第9章灰色综合评价和灰色预测
灰色理论关联度与预测,数学建模必备知识,很实用哦
X m {xm ( jm )} | jm 1, 2,..., nm} 比较序列
灰色关联分析3
设x0(k)为X0(为参考序列)的第k个数;xi(k) 为Xi(比较序列)的第k个数;
则比较序列Xi对参考序列X0的灰色关联度为:
(X0 ,
Xi )
1 n
n k 1
r(x0 (k),
度,根据经验,当ρ=0.5时,关联度大于0.6便 满意了。
回总目录 回本章目录
(3)后验差检验 a.计算原始序列标准差:
X 0 i X 0 2
S1
n 1
回总目录 回本章目录
b. 计算绝对误差序列的标准差:
0 i 0 2
S2
X 0 t ,
3
X 0 t ,...,
n
X 0 t
t1
t 1
t 1
t 1
目录
基本概念 灰色关联分析 灰色预测模型
灰色关联分析1
基本特征
建立的模型属于非函数形式的序列模型 计算方便易行 对样本数量多寡没有严格要求 不要求序列数据必须符合正态分布 不会产生与定性分析大相径庭的结论
n 1
c. 计算方差比:
C S2 S1
回总目录 回本章目录
d. 计算小误差概率:
P P 0i 0 0.6745S1
令: 则:
ei 0i 0 , S0 0.6745S1 P Pei S0
P >0.95 >0.80 >0.70 ≤0.70
灰色关联分析3
灰色关联度的数学模型
X 0 {x0 ( j0 )} | j0 1, 2,..., n0} X1 {x1( j1)} | j1 1, 2,..., n1} X 2 {x2 ( j2 )} | j2 1, 2,..., n2}
灰色预测法
min min Xˆ 0k X 0k max max Xˆ 0k X 0k
(k)
Xˆ 0k X 0k max max Xˆ 0k X 0k
式中:
Xˆ 0k X 0k 为第k个点 X 0 和 Xˆ 0 的绝对误差; min min Xˆ 0k X 0k 为两级最小差; max max Xˆ 0k X 0k为两级最大差;
二、生成列
为了弱化原始时间序列的随机性,在 建立灰色预测模型之前,需先对原始时间 序列进行数据处理,经过数据处理后的时 间序列即称为生成列。
(1)数据处理方式 灰色系统常用的数据处理方式有累加
和累减两种。
累加 累加是将原始序列通过累加得到生成列。
累加的规则: 将原始序列的第一个数据作为生成 列的第一个数据,将原始序列的第二个 数据加到原始序列的第一个数据上,其 和作为生成列的第二个数据,将原始序 列的第三个数据加到生成列的第二个数 据上,其和作为生成列的第三个数据, 按此规则进行下去,便可得到生成列。
• 灰色系统内的一部分信息是已知的,另一 部分信息是未知 的,系统内各因素间有不 确定的关系。
(2)灰色预测法 • 灰色预测法是一种对含有不确定因素的系
统进行预测的方法。
• 灰色预测是对既含有已知信息又含有不确定 信息的系统进行预则,就是对在一定范围内 变化的、与时间有关的灰色过程进行预测。
• 灰色系统理论提出了一种新的分析方法—— 关联度分析方法。灰色预测通过鉴别系统因素 之间发展趋势的相异程度,即进行关联分析, 并对原始数据进行生成处理来寻找系统变动的 规律,生成有较强规律性的数据序列,然后建 立相应的微分方程模型,从而预测事物未来发 展趋势的状况。
ρ称为分辨率,0<ρ<1,一般取ρ=0.5; 对单位不一,初值不同的序列,在计算相关系 数前应首先进行初始化,即将该序列所有数据 分别除以第一个数据。
灰色预测
五、GM(n,h)模型
1、残差模型:若用原始经济时间序列 X 0 建立的 GM(1,1)模型检验不合格或精度不理想时,要对建 立的 GM(1,1)模型进行残差修正或提高模型的预测 精度。修正的方法是建立 GM(1,1)的残差模型。 2、GM(n,h)模型 GM(n,h)模型是微分方程模型,可用于对描述 对象作长期、连续、动态的反映。从原则上讲,某一 灰色系统无论内部机制如何,只要能将该系统原始表 征 量 表 示 为 时 间 序 列 X 0 t , 并 有 X 0 t , t N , X 0 t 0(N 表数自然数集) , 即可用 GM 模型对系 统进行描述。
,
则 GM(1,1)模型相应的微
分方程为:
dX 1 aX 1 dt
其中:α 称为发展灰数;μ 称为内生控制灰数。
ˆ 2、设
乘法求解。
ˆ 为待估参数向量, (1) ( X ( 2 ) X ( 1 )) 1 X ( 0 ) ( 2) 2 (0) 1 X (3) B ( X (1) (3) X (1) (2)) 1, Y 2 1 ( X (1) (n) X (1) (n 1)) 1 X ( 0 ) ( n) 2
称为分辨率系数,取 0 到 1 之间的数(一般地,
在 0.1 到 0.5 之间的数,通常取 0.5 ) 。
X i 与 X 0 之间的关联度为:
1 k n 1 k m
1 k n 1 k m
1 n ri yi (k ), i 1,2,, m. n k 1
ˆ 0 k X ˆ 1 k 1 X ˆ 1 k X
3、模型检验 灰色预测检验一般有残差检验、关联度检验和后验 差检验。
灰色预测(讲)
一、什么是灰色预测灰色预测是就对灰色系统所做的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如:一个商店可看作是一个系统,在人员、资金、损耗、销售信息完全明确的情况下,可算出该店的盈利大小、库存多少,可以判断商店的销售态势、资金的周转速度等,这样的系统是白色系统。
遥远的某个星球,也可以看作一个系统,虽然知道其存在,但体积多大,质量多少,距离地球多远,这些信息完全不知道,这样的系统是黑色系统。
人体是一个系统,人体的一些外部参数(如身高、体温、脉搏等)是已知的,而其他一些参数,如人体的穴位有多少,穴位的生物、化学、物理性能,生物的信息传递等尚未知道透彻,这样的系统是灰色系统。
再如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
显然,黑色、灰色、白色都是一种相对的概念。
世界上没有绝对的白色系统,因为任何系统总有未确知的部分,也没有绝对的黑色系统,因为既然一无所知,也就无所谓该系统的存在了。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具有潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
常用的灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
二、灰色预测的步骤若给定原始数据序列)](),......2(),1([)0()0()0()0(n X X X X =可分别从)0(X 序列中,选取不同长度的连续数据作为子序列.对于子序列建立GM(1,1)模型的步骤可以概括为: 第一步:写出原始数据列(0)X(0)(0)(0)(0)(){(1),(2),......,()}X i X X X n =为了弱化原始时间序列的随机性 在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。
灰色预测
用最小二乘法估计为
Uˆ
aˆ uˆ
(BT
B)1 BT
y
将a与u的估计值代入微分方程可得
xˆ(1) (k 1) [x(1) (1) uˆ ]eaˆk uˆ
aˆ
aˆ
GM(1,1)模型
求模拟值 x(1) 并累减还原出 x(0) 的模拟值。 对其做累减还原即可得到原始数列的灰色预测 模型为:
Xˆ (0) (k) Xˆ (1) (k 1) Xˆ (1) (k)
灰色生成
将原始数据列中的数据,按某种要求作数据处 理称为生成.对原始数据的生成就是企图从杂 乱无章的现象中去发现内在规律.
常用的灰色生成方式有: 累加生成,累减生 成,均值生成,级比生成等
灰色生成
累加生成
累加前的数列称原始数列,累加后的数列称为生成数 列.累加生成是使灰色过程由灰变白的一种方法,它在 灰色系统理论中占有极其重要地位,通过累加生成可 以看出灰量积累过程的发展态势,使离乱的原始数据 中蕴含的积分特性或规律加以显化.累加生成是对原 始数据列中各时刻的数据依次累加,从而生成新的序 列的一种手段.
常用到的灰色预测模型
• GM(1,1)模型——是1阶方程,包含有1个变量 的灰色模型
• GM(1,N)模型——是1 阶方程,包含有N 个 变量的灰色模型。
• GM(0,1)模型——是0 阶方程,包含有N 个变 量的灰色模型。表达式上相当于统计回归
• GM(2,1)模型——是2阶方程,包含有1 个变 量的灰色模型。
模型精度检验
+ 相对误差大小检验法(最常用) + 后验差检验法 + 关联度检验法
模型精度检验
相对误差大小检验法
相对误差大小检验法,它是一种直观的逐点进 行比较的算术检验方法,它是把预测数据与实 际数据相比较,观测其相对误差是否满足实际 要求。 设按该模型以求出Xˆ (1) ,并将 Xˆ (1) 做一次累 减转化为Xˆ (0) ,即
(整理)灰色预测法-
第7章 灰色预测方法 预测就是借助于对过去的探讨去推测、了解未来。
灰色预测通过原始数据的处理和灰色模型的建立,发现、掌握系统发展规律,对系统的未来状态做出科学的定量预测。
对于一个具体的问题,究竟选择什么样的预测模型应以充分的定性分析结论为依据。
模型的选择不是一成不变的。
一个模型要经过多种检验才能判定其是否合适,是否合格。
只有通过检验的模型才能用来进行预测。
本章将简要介绍灰数、灰色预测的概念,灰色预测模型的构造、检验、应用,最后对灾变预测的原理作了介绍。
7.1 灰数简介7.1.1 灰数一棵生长着的大树,其重量便是有下界的灰数,因为大树的重量必大于零,但不可能用一般手段知道其准确的重量,若用⊗表示大树的重量,便有[)∞∈⊗,0。
是一个确定的数。
海豹的重量在20~25公斤之间,某人的身高在1.8~1.9米之间,可分别记为 []25,201∈⊗,[]9.1,8.12∈⊗ 4. 连续灰数与离散灰数在某一区间内取有限个值或可数个值的灰数称为离散灰数,取值连续地充满某一区间的灰数称为连续灰数。
某人的年龄在30到35之间,此人的年龄可能是30,31,32,33,34,35这几个数,因此年龄是离散灰数。
人的身高、体重等是连续灰数。
5. 黑数与白数当()∞∞-∈⊗,或()21,⊗⊗∈⊗,即当⊗的上、下界皆为无穷或上、下界都为讨论方便,我们将黑数与白数看成特殊的灰数。
6. 本征灰数与非本征灰数本征灰数是指不能或暂时还不能找到一个白数作为其“代表”的灰数,比如一般的事前预测值、宇宙的总能量、准确到秒或微妙的“年龄”等都是本征灰数。
非本征灰数是指凭先验信息或某种手段,可以找到一个白数作为其“代表”的灰数。
我们称此白数为相应灰数的白化值,记为⊗~,并用()a ⊗表示以a 为白化值的灰数。
如托人代买一件价格100元左右的衣服,可将100作为预购衣服价格()100⊗的白化数,记为()100100~=⊗。
从本质上来看,灰数又可分为信息型、概念型、层次型三类。
灰色预测模型原理
灰色预测模型原理灰色预测模型(Grey Prediction Model)是一种基于灰色系统理论和数学建模方法的预测模型。
灰色系统理论是我国学者黄金云教授于1982年提出的一种系统理论,它是研究非确定性和不完备信息系统的一种新方法,可用于研究多变量、小样本和非线性系统。
灰色预测模型主要基于灰色数学建模方法,通过对已知的部分序列数据进行建模和预测,来推测未知的序列数据趋势。
它适用于研究数据量小、信息不完备、非线性关系复杂的系统。
下面将简要介绍灰色预测模型的原理、模型建立过程以及一些应用案例。
1. 灰色预测模型的原理灰色预测模型的核心思想是通过对已知数据进行灰色关联度的度量,从而建立出合适的数学模型,进行未来数据的预测。
其基本原理可以概括为以下五个步骤:(1)建立灰色微分方程:根据原始数据的特点,确定合适的灰色微分方程,通常使用一阶或高阶灰色微分方程。
(2)求解灰色微分方程:根据所选择的灰色微分方程,求解其参数,得到模型的特征参数。
(3)模型检验:检验所建立的灰色预测模型的拟合程度和误差是否符合要求。
(4)进行灰色关联度分析:根据已知数据的变化规律,计算各个因素的灰色关联度,确定相关因素的重要性。
(5)进行预测:利用建立好的灰色预测模型,对未来的数据进行预测和分析,得出预测值。
2. 模型建立过程灰色预测模型的建立过程中,通常包括以下几个步骤:(1)数据的建立与处理:对原始数据进行筛选、预处理和归一化处理,以满足模型的要求。
(2)建立灰色微分方程:从已知数据中提取主要特征,并根据数据的特点选择合适的灰色微分方程。
(3)求解灰色微分方程:根据所选的灰色微分方程,通过累加生成序列、求解参数等方法,得到模型的特征参数。
(4)模型的检验:根据已知数据的拟合程度和误差范围,评估所建立的灰色预测模型的准确性和可靠性。
(5)模型的应用与预测:利用已建立的模型进行未来数据的预测和分析,得出预测结果。
3. 应用案例灰色预测模型在实际应用中具有广泛的应用范围,以下是一些常见的应用案例:(1)经济领域:用于对经济指标、市场需求、价格变动等进行预测,为经济决策提供参考。
灰色预测模型※※分析
灰色预测模型灰色预测是就灰色系统所做的预测. 所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统. 一般地说,社会系统、经济系统、生态系统都是灰色系统.灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.一、GM(1,1)模型灰色系统理论是邓聚龙教授在1981年提出来的,是一种对含有不确定因素系统进行预测的方法. 通过鉴别系统因素之间发展趋势的相异程度,进行关联分析,并通过对原始数据进行生成处理来寻找系统的变化规律,生成较强规律性数据序列,然后建立相应微分方程模型,从而预测事物未来的发展趋势和未来状态. 目前使用最广泛的灰色预测模型是关于数列预测的一个变量、一阶微分的GM(1,1)模型.GM(1,1)模型是基于灰色系统的理论思想,将离散变量连续化,用微分方程代替差分方程,按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近,用生成数序列代替原始时间序列,弱化原始时间序列的随机性,这样可以对变化过程作较长时间的描述,进而建立微分方程形式的模型. 其建模的实质是建立微分方程的系数,将时间序列转化为微分方程,通过灰色微分方程可以建立抽象系统的发展模型. 经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律时,灰色预测GM(1,1)模型的预测将是非常成功的.1.1 GM(1,1)模型的建立灰色理论认为一切随机量都是在一定范围内、一定时间段上变化的灰色量及灰色过程. 数据处理不去寻找其统计规律和概率分布, 而是对原始数据作一定处理后, 使其成为有规律的时间序列数据, 在此基础上建立数学模型.GM(1,1)模型是指一阶,一个变量的微分方案预测模型,是一阶单序列的线性动态模型,用于时间序列预测的离散形式的微分方程模型.设时间序列()0X有n 个观察值,()()()()()()(){}00001,2,,Xx x x n =,为了使其成为有规律的时间序列数据,对其作一次累加生成运算,即令()()()()101tn xt x n ==∑从而得到新的生成数列()1X,()()()()()()(){}11111,2,,Xx x x n =,新的生成数列()1X 一般近似地服从指数规律. 则生成的离散形式的微分方程具体的形式为dxax u dt+= 即表示变量对于时间的一阶微分方程是连续的. 求解上述微分方程,解为当t =1时,()(1)x t x =,即(1)c x a=-,则可根据上述公式得到离散形式微分方程的具体形式为 ()()()11a t u u x t x e a a --⎛⎫=-+ ⎪⎝⎭其中,ax 项中的x 为dxdt的背景值,也称初始值;a ,u 是待识别的灰色参数,a 为发展系数,反映x 的发展趋势;u 为灰色作用量,反映数据间的变化关系.按白化导数定义有0()()lim t dx x t t x t dt t→+-= 显然,当时间密化值定义为1时,当1t →时,则上式可记为1lim(()())t dxx t t x t dt→=+- 这表明dxdt是一次累减生成的,因此该式可以改写为 (1)(1)(1)()dxx t x t dt=+- 当t 足够小时,变量x 从()x t 到()x t t +是不会出现突变的,所以取()x t 与()x t t +的平均值作为当t 足够小时的背景值,即(1)(1)(1)1()(1)2xx t x t ⎡⎤=++⎣⎦将其值带入式子,整理得 (0)(1)(1)1(1)()(1)2x t a x t x t u ⎡⎤+=-+++⎣⎦ 由其离散形式可得到如下矩阵:(1)(1)(0)(1)(1)(0)(0)(1)(1)1(1)(2)2(2)1(2)(3)(3)2()1(1)()2x x x x x x a u x n x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦⎛⎫ ⎪ ⎪ ⎪⎡⎤-+ ⎪⎣⎦ ⎪=+ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭令 (0)(0)(0)(2),(3),,()TY x x x n ⎡⎤=⎣⎦(1)(1)(1)(1)(1)(1)11(1)(2)211(2)(3)21(1)()12x x x x B x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦ ⎪⎪⎡⎤-+⎣⎦ ⎪= ⎪ ⎪ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭()Ta u α=称Y 为数据向量,B 为数据矩阵,α为参数向量. 则上式可简化为线性模型:Y B α=由最小二乘估计方法得()1T T a B B B Y uα-⎛⎫== ⎪⎝⎭上式即为GM(1,1)参数,a u 的矩阵辨识算式,式中()1TT B B B Y -事实上是数据矩阵B 的广义逆矩阵.将求得的a ,u 值代入微分方程的解式,则()1(1)()((1))a t u ux t x e a a--=-+其中,上式是GM(1,1)模型的时间响应函数形式,将它离散化得(1)(0)(1)ˆ()(1)a t u u xt x e a a --⎛⎫=-+ ⎪⎝⎭ 对序列()()1ˆxt 再作累减生成可进行预测. 即()(0)(1)(1)(0)(1)ˆˆˆ()()(1)(1)1a a t xt x t x t u x e ea --=--⎛⎫=-- ⎪⎝⎭ 上式便是GM(1,1)模型的预测的具体计算式. 或对()atux t cea-=+求导还原得 (0)(0)(1)ˆ()((1))a t uxt a x e a--=-- 1.2 GM(1,1)模型的检验GM(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式.每种检验对应不同功能:残差检验属于算术检验,对模型值和实际值的误差进行逐点检验;关联度检验属于几何检验范围,通过考察模型曲线与建模序列曲线的几何相似程度进行检验,关联度越大模型越好;后验差检验属于统计检验,对残差分布的统计特性进行检验,衡量灰色模型的精度. ➢ 残差检验残差大小检验,即对模型值和实际值的残差进行逐点检验. 设模拟值的残差序列为(0)()e t ,则(0)(0)(0)ˆ()()()e t x t xt =- 令()t ε为残差相对值,即残差百分比为(0)(0)(0)ˆ()()()%()x t xt t x t ε⎡⎤-=⎢⎥⎣⎦令∆为平均残差,11()nt t n ε=∆=∑.设残差的方差为22S ,则[]22211()n t S e t e n ==-∑. 故后验差比例C 为21/C S S =,误差频率P 为{}1()0.6745P P e t e S =-<.对于,C P 检验指标如下表:检验指标好合格勉强不合格P >0.95 >0.80 >0.70 <0.70 C <0.35 <0.50 <0.65 >0.65表 1 灰色预测精确度检验等级标准一般要求()20%t ε<,最好是()10%t ε<,符合要求.➢ 关联度检验关联度是用来定量描述各变化过程之间的差别. 关联系数越大,说明预测值和实际值越接近.设 {}(0)(0)(0)(0)ˆˆˆˆ()(1),(2),,()Xt xx x n =⋯ {}(0)(0)(0)(0)()(1),(2),,()X t x x x n =⋯序列关联系数定义为(){}{}{}(0)(0)(0)(0)(0)(0)(0)(0)ˆˆmin ()()max ()(),0ˆˆ()()max ()()1,0x t x t x t x t t t x t x t x t x t t σξσ⎧-+-⎪≠⎪=⎨-+-⎪=⎪⎩ 式中,(0)(0)ˆ()()xt x t -为第t 个点(0)x 和(0)ˆx 的绝对误差,()t ξ为第t 个数据的关联系数,ρ称为分辨率,即取定的最大差百分比,0ρ<<1,一般取0.5ρ=.(0)()x t 和(0)ˆ()xt 的关联度为()11nt r t n ξ==∑精度等级 关联度均方差比值小误差概率好(1级) 0.90≥ 0.35≤ 0.95≥ 合格(2级) 0.80≥ 0.50≤ 0.80≥ 勉强(3级) 0.70≥ 0.65≤ 0.70≥ 不合格(4级)0.70< 0.65>0.70<表 2 精度检验等级关联度大于60%便满意了,原始数据与预测数据关联度越大,模型越好.➢ 后验差检验后验差检验,即对残差分布的统计特性进行检验. 检验步骤如下:1、计算原始时间数列(){}0(0)(0)(0)(1),(2),,()Xx x x n =的均值和方差()2(0)(0)2(0)11111(),()n n t t xx t S x t x n n ====-∑∑ 2、计算残差数列{}(0)(0)(0)(0)(1),(2),,()ee e e n =的均值e 和方差22s()2(0)2(0)21111(),()n n t t e e t S e t e n n ====-∑∑其中(0)(0)(0)ˆ()()(),1,2,,e t x t xt t n =-=为残差数列.3、计算后验差比值21C S S =4、计算小误差频率{}(0)1()0.6745P P e t e S =-<令0S =0.67451S ,(0)()|()|t e t e ∆=-,即{}0()P P t S =∆<.若对给定的00C >,当0C C <时,称模型为方差比合格模型;若对给定的00P >,当0P P >时,称模型为小残差概率合格模型.>0.95 <0.35 优 >0.80 <0.5 合格 >0.70 <0.65 勉强合格 <0.70>0.65不合格表 3 后验差检验判别参照表1.3 残差GM(1,1)模型当原始数据序列(0)X建立的GM(1,1)模型检验不合格时,可以用GM(1,1)残差模型来修正. 如果原始序列建立的GM(1,1)模型不够精确,也可以用GM(1,1)残差模型来提高精度.若用原始序列(0)X建立的GM(1,1)模型(1)(0)ˆ(1)[(1)]at u uxt x e a a-+=-+ 可获得生成序列(1)X 的预测值,定义残差序列(0)(1)(1)ˆ()()()e k x k x k =-. 若取k=t , t+1, …, n ,则对应的残差序列为{}(0)(0)(0)(0)()(1),(2),,()e k e e e n =计算其生成序列(1)()e k ,并据此建立相应的GM(1,1)模型(1)(0)ˆ(1)[(1)]e a k e ee eu u et e e a a -+=-+ 得修正模型(1)(0)(0)(1)(1)()()(1)e a k ak e e e u u u x t x e k t a e e a a a δ--⎡⎤⎡⎤+=-++---⎢⎥⎢⎥⎣⎦⎣⎦其中1()0k tk t k t δ≥⎧-=⎨≤⎩为修正参数.应用此模型时要考虑:1、一般不是使用全部残差数据来建立模型,而只是利用了部分残差.2、修正模型所代表的是差分微分方程,其修正作用与()k t δ-中的t 的取值有关.1.4 GM(1,1)模型的适用范围定理:当GM(1,1)发展系数||2a ≥时,GM(1,1)模型没有意义.我们通过原始序列()0i X 与模拟序列()0ˆiX 进行误差分析,随着发展系数的增大,模拟误差迅速增加. 当发展系数0.3a -≤时,模拟精度可以达到98%以上;发展系数0.5a -≤时,模拟精度可以达到95%以上;发展系数1a ->时,模拟精度低于70%;发展系数 1.5a ->时,模拟精度低于50%. 进一步对预测误差进行考虑,当发展系数0.3a -<时,1步预测精度在98%以上,2步和5步预测精度都在90%以上,10步预测精度亦高于80%;当发展系数0.8a ->时,1步预测精度已低于70%.通过以上分析,可得下述结论:1、当0.3a -<时,GM(1,1)可用于中长期预测;2、当0.30.5a <-≤时,GM(1,1)可用于短期预测,中长期预测慎用;3、当0.50.8a <-≤时,GM(1,1)作短期预测应十分谨慎;4、当0.81a <-≤时,应采用残差修正GM(1,1)模型;5、当1a ->时,不宜采用GM(1,1)模型.1.5 GM(1,1)模型实例分析例:则该学生成绩时间序列如下:()()(0)(0)(0)(0)(0)(1),(2),(3),(4)79,74.825,74.29,76.98X x x x x ==对(0)X作一次累加后的数列为()()(1)(1)(1)(1)(1)(1),(2),(3),(4)79,153.825,228.115,305.095X x x x x ==对(1)X做紧邻均值生成. 令(1)(1)(1)()0.5()0.5(1)Z k x k x k =+-,得()()(1)(1)(1)(1)(2),(3),(4)116.4125,151.47,150.1925Z z z z ==则数据矩阵B 及数据向量Y 为(1)(1)(1)(2)1116.41251(3)1151.471(4)1150.19251z B z z ⎡⎤--⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,(0)(0)(0)(2)74.825(3)74.29(4)76.98x Y x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 对参数列ˆ[,]Taa b =进行最小二乘估计,得 176.61ˆ()[,]0.0144T T T T a B B B Y B Y a u -⎡⎤====⎢⎥-⎣⎦即 0.0144a =-,76.61u = 则GM(1,1)模型为()()110.014476.61dx x dt-= 时间响应式为(1)0.0144ˆ(1)5399.13895320.1389xk e -+=- 当1k =时,我们取(1)(0)(0)ˆˆ(1)(1)(0)79xx x === 还原求出(0)X的模拟值. 由(0)(1)(1)ˆˆˆ()()(1)Xk x k x k =--,取2,3,4k =,得 ()()(0)(0)(0)(0)(0)ˆˆˆˆˆ(1),(2),(3),(4)79,74.281,74.3584,76.4513xx x x x == 通过预测,得到实际值与预测值如下表:实际值 预测值 相对误差()k ε 第一学期79 79 0 第二学期 74.825 74.2810 0.73% 第三学期 74.29 74.3584 0.0921% 第四学期76.9876.45130.7051%表 4 四学期的实际值与预测值的误差表因为()10%k ε<,那就可得学生的预测值,与现实值进行比较得出该模型精度较高,可进行预测和预报.我们对学生未来两个学期(也就是第五、六个学期)的成绩进行预测,分别为77.5602分和78.6851分.例:某大型企业1999年至2004年的产品销售额如下表,试建立GM(1,1)预测模型,并预测2005年的产品销售额。
第三节灰色综合评价法
二、灰色综合评价法的模型和步骤
对事物的综合评价,多数情况是研究多对象的排序问题,即在各个评价对象之间排出优选 顺序
灰色综合评判主要是依据以下模型:R=E×W
式中:R=[r,r2,…,rm]'为m个被评对 象的综合评判结果向量;W=[w,W2,…, Wm]为n个评价指标的权重分配向量,其中 ∑w=1;E为各指标的评判矩阵 (k)为第i种方案的第k个指标与第k个最优指 标的关联系数 根据R的数值,进行排序
三、灰色综合评价法的实例分析
若k为指标或观测对象序号, 而且X也为单项,对于X项目的 运动员来说,应以X为最重要
的辅助训练项目
而对于学生来说,在X项目成 绩比较好的情况下,为提高其 身体素质的全面发展,应抓住 弱势,积极进行X和X项目的锻
炼
灰色关联分析主要着重研究" 外延明确、内涵不明确"的对 象,解决"小样本、贫信息、 不确定"问题,是一种解决不
三、灰色综合评价法的实例分析
某个体或某群体的行为数据如下(表12-5) (二)计算步骤 第
一步:求初值像(或均值像) 第二步:求差序列 第三步:求两极差 第四步:求关联系数(表12-6) 第五步:计算关联度(表12-7) (三)结果与分析 若k为时间序号,X与X(总分)的关联度最 大,为0.717,它们关联度程度的大小顺 序依次为X>X>X,这说明三个项目成绩的 好差排序也应如此,体育工作者在教学 或运动训练中,应根据具体情况进行针 对性教学或训练
第三节灰色综合 评价法
第三节灰色综合评价法
目录
二、灰色综合评价法的模型和步骤 三、灰色综合评价法的实例分析
数学建模——灰色预测模型
数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。
它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。
灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。
该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。
灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。
其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。
通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。
灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。
2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。
3.求解微分方程:求解微分方程,得到预测模型的参数。
4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。
示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。
然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。
这种情况下,你可以考虑使用灰色预测模型来预测销售量。
步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。
2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。
3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。
4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。
这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。
虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。
关于“灰色预测模型”讲解
集成学习可以通过组合多个基模型的预测结果来提高整体 预测性能。可以将灰色预测模型作为基模型之一,与其他 预测方法一起构建集成学习模型。
与模糊逻辑融合
模糊逻辑能够处理不确定性和模糊性问题,可以与灰色预 测模型相结合,提高模型在处理不确定信息时的预测性能 。
THANKS
感谢观看
灰色差分方程
灰色预测模型的核心是建立灰色差分方程,通过对原始数据序列进行累加或累减 生成,构造出具有指数规律的数据序列,进而建立相应的微分方程进行求解。
适用范围及优势
适用范围
小样本建模
适应性强
预测精度高
灰色预测模型适用于数据量较 少、信息不完全、具有不确定 性和动态性的系统。它可以在 数据序列较短、波动较大、趋 势不明显的情况下,进行有效 的预测和分析。
04
灰色预测模型检验与评 估
残差检验法
01
02
03
残差计算
通过比较实际值与预测值 之间的差异,计算残差序 列。
残差分析
对残差序列进行统计分析 ,包括计算均值、方差等 指标,以评估模型的预测 精度。
残差图
绘制实际值与预测值的散 点图,以及残差序列的折 线图,直观展示模型的拟 合效果。
后验差检验法
金融市场分析
灰色预测模型可以用于分析金融市场的波动性和 趋势,帮助投资者做出更明智的投资决策。
3
物价水平预测
利用灰色预测模型可以对物价水平进行短期和长 期预测,为政府制定物价调控政策提供依据。
社会领域应用案例
人口数量预测
通过收集历史人口数据,利用灰色预测模型可以对未来人 口数量进行预测,为政府制定人口政策提供参考。
关于“灰色预测模型 ”讲解
灰色预测理论详解PPT学习教案
灰色系统分析法、数理统计法及模糊法对比
内涵 依据 手段 特点 要求 目标 信息准则
灰色系统 小样本不确定
信息覆盖 生成
少数据 允许任意分布
现实规律 最少信息
数理统计方法 大样本不确定
概率统计 统计 多数据
要求典型分布 历史统计规律
无限信息
模糊法 界限不确定 隶属度函数
边界取值 经验(数据)
&= BT B 1BTY
其中,
B= 则称
z(1) (2) 1
z
(1)
(3)
1
Y n=
... ...
z
(1)
(n)
1
dx(1) ax(1) b dt
x(0)(2)
x
(
0
)
(3)
...
x
(0)
(n
)
为灰色微分方程x(0)(k)+az(1)(k)=b的白化方程,也叫影子方程。
第12页/共59页
GM(1.1)模型
模型符号含义 GM(1,1) →Grey Model(1阶方程,1个变量)
GM(1,1)建模过程 令X(0)为GM(1,1)为原始建模序列: X(0)=(x(0)(1), x(0)(2),……,x(0)(n)) 其中x(0)(k)≥0,k=1,2,...,n X(1) 为X(0)累加生成序列 X(1)=(x(1)(1), x(1)(2),……,x(1)(n))
一次累减生成序列为 X(0)=(x(0)(1), x(0)(2),…,x(0)(n))
其中,x(0)(k)=x(1)(k)-x(1)(k-1)
累减生成的作用 累减生成可将累第加11生页成/共还59页原为非生成数列,在建模方 程用来获得增量信息。
综合评价之层次分析法与灰色评价法
层次分析法AHP(Analytic Hierarchy Process)AHP的基本原理假设有n 个物体A, A2 , …, A n , 它们的重量1分别记为W, W2,…,W n. 现将每个物体的重量1两两进行比较如下:A1 A2 …AnA1 W1 /W1 W1 / W2 …W1 /W2A2 W1 /W2 W1 /W2 …W1/W2……………An Wn /W1 Wn /W2 Wn /WnAHP 的基本原理111212122212/////////n n n n n n W W W W W W W W W W W W A W W W W W W ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭L L M M M M L 若以矩阵来表示各物体的这种相互重量关系,判断矩阵由线性代数知识可以证明:矩阵A 最大特征根是n ,对应的特征向量是12[,,]Tn W W W W =L AHP 的基本原理例如,若购买一台设备, A 1为功能, A 2为价格,A 3为维修服务.1531/511/31/331A 1A 2A 2A 3A 3A 1x i 比x ja ij 值同样重要1稍重要3重要5很重要7极重要9AHP 的基本原理Matlab 编程A=[1,5,3;1/5,1,1/3;1/3,3,1];[x,y]=eig(A)W=x(:,1)/sum(x(:,1))AHP 的基本步骤建立递阶层次结构.构造出各层次中的所有判断矩阵.层次单排序及其一致性检验.层次总排序.下面通过实例来说明各步骤中所做的工作.AHP 的基本步骤2. 构造出各层次中的所有判断矩阵首先构造各准则A 1,A 2,…, A 5对目标O 的判断矩阵首先构造O-A i 的判断矩阵A 1 A 2 A 3 A 4A 5OA 1 A 2 A 3 A 4A 5x i 比x ja ij 值同样重要1稍重要3重要5很重要7极重要911/2433217551/41/711/21/31/5211/31/53111/3111/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦由上表, 可得O -A i 的判断矩阵ijji ij n n ij a a a a A 1,0,)(=>=⨯正互反阵任务:要由A 确定A 1,…, A 5对O 的权向量(权重)AHP 的基本步骤AHP 的基本步骤111212122212/////////n n n n n n W W W W W W W W W W W W W W W W W W ⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭L L M M M M L 11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦nj i ,,2,1, =ijkj ik a a a =⋅一致阵允许不一致但要确定不一致的允许范围AHP 的基本步骤3. 层次单排序及其一致性检验即A 的最大特征根是n ,n 阶判断矩阵A 是一致的一致性的判别⇔max nλ=AHP 的基本步骤一致性比率查表: RI计算: CI 当CR <0.1时, 认为成对比较阵具有满意的一致性.当CR >0.1时, 必须重新调整成对比较阵.max ()1A nCI n λ-=-CI CR RI=n3 4 5 6 7 8 9RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45一致性指数5072.5)(max ≠=A λ018.0155)(max =--=A CI λ12.1=RI 016.012.1018.0===RI CI CR CR<0.1结论:A 虽不是一致阵, 但它具有满意的一致性.A 的不一致程度是可以接受的.AHP 的基本步骤验证一致性(以旅游地为例){}0.264, 0.476, 0.054, 0.098, 0.109W =AHP 的基本步骤求A 1,…, A 5对O 的权向量(权重)所对应的归一化特征向量.矩阵A 的max λAHP 的基本步骤桂林B 1黄山B 2北戴河B 3选择旅游地O景色A 1费用A 2居住A 3饮食A 4旅途A 50.4760.2640.0540.0980.109AHP 的基本步骤先成对比较三个旅游地的景色, 得成对判断矩阵B 111251/2121/51/21B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦类似可得211/31/8311/3831B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦31131131/31/31B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦41341/3111/411B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5111/4111/4441B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦AHP 的基本步骤k123451k ω2k ω3k ω0.595277.0129.0082.0236.0682.0429.0429.0142.0633.0193.0175.0166.0166.0668.0kλ005.3002.33009.33k CI 003.0001.000005.0kRI 58.058.058.058.058.0k v 计算可知通过一致性检验.k CR 54321,,,,B B B B B桂林B 1黄山B 2北戴河B 3选择旅游地O景色A 1费用A 2居住A 3饮食A 4旅途A 50.4760.2640.0540.0980.1090.5950.1290.2770.0820.2360.6820.1420.1750.1660.4290.4290.1930.6330.1660.668B 1对总目标的权重为:3.0110.0166.0099.0633.0055.0429.0475.0082.0263.0595.0=⨯+⨯+⨯+⨯+⨯故最后的决策应为去北戴河.B 1对总目标的权重为:0.5950.2640.0820.4760.4290.0540.6330.0980.1660.1090.3⨯+⨯+⨯+⨯+⨯=0.246, 0.456.同理得B2, B3对总目标的权值分别为:312B B B >>即各方案的权重排序:123B , B , B 又分别表示桂林, 黄山, 北戴河.优点:缺点:存在着较大的主观性.对AHP 的简单评价计算简便, 结果明确, 便于决策者直接了解和掌握.灰色综合评价法3. 灰色综合评价法的步骤(1) 根据评价目的确定评价指标体系, 收集评价数据.12n x x x 12111212122212mm m n n nm f f f a a a a a a a a a ⎛⎫ ⎪⎪ ⎪⎪⎝⎭ (2) 确定最优指标集( )*F ****12[,,]m F a a a = 式中*(1,2)i a i n = 为第i 个指标的最优值.设2. 灰色系统的应用范畴(1) 灰色关联分析.(2) 灰色预测: 人口预测、初霜预测、灾变预测等. (3) 灰色预测控制.应用灰色关联分析方法对受多种因素影响的事物和现象从整体观念出发进行综合评价是一个被广为接受的方法. 该方法不仅可以充分利用原始数据所提供的信息, 而且计算比较简便.选定最优指标集后,可构造矩阵D :确定最优指标集时, 要考虑可行性. 若最优选的过高, 则不现实, 评价的结果也就不可能正确.***12111212122212m m m n n nm a a a a a a D a a a a a a ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭(3) 对指标数据进行无量钢化无量纲化后的数据序列形成如下矩阵:***12111212122212mm m nnnma a a a a a a a a a a a ⎛⎫''' ⎪''' ⎪ ⎪''' ⎪ ⎪ ⎪'''⎝⎭(4) 求差数列i j∆它表示第i 个评价对象第j 个指标数据与最优指标集中第j 个指标数据的绝对差。
灰色预测模型
dx
(t)
(1)
ax
(t)b,
dt
解为
b
a
(
t
1
) b
x(
t)
(
x(
1
))
e
.
a
a
(
1
)
(
0
)
(3)
于是得到预测值
b
b
(
1
)
(
0
)
ak
ˆ
x(
k
1
)
(
x(
1
)
)
e
,
k
1
,
2
,
,
n
1
,
a
a
从而相应地得到预测值:
(
0
)
(
1
)
(
1
)
ˆ
ˆ
ˆ
x
(
k
1
)
x
(
k
1
)
x
(
k
lim
dt
t
t 0
而 ( 1)( x ( k )) x ( k ) x ( k 1 ), 相当于
t 1
(3)加权邻值生成
(
0
)
(
0
)
(
0
)
(
0
)
x
(
x
(
1
),
x
(
2
),
,
x
(
n
))
设原始数列为
《灰色预测法》2004.7.21
灰色预测法第一节灰色系统一、灰色预测的概念灰色预测是就灰色系统所作的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体含义是:如果某一系统的全部信息已知为白色系统,全部信息末知为黑箱系统,部分信息已知、部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测,可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有本知或非确定信息的系统进行预测,就是对在一定范围内变化的,与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律。
灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色预测一般有四种类型。
1.数列预测。
对某现象随时间的顺延而发生的变化所作的预测定义为数列预测。
例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平,另一个是这一水平所发生的时间。
2.灾变预测。
对发生灾害或异常突变事件可能发生的时间预测称为灾变预测。
例如对地震时间的预测。
3.系统预测。
对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。
例如市场中代用商品、相互关联商品销售量互相制约的预测。
4.拓扑预测。
将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。
二、系统功能模拟与灰色分析(一)系统模拟所谓系统模拟是指通过系统模型间接地模拟真实系统的过程。
系统模型建立起来后,在人为控制的条件下,通过改变特定参数,观察和研究模型的情况,以预测系统在真实环境下的特征、规律、作用、效率等。
这是组建系统的必经过程,也是研究系统的重要手段。
根据系统模型和系统真实情况相似关系的特点,一通常把模拟分为物理模拟与数学模拟两大类。
物理模拟是以系统模型和真实系统之间物理相似或几何相似为基础的一种模拟方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢既无经验,数据又少的不确定性问题,即“少数据不 ➢灰色系统
确定性”问题
社会系统、经济系统、农业系统、生态系统、教育系统等系 统包含多种因素,具有明显的层次复杂性,结构关系的模糊 性,动态变化的随机性,指标数据的不完全性和不确定性。 由于灰色系统的普遍存在,决定了灰色系统理论具有十分广 阔的发展前景。目前,灰色系统理论得到了极为广泛的应用, 不仅成功地应用于工程控制、经济管理、社会系统、生态系 统等领域,而且在复杂多变的农业系统,如在水利、气象、 生物防治、农机决策、农业规划、农业经济等方面也取得了 可喜的成就。灰色系统理论在管理学、决策学、战略学、预 测学、未来学、生命科学等领 域都有广泛的应用。
如,“那女孩身高在 157-160cm 之间”,则关于身高的灰数
(h) [157,160]。当上下限相等时就成为确定数 记 ~ 为灰数 的白化默认数,简称白化数,则灰数 为白化
数 ~ 的全体。灰数有离散灰数( ~ 属于离散集)和连续灰数( ~
属于某一区间)。 灰数的运算符合集合运算规律。
A[A, ) A (, A]
运动学中物体运动的速度、加速度与其所受到的外力有关, 其关系可用牛顿定律以明确的定量来阐明,因此,物体的运 动便是一个白色系统。
9.1 灰色理论的创立与发展
灰色系统理论(Grey System Theory)的创立源于20世纪80 年代。邓聚龙教授在1981年上海中美控制系统学术会议上所 作的“含未知数系统的控制问题”的学术报告中首次使用了 “ 灰色系统”一词。
第9章 灰色综合评价和灰色预测
9.1 灰色理论的创立与发展 9.2 灰色理论的基本概念和基本原理 9.3 灰色关联分析 9.4 灰色综合评价 9.5 灰色系统预测
客观世界在不断发展变化的同时,往往通过事物之间及因素 之间相互制约、相互联系而构成一个整体,我们称之为系统。
客观世界的很多实际问题,其内部的结构、参数以及特征并 未全部被人们了解,人们不可能象研究白箱问题那样将其内 部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。 对这类部分信息已知而部分信息未知的系统,我们称之为灰 色系统。区别白色系统与灰色系统的重要标志是系统内各因 素之间是否具有确定的关系。
A A (A A), [0,1]
记 ~ 为灰数 的白化默认数,简称白化数,则灰数
为白化数 ~ 的全体。
α称为白化系数
9.2 灰色理论的基本概念和基本原理
灰色系统理论的基本原理 灰色系统是贫信息的系统,统计方法难以奏效,即
灰色系统是非统计方法。适用于只有少量观测数据 的项目。它的研究对象是“部分信息已知,部分信 息未知”的“贫信息”不确定性系统,它通过对部 分已知信息的生成、开发,来研究和预测未知领域 从而达到了解整个系统的目的,使系统由“灰”变 “白”,实现对现实世界的确切描述和认识。其最 大的特点是对样本量没有严格的要求,不要求服从 任何分布。
灰色系统的基本原理
灰色系统是通过对原始数据的收集与整理来寻求其发展变化 的规律。这是因为,客观系统所表现出来的现象尽管纷繁复 杂,但其发展变化有着自己的客观逻辑规律,是系统整体各 功能间的协调统一。因此,如何通过散乱的数据系列去寻找 其内在的发展规律就显得特别重要。灰色系统理论认为,一 切灰色序列都能通过某种生成弱化其随机性的模型而呈现本 来的规律,也就是通过灰色数据序列建立系统反应模型,并 通过该模型预测系统的可能变化状态。灰色系统理论认为微 分方程能较准确地反应事件的客观规律,即对于时间为t的状 态变量,通过方程就能够基本反映事件的变化规律。
邓聚龙系统理论则主张从事物内部,从系统内部结构及参 数去研究系统,以消除“黑箱”理论从外部研究事物而使 已知信息不能充分发挥作用的弊端,因而,被认为是比 “黑箱”理论更为准确的系统研究方法。
在控制论中,人们常用颜色的深 浅来形容信息的明确程度。用 “黑”表示信息未知,用“白” 表示信息完全明确,用“灰”表 示部分信息明确、部分信息不明 确。
灰色系统理论的主要功能:灰色关联分析、灰色综合评价、 灰色预测、灰色聚类、灰色决策等。
第9章 灰色综合评价和灰色预测
9.1 灰色理论的创立与发展 9.2 灰色理论的基本概念和基本原理 9.3 灰色关联分析 9.4 灰色综合评价 9.5 灰色系统预测
9.2 灰色理论的基本概念和基本原理
9.2 灰色理论的基本概念和基本原理
灰数(grey number)
没有明确数值或确定的分布,仅知大概范围(上下限)
在灰色系统中,灰数(或灰色数)是指信息不完全的数,例
如:“那人的身高约为 170cm、体重大致为 60kg”,这里的“(约
为)170(cm)”、“60”都是灰数,分别记为 170 、 60 。又
A[A, A]
9.2 灰色理论的基本概念和基本原理
灰度(grey degree) Gd[A] [w A /m A]100%
w A A A
白化(whitening)
m A [A A] / 2
由于灰数是一个范围而非确定的数。如果需要解
决的问题本身要求是一个明确的数,此时就需要将灰
数转化为一个确定的数(白数),称为白化。
9.2 灰色理论的基本概念和基本原理
黑色系统 黑色系统是指一个系统的内部信息对外界来说是一无所 知的,只能通过它与外界的联系来加以观测研究
白色系统 白色系统是指一个系统的内部特征是完全已知的,即系 统的信息是完全充分的。
灰色系统:相对于白色和黑色系统而言 系统的影响因素不完全明确 因素关系不完全清楚 系统结构不完全知道 系统的作用原ቤተ መጻሕፍቲ ባይዱ不完全知道
概率统计、模糊数学和灰色系统理论是三种最常用的 不确定性系统的研究方法,如下表所示。研究对象都 具有不确定性,这是三者的共同点。正是研究对象在 不确定性上的区别派生出三种各具特色的不确定性学 科。
➢概率与数 ➢样本量大、数据多但缺乏明显规律的问题,即“大样 理统计 本不确定性”问题
➢人的经验及认知先验信息的不确定问题,即“认知的 ➢模糊数学
1982年,邓聚龙发表了“参数不完全系统的最小信息正定”、 “灰色系统的 控制问题”等系列论文,奠定了灰色系统理论 的基础。他的论文在国际上引起了高度的重视,美国哈佛大 学教授、《系统与控制通信》杂志主编布罗克特(Brockett) 给予灰色系统理论高度评价,因而,众多的中青年学者加入 到灰色系统理论的研究行列,积极探索灰色系统理论及其应 用研究。