浙江大学2009数学分析

合集下载

数学分析与高等代数考研真题详解--浙江大学卷

数学分析与高等代数考研真题详解--浙江大学卷

∴(αT Aβ )2 = (α TCTCβ )2 = (Cα ,Cβ )2 ≤ (Cα ,Cα )(Cβ ,Cβ ) = (αTCTCα )(β TCTCβ ) = (α T Aα )(β T Aβ )
由于上述不等式,等号成立时候当且仅当,存在数 k1, k2 ,使
k1Cα + k2Cβ = 0 ,即 k1α + k2β = 0 ,即α , β 线性相关
2
浙江大学
1999 年招收硕士研究生入学考试《高等代数》试题及解答
3
1999 年招收硕士研究生入学考试《高等代数》试题解答
一:证明:充分性:若 f ( x) 能表示成一个整数多项式的平方,显然 f ( x) 在有理数域上可

必要性:由于 f ( x) 在有理数域上可约,在存在整数系数多项式 g ( x), h ( x) 有
所以 Α 是一个线性变换,
由于 A 和 − A 无公共特征根,即根据 (1) 的结论就有
AX = X (− A) 只有零解,即 AX + XA = 0 只有零解,从而 Α 可逆,即
八:证明:(1) 设 A 的特征多项式为 f (λ ) , B 的特征多项式为 g (λ ) ,由于 A, B 无公共特
( 征值,从而 f (λ ), g (λ )) = 1,所以 f ( B) 可逆,由于 AX = XB ,故对于 ∀n ∈ ∗ ,均有
An X = XBn ,就有 f ( A) X = Xf ( B) ,所以 Xf ( B) = 0 ⇒ X = 0 ,
⎡⎣En − αα T ⎤⎦−1 = ⎡⎣En + αα T ⎤⎦
三:证明: (1) 由于存在 m 阶可逆矩阵 P1 和 n 阶可逆矩阵 P2 ,有 A = P1 [Em 0] P2 ,即

浙江大学课程推荐(学长学姐吐血整理)

浙江大学课程推荐(学长学姐吐血整理)

选课了,希望大家都有好课选。

这是些选课的参考,有些课有点小变化吧,别的基本没变,希望对大家可以有点帮助!!!仅供参考一、课程及老师推荐由历届学长们的血的教训总结而出1. 语言英语:方富民王元春吴越民熊海虹徐明陈颖朱晨晨德语:陆伸日语:张宏斌2. 计算机计算机组成:潘学增杨起帆数据结构:王申康陈越操作系统:李善平网络应用:孟炳泉c语言:高济平王何宇白洪欢吴晓华应晶大学计算机基础:白洪欢vb 程序:孟炳泉3. 理工科微积分:苏得矿吴明华龚乐春陈锦辉卢兴江吴建民景荣荣金显吴彪大学物理:陈凤至潘正权阮晓声physics:方本民潘正权鲍世宁大学物理:阮晓声陈凤至陆文琴大学物理学实验:周小风陈星有机化学:吴军吴百乐无机及分析化学:贾之慎大学化学实验:曾秀琼概率论:谈之奕黄柏琴吴国桢数理统计:吴国桢复变函数:汪国昭应文隆线性代数:谈之奕戴佳玲单鉴华李方汪国军[何勇]电路原理:贾爱民马佐群孙辉范承志常微分方程:卢兴江应文隆贾厚玉薛儒英姜海益吴彪偏微分方程:薛儒英贾厚玉数学分析:沙震(是丘班的课,一般人不可选)李松模拟电路:祁才君沈连丰数字电路:沈连丰电子技术基础:王小海有机化学:吴军工程图学:施岳定费少梅画法几何:施林祥理论力学:叶敏应用电子学:王玉芬4. 经管现代经济学:陈君徐林危启才盛晓明凤进微观经济学:金祥荣章华施杰宏观经济学:徐林叶航经济法:丁关良财务管理:赵静管理心理学:林良夫5. 生物医学生物论理学:袁康培现代遗传学概论:石春海普通生物学:钱凯先生物化学:史锋现代遗传学:石春海医学史:郭永松6. 公选课政治经济学:戴文标舒泽虎蒋文华廖亦宏包松王建宇李敏邓论:熊卫平绕清水章鑫强吴元耕宇正香军事理论:吕强褚良才毛概:许建平李立志法律基础:龚慧香吴红瑛马克思哲学:张应杭思想道德修养:万慧进黄步琦7. 限选课、校选课、院选课化学与人类文明:谢玉群毛建新胡吉明徐冬梅物理与人类文明:叶高翔沙健环境与人类文明:刘广深现代管理基础:郭红东陈随军戚振江现代经济基础:陈君生命科学导论:唐建军史锋工程化学:郭永胜大学语文:许志强黄擎陶然李力金立汪超红大学写作:金立朱首献中国近代军事史:姚杏民褚良才中华人民共和国史:李立志伦理学:张应杭朱法桢社会学:刘玉能天文学:刘广深军事学和国防科技:吕强诗歌鉴赏与写作:黄杰风景画入门:付东黎离散数学:王维维金小刚心理学概论:符德江社会心理学:王小章吴明证美学:易容社会学:徐敏冯钢花卉学:徐礼根影视鉴赏:陈晓云创新思维与开发:周耀烈生命法学与生命伦理学:万惠进文学:潘一禾企业形象策划:黄浏英茶与具:胡小军管理心理学:林良夫普通心理学:刘爱伦珠宝鉴赏:兰翔文学与人生:黄建基因工程:史锋苏联兴亡史:许建平音乐基础:汤崎青春电影欣赏:刘翔世界文明史:计翔翔美学概论:朱淼华茶学概论:周巨根运动医学与康复:周永平外国音乐欣赏:张重辉歌唱艺术:张重辉赵淑云投资银行理论与实务:邹晓芄国际移民法律制度:翁里人际交往与组织管理:黄步琪健康教育:林洁口才与沟通:金立中国花鸟画(技法与欣赏):沙伟外国文学:潘一禾人类文明史:沈坚中西方哲学:包利民创业学概论:卢旭东日本社会与文化:马安东国际教育改革与发展:汪利兵生科导论实验8. 体育课定向越野:吴叶海林时云施晋江童雯雯篮球:林燕萍许慧金雷乒乓球:陈烽俞惠玲晖冰游泳:孙云龙杨永明黄力网球:何一兵季守祥虞力宏形体健美:卢芬徐恬排球:骆文森武术:张华达二、比较容易拿分的课及老师陶艺世界文明史音乐基础健康教育中国的世界遗产外国音乐剧舞剧欣赏广告创意与企划苏联兴亡史公关礼仪多媒体程序设计(刘加海的)中华人民共和国史天文学数学实验大学生职业生涯规划诗词写作与欣赏日本文化与外交现代休闲与观光农业黄冲平当代中国经济健康教育冯磊的<食品营养与癌症预防>奥林匹克与西方竞技科学美学绿化工程与艺术徐礼根文化大革命十年史生科导论实验(强烈推荐)三、不容易拿分的课珠宝鉴赏(兰翔的)花卉(好像也有得高分的)茶文化古代文学化学物中毒与急救(考试发挥不好,后果很严重)胡大可的<<现代仪器>>生物工程导论(课还是不错的,就是考试有点恶心)四、不用考试的课兰翔珠宝鉴定林良夫管理心理学奥林匹克与西方竞技林素兰文化大革命十年史陈向集西方古典音乐汤一中华茶文化许建平苏联兴亡史符德江心理学及应用石春海现代遗传学概论出勤30%论文70%方明虎科学美学只交论文ppt选作可加最多5分绿化工程与艺术法学基础当代电影思潮吕强国防技术论朱则杰清代诗词欣赏李老师中华人民共和国史工程技术导论何春晖公关与沟通技巧茶学概论世界文化遗产松老师中国古代小说史陈大柔广告创意与企划张重辉外国音乐剧舞剧欣赏创业管理(不推荐选,课比较无聊,而且作业也较恐怖)卢向前传统文化与现代中国(自认为是好课)汪利兵国际教育改革与发展数码摄影技术岑兆丰书画鉴赏及艺术市场黄鼎激光与生命科学陆璇辉激光与生命科学陆璇辉生命科学与人类文明吴平胡可先老师的唐诗研究人生美学张应杭社会学林融挺有内容的课,林老师的讲课引人入胜。

《浙江大学高等代数2007-2019年考研真题及答案解析》

《浙江大学高等代数2007-2019年考研真题及答案解析》

目录Ⅰ历年考研真题试卷 (2)浙江大学2007年招收攻读硕士学位研究生入学考试试题 (2)浙江大学2008年招收攻读硕士学位研究生入学考试试题 (5)浙江大学2009年招收攻读硕士学位研究生入学考试试题 (7)浙江大学2010年招收攻读硕士学位研究生入学考试试题 (9)浙江大学2011年招收攻读硕士学位研究生入学考试试题 (11)浙江大学2012年招收攻读硕士学位研究生入学考试试题 (13)浙江大学2014年招收攻读硕士学位研究生入学考试试题 (15)浙江大学2015年招收攻读硕士学位研究生入学考试试题 (16)浙江大学2016年招收攻读硕士学位研究生入学考试试题 (17)浙江大学2017年招收攻读硕士学位研究生入学考试试题 (18)浙江大学2018年招收攻读硕士学位研究生入学考试试题 (19)浙江大学2019年招收攻读硕士学位研究生入学考试试题 (21)Ⅱ历年考研真题试卷答案解析 (23)浙江大学2007年招收攻读硕士学位研究生入学考试试题答案解析 (23)浙江大学2008年招收攻读硕士学位研究生入学考试试题答案解析 (31)浙江大学2009年招收攻读硕士学位研究生入学考试试题答案解析 (39)浙江大学2010年招收攻读硕士学位研究生入学考试试题答案解析 (46)浙江大学2011年招收攻读硕士学位研究生入学考试试题答案解析 (52)浙江大学2012年招收攻读硕士学位研究生入学考试试题答案解析 (57)浙江大学2014年招收攻读硕士学位研究生入学考试试题答案解析 (64)浙江大学2016年招收攻读硕士学位研究生入学考试试题答案解析 (70)Ⅰ历年考研真题试卷浙江大学2007年招收攻读硕士学位研究生入学考试试题考试科目:高等代数编号:601注意:答案必须写在答题纸上,写在试卷或草稿纸上均无效。

一、(17分)设整系数的线性方程组为),..2,1(,1n i b x ai j nj ij==∑=,证明该方程组对任意整数n b b b ,..,,21都有整数解的充分必要条件是该方程组的系数行列式等于1±。

浙江大学大类培养方案

浙江大学大类培养方案

浙江大学工学类培养方案工学类培养方案包括大类培养特色、大类培养面向等内容,课程设置与学分分布主要安排通识课程和大类必修课程模块的推荐学习计划。

大类选修课程模块和专业课程的推荐学习计划详见各专业培养方案。

专业培养方案还包括培养目标、培养要求、专业核心课程、教学特色课程、计划学制、最低毕业学分、学科专业类别、授予学位类别、辅修及双专业/双学位课程修读要求、专业必修课程修读关系说明等内容。

各专业还可按需要在专业培养方案中设定本专业主修专业确认的前置课程3至5门。

工学类借鉴浙江大学竺可桢学院“工程教育高级班"多年的工程教育培养经验,向全体工学类学生推荐选修“4+1@3工程教育平台”课程。

“4+1@3工程教育平台”课程设置见本方案个性课程部分。

学生可以全部或部分选修“4+1@3工程教育平台”课程,修读学分可以与个性课程和通识课程中沟通与领导类、经济与社会类、科学与研究类和技术与设计类课程的学分互通.大类培养特色工学类构建通识、大类、专业三位一体的课程体系,体现基础知识宽、专、交和专业知识精、深、通的特点.通过人文科学、社会科学、自然科学等多学科知识学习,强化工学人才培养的通识性和社会性;通过构建大类必修课程平台和大类选修课程平台,打好扎实的工程理论基础并有效衔接专业教育;通过专业教育体系的严格训练,培养德、智、体、美全面发展,具有坚实数理基础、富有创新精神、专业知识扎实并具备实践能力,在各工程专业领域具有国际竞争力的高素质本科人才。

大类培养面向学生在入学一年后、两年内确认主修专业,进入专业培养阶段,归属专业所在学院或学系管理。

工学类共有[?]个专业教育培养通道,能最大限度地满足学生在不同工程专业领域的成才发展需求.工学类培养主要面向的专业是:(略)课程设置与学分分布⒈通识课程 47。

5+5学分⑴思政类11。

5+2学分课程号课程名称课程学分建议修读年级、学期021E0010 思想道德修养与法律基础 2.5 一秋冬Thought the Marals Accomplishment and Law Foundation021E0020 中国近现代史纲要2。

浙江大学本科教学大类课程替换关系一览表2010.6版

浙江大学本科教学大类课程替换关系一览表2010.6版

学分 4.0 1.0
替换关系 课程代码 课程中文名称 ≥ 091C0070 过程工程原理及实验
学分 3.5
≈ ≈
111Z0020 电路分析原理 111Z0030 电路分析原 电路原理(乙) 101C0090 电路原理实验(乙)
3.0 1.0
38

101C0010 电工电子学 101C0020 电工电子学实验
4.5 1.5

101C0030 电工电子学及实验
3.5
101C0140 数字电子技术基础实验 39 40 41 101C0120 模拟电子技术基础实验 111C0010 模拟电子线路 111C0020 模拟电子线路实验 111C0030 数字电路 111C0040 数字电路实验 111C0010 模拟电子线路 111C0020 模拟电子线路实验 111C0030 数字电路 111C0040 数字电路实验 43 44 45 261C0020 材料力学(甲)Ⅱ 46 261C0061 理论力学(甲) 111C0061 信号与系统(甲) 121C0011 测量学(甲) 261C0010 材料力学(甲)Ⅰ
≈ ≥ ≥
射频与微波通信电路实 验 101C0110 模拟电子技术基础 111Z0050 101C0120 模拟电子技术基础实验 101C0130 数字电子技术基础 101C0140 数字电子技术基础实验 101C0110 模拟电子技术基础 101C0120 模拟电子技术基础实验 101C0130 数字电子技术基础 101C0140 数字电子技术基础实验 111C0062 信号与系统(乙) 121C0012 测量学(乙) 261C0031 材料力学(乙) 261C0062 理论力学(乙)
081C0261 工程训练加强实习(乙) 1.5 081C0182 机械设计(乙) 081C0192 机械设计基础(乙) 091C0050 过程工程原理(乙) 091C0060 过程工程原理实验(乙) 4.5 1.5 4.0 1.0

浙江大学1999年——2008年数学分析

浙江大学1999年——2008年数学分析
2
1 在 (1, ∞ ) 上连续可微. x n =1 n
x + y + z =R
2 2
∫∫
dS
2
x 2 + y 2 + ( z h) 2
,其中 h ≠ R .
(2)设 a, b, c 为三个实数,证明:方程 e x = ax 2 + bx + c 的根不超过三个. 四、 (20 分)设 f n ( x) = cos x + cos 2 x +
四、 (20 分)设 f ( x ) 连续, ( x) = ∫ f ( xt )dt ,且 lim
0
x →0
1
论 '( x ) 在 x = 0 处的连续性. 五、 (10 分)定义 Pn ( x ) 为 Pn ( x) = 1 d n ( x 2 1) n , n = 1, 2, 2n n ! dx n P0 ( x) = 1 .
D
四、设 f (x ) 在 x > 0 时连续, f (1) = 3 ,并且 ∫
( x > 0, y > 0) ,试求函数 f (x ) .
xy
1
f (t ) dt = x ∫ f (t ) dt + y ∫ f (t ) dt ,
1 1
y
x
五、设函数 f (t )在(a, b) 连续,若有数列 x n → a, y n → a ( x n , y n ∈ (a, b)) 使 lim f ( xn ) = A 及
2 2
五、 (15 分)设二元函数 f ( x, y ) 在正方形区域 [0,1] × [0,1] 上连续.记 J = [0,1] . (1)试比较 inf sup f ( x, y ) 与 sup inf f ( x, y ) 的大小并证明之;

国内数学分析主要参考书目_数学分析书籍

国内数学分析主要参考书目_数学分析书籍

国内数学分析主要参考书⽬_数学分析书籍花了半天时间,对国内部分⼤学所编数学分析(/⾼等数学/微积分)教材做了个汇总,发于此,肯定有很多遗漏,(期待有兴趣的⾍友帮我⼀起补充,补充格式:⼤学名,精确书名,编写作者....)。

国内部份⼤学常⽤数学分析(⾼数,微积分)教材总汇清华⼤学《数学分析教程》常庚哲.史济怀.《数学分析》(三册).何琛史济怀徐森林《数学分析》(三册).徐森林,.⾦亚东,.薛春华《数学分析讲义》(三册).陈天权《数学分析习题课讲义》谢惠民等北京⼤学《数学分析》沈燮昌著第⼀册,⽅企勤著第⼆册,廖可⼈、李正元著第三册《数学分析习题课教材》(第⼀版)《数学分析解题指南》(第⼆版)林源渠,⽅企勤《数学分析习题集》林源渠,⽅企勤等《数学分析新讲》张筑⽣(三册)《数学分析简明教程》邓东翱,尹⼩铃著《数学分析上、下册》彭⽴中、谭⼩江著复旦⼤学《数学分析》《数学分析》陈传璋,⾦福临,朱学炎,欧阳光中著第⼆版《数学分析》欧阳光中,朱学炎,⾦福临,陈传璋著第三版《数学分析》陈纪修等著《数学分析》欧阳光中,姚允龙著同济⼤学《⾼等数学》(同济⼤学数学系第六版,上、下册)《⾼等数学讲义》樊映川等编..华东师范⼤学《数学分析》华东师范⼤学数学系著《数学分析精读讲义》华东师范⼤学数学系著《数学分析习题精解》吴良森,⽑⽻辉等?中国科学技术⼤学《数学分析教程》常庚哲,史济怀著《简明微积分》龚昇《⾼等数学引论》华罗庚《数学分析》徐森林著《数学分析的⽅法及例题选讲》徐利治南开⼤学《数学分析上、下册》李成章,黄⽟民《在南开⼤学的演讲》陈省⾝南京⼤学《数学分析讲义》梅加强《数学分析教程》许绍浦等北京师范⼤学《简明数学分析(第⼀版)》王昆扬《简明数学分析(第⼆版)》郇中丹,刘永平,王昆扬《微积分学讲义(第⼆版)》邝荣⾬武汉⼤学《⾼等数学上、下册》(⾼等教育出版社,齐民友主编)《重温微积分》齐民友著吉林⼤学《数学分析》东北师范⼤学《数学分析讲义》刘⽟琏,傅沛仁著天津⼤学《⾼等数学上、下册》蔡⾼厅叶宗泽《⾼等数学试题精选与解答》(蔡⾼厅等编)内蒙古⼤学《微积分学简明教程》曹之江等著[ Last edited by hylpy on 2014-9-15 at 12:38 ]国内数学分析主要参考书⽬[1].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(上),第四版.北京:⾼等教育出版社,2003.[2].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(下),第四版.北京:⾼等教育出版社,2003.[3].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(上),第⼆版,北京:⾼等教育出版社.2003.[4].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(下),第⼆版,北京:⾼等教育出版社.2003.[5].华东师范⼤学数学系编.数学分析(上),第三版.北京:⾼等教育出版社,2002.[6].华东师范⼤学数学系编.数学分析(下),第三版.北京:⾼等教育出版社,2002.[7].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(上).北京:⾼等教育出版社.2004.[8].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(下).北京:⾼等教育出版社.2004.[9].吴良森,⽑⽻辉编著.数学分析习题精解(单变量部分).北京:科学出版社.2002.[10].吴良森,⽑⽻辉编著.数学分析习题精解(多变量部分).北京:科学出版社.2003.[11].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(上).北京:北京师范⼤学出版社,1985.[12].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(下).北京:北京师范⼤学出版社,1987.[13].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(上).北京:⾼等教育出版社,2004.[14].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(下).北京:⾼等教育出版社,2004.[15].徐利治,王兴华.数学分析的⽅法与例题选讲.北京:⾼等教育出版社,2002.[16].钱吉林等主编.数学分析解题精粹.武汉:崇⽂书局,2003.[17].裴礼⽂.数学分析中的典型问题与⽅法,第⼆版.北京: ⾼等教育出版社,2006.[18].周民强编著.数学分析习题演练(第⼀册).北京:科学出版社,2006.[19].周民强编著.数学分析习题演练(第⼆册).北京:科学出版社,2006.[20].裘兆泰.王承国,章仰⽂编.数学分析学习指导.北京:科学出版社,2004.[21].孙涛编.数学分析经典习题解析.北京:⾼等教育出版社,2004.[22].胡晓敏,李承家编著.数学分析考研教案,第⼆版.西安:西北⼯业⼤学出版社, 2006.[23].孙本旺,汪浩主编.数学分析中的典型例题和⽅法.长沙:湖南科学技术出版社,1983.[24].⽑⽻辉编著.数学分析选论.北京:科学出版社,2003.[25].王昆扬编.数学分析专题研究.北京:⾼等教育出版社,2001.[26].胡适耕,姚云飞编著.数学分析:定理问题⽅法.北京:科学出版社,2007.[27].徐利治编著.数学分析的⽅法及例题选讲:分析学的思想、⽅法与技巧.⼤连:⼤连理⼯⼤学出版社,2007.[28].沈燮昌.数学分析纵横谈.北京:北京⼤学出版社,1991.[29].G.波利亚.数学分析中的问题和定理(第⼀卷).上海:上海科技出版社,1981.[30].舒斯会编著.数学分析选讲.北京:北京⼤学出版社,2007.[31].刘三阳,于⼒,李⼴民编.数学分析选讲.北京:科学出版社,2007.[32].李克典,马云苓编著.数学分析选讲.厦门:厦门⼤学出版社,2007.[33].⾟钦著.数学分析⼋讲.武汉:武汉⼤学出版社,1999.[34].[美]克莱鲍尔著.数学分析.上海:上海科技出版社,1981.[35].朱时编著.数学分析札记.贵阳:贵州教育出版社,1994.[36].[苏]B.Π.吉⽶多维奇.数学分析习题集.北京:⾼等教育出版社,1985.[37].林源渠.数学分析习题集.北京:⾼等教育出版社,1986.[38].吕通庆编.数学分析中⼀些重要概念及其⽭盾概念.北京:⼈民教育出版社,1979.[39].赵显曾著.数学分析拾遗.南京:东南⼤学出版社,2006.[40].强⽂久,李元章,黄雯荣.数学分析的基本概念与⽅法.北京:⾼等教育出版社,1989.[41].⽅企勤,林源渠编著.数学分析习题课教材.北京:北京⼤学出版社,1990.[42].王向东主编.数学分析的概念与⽅法(上).上海:上海科学技术⽂献出版社,1989.[43].王向东主编.数学分析的概念与⽅法(下).上海:上海科学技术⽂献出版社,1989.[44].朱匀华,周健伟.数学分析选讲.⼴州:⼴东科技出版社,1995.[45].明清河.数学分析的思想与⽅法.济南:⼭东⼤学出版社,2004.[46].李惜雯.数学分析例题解析及难点注释(上).西安:西安交通⼤学出版社,2004.[47].李惜雯.数学分析例题解析及难点注释(下).西安:西安交通⼤学出版社,2004.[48].宋国柱编.分析中的基本定理和典型⽅法.北京:科学出版社,2004.[49].周忠群主编.数学分析⽅法选讲.重庆:西南师范⼤学出版社,1990.[50].王⼽平编.数学分析选讲.徐州:中国矿业⼤学出版社,2002.[51].林安浩,张国杰,王智青编演.数学分析(1983-1984全国⾼等院校硕⼠研究⽣⼊学试题解答).天津:天津科学技术出版社,1985.[52].皱节铣,陈强编.数学试题选解(1980-1985全国招考研究⽣).长沙:湖南科学技术出版社,1986.[53].庄亚栋,⽅洪锦,姚林编.基础数学试题选解(研究⽣⼊选考试).苏州:江苏科技术学出版社,1986.[54].蔡林,张继昌编著.研究⽣数学⼊学考试精编,第三版.杭州:浙江⼤学出版社,1999.[55].牟俊霖,李青吉主编.洞穿考研数学.北京:航空⼯业出版社,2003.[56].刘光祖,卢恩双主编.⼤学数学辅导与考研指导.北京:科学出版社,2002.[57].西安交通⼤学⼗教授考研班主编.考研数学成功指南,第三版.西安:世界图书出版公司西安公司,2004.[58].余长安主编.⼤学数学考研题型精讲与解题技巧集粹.北京:科学出版社,2005.[59].邵剑,陈维新,张继昌,何勇编著.⼤学数学考研专题复习.北京:科学出版社,2001.[60].李沛恒主编.考研数学新编考试参考书.北京:中国⼈民⼤学出版社,2004.[61].龚冬宝(保)主编.数学考研教程,第三版.西安:西北交通⼤学出版社,2004.[62].龚怀云,胡清徽,杨泽⾼,张可村.研究⽣⾼等数学⼊学考试指南.西安:西北交通⼤学出版社,1985.[63].陈⽂灯,莫先开主编.数学复习指南.北京:世界图书出版公司北京公司,2002.[64].齐民友主编.微积分学习指导.武汉:武汉⼤学出版社,2004.[65].汪林.数学分析中的问题和反例.昆明:云南科技出版社,1990.[66].汪林,戴正徳,杨富春,郑喜印.数学分析问题与研究评注.北京:科学出版社,1995.[67].陈纪修,於崇华,⾦路.数学分析(上).北京:⾼等教育出版社,2000.[68].陈纪修,於崇华,⾦路.数学分析(下).北京:⾼等教育出版社,2000[69].王晓敏,李晓奇,惠兴杰主编.数学分析学习⽅法与解题指导.沈阳:东北⼤学出版社,2005.[70].赵焕光,林长盛编著.数学分析(上).成都:四川⼤学出版社,2006.[71].赵焕光,林长盛编著.数学分析(下).成都:四川⼤学出版社,2006.[72].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(上),第⼆版.北京:⾼等教育出版社,1983.[73].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(下),第⼆版.北京:⾼等教育出版社,1983.[74].⽅企勤编.数学分析(1).北京:⾼等教育出版社,1986.[75].沈燮昌编.数学分析(2).北京:⾼等教育出版社,1986.[76].廖可⼈,李正元编.数学分析(3).北京:⾼等教育出版社,1986.[77].许绍溥,姜东平,宋国柱,任福贤.数学分析教程(上).南京:南京⼤学出版社,1990.[78].宋国柱,任福贤,许绍溥,姜东平.数学分析教程(下).南京:南京⼤学出版社,1990.[79].武汉⼤学数学系编.数学分析(上).北京:⼈民教育出版社,1978.[80].武汉⼤学数学系编.数学分析(下).北京:⼈民教育出版社,1978.[81].吉林⼤学数学系编.数学分析(上).北京:⾼等教育出版社,1979.[82].吉林⼤学数学系编.数学分析(中).北京:⾼等教育出版社,1979.[83].吉林⼤学数学系编.数学分析(下).北京:⾼等教育出版社,1979.[84].常庚哲,史济怀编.数学分析教程(上).北京:⾼等教育出版社,2003.[85].常庚哲,史济怀编.数学分析教程(下).北京:⾼等教育出版社,2003.[86].复旦⼤学数学系编.数学分析(上).上海:上海科学技术出版社,1978.[87].复旦⼤学数学系编.数学分析(下).上海:上海科学技术出版社,1978.[88].邓东皋,尹⼩玲编著.数学分析简明教程(上).北京:⾼等教育出版社,1999.[89].邓东皋,尹⼩玲编著.数学分析简明教程(下).北京:⾼等教育出版社,1999.[90].欧阳光中编.数学分析(上).上海:上海科学技术出版社,1982.[91].欧阳光中编.数学分析(下).上海:上海科学技术出版社,1982.[92].周性伟.数学分析(上).天津:南开⼤学出版社,1982.[93].周性伟.数学分析(下).天津:南开⼤学出版社,1982.[94].彭⽴中,谭⼩江编著.数学分析(第1册).北京:⾼等教育出版社,2005.[95].严⼦谦,尹景学,张然编著.数学分析(第⼀册).北京:⾼等教育出版社,2004.[96].马富明,⾼⽂杰编著.数学分析(第⼆册).北京:⾼等教育出版社,2005.[97].徐森林,薛春华编著.数学分析(第⼆册).北京:清华⼤学出版社,2006.[98].王慕三,庄亚栋.数学分析(上).北京:⾼等教育出版社,1990.[99].王慕三,庄亚栋.数学分析(中).北京:⾼等教育出版社,1990.[100].王慕三,庄亚栋.数学分析(下).北京:⾼等教育出版社,1990.[101].邓东皋,尹⼩玲编撰.数学分析简明教程.北京:⾼等教育出版社,1997.[102].李成章,黄⽟明编.数学分析(上).北京:科学出版社,2004.[103].李成章,黄⽟明编.数学分析(下).北京:科学出版社,2004.[104].张筑⽣.数学分析新讲(第⼀册).北京:北京⼤学出版社,1999.[105].张筑⽣.数学分析新讲(第⼆册).北京:北京⼤学出版社,1999.[106].张筑⽣.数学分析新讲(第三册).北京:北京⼤学出版社,1999.[107].朱永庚.数学分析(上).西安:陕西师范⼤学出版社,1989.[108].朱永庚.数学分析(下).西安:陕西师范⼤学出版社,1989.[109].东北师⼤等校数学系编.数学分析(上).北京:⾼等教育出版社,1983.[110].东北师⼤等校数学系编.数学分析(下).北京:⾼等教育出版社,1983.[111].吴传⽣,张⼩柔主编.数学分析(下册)习题精解.合肥:中国科学技术⼤学出版社,2007. [112].吴传⽣,张⼩柔主编.数学分析(下册)习题精解).合肥:中国科学技术⼤学出版社,2007. [113].郑英元.数学分析习题课教程(上).北京:⾼等教育出版社,1991.[114].郑英元.数学分析习题课教程(下).北京:⾼等教育出版社,1991.[115].郑美元.数学分析中的习题课教程(上).北京:⾼等教育出版社,1991.[116].郑美元.数学分析中的习题课教程(下).北京:⾼等教育出版社,1991.[117].邵漪漪.⾼等数学选择题集.上海:上海科学技术出版社,1989.[118].孟繁铎.微积分标准化试题库.⼤连:⼤连理⼯⼤学出版社,1989.[119].李承家,胡晓敏编.数学分析导教•导学•导考.西安:西北⼯业⼤学出版社,2003. [120].贺⾃树等编.数学分析习题课选讲.重庆:重庆⼤学出版社,2007.[ Last edited by hylpy on 2018-9-2 at 18:39 ][121].李忠⽅丽萍编.数学分析教程上,2008.[122].李忠⽅丽萍编.数学分析教程下,2008.[123].梅加强编.《数学分析》⾼等教育出版社,2011.07.[124].邹应编.数学分析.上册.⾼等教育出版社.1995.[125].邹应编.数学分析.下册.⾼等教育出版社.1995.[126].郭⼤钧等编著.数学分析(上册)(第2版),2002.[127].郭⼤钧等编著.数学分析(下册)(第2版),2002.[128].沐定夷.数学分析(上),1993.[129].沐定夷.数学分析(下),1993.[130].欧阳光中,姚允龙,周渊编著.数学分析(上册),2003.[131].欧阳光中,姚允龙,周渊编著.数学分析(下册),2003.[132].数学分析-卷I-秦曾复、朱学炎-⾼等教育出版社1991.[133].数学分析-卷Ⅱ-秦曾复、朱学炎-⾼等教育出版社1991.[134].数学分析-卷Ⅲ-秦曾复、朱学炎-⾼等教育出版社1991.[ Last edited by hylpy on 2018-9-5 at 19:19 ][135].数学分析1-徐森林,.薛春华.清华⼤学出版社,2005.[136].数学分析2-徐森林,薛春华.清华⼤学出版社,2007.[137].数学分析3-徐森林,⾦亚东,薛春华.清华⼤学出版社,2007.[138].数学分析精选习题全解(上)-薛春华,徐森林,2009.[139].数学分析精选习题全解(下)-薛春华,徐森林,2010.[ Last edited by hylpy on 2018-9-7 at 18:06 ][140].伍胜健.数学分析第⼆版,(第⼀册),北京⼤学数学教学系列丛书,2009.[141].伍胜健.数学分析第⼆版,(第⼆册),北京⼤学数学教学系列丛书,2009.[142].伍胜健.数学分析第⼆版,(第三册),北京⼤学数学教学系列丛书,2009.国内数学分析主要参考书⽬本帖隐藏的内容[1].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(上),第四版.北京:⾼等教育出版社,2003.[2].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(下),第四版.北京:⾼等教育出版社,2003.[3].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(上),第⼆版,北京:⾼等教育出版社.2003.[4].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(下),第⼆版,北京:⾼等教育出版社.2003.[5].华东师范⼤学数学系编.数学分析(上),第三版.北京:⾼等教育出版社,2002.[6].华东师范⼤学数学系编.数学分析(下),第三版.北京:⾼等教育出版社,2002.[7].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(上).北京:⾼等教育出版社.2004.[8].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(下).北京:⾼等教育出版社.2004.[9].吴良森,⽑⽻辉编著.数学分析习题精解(单变量部分).北京:科学出版社.2002.[10].吴良森,⽑⽻辉编著.数学分析习题精解(多变量部分).北京:科学出版社.2003.[11].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(上).北京:北京师范⼤学出版社,1985.[12].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(下).北京:北京师范⼤学出版社,1987.[13].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(上).北京:⾼等教育出版社,2004.[14].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(下).北京:⾼等教育出版社,2004.[15].徐利治,王兴华.数学分析的⽅法与例题选讲.北京:⾼等教育出版社,2002.[16].钱吉林等主编.数学分析解题精粹.武汉:崇⽂书局,2003.[17].裴礼⽂.数学分析中的典型问题与⽅法,第⼆版.北京: ⾼等教育出版社,2006.[18].周民强编著.数学分析习题演练(第⼀册).北京:科学出版社,2006.[19].周民强编著.数学分析习题演练(第⼆册).北京:科学出版社,2006.[20].裘兆泰.王承国,章仰⽂编.数学分析学习指导.北京:科学出版社,2004.[21].孙涛编.数学分析经典习题解析.北京:⾼等教育出版社,2004.[22].胡晓敏,李承家编著.数学分析考研教案,第⼆版.西安:西北⼯业⼤学出版社, 2006.[23].孙本旺,汪浩主编.数学分析中的典型例题和⽅法.长沙:湖南科学技术出版社,1983.[24].⽑⽻辉编著.数学分析选论.北京:科学出版社,2003.[25].王昆扬编.数学分析专题研究.北京:⾼等教育出版社,2001.[26].胡适耕,姚云飞编著.数学分析:定理问题⽅法.北京:科学出版社,2007.[27].徐利治编著.数学分析的⽅法及例题选讲:分析学的思想、⽅法与技巧.⼤连:⼤连理⼯⼤学出版社,2007.[28].沈燮昌.数学分析纵横谈.北京:北京⼤学出版社,1991.[29].G.波利亚.数学分析中的问题和定理(第⼀卷).上海:上海科技出版社,1981.[30].舒斯会编著.数学分析选讲.北京:北京⼤学出版社,2007.[31].刘三阳,于⼒,李⼴民编.数学分析选讲.北京:科学出版社,2007.[32].李克典,马云苓编著.数学分析选讲.厦门:厦门⼤学出版社,2007.[33].⾟钦著.数学分析⼋讲.武汉:武汉⼤学出版社,1999.[34].[美]克莱鲍尔著.数学分析.上海:上海科技出版社,1981.[35].朱时编著.数学分析札记.贵阳:贵州教育出版社,1994.[36].[苏]B.Π.吉⽶多维奇.数学分析习题集.北京:⾼等教育出版社,1985.[37].林源渠.数学分析习题集.北京:⾼等教育出版社,1986.[38].吕通庆编.数学分析中⼀些重要概念及其⽭盾概念.北京:⼈民教育出版社,1979.[39].赵显曾著.数学分析拾遗.南京:东南⼤学出版社,2006.[40].强⽂久,李元章,黄雯荣.数学分析的基本概念与⽅法.北京:⾼等教育出版社,1989.[41].⽅企勤,林源渠编著.数学分析习题课教材.北京:北京⼤学出版社,1990.[42].王向东主编.数学分析的概念与⽅法(上).上海:上海科学技术⽂献出版社,1989.[43].王向东主编.数学分析的概念与⽅法(下).上海:上海科学技术⽂献出版社,1989.[44].朱匀华,周健伟.数学分析选讲.⼴州:⼴东科技出版社,1995.[45].明清河.数学分析的思想与⽅法.济南:⼭东⼤学出版社,2004.[46].李惜雯.数学分析例题解析及难点注释(上).西安:西安交通⼤学出版社,2004.[47].李惜雯.数学分析例题解析及难点注释(下).西安:西安交通⼤学出版社,2004.[48].宋国柱编.分析中的基本定理和典型⽅法.北京:科学出版社,2004.[49].周忠群主编.数学分析⽅法选讲.重庆:西南师范⼤学出版社,1990.[50].王⼽平编.数学分析选讲.徐州:中国矿业⼤学出版社,2002.[51].林安浩,张国杰,王智青编演.数学分析(1983-1984全国⾼等院校硕⼠研究⽣⼊学试题解答).天津:天津科学技术出版社,1985.[52].皱节铣,陈强编.数学试题选解(1980-1985全国招考研究⽣).长沙:湖南科学技术出版社,1986.[53].庄亚栋,⽅洪锦,姚林编.基础数学试题选解(研究⽣⼊选考试).苏州:江苏科技术学出版社,1986.[54].蔡林,张继昌编著.研究⽣数学⼊学考试精编,第三版.杭州:浙江⼤学出版社,1999.[55].牟俊霖,李青吉主编.洞穿考研数学.北京:航空⼯业出版社,2003.[56].刘光祖,卢恩双主编.⼤学数学辅导与考研指导.北京:科学出版社,2002.[57].西安交通⼤学⼗教授考研班主编.考研数学成功指南,第三版.西安:世界图书出版公司西安公司,2004.[58].余长安主编.⼤学数学考研题型精讲与解题技巧集粹.北京:科学出版社,2005.[59].邵剑,陈维新,张继昌,何勇编著.⼤学数学考研专题复习.北京:科学出版社,2001.[60].李沛恒主编.考研数学新编考试参考书.北京:中国⼈民⼤学出版社,2004.[61].龚冬宝(保)主编.数学考研教程,第三版.西安:西北交通⼤学出版社,2004.[62].龚怀云,胡清徽,杨泽⾼,张可村.研究⽣⾼等数学⼊学考试指南.西安:西北交通⼤学出版社,1985.[63].陈⽂灯,莫先开主编.数学复习指南.北京:世界图书出版公司北京公司,2002.[64].齐民友主编.微积分学习指导.武汉:武汉⼤学出版社,2004.[65].汪林.数学分析中的问题和反例.昆明:云南科技出版社,1990.[66].汪林,戴正徳,杨富春,郑喜印.数学分析问题与研究评注.北京:科学出版社,1995.[67].陈纪修,於崇华,⾦路.数学分析(上).北京:⾼等教育出版社,2000.[68].陈纪修,於崇华,⾦路.数学分析(下).北京:⾼等教育出版社,2000[69].王晓敏,李晓奇,惠兴杰主编.数学分析学习⽅法与解题指导.沈阳:东北⼤学出版社,2005.[70].赵焕光,林长盛编著.数学分析(上).成都:四川⼤学出版社,2006.[71].赵焕光,林长盛编著.数学分析(下).成都:四川⼤学出版社,2006.[72].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(上),第⼆版.北京:⾼等教育出版社,1983.[73].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(下),第⼆版.北京:⾼等教育出版社,1983.[74].⽅企勤编.数学分析(1).北京:⾼等教育出版社,1986.[75].沈燮昌编.数学分析(2).北京:⾼等教育出版社,1986.[76].廖可⼈,李正元编.数学分析(3).北京:⾼等教育出版社,1986.[77].许绍溥,姜东平,宋国柱,任福贤.数学分析教程(上).南京:南京⼤学出版社,1990.[78].宋国柱,任福贤,许绍溥,姜东平.数学分析教程(下).南京:南京⼤学出版社,1990.[79].武汉⼤学数学系编.数学分析(上).北京:⼈民教育出版社,1978.[80].武汉⼤学数学系编.数学分析(下).北京:⼈民教育出版社,1978.[81].吉林⼤学数学系编.数学分析(上).北京:⾼等教育出版社,1979.[82].吉林⼤学数学系编.数学分析(中).北京:⾼等教育出版社,1979.[83].吉林⼤学数学系编.数学分析(下).北京:⾼等教育出版社,1979.[84].常庚哲,史济怀编.数学分析教程(上).北京:⾼等教育出版社,2003.[85].常庚哲,史济怀编.数学分析教程(下).北京:⾼等教育出版社,2003.[86].复旦⼤学数学系编.数学分析(上).上海:上海科学技术出版社,1978.[87].复旦⼤学数学系编.数学分析(下).上海:上海科学技术出版社,1978.[88].邓东皋,尹⼩玲编著.数学分析简明教程(上).北京:⾼等教育出版社,1999.[89].邓东皋,尹⼩玲编著.数学分析简明教程(下).北京:⾼等教育出版社,1999.[90].欧阳光中编.数学分析(上).上海:上海科学技术出版社,1982.[91].欧阳光中编.数学分析(下).上海:上海科学技术出版社,1982.[92].周性伟.数学分析(上).天津:南开⼤学出版社,1982.[93].周性伟.数学分析(下).天津:南开⼤学出版社,1982.[94].彭⽴中,谭⼩江编著.数学分析(第1册).北京:⾼等教育出版社,2005.[95].严⼦谦,尹景学,张然编著.数学分析(第⼀册).北京:⾼等教育出版社,2004.[96].马富明,⾼⽂杰编著.数学分析(第⼆册).北京:⾼等教育出版社,2005.[97].徐森林,薛春华编著.数学分析(第⼆册).北京:清华⼤学出版社,2006.[98].王慕三,庄亚栋.数学分析(上).北京:⾼等教育出版社,1990.[99].王慕三,庄亚栋.数学分析(中).北京:⾼等教育出版社,1990.[100].王慕三,庄亚栋.数学分析(下).北京:⾼等教育出版社,1990.[101].邓东皋,尹⼩玲编撰.数学分析简明教程.北京:⾼等教育出版社,1997.[102].李成章,黄⽟明编.数学分析(上).北京:科学出版社,2004.[103].李成章,黄⽟明编.数学分析(下).北京:科学出版社,2004.[104].张筑⽣.数学分析新讲(第⼀册).北京:北京⼤学出版社,1999.[105].张筑⽣.数学分析新讲(第⼆册).北京:北京⼤学出版社,1999.[106].张筑⽣.数学分析新讲(第三册).北京:北京⼤学出版社,1999.[107].朱永庚.数学分析(上).西安:陕西师范⼤学出版社,1989.[108].朱永庚.数学分析(下).西安:陕西师范⼤学出版社,1989.[109].东北师⼤等校数学系编.数学分析(上).北京:⾼等教育出版社,1983.[110].东北师⼤等校数学系编.数学分析(下).北京:⾼等教育出版社,1983.[111].吴传⽣,张⼩柔主编.数学分析(上册)习题精解.合肥:中国科学技术⼤学出版社,2007.[112].吴传⽣,张⼩柔主编.数学分析(下册)习题精解).合肥:中国科学技术⼤学出版社,2007.[113].郑英元.数学分析习题课教程(上).北京:⾼等教育出版社,1991.[114].郑英元.数学分析习题课教程(下).北京:⾼等教育出版社,1991.[115].郑美元.数学分析中的习题课教程(上).北京:⾼等教育出版社,1991.[116].郑美元.数学分析中的习题课教程(下).北京:⾼等教育出版社,1991.[117].邵漪漪.⾼等数学选择题集.上海:上海科学技术出版社,1989.[118].孟繁铎.微积分标准化试题库.⼤连:⼤连理⼯⼤学出版社,1989.[119].李承家,胡晓敏编.数学分析导教•导学•导考.西安:西北⼯业⼤学出版社,2003. [120].贺⾃树等编.数学分析习题课选讲.重庆:重庆⼤学出版社,2007.[121].李忠⽅丽萍编.数学分析教程上,2008.[122].李忠⽅丽萍编.数学分析教程下,2008.[123].梅加强编.《数学分析》⾼等教育出版社,2011.07.[124].邹应编.数学分析.上册.⾼等教育出版社.1995.[125].邹应编.数学分析.下册.⾼等教育出版社.1995.[126].郭⼤钧等编著.数学分析(上册)(第2版),2002.[127].郭⼤钧等编著.数学分析(下册)(第2版),2002.[128].沐定夷.数学分析(上),1993.[129].沐定夷.数学分析(下),1993.[130].欧阳光中,姚允龙,周渊编著.数学分析(上册),2003.[131].欧阳光中,姚允龙,周渊编著.数学分析(下册),2003.[132].数学分析-卷I-秦曾复、朱学炎-⾼等教育出版社1991.[133].数学分析-卷Ⅱ-秦曾复、朱学炎-⾼等教育出版社1991.[134].数学分析-卷Ⅲ-秦曾复、朱学炎-⾼等教育出版社1991.[135].数学分析1-徐森林,.薛春华.清华⼤学出版社,2005.[136].数学分析2-徐森林,薛春华.清华⼤学出版社,2007.[137].数学分析3-徐森林,⾦亚东,薛春华.清华⼤学出版社,2007.[138].数学分析精选习题全解(上)-薛春华,徐森林,2009.[139].数学分析精选习题全解(下)-薛春华,徐森林,2010.[140].伍胜健.数学分析第⼆版,(第⼀册),北京⼤学数学教学系列丛书,2009.[141].伍胜健.数学分析第⼆版,(第⼆册),北京⼤学数学教学系列丛书,2009.[142].伍胜健.数学分析第⼆版,(第三册),北京⼤学数学教学系列丛书,2009.这⾥列的参考书,本论坛⼤部分都有电⼦版分享。

浙江大学本科教学大类课程层次关系一览表

浙江大学本科教学大类课程层次关系一览表

浙江大学本科教学大类课程层次关系一览表 - 20110907
说明:
1.粗线边框内的课程为一个基本单元。

2.符号“≥”为单向关系,表示修读高层次课程后可免修低层次课程。

例如:“011A0011,宏观经济学(甲),
3.0”≥“011A0012,宏观经济学(乙),2.0”表明修读“宏观经济学(甲)”后可以免修“宏观经济学(乙)”,反之不可。

3.符号“≈”为相似关系。

例如:“111Z0040,射频微波通信电路,
4.0”≈“‘11120050,高频电子线路,3.5’+‘11120741,射频与微波电路及其设计,2.0’”表明“射频微波通信电路”和“‘高频电子线路’+‘射频与微波电路及其设计’”中任学一组课程后可免修另一组课程。

4.对于上表中未列出的相近课程,学生申请免修需填写《浙江大学本科课程免修申请表》,经开课院(系)同意后方可免修,申请表可到现代教务管理系统网页下载。

5.其他学院学生及2011年7月前修读电路分析原理或电路分析原理实验的电气学院学生,原则同意进行“电路分析原理”与“电路原理(甲)Ⅰ、Ⅱ”课程的替换;“电路分析原理实验”与“电路原理实验(甲)Ⅰ、Ⅱ”课程的替换。

本科生院教务处
二○一一年九月。

浙江大学2010-2011数学分析(2)-试卷及答案

浙江大学2010-2011数学分析(2)-试卷及答案

浙江大学20 10 -20 11 学年 春夏 学期《 数学分析(Ⅱ)》课程期末考试试卷(A )课程号: 061Z0010 ,开课学院:___理学部___考试形式:闭卷,允许带___笔____入场考试日期: 2011 年 6 月 24 日,考试时间: 120 分钟诚信考试,沉着应考,杜绝违纪。

请注意:所有题目必须做在答题本上!做在试卷纸上的一律无效!请勿将答题本拆开或撕页!如发生此情况责任自负! 考生姓名: 学号: 所属院系: _一、 计算下列各题: ( 前4题每题5分,最后一题6分,共26分 )1. 2()(03)sin lim .x y xy x→,,求: 2222()(03)()(03)sin sin lim lim 9.x y x y xy xy y x xy →→=⋅=,,,,2.(122)().f x y z gradf =,,设,,23(122)(122)(122)(122)11..2722.27271{122}.27f x x f r x r r r xf f y zgradf ∂∂==-⋅=-=-∂∂∂∂=-=-∂∂=-,,,,,,,,令,则:则:同样,,因此,,,3. 2222320(321)S x y z ++=求曲面:在点,,处的法线方程.222()2320246.321(321){686}.343x y z F x y z x y z F x F y F z x y z n =++-===---===令:,,,则:,,因此,在点,,的法向量,,,故法线为: 4. 2221.(2).4Cx C y L x y ds +=+⎰设曲线:的长度为计算: 222(2)(44)44.=0.C C C Cx y ds x y xy ds ds L xyds +=++==⎰⎰⎰⎰其中:5.02z z z ∑===设为曲面和之间部分的下侧,计算: (1)(2).dS dxdy ∑∑⎰⎰⎰⎰;22224.4.x y x y x y z z z dS dxdy dxdy π∑+≤∑+≤======-=-⎰⎰⎰⎰⎰⎰⎰⎰由于因此,二、 计算题:(每题8分,共56分)1. 22()2()()()2x f x f x x f x ππππ=--≤≤设是周期为的函数,且,求:的 211.n Fourier n +∞=∑级数,并计算的和22222020022112222211(1)()20.2522(1)()()cos (12).2325(1)()2cos .()(*)65(1)(1)(2)(*)0(0)2.61n nn nn n n n n f x b x x a dx a nxdx n nf x nx x R n x f n n ππππππππππππ∞=-+∞∞===-=-=-=-==-=-+∈--==-=-+⇒=⎰⎰∑∑∑由于是周期为的偶函数,则:,,,因此,式中,令,则:12222221111122122222211.21111(1)2.2.2(2)2(2)121.6511(*)2..266n n n n n n n n n n n n n n n x n n σσπσππππππ-+∞+∞+∞+∞∞=====+∞=+∞+∞==-==⇒=-====-=-+⇒=∑∑∑∑∑∑∑∑令:,则:因此,【或】:在式中令,则:2. 211(2)1.44n n n n n x n n +∞+∞==-⋅⋅∑∑计算级数的收敛域及和函数,并计算的值 222112221111211()(2)4(2)(1)lim lim 10 4.()(1)4(2)4(2)12104.44(04).(2)(2)()()4n n n n n n n nn n n n n n n n n n n u x x n x x u x n x x x n n n n x t t S t S t t n +++→∞→∞+∞+∞+∞+∞====∞-=-⋅-=⋅=<<<+⋅--====⋅⋅-'===∑∑∑∑∑,则:当时,发散;当时,发散因此,级数的收敛域为:,令,,则:1222111.(11).1(2)(2)()ln(1).ln 1ln 4ln(4).440 4.14(3)3ln .43n nn n n n t t x x S t t x x n x x n ∞=+∞=+∞==-≤<-⎛⎫--=--=--=-- ⎪⋅⎝⎭<<==⋅∑∑∑其中:故,所以,其中:上式中令,可得,2111112211(2)lim lim 141(1)11.11.(2)(2)[11).110444.(04)n nn n n n n n n n n n nn n n a x t n t t n a n nt t n n t x x x n n ∞∞+→∞→∞==∞∞==∞+∞==-===+-=-=----≤<<<⋅∑∑∑∑∑∑【或】:令,对于级数而言,,因此,的收敛半径为而当时,级数收敛;当时,级数发散故级数的收敛域为,因此,当,即时收敛因此,原级数的收敛域为,..下面与上同3. 222()2.y z z z f x y f x x x y ∂∂=+∂∂∂设,,且具有阶连续偏导,计算:, 12221112221222221112222232(1)2.111(2)222214(2).z y xf f x xz y x yf f f yf f x y x x x x y y xyf f f f x x x ∂=-∂∂⎛⎫⎛⎫=+--+ ⎪ ⎪∂∂⎝⎭⎝⎭=+---4. 2222(){()|}.Dx y dxdy D x y x y x y +=+≤+⎰⎰计算,其中,222222002212221cos 111()2()()..1222()sin 213cos sin ).281()112 1.()()1()222u v x r x y D x y r r y r I d r r r rdr x u x y I u v dudv u v y v u v πθθθθθθπ+≤⎧=+⎪∂⎪-+-≤=⎨∂⎪=+⎪⎩=+++=⎧=+⎪∂⎪⎛⎫==+++⎨ ⎪∂⎝⎭⎪=+⎪⎩=++⎰⎰⎰,方法一、区域:令:,则:,,方法二、令:,则:,2222001233cos sin 34440443444442004113).2281(cos sin )41313)]sin 2sin 2.444228u v u u v dudv d r rdr I d r dr d d udu udu πππθθπππθππππθπθθθθππθθπ+≤+--+=-⎛⎫++=+⋅= ⎪⎝⎭==+⋅=+===⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰方法三、5. 222{()|1}.ze dxdydz x y z x y z ΩΩ=++≤⎰⎰⎰计算三重积分:,其中,,()2222221(0)2110000cos 0cos 2011012.241(sin )4sin cos 2422.22z z x y z z z u x x u z z x y z xoy e z I e dV I d rdr dz r dr r x x xe dx ue du I e dzdxdy e ππθπππππππ++≤≥=+≤-===-==⋅---===⎰⎰⎰⎰⎰⎰=⎰⎰⎰⎰⎰由于积分区域关于平面对称,被积函数关于为奇函数,因此,方法一、令:方法二、()120211cos 2cos 2220000011cos 2000(1)2.2sin 4sin 44(1)2.z dz I d d e d d e d e d e d πππρϕρϕπρϕρπθϕρϕρπρρϕϕπρρπρρπ-====-=-=⎰⎰⎰⎰⎰⎰⎰⎰方法三、6. 2222()M x y z a ξηζ++=设点,,是球面第一卦限中的一点,S 是球面在该点处的切平面被3个坐标平面所截三角形的上侧,求:点()M ξηζ,,使曲面积分:⎰⎰++=Szdxdy ydzdx xdydz I 为最小,并求此最小值.22222226322262222222(1)()(cos cos cos )11.2cos 2(2).327S SS Sx y z a M x y z a xdydz ydzdx zdxdy x y z dSx y z a a a dS a dS a a a a a a ξηζξηζαβγξηζξηγξηζξηζξηζξηζξηζ++=++=++=++⎛⎫=++==⨯⨯⨯⨯= ⎪⎝⎭⎛⎫++++=≤=⇒ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰球面在点,,处的切平面方程为:由于,则:333..2.S xdydz ydzdx zdxdy a x y z M ≤++≥===⎰⎰因此,等号在故,点为62222(1).30..2(2)xy yz zx xy yz zx xy yz zx S S S S S S S S S S S Guass I xdydz ydzdx zdxdy xdydz ydzdx zdxdy a a a a dV x y z a L ξηζξηζξηζ+++ΩΩ=++-++⎛⎫=+=++= ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰++【或】:添加切平面与坐标平面所围立体的另三个三角形、、,使其与所围闭曲面方向为外侧则:根据公式可得:切平面:,截距分别为:、、构造222222223min ()().20(1)20(2)20(3)0(4)02.(4)x y z agrange f x y z xyz x y z a f yz x f zx y f xy z f x y z a yz zx xy x y z x y z x y z x y z xyz I λλλλλλλ=+++-=+=⎧⎪=+=⎪⎨=+=⎪⎪=++-=⎩>===-======函数:,,,令:由于、、,则:将其代入可得,由于驻点唯一,根据实际问题当因此,3.=7. 22(0)cos (0)42C xdy ydx x C A y B x y ππ-=-+⎰计算,其中曲线是从点,沿到点,,再从 (2).BD ππ-点沿直线到点,22222222222222222222022224.44(4)4(0).444410arc 42C C DA L DA LL y x P y x Q P Q x y x y y x y xDA L x y xdy ydx xdy ydx xdy ydx xdy ydx x y x y x y x y dy xdy ydx y πδδδπππδπ++--∂-∂∙====++∂+∂∙+=>----=--++++=---=-+⎰⎰⎰⎰⎰⎰方法一、,,则:连接,作:,足够小,方向为顺时针则:2220224221122332222222221tan 2217.88(0)(2)(2)(2).444(4)x y y dxdyA A A A A A A D L y x P y x Q P Q C L x y x y y x y xP Q πδπδππδπδπππππππ-+≤+=-+⋅=----∂-∂====++∂+∂⎰⎰方法二、从点,沿直线到点,、再从点沿直线到点,、从点沿直线到点,、再从点沿直线到点;记此路径为由于,,则:;且在由曲线、所围区域内、都11223322222222222222022202442244444422arctan arctan arctan arctan 2242248C L AA A A A A A Dxdy ydx xdy ydx x y x y dy dx dy dx y x y x y x y x πππππππππππππππππππππππππππππππππππ--------==+++++--=+++++++--=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰有一阶连续连导数,因此,7.4448ππππ+++=三、 证明题:(每题9分,共18分)1. 210cos ()()1n n n nx u x D f x n +∞∞===+∑∑叙述级数在数集上一致收敛的定义,并证明: (02).π在,内连续,且有连续导数22220022022200cos 11cos (1)(02)1111cos (02)(02)1cos ()(02)1cos sin (2)(){}111n n n n n nx nx x n n n n nx n N n nx f x n nx n nx n g x n n n ππππ∞∞==+∞=∞∞==∀∈≤++++∀∈+=+'⎛⎫==- ⎪+++⎝⎭∑∑∑∑∑由于对,,有,而收敛,故级数在,内一致收敛.另外,对,函数在,内连续,因此,在,内也连续.记,由于12200221cos()cos 1220()[2]sin .sin 2sin 22sin sin [2](02)11.cos sin (02)()(0211n k n n x n x kx x n nx n nx Dirichlet n n nx n nx f x n n δδπδπδδδπδπππ=∞∞==+-∀><∀∈-=≤-++'⎛⎫=- ⎪++⎝⎭∑∑∑单调趋向于零,且对,及,,根据判别法,在,上一致收敛,即在,上内闭一致收敛又在,内连续,故,在,)内具有连续的导数. 2. 0()()y f x δδδ>-=证明:存在,及定义在,内的具有连续导数的函数, ()220(0)0sin ()2()cos 1..x dy f x f x f x x dx ==+++=满足,且并计算的值 22222222222()sin()2cos 1()(1)()(2)(00)0(3)2cos()2(4)(00)20(5)2cos()sin 0()()(0)0sin (y y x F x y x y y x F x y R F F y x y R F F x x y x R y f x f x f δδδ∙=+++-==++=>=+->-==+令:,,*则:,在上连续;,;在上连续;,;在上连续.根据隐函数存在性定理,存在,及定义在,内的具有连续导数的函数,满足,且()222222)2()cos 1.sin()2cos 100.cos()(22)2sin 0.sin 2cos()x f x x x y y x x x y x y x yy y x x x x y dy++=∙+++===''+++-=-+'在两边同时对求导,且当时,则:。

(NEW)浙江大学819数学分析历年考研真题汇编(含部分答案)

(NEW)浙江大学819数学分析历年考研真题汇编(含部分答案)

正数 ,使得 中任何两点 满足
时,必属于某个开区间

六、(15分) 用球面坐标 .
变换方程
七、(10分) 计算
八、(15分) 求
其中

. 在条件
九、(15分) 利用公式
下的最大最小值, 计算积分
的值.(说明计算过程中每一步的合理性)
十、(20分) 设 为 中光滑区域, 为其边界, 在

有连续二阶导数.证明:
求曲面积分
,其中 是曲面
的上侧.
五、(15分) 设二元函数 .
试比较

给出一个使等式 之.
在正方形区域
上连续,记
的大小并证明之; 成立的充分条件并证明
六、(15分) 设 是在 上可积且在 处连续的函数,记 .
证明:
.
2000年浙江大学804数学分析考研真题
浙江大学2000年攻读硕士学位研究生入学试题

其中 为沿边界 外法线方向的导数, 为边界上的面积元, .
的坐标为
,函数

证明: 在
上成立.

是以 为中心 为半径的球,
上 满足 ,则
为其边界.若在

2003年浙江大学431数学分析考研真题
浙江大学2003年攻读硕士学位研究生入学试题 考试科目:数学分析(431) 考生注意: 1.本试卷满分为150 分,全部考试时间总计180 分钟; 2.答案必须写在答题纸上,写在试题纸上或草稿纸上均无效。
浙江大学2002年攻读硕士学位研究生入学试题
考试科目:数学分析
一、(30分) 用“ 语言”证明

给出一个一元函数 ,在有理点都不连续,在无理点都连续, 并证明之;

浙江大学2009年本科生招生专业目录

浙江大学2009年本科生招生专业目录

浙江大学2009年本科生招生专业目录说明:浙江大学2009年进一步推进大类招生。

实行按人文、社科、理、工、农、医等学部大类招生,并打通了大类基础课。

学生填报的专业大类有6个,另有特殊培养的专业方向7个。

大类招生使学生入学时没有固定的专业“帽子”,学生入学经过1至2年的学习,学生在满足相关专业前置课程修读要求的条件下,根据自己的学习能力和发展规划,及对专业的了解,依据各专业最大可容纳学生数,确认主修专业。

院系介绍人文学院该院秉持“博雅专精、明体达用”的办学理念,为学界、政界、文化界和企业界输送高端人才。

现有教授62人,其中有国家级教学名师和全国优秀教师;设6个系,有一级学科博士点2个、博士后流动站3个、二级学科博士点18个、硕士点27个;有国家重点学科1个、国家级重点学科培育学科1个、国家文科基础学科人才培养和科学研究基地2个、教育部人文社会科学重点研究基地1个、“国家985(Ⅱ)”创新基地2个。

该院与日本、比利时等国家和地区的多所大学签署了交换学生的框架协议,推动本科生赴境外交流学习。

该院有专项院级奖、助学金,每年覆盖面达30%以上,基地班还有专设奖学金。

毕业生国内外深造率超过30%,其中两个基地班的深造率达到50%。

该院所有专业进入“人文科学试验班”招生。

汉语言文学专业含国家基地班和影视与动漫编导方向。

培养具有深厚人文精神、良好道德素养、扎实专业理论和技能,适应各行业工作需要的高级中文专业人才。

古典文献专业该专业连续7年在全国高校本科同类专业中排名第一。

培养具有较深厚的古典文献学功底和汉语言文学知识基础,有良好人文和科学素养的高层次复合人才。

编辑出版学专业培养适应现代出版产业新发展需求,具备较系统的编辑出版专业技能和较扎实的人文科学知识,对社会文化、经济、科技等事业发展具有开拓性的复合型专业人才。

历史学专业含国家基地班和文化产业管理方向,培养具有广博的中外历史知识、较强的理论思维能力和语言文字表达能力的复合型人才。

数学硕士教学大纲(精选)

数学硕士教学大纲(精选)

数学硕士教学大纲(精选)数学硕士教学大纲教学大纲一般由教学科目、教学目的和要求、授课时数、授课方法及教学进度4部分组成。

根据《中华人民共和国教师法》,各高等学校的各门学科的教学大纲由国务院教育行政部门审定,作为评定教授、副教授和其他教师的专业技术职务的重要依据。

数学硕士教学大纲应包括以下内容:1.课程名称:数学分析。

2.课程性质:本课程是数学与应用数学专业的一门重要的基础理论课,它为学生进一步学习高等代数、数学分析选讲、常微分方程、复变函数、实变函数、概率论与数理统计等后续课程奠定必要的数学基础。

3.课程任务:本课程的任务是:通过本课程的学习,使学生掌握数学分析的基本理论、基本知识和基本技能,受到数学思维的训练,能够运用数学分析的方法解决一些实际问题,并为学生今后从事与本专业相关的科研与教学工作打下必要的数学基础。

4.教学内容及要求:本课程的教学内容包括极限论、微积分学、级数论三大部分。

具体要求如下:(1)极限论:主要讨论函数的极限概念、性质及计算;数列的极限;函数的连续性;间断点;连续函数的性质;无穷小量与无穷大量;极限的运算法则;极限存在的充分必要条件;连续函数的原函数。

(2)微积分学:主要讨论函数的微分法及其应用;函数的积分法及其应用;微分学和积分学在几何学上的应用。

(3)级数论:主要讨论数项级数的收敛性;幂级数的收敛半径与收敛域;函数展开成幂级数;傅里叶级数;常数项级数的四则运算。

5.教材与参考书:(1)《数学分析》(上、下册),浙江大学数学系编,人民教育出版社,1981。

(2)《数学分析》,郑毓信,高向奎编,上海科学技术出版社,1984。

(3)《数学分析》,程其襄等主编,人民教育出版社,1980。

数学速算教学大纲数学速算教学大纲可以参考以下内容:1.概述:速算教学大纲介绍了速算的概念和意义,阐述了速算在日常生活和学习中的应用。

2.基础知识:速算教学大纲涵盖了基本的数学知识,包括数位、位数、进位、借位等概念。

数学分析考研试题

数学分析考研试题
是否一定有界。(若肯定回答,请证明;若否定回答,举例说明)
3.设 f (x) = sin 2 (x2 + 1) .
(1)求 f (x) 的麦克劳林展开式。
(2)求 f (n) (0) 。 (n = 1,2,3 )
4.试作出定义在 R 2 中的一个函数 f (x, y) ,使得它在原点处同时满足以下三个条件:
∫∫ 恒有 P(x, y, z)dydz + Q(x, y, z)dzdx + R(x, y, z)dxdy = 0. Sr
求证: ∀(x, y, z), R(x, y, z) = 0, Px (x, y, z) + Qy (x, y, z) = 0.
4
武汉科技学院理学院
北京大学 2005 年
1. 设 f (x) = x 2 sin x − 1 sin x ,试求 lim sup f (x) 和 lim inf f (x) .
p→+∞ 0
0
6
武汉科技学院理学院
南京理工大; 0 ,n=1,2,
an → a ≠ 0, (n → ∞) ,证
lim n
n→∞
an
= 1。
∫∫ 二、(15 分)求积分 F ⋅ nds 其中 F=(xy,yz,xy),Σ 为半球面,x 2+y2+z 2=1,z ≥ 0 Σ
(1) f (x, y) 的两个偏导数都存在;(2)任何方向极限都存在;(3)原点不连续
∫ 5.计算 x2ds .其中 L 是球面 x 2 + y 2 + z 2 = 1与平面 x + y + z = 0 的交线。 L
6.设函数列{ fn (x)} 满足下列条件:(1) ∀n , f n (x) 在 [a, b] 连续且有 f n (x) ≤ f n+1 (x) ( x ∈[a, b] );(2){ fn (x)} 点点收敛于[a, b] 上的连续函数 s(x)

2016年浙江大学数学分析试题参考解答

2016年浙江大学数学分析试题参考解答

lim
n
1 xn
1 lim xn
1 A

lim
n
xn
A
n
即 lnimxn
lim
n
xn
A ,从而数列
xn
收敛.
三、(15 分)利用有限覆盖定理证明:有界数列必有收敛子列.
证 设数列 xn有界,且不妨假设其下界为 a ,上界为 b ,则 xn a, b.假设 xn无
收 敛 的 子 列 , 那 么 xn 在 a, b 中 没 有 聚 点 . 于 是 对 x a, b , 存 在 x 0 , 使 得
Ftcos ntdt .
0

Ft
n1
nan
sin
nt
,其中 an
2
Ft cos ntdt .
0
从而有
an2 nan 2 , n 1,2,
根据 Parseval 等式,我们有
1
F
2
t dt
1
Ft 2dt .
事实上,至此我们已经将Wirtinger 不等式证了一遍.现在我们将 t x a 代入上式(注
x x , x x 只包含xn中有限项,并且有 x x , x x a,b.由于 a,b为紧集, xa ,b
故 a, b 的 任 意 开 覆 盖 都 有 有 限 子 覆 盖 , 于 是 存 在 x1,x2 ,, xn 使 得
n
a, b xi xi , xi xi .这样 a, b只包含 xn中有限项,与条件矛盾!
一个正数 0 ,对任何正整数 n c ,总存在 xn a, b,使得
n
f
xn ,
y dy
0 .
由于有界数列 xn必有收敛子列,故不妨设 xn收敛,并记
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档