/12/12
13
❖ 1、下列四个说法中,不正确的有( ) ❖ ①、三个角都相等的三角形是等边三角形。 ❖ ②、有两个角等于60°的三角形是等边三角形。 ❖ ③、有一个角是60°的等腰三角形是等边三角形。 ❖ ④、有两个角相等的等腰三角形是等边三角形。 ❖ (A)0个(B)1个(C)2个(D)3个
2020/12/12
19
我们这节课学习了哪些知识? 谈谈你的体会.
作业:书57页:第11题, 65页:第12题
2020/12/12
20
2020/12/12
21
这是两个等边三角形,那么请移动三根火柴 ,将此图变成四个等边三角形.
随堂练习
2020/12/12 (一)课本P145练习 1、2.
22
PPT教学课件
B 10
例4 如图,△ABC是等边三角 形,DE∥BC交AB,AC于D,E 求证: △ADE是等边三角形

A
分析:判定等边三角形方法几种?已知给我们创
造了什么条件?应该选择什么方法,你能证明吗?
D
E
B
C
2020/12/12
11
在等边ΔABC中,P,Q分别为AC,B C上的点,且AP=CQ,BP交AQ于 O,试求∠BOQ的度数.
C
17
7.已知:如图,P,Q是△ABC边上BC上的 两点,且BP=PQ=QC=AP=AQ,求∠BAC的 度数.
A
2020/12/12
BP
QC
18
E D
F
G
A
C
B
如图,点C是AB上一点,三角形ACD 和三角形BCE均为等边三角形,连接AE交 CD于F,连接BD交CE于G,图中有几对 全等三角形?判断FG与的AB的位置关系。
A
B
C
2020/12/12
1
观察下列图片,你有 什么印象?
2020/12/12
2
你发现了什么?
这就是今天我们要学的
2020/12/12
3
什么样的三角形是等边三角形?
三条边都相等的三角形叫等边三角形
2020/12/12
4
想想看,等边三角形
A
有什么性质?
B
C
⑴三边之间 AB_=AC_=BC
⑵三角之间 ∠A_=∠B_=∠C= _6度0
△AED是等边三角形,则∠BAC为(
)度?
A
2020/12/12
B
D
E
C
15
(1)△ ABD≌ △ACD ≌ △CAF ≌ △CBF ≌ △BAE ≌ △ BCE
等边三角形三条中线相交于一
点,画出图形,讨论找出图中
所有的全等三角形,证明它们
全等
A
(2)△AOF≌ △AOE ≌ △BOF ≌ △BOD ≌ △COD ≌ △COE
2020/12/12
7
一般三角形
等边三角形
1.三条边都相等的三角形是等边三角形(定义)
2. 三个角都相等的三角形是等边三角形.(猜 想、画图、写出已知、求证、请证明)
已知:△ABC, ∠A= ∠B= ∠C
A
求证: △ABC是等边三角形
证明:
B
C
2020/12/12
8
等腰三角形
等边三角形
3.有一个角是60°的等腰三角形是等边三角形. (猜想、画图,写出已知、求证、请证明)
(3)△ AOB≌ △ BOC≌ △COA
F
E
O
你能证明三 角形全等吗?
B
D
C
2020/12/12
16
练习
1. 如图,等边△ABC中,AD是BC上的高 , ∠ BDE= ∠ CDF=600,图中有哪些与BD 相等的线段?
BD=CD=CF=AF=DF
A
=AE =BE=DE
E
F
2020/12/12
B D
相关文档
最新文档