二次根式乘法法则概述

合集下载

二次根式数学知识点

二次根式数学知识点

二次根式数学知识点二次根式数学知识点11.乘法规定:(a≥0,b≥0)二次根式相乘,把被开方数相乘,根指数不变。

推广:(1)(a≥0,b≥0,c≥0)(2)(b≥0,d≥0)2.乘法逆用:(a≥0,b≥0)积的算术平方根等于积中各因式的算术平方根的积。

注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;3.除法规定:(a≥0,b>0)二次根式相处,把被开方数相除,根指数不变。

推广:,其中a≥0,b>0,。

方法归纳:两个二次根式相除,可采用根号前的系数与系数对应相除,根号内的被开方数与被开方数对应相除,再把除得得结果相乘。

4.除法逆用:(a≥0,b>0)商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

二次根式数学知识点2二次根式的概念形如√a(a≥0)的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a≥0是√a为二次根式的前提条件,如√5,√(x2+1),√(x—1)(x≥1)等是二次根式,而√(—2),√(—x2—7)等都不是二次根式。

二次根式取值范围1、二次根式有意义的条件:由二次根式的意义可知,当a ≥0时√a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,√a没有意义。

知识点三:二次根式√a(a≥0)的非负性√a(a≥0)表示a的算术平方根,也就是说,√a(a≥0)是一个非负数,即√a≥0(a≥0)。

注:因为二次根式√a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即√a≥0(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若√a+√b=0,则a=0,b=0;若√a+|b|=0,则a=0,b=0;若√a+b2=0,则a=0,b=0。

二次根式的乘法法则和除法法则

二次根式的乘法法则和除法法则

二次根式的乘法法则和除法法则1. 引言嘿,大家好!今天咱们聊聊二次根式的乘法和除法,听起来有点复杂,但其实它就像在吃个冰淇淋,慢慢品味就好。

你知道吗?二次根式就像是数学里的小秘密,虽然看起来有点神秘,但一旦你掌握了窍门,简直就像找到了一把打开宝藏的钥匙!咱们开始之前,先给大家普及一下基础知识,别急,这可不是枯燥的教科书,我们轻松一点就好。

2. 二次根式的乘法法则2.1 基本法则好啦,咱们先从乘法说起。

乘法法则其实就是两个二次根式相乘时,咱们可以把它们的“根”都放在一起。

比如说,你有(sqrt{a)和(sqrt{b),只要把它们相乘,就可以得到(sqrt{a times b)。

这就像是把两个朋友的手牵在一起,他们一起组成了一个更大的圈子,听起来是不是挺简单的?就像加法一样,乘法也没啥复杂的,只要记住这条法则就行了。

2.2 具体例子那么,具体怎么用呢?假设我们有(sqrt{2)和(sqrt{3),想要知道它们的乘积。

咱们直接来,(sqrt{2 times sqrt{3 = sqrt{2 times 3 = sqrt{6)。

就是这么简单!有时候,你可能会想,哎,我要是有更多的根式,比如(sqrt{4)和(sqrt{9)呢?没问题,继续来!(sqrt{4 times sqrt{9 = sqrt{4 times 9 = sqrt{36 = 6)。

瞧!是不是像过山车一样刺激,过了一个小坡就到了终点?3. 二次根式的除法法则3.1 基本法则再来聊聊除法。

说到除法,很多人可能会皱眉头,但其实和乘法差不多哦。

二次根式相除时,我们也能把“根”放在一起,听着有点抽象,但没关系,咱们举个例子就明白了。

比如说你有(sqrt{a)和(sqrt{b),你想知道(frac{sqrt{a{sqrt{b)是什么。

这个时候,你只需要做个简单的操作,就能得到(sqrt{frac{a{b)。

就像把一个美味的蛋糕切成两半,你只要把蛋糕的“根”一起分开就行了。

人教版八年级数学下册_16.2二次根式的乘除

人教版八年级数学下册_16.2二次根式的乘除

特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).

二次根式的概念与运算

二次根式的概念与运算

二次根式的概念与运算二次根式是数学中的一个重要概念,它与根式和平方根密切相关。

在本文中,我们将介绍二次根式的定义、运算法则以及一些常见的例题,帮助读者更好地理解和运用二次根式。

一、二次根式的定义二次根式是指形如√a的根式,其中a是一个非负实数。

在二次根式中,√称为根号,a称为被开方数。

二次根式有以下几个基本特点:1. 当被开方数a为非负实数时,二次根式有意义,结果为一个实数;2. 当被开方数a为负实数时,二次根式无意义,即不存在实数解。

二、二次根式的运算法则1. 二次根式的相加减法则:对于两个二次根式,若它们的被开方数相同,则它们可以直接相加或相减。

例如:√2 + √2 = 2√2;5√3 - 2√3 = 3√32. 二次根式的乘法法则:对于两个二次根式,可以对它们的被开方数和根号下的数分别进行乘法运算,并将结果相乘。

例如:√2 × √3 = √(2 × 3) = √63. 二次根式的除法法则:对于两个二次根式,可以对它们的被开方数和根号下的数分别进行除法运算,并将结果相除。

例如:√6 ÷ √2 = √(6 ÷ 2) = √3三、二次根式的化简在进行二次根式的运算过程中,我们常常需要对二次根式进行化简,使得结果更简洁。

在化简二次根式时,可以利用以下的方法:1. 因式分解法:将被开方数进行因式分解,然后利用乘法法则将二次根式化简。

例如:√(8) = √(2 × 2 × 2) = 2√22. 合并同类项法:对于具有相同根号下的数的二次根式,可以合并为同一个二次根式。

例如:5√3 + 3√3 = 8√3四、二次根式的应用举例下面我们来举一些常见的二次根式的应用例题,帮助读者更好地理解和运用二次根式的概念和运算法则。

例题一:计算下列各式的值,并化简结果:√12 + 2√3解:首先对被开方数进行因式分解:√12 = √(2 × 2 × 3) = 2√3将化简后的结果代入原式:2√3 + 2√3 = 4√3例题二:化简下列各式:5√6 - √24解:对被开方数进行因式分解:√24 = √(2 × 2 × 2 × 3) = 2√6将化简后的结果代入原式:5√6 - 2√6 = 3√6总结:本文介绍了二次根式的定义、运算法则,以及二次根式的化简方法。

二次根式的乘除法PPT课件

二次根式的乘除法PPT课件

二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。

表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。

乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。

非负性$sqrt{a} geq 0$($a geq 0$)。

除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。

二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。

根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。

计算$frac{sqrt{20}}{sqrt{5}}$。

根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。

化简$sqrt{18}$。

首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。

典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。

如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。

不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。

16.2 二次根式的乘除

16.2 二次根式的乘除

例 6 计算:(1)-2 15÷3 3×6 5;
(2)
3
·
2

÷

2
1

2
3
;(3)3 2 × -
1
8
15 ÷
1
2
2
.
5
分析(1)利用二次根式的乘除法则计算即可;(2)先根据二次根式
的除法法则计算括号里的,再计算即可;(3)先把乘除法混合运算转
化成乘法运算,再进行乘法运算即可.
22
教材新知精讲
(4)公式里的字母可以是具体的数,也可以是值为非负数的代数
式.
(5)当二次根式前面系数不为 1 时,可以类比单项式与单项式相
乘的法则,先把系数相乘,再把被开方数相乘,即
m ·
n =mn (a≥0,b≥0).
3
教材新知精讲
知识点一
知识点二
知识点三
例 1 计算:(1)
5
×
3
知识点四
知识点五
综合知识拓展
10、阅读一切好书如同和过去最杰出的人谈话。17:50:0617:50:0617:509/12/2021 5:50:06 PM
教材新知精讲
综合知识拓展
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.1217:50:0617:50Sep-2112-Sep-21
平方根的性质结合起来使用.商的算术平方根实质是二次根式除法
法则的逆用.
(5)利用商的算术平方根的性质,可以把被开方数的分母是开得尽
方的数的二次根式进行化简.
15
教材新知精讲
知识点一
知识点二

二次根式计算法则

二次根式计算法则

二次根式计算法则
一、二次根式的定义
形如√(a)(a≥0)的式子叫做二次根式。

其中,a叫做被开方数。

二、二次根式的性质
1. (√(a))^2=a(a≥0)
- 例如(√(3))^2=3。

2. √(a^2)=| a|=cases(a(a≥0) -a(a < 0))
- 当a = 5时,√(5^2)=|5| = 5;当a=-3时,√((-3)^2)=| - 3|=3。

三、二次根式的乘法法则
√(a)·√(b)=√(ab)(a≥0,b≥0)
例如:√(2)×√(3)=√(2×3)=√(6)
四、二次根式的除法法则
dfrac{√(a)}{√(b)}=√(dfrac{a){b}}(a≥0,b > 0)
例如:dfrac{√(8)}{√(2)}=√(dfrac{8){2}}=√(4) = 2
五、二次根式的加减法则
1. 先将二次根式化为最简二次根式。

最简二次根式需要满足被开方数不含分母,被开方数中不含能开得尽方的因数或因式。

- 例如√(12)=√(4×3)=2√(3)(这里2√(3)就是最简二次根式)。

2. 然后合并同类二次根式。

同类二次根式是指几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

- 例如3√(2)+5√(2)=(3 + 5)√(2)=8√(2)。

全面剖析二次根式的乘除及化简

全面剖析二次根式的乘除及化简

全面剖析二次根式的乘除及化简1.二次根式的乘法法则(1)二次根式的乘法法则(性质3): a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立. ②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根.③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4×3.6;(2)545×3223.分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法.解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230.2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a≥0,b≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a,b是限制公式右边的,对公式的左边,只要ab≥0即可.②公式中的a,b可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab=a·b(a≥0,b≥0)可以推广为abc=a·b·c(a≥0,b≥0,c≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简:(1)300;(2)21×63;(3)(-50)×(-8);(4)96a3b6(a>0,b>0).分析:根据积的算术平方根的性质:ab=a·b(a≥0,b≥0)进行化简.解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a3b6=42·6·a2·a·(b3)2=4ab36a.3.二次根式的除法法则对于两个二次根式a,b,如果a≥0,b>0,那么ab=ab.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a≥0,b>0,则有a b =ab.②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a≥0,b>0与二次根式乘法的条件a≥0,b≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =mnab (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用 通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =ab,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用: (1)数学表达式:如果a ≥0,b >0,则有a b =ab;(2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握) 【例4】把下列各式中根号外的因数(式)移到根号内. (1)535; (2)-2a 12a ;(3)-a-1a ; (4)xyx (x <0,y <0).分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15.(2)∵12a >0,∴a >0. ∴-2a 12a =-(2a )2·12a =-(2a )2·12a =-2a .(3)∵-1a >0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a )=-a .(4)∵x <0,y <0, ∴x y x=-(-x )2y x=-(-x )2·y x =-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式. ①被开方数的因数是整数,因式是整式; ②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式; ②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +bb 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎨⎧ a +b =2,3a +b =b ,解得⎩⎨⎧a =0,b =2.所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算 (1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用. (3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件; ②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上; ④误认为形如a 2+b 2的式子是能开得尽方的二次根式. 【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a ).分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除.解:(1)9145÷(3235)×12223=(9÷32×12)145÷35×83 =(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12aba 2b ·a b·a =-12ab a 4=-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式.a与a;a+b与a-b;a+b与a-b;a b+c d与a b-c d.③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab<0时,化简ab2,得__________.(2)把代数式x-1x根号外的因式移到根号内,化简的结果为__________.(3)把-x3(x-1)2化成最简二次根式是__________.(4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是().A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙的解法都正确D.甲、乙的解法都不正确解析:(1)在ab2中,因为ab2≥0,所以ab·b≥0.因为ab<0,b≠0,所以b<0,a>0.原式=b2·a=-b a.(2)因为-1x≥0,又由分式的定义x≠0,得x<0.所以原式=-(-x)-1x=-(-x)2(-1x)=--x.(3)化简时,需知道x,x-1的符号,而它们的符号可由题目的隐含条件推出.∵(x-1)2>0(这里不能等于0),∴-x3≥0,即x≤0,1-x>0.故原式=(-x)2·(-x)(1-x)2=-x1-x-x.(4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a(2)--x(3)-x1-x-x(4)C8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用. 如:借助于计算器可以求得 42+32=__________, 442+332=__________, 4442+3332=__________, 4 4442+3 3332=__________, ……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55, 4442+3332=308 025=555, 4 4442+3 3332 =30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.分析:式子a b =ab ,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎨⎧ 9-x ≥0,x -6>0,即⎩⎨⎧x ≤9,x >6.∴6<x ≤9.∵x 为偶数,∴x =8. ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6. 【例8-2】观察下列各式: 223=2+23,338=3+38.验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23;338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38.(1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用.解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415.(2)猜想:nnn2-1=n+nn2-1(n≥2,n为正整数).证明:因为nnn2-1=n3n2-1=n3-n+nn2-1=n(n2-1)+nn2-1=n+nn2-1,所以nnn2-1=n+nn2-1.11 / 11。

21.3二次根式的乘除法 分母有理化

21.3二次根式的乘除法 分母有理化

将下列代数式分母有理化
2 3 5 2 3 5
( 2 3 5)( 2 3 5) 解:原式 ( 2 3 5)( 2 3 5)
2 15 6 2 6
10 6 2
计算
15 35 21 5 32 5 7
( 3 5)( 5 7) 解:原式 ( 3 5) ( 5 7)
( ab )的有理化因式是( a + b ) b )
( a+ b )的有理化因式是( a -
有理化因式确定方法如下: ①单项二次根式:利用 a a a 来确定, 如: a与 a , a b与 a b, a b 与 a b 等分别互为有理化因式。 ②两项二次根式:利用平方差公式来确定。 如 a b 与 a b , a b与 a b , a x b y与a x b y 分别互为有理化因式。
a b
a b
a 0, b 0
两个二次根式相除,等于把被开方数相 除,作为商的被开方数
最简二次根式的定义
满足下列条件的二次根式,叫做最简二 次根式。 (1)被开方数中的各因式的指数都为1 (2)被开方数不含分母
辨析训练一
判断下列各式是否为最简二次根式?
(2) 12 × ); (3) 30 x ( √ ); (4) (1) (
平方差公式
2 2( a + b ) 2( a + b ) = = a- b a - b ( a - b )( a + b )
( a b) ( a b) ( a ) ( b) a b
2
2
两个含有二次根式的非零代数式相乘,如 果它们的积不含有二次根式,我们就说这 两个二次根式互为有理化因式

初中数学 什么是二次根式的乘法公式

初中数学 什么是二次根式的乘法公式

初中数学什么是二次根式的乘法公式在初中数学中,二次根式的乘法公式是指用来计算两个二次根式相乘的特定公式。

二次根式是一种常见的根式形式,由一个数字或一个表达式的平方根组成。

在本文中,我们将详细讨论二次根式的乘法公式。

假设我们有两个二次根式√a和√b,其中a和b是正实数。

要计算这两个二次根式的乘积,我们可以使用二次根式的乘法公式。

乘法公式的表达式如下:√a * √b = √(a * b)通过这个公式,我们可以将两个二次根式的乘法运算转化为它们被开方数的乘法运算。

具体步骤如下:1. 将√a和√b相乘。

根据乘法公式,我们可以将√a和√b相乘得到√(a * b)。

这里的√(a * b)表示a和b的乘积的平方根。

2. 化简结果。

如果√(a * b)不能再被进一步简化,那么我们就完成了乘法运算。

如果√(a * b)可以被进一步简化,我们可以考虑化简的方法。

a. 如果a和b都是完全平方数,那么我们可以将√(a * b)化简为它们的乘积的平方根。

例如,如果a=4,b=9,那么√(a * b)可以化简为√(4 * 9)=√36=6。

b. 如果a和b中有一个是完全平方数,而另一个不是,那么我们可以将其化简为完全平方数的乘积的平方根。

例如,如果a=4,b=6,那么√(a * b)可以化简为√(4 * 6)=√24=2√6。

c. 如果a和b都不是完全平方数,那么我们无法进一步化简√(a * b)。

通过以上步骤,我们可以使用二次根式的乘法公式计算两个二次根式的乘积,并且在可能的情况下进行结果的化简。

需要注意的是,二次根式的乘法公式仅适用于二次根式的乘法运算。

对于其他类型的根式,如立方根或四次根,我们需要使用不同的公式。

希望通过这个解答,你能够更好地理解二次根式的乘法公式。

在实际学习中,你可以通过练习各种题目来巩固这个知识点。

记住,数学是一个需要不断练习的学科,只有通过实践才能真正掌握。

祝你在数学学习中取得好成绩!。

二次根式的乘除运算法则

二次根式的乘除运算法则

二次根式的乘除运算法则
二次根式是指形式为√a的数,其中a是一个非负实数。

在进行二次根式的乘除运算时,可以运用以下乘除运算法则:
乘法法则:
对于任意的非负实数a和b,有以下乘法法则成立:
1.√a*√b=√(a*b)
两个二次根式的乘积等于将它们的被开方数相乘,再取平方根。

例如:
√2*√3=√(2*3)=√6
2.√a*√a=a
一个二次根式的平方等于它的被开方数。

例如:
√2*√2=2
除法法则:
对于任意的非负实数a和b(b不等于零),有以下除法法则成立:
1.√a/√b=√(a/b)
两个二次根式的商等于将它们的被开方数相除,再取平方根。

例如:
√6/√2=√(6/2)=√3
2.√a/√a=1
一个二次根式除以自己等于1
例如:
√2/√2=1
以上是二次根式的乘除运算法则。

在实际运用中,可以根据需要将乘法和除法往复进行,直到达到所需的结果。

需要注意的是,二次根式的乘法和除法运算并不是封闭运算,即两个二次根式相乘或相除得到的结果不一定是二次根式。

二次根式运算法则

二次根式运算法则

二次根式运算法则
二次根式运算法则是一种常见的数学运算方法,主要用于计算二次根式的值。

它基于二次根式的定义,即一个数的平方根就是这个数的二次根式。

二次根式运算法则的步骤如下:
1.将被开方数分解成两个数的乘积,即a=b×c,其中b和c 是整数且互质。

2.将a带入平方根式中,得到一个形如√(a)的表达式。

3.对√(a)进行开方,得到a的值。

简单来说,二次根式运算法则就是通过分解被开方数,来求得它的值。

需要注意的是,二次根式只适用于被开方数非负的情况。

如果被开方数是负数,那么它的平方根也是负数。

此外,由于二次根式中涉及到根号,因此只有当被开方数非负时,才有意义。

如果被开方数是负数,那么它的平方根也是负数,这时候就不能再对它进行开方了。

总之,二次根式运算法则是一种非常有用的数学运算方法,它在各个领域都有广泛的应用,特别是在数学、物理、化学等领域。

掌握它可以帮助我们更好地理解和解决各种问题。

二次根式的概念和运算

二次根式的概念和运算

二次根式的概念和运算二次根式是数学中的一种特殊形式,它是指一个数的平方根。

在本文中,我们将探讨二次根式的概念和运算法则。

一、概念二次根式是指一个数的平方根,可以表示为√a的形式,其中a 是一个非负实数。

如果a是一个正实数,则二次根式√a是一个正实数;如果a是零,则二次根式√0等于零;如果a是一个负实数,则二次根式√a 是一个虚数。

例如,√4 = 2,因为2的平方等于4;√9 = 3,因为3的平方等于9;√0 = 0;而√-1是一个虚数,通常表示为i。

二、运算法则1. 二次根式的加法和减法当我们进行二次根式的加法和减法运算时,需要满足被开方数相同的条件。

例如,√5 + √5 = 2√5,√3 - √3 = 0。

2. 二次根式的乘法二次根式的乘法遵循以下法则:√a * √b = √(a * b)。

例如,√2 * √3 = √(2 * 3) = √6。

3. 二次根式的除法二次根式的除法遵循以下法则:√a / √b = √(a / b)。

例如,√8 / √2 = √(8 / 2) = √4 = 2。

注意,当二次根式的分母含有根号时,需要进行有理化处理,即将分母有理化为不含根号的形式。

例如,√2 / (√3 + √2)可以有理化为(√2 / (√3 + √2)) * ((√3 - √2) / (√3 - √2)),得到(√2 * (√3 - √2)) / ((√3)^2 - (√2)^2) = (√6 - 2) / (3 - 2) = √6 - 2。

4. 二次根式的化简当我们遇到二次根式较复杂的情况时,可以尝试对其进行化简。

例如,√72可以化简为√(36 * 2),进一步化简为√36 * √2,即6√2。

另外,还存在一些特殊的二次根式,如√4 = 2,√1 = 1等。

三、实例演练接下来,让我们通过一些实例来加深对二次根式运算法则的理解。

例1:计算√5 + 2√5。

解:根据二次根式的加法法则,√5 + 2√5 = 3√5。

二次根式乘除运算法则

二次根式乘除运算法则

二次根式乘除运算法则二次根式乘除运算法则是数学中重要的乘除运算方法,也是高等数学和数学分析中的重要技能。

二次根式乘除运算可以帮助我们解决复杂的算术表达式,它是数学中的重要操作之一。

一般地说,二次根式乘除运算就是将多项式拆分成几个关于根式的乘除运算,再利用乘方公式求解结果。

因此,二次根式乘除运算具有高效性,在解决多个多项式之间乘除运算更受重视。

要掌握二次根式乘除运算,首先要熟悉它的基本运算法则和注意事项:首先,我们要清楚乘方公式,尤其是负数的乘方公式。

这个公式被用来计算多个多项式的运算结果,比如,当x(a+b)的n次方等于x^a*x^b时,就用到了乘方公式。

第二,当处理多项式时,要注意数值的符号问题,例如,当多项式的系数为正和负系数时,必须要确保其合并结果是正的。

第三,在进行根式乘除运算时,要特别注意分母和分子的乘除关系,例如,当根式的分母为1时,可以直接化简;当分子为1时,也可以直接化简,这样可以节约时间和精力。

第四,任何一个多项式乘除运算都不能忽视乘除法则,例如,如果有一个多项式(ax^2+bx+c)*(dx+e),由乘除法则,应该有(adx^3+ (ae+bd)x^2 + (be+cd)x + ce)的结果。

第五,有时多项式的乘除运算有较强的难度,而二次根式乘除运算可以使求解过程变得容易,比如,当ax^2+bx+c=0时,可以用一次根式乘除运算法求出x1和x2。

另外,在掌握二次根式乘除运算的过程中,要注意把握逻辑思维和推理的能力,因为在计算的过程中,逻辑思维和推理能力是非常重要的。

以上就是对二次根式乘除运算的基本概念和注意事项,可以说,了解了二次根式乘除运算的基本法则,就可以更好的应用这种运算方式,解决多种复杂的算术表达式,从而提高计算效率、增强逻辑思维能力和抽象思维能力。

二次根式乘除运算是数学中重要的操作,如果正确把握规律,并通过一定的实践来熟悉运算,就可以在解决多种复杂算术表达式时发挥重要作用,从而提高解题的效率。

二次根式的运算知识点及经典试题讲义

二次根式的运算知识点及经典试题讲义

二次根式的运算知识点及经典试题知识点一:二次根式的乘法法则:ab b a =⋅(0≥a ,0≥b ),即两个二次根式相乘,根指数不变,只把被开方数相乘. 要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b 都必须是非负数;(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能化简必须化简,如416=. 知识点二、积的算术平方根的性质:b a ab ⋅=(0≥a ,0≥b ),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a 、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足0≥a ,0≥b 才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2) 二次根式的化简关键是将被开方数分解因数,把含有2a 形式的a 移到根号外面. (3)作用:积的算术平方根的性质对二次根式化简(4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式即:()()⨯2②利用积的算术平方根的性质b a ab ⋅=(0≥a ,0≥b );③利用⎩⎨⎧<-≥==)0()0(2a a a a a a (一个数的平方的算术平方根等于这个数的绝对值)即被开方数中的一些因式移到根号外;(5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简知识点三、二次根式的除法法则:baba =(0≥a ,0>b ),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意,其中0≥a ,0>b ,因为b 在分母上,故b 不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质bab a =(0≥a ,0>b ) ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题. 对于公式中被开方数a 、b 的取值范围应特别注意,其中0≥a ,0>b ,因为b 在分母上,故b 不能为0. (2)步骤:①利用商的算术平方根的性质:bab a =(0≥a ,0>b ) ② 分别对a ,b 利用积的算术平方根的性质化简③分母不能有根号,如果分母有根号要分母有理化,即a a =2)((0≥a ) (3) 被开方数是分数或分式可用商的算术平方根的性质对二次根式化简知识点五:最简二次根式1.定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把符合这两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式. 要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能为1次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的带分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成分数; (2)被开方数是多项式的要进行因式分解; (3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外; (5)化去分母中的根号; (6)约分.3.把一个二次根式化简,应根据被开方数的不同形式,采取不同的变形方法.实际上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方的因数或因式.知识点六、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关. 2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似) 要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式; (3)不是同类二次根式,不能合并 知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.知识点与讲义3二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组; (3)合并同类二次根式. 知识点八、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次 式之和或差,或是有理 式. 规律方法指导二次根式的运算,主要研究二次根式的乘除和加减. (1)二次根式的乘除,只需将被开方数进行乘除,其依据是:;;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.经典例题透析类型一、二次根式的乘除运算1、计算 (1)×; (2)×; (3)×; (4)×.解:(1)×=; (2)×==;(3)×==9; (4)×==.2、计算:(1); (2); (3); (4).思路点拨:直接利用便可直接得出答案.解:(1)===2; (2)==×2=2;(3)===2; (4)===2.3、化简(1); (2); (3); (4); (5).思路点拨:利用直接化简即可.解:(1)=×=3×4=12; (2)=×=4×9=36;(3)=×=9×10=90;(4)=×=××=3xy (5)==×=3.举一反三【变式1】判断下列各式是否正确,不正确的请予以改正:(1); (2)×=4××=4×=4=8.解:(1)不正确.改正:==×=2×3=6;(2)不正确改正:×=×====4.4、化简:(1); (2); (3); (4).思路点拨:直接利用就可以达到化简之目的.解:(1)=(2)=(3)=;(4)=.举一反三知识点与讲义5【变式1】已知,且x 为偶数,求(1+x)的值.思路点拨:式子=,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得,即∴6<x ≤9,∵x 为偶数,∴x=8∴原式=(1+x)=(1+x)=(1+x)=∴当x=8时,原式的值==6.5、计算(1)·(-)÷(m >0,n >0); (2)-3÷()× (a >0).解:(1)原式=-÷=-==-;(2)原式=-2=-2=- a.类型二、最简二次根式的判别6、下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).思路点拨:判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;不满足其中任何一条的二次根式都不是最简二次根式.解:和都是最简二次根式,其余的都不是,理由如下:的被开方数是小数,能写成分数,含有分母;和的被开方数中都含有分母;和的被开方数中分别含有能开得尽方的因数和因式.总结升华:对于最简二次根式的判断,一定要把握其实质,既要注意其中的“似是而非”,还要注意其中的“似非而是”,特别象这样的式子,带有很大的隐蔽性,更应格外小心.7、把下列各式化成最简二次根式.(1); (2); (3); (4); (5)思路点拨:把被开方数分解因数或分解因式,再利用积的算术平方根的性质及进行化简.解:(1) ;(2) ;(3) ;(4);(5) .类型三、同类二次根式8、如果两个最简二次根式和是同类二次根式,那么a、b的值是( )A.a=2,b=1B.a=1,b=2C.a=1,b=-1D.a=1,b=1思路点拨:根据同类二次根式的识别方法,在最简二次根式的前提下,被开方数相同.解:根据题意,得解之,得,故选D.总结升华:同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a、b的二元一次方程组,此类问题都可如此.举一反三【变式1】下列根式中,能够与合并的是( ) A. B. C.D.思路点拨:首先要把不是最简二次根式的化成最简二次根式,然后比较它们的被开方数是否相同,如果相同,就能进行合并,反之,则不能合并.解:合并,故选B.知识点与讲义7总结升华:同类二次根式的判断,关键是能够熟练准确地化二次根式为最简二次根式.【变式2】若最简根式与根式是同类二次根式,求a 、b 的值.思路点拨:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;• 事实上,根式不是最简二次根式,因此把化简成|b|·,才由同类二次根式的定义得3a-b=•2,2a-b+6=4a+3b .解:首先把根式化为最简二次根式:==|b|·由题意得,∴,∴a=1,b=1.类型四、二次根式的加减运算 9、计算(1)+(2)-思路点拨:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并. 解:(1)+=2+3=(2+3)=5(2)-=4-8=(4-8)=-4总结升华:一定要注意二次根式的加减要做到先化简,再合并. 举一反三 【变式1】计算(1)3-9+3; (2)(+)+(-);(3); (4).解:(1)3-9+3=12-3+6=(12-3+6)=15; (2)(+)+(-)=++-=4+2+2-=6+;(3)(4)【变式2】已知≈2.236,求(-)-(+)的值.(结果精确到0.01)解:原式=4---=≈×2.236≈0.45.类型五、二次根式的混合运算10、计算:(1)(+)× (2)(4-3)÷2.思路点拨:二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2;(2)(4-3)÷2=4÷2-3÷2=2-.11、计算(1)(+6)(3-);(2)(+)(-).(3)()()200020013232______________-+=思路点拨:二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)(+6)(3-)=3-()2+18-6=13-3;(2)(+)(-)=()2-()2=10-7=3.(3)略类型六、化简求值12、已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.思路点拨:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:4x2+y2-4x-6y+10=04x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=,y=3知识点与讲义9原式=+y2-x 2+5x=2x +-x +5=x+6当x=,y=3时,原式=×+6=+3.举一反三【变式1】先化简,再求值.(6x +)-(4y +),其中x=,y=27.解:原式=6+3-(4+6)=(6+3-4-6)=-,当x=,y=27时,原式=-=-.【变式2】.已知x=2+1,求(22121x x x x x x +---+)÷1x 的值.类型七、二次根式的应用与探究13、一个底面为30cm ×30cm 长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了20cm ,铁桶的底面边长是多少厘米? 解:设底面正方形铁桶的底面边长为x ,则x 2×10=30×30×20,x 2=30×30×2, x=×=30.答:铁桶的底面边长是30厘米.14、如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)15、探究过程:观察下列各式及其验证过程.(1)2=验证:2=×====(2)3=验证:3=×====同理可得:45,……通过上述探究你能猜测出: a=_______(a>0),并验证你的结论.解:a=验证:a====.总结升华:解答此类问题的特点是根据题目给出的条件,寻找内在联系和一般规律,然后猜想所求问题的结果,有利于提高综合分析能力.【变式1】对于题目“化简求值:1a+2212aa+-,其中a=15”,甲、乙两个学生的解答不同.甲的解答是:1a+2212aa+-=1a+21()aa-=1a+1a-a=2495aa-=知识点与讲义11乙的解答是:1a +2212a a+-=1a +21()a a -=1a +a -1a =a=15 谁的解答是错误的?为什么?跟踪练习21.1 二次根式: 1. 使式子4x -有意义的条件是 。

二次根式运算法则公式

二次根式运算法则公式

二次根式运算法则公式二次根式的运算法则公式,那可是数学世界里相当重要的一部分!咱先来说说二次根式的乘法法则。

就比如说,有两个二次根式,分别是√a 和√b ,那么它们相乘,结果就是√(ab) 。

这就好像是两个队伍合并,把它们的力量整合到一起。

给您举个例子,假设 a = 4 ,b = 9 ,那么√4 × √9 就是 2 × 3 = 6 ,而√(4×9) 也就是√36 ,同样等于 6 ,您瞧瞧,是不是一回事儿?再讲讲除法法则。

如果还是√a 除以√b (b 不等于 0 ),那结果就是√(a÷b) 。

这就好比把一堆东西按比例分配。

我记得之前有一次给学生们讲这个知识点的时候,有个小调皮鬼总是搞不明白。

我就给他打了个比方,我说这二次根式的运算就像是搭积木,乘法是把积木堆在一起,除法是把积木按份数分开。

这孩子眨眨眼睛,好像突然开窍了,后来做题的时候做得可顺溜了。

然后是二次根式的加减法。

只有当它们的被开方数相同的时候才能相加减,把系数相加减就行,根式部分不变。

比如说3√2 + 5√2 ,那结果就是8√2 。

这就好像是一群长得一模一样的小伙伴,只是数量不同,把数量加起来就行。

在实际运用中,二次根式的运算法则公式那可是用处大大的。

比如在解决几何问题的时候,计算图形的边长、面积啥的,经常能用到。

还有啊,二次根式的化简也离不开这些法则公式。

要把一个二次根式化简成最简形式,就得根据这些法则来操作。

就像给一个乱糟糟的房间整理打扫,最后变得整整齐齐。

总之,二次根式的运算法则公式虽然看起来有点复杂,但只要咱们用心去理解,多做几道题练练手,就能把它掌握得妥妥的!以后再遇到相关的问题,那都能轻松应对,不在话下!。

二次根式的乘除和最简二次根式知识点

二次根式的乘除和最简二次根式知识点
知识点一、二次根式的乘法及积的算术平方根
1。乘法法则: ( ≥0, ≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.
2.积的算术平方根
( ≥0, ≥0),即积的算术平方根等于积中各因式的算术平方根的积.
要点诠释:
(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足 ≥0, ≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;
(1)被开方数不含有分母;
(2)被开方数中不含能开得尽方的因数或因式.
满足这两个条件的二次根式叫最简二次根式.
要点诠释:二次根式化成最简二次根式主要有以下两种情况:
(1) 被开方数是分数或分式;
(2)含有能开方的因数或因式.
(2)二次根式的化简关键是将被开方数分解因数,把含有 形式的a移到根号外面.
知识点二、二次根式的除法及商的算术平方根
1.除法法则: ( ≥0, >0),即两个二次根式相除,根指数不变,把被开方数相除..,对于公式中被开方数a、b的取值范围应特别注意, ≥0, >0,因为b在分母上,故b不能为0.
(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.
2.商的算术平方根的性质
( ≥0, >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
要点诠释:
运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.
知识点三、最简二次根式

二次根式的乘法法则及逆运算公式

二次根式的乘法法则及逆运算公式

二次根式的乘法法则及逆运算公式二次根式的乘法法则及逆运算公式二次根式在高中数学中是一个重要的概念,它的乘法法则和逆运算公式也是我们必须掌握的知识点。

接下来,我们将按类别介绍这两个公式,并提供详细的解释和例子。

一、二次根式的乘法法则二次根式乘法法则是指两个二次根式相乘时,可以将它们的根号内的数乘起来,并将它们外面的系数相乘。

具体来说,就是:√a × √b = √(ab)其中a和b都是正实数。

这个公式的意思是,在求两个二次根式相乘的结果时,我们可以将它们的根号内的数相乘,然后把它们的积放入一个根号内,从而得到它们的积的平方根。

例如,如果我们要计算√2 × √3,我们可以将它们的根号内的数2和3相乘,得到6,然后将6放入一个根号内,得到√6。

因此,结果为√6。

同样地,如果我们要计算2√5 × 3√2,我们可以将它们的系数2和3相乘,得到6,然后将它们的根号内的数5和2相乘,得到10。

最后,我们将6和10相乘,得到60,然后将60放入一个根号内,得到√60。

因此,结果为6√10。

二、二次根式的逆运算公式对于一个二次根式,我们可以将它化简为一个简单的实数。

这个过程被称为二次根式的逆运算。

具体来说,如果一个二次根式可以表示为c√d的形式,其中c和d都是常数,那么我们可以把它化为一个实数。

二次根式的逆运算公式是:a√b = c√d其中a和b都是正实数,c和d都是实数,且d>0。

为了使用这个公式,我们需要将左侧的二次根式简化为右侧的形式,并确定c和d的值。

例如,如果我们要将4√2化简为c√d的形式,我们需要找到两个数c和d,满足4√2 = c√d。

我们可以发现,2是一个完全平方数(即2 = 1 ×2),因此我们可以将4√2表示为:4√2 = 4√(1×2)= 4√1 × √2= 4 × √2因此,c = 4,d = 2,化简后的结果为4√2 = 4√(1×2)= 4 × √2。

二次根式的运算根式的加减乘除法则

二次根式的运算根式的加减乘除法则

二次根式的运算根式的加减乘除法则根式是数学中的一种特殊表示形式,用来表示不能精确表示的数值。

在根式中,二次根式是一种常见形式,它的运算法则包括加法、减法、乘法和除法。

一、二次根式的加法法则当我们进行二次根式的加法时,要求根号下的数相同,即根号下的数应该是相同的。

例如,要计算√2 + √2,可以将它们合并为2√2。

同理,如果要计算3√5 + 4√5,可以将它们合并为7√5。

这种合并相同根号下数值的方法,使我们可以简化计算过程,得到更简洁的结果。

二、二次根式的减法法则二次根式的减法法则和加法法则类似,也要求根号下的数相同。

例如,要计算√3 - √2,我们无法直接合并,因为它们的根号下的数不同。

在这种情况下,我们可以保持根号下的数不变,得到√3 - √2。

这就是二次根式的减法的最简形式。

三、二次根式的乘法法则当我们进行二次根式的乘法时,可以将根号下的数相乘,然后再把它们的根号提取出来。

例如,要计算√2 × √3,我们可以先把2和3相乘得到6,然后再提取根号,得到√6。

同理,如果要计算2√5 × 3√7,我们可以先将5和7相乘得到35,然后再提取根号,得到6√35。

四、二次根式的除法法则二次根式的除法法则和乘法法则相反,我们可以将根号下的数相除,然后再把它们的根号提取出来。

例如,要计算√5 ÷ √2,我们可以先把5除以2得到2.5,然后再提取根号,得到√2.5。

同理,如果要计算5√10 ÷ 2√3,我们可以先将10除以3得到3.33,然后再提取根号,得到1.83√2。

总结:二次根式的加减乘除法则为:1. 加法法则:要求根号下的数相同,将相同根号下的数值合并,得到最简形式。

2. 减法法则:要求根号下的数相同,保持根号下的数不变,得到最简形式。

3. 乘法法则:将根号下的数相乘,然后提取根号,得到最简形式。

4. 除法法则:将根号下的数相除,然后提取根号,得到最简形式。

这些法则可以帮助我们在进行二次根式的运算时,简化计算过程,得到最简形式的结果。

二次根式乘法运算法则

二次根式乘法运算法则

二次根式的乘法法则是指两个二次根式相乘,可以将被开方数相乘,再化为最简二次根式。

具体来说,如果两个二次根式要相乘,那么需要将它们的被开方数相乘,得到的结果仍然是一个非负数的二次根式,这个过程需要遵守二次根式的性质和运算法则,以确保结果的正确性和合理性。

以下是二次根式乘法运算法则的具体说明:
1. 两个二次根式相乘,需要将被开方数相乘。

即,如果两个二次根式分别为a和b,它们的被开方数分别为x和y,那么两个被开方数的积的算术平方根就是结果c。

这个过程需要遵守二次根式的性质和运算法则,确保结果的正确性和合理性。

2. 需要注意的是,如果两个二次根式相乘的结果是一个负数,那么需要讨论一下其符号问题。

即,两个被开方数中至少有一个是负数,而另一个被开方数是正数时,才能进行乘法运算。

因此,在二次根式的乘法运算中,必须保证结果的符号是正数或零。

3. 在进行二次根式的乘法运算时,需要注意运算顺序和符号问题。

一般来说,先将被开方数相乘,再根据结果的正负情况确定最终结果的正负性。

同时,需要注意运算过程中的符号问题,以确保结果的正确性和合理性。

总之,二次根式的乘法运算法则需要遵守二次根式的性质和运算法则,以确保结果的正确性和合理性。

在进行二次根式的乘法运算时,需要注意运算顺序、符号问题以及结果的合理性。

只有正确理解和运用这些运算法则,才能有效地进行二次根式的运算,并得到正确的结果。

希望以上回答对您有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(五)作业:
• 课本9页 习题21.2 第1,2题
感谢您的聆听,恳请您批评指 正!
二次根式的乘法
镇平县杨营镇金陵外国语学校 范春溪
一、创设情景,设疑导学
计算下列4组式子,观察计算结果,你能发现什么规律?用 “>” “<” “ =”填空。
1. 4 9
-----------------
49 4 25 16 9 100 0.01
2. 4 25 3. 16 9 4. 100 0.01
ab =

b
(a≥0,b≥0)
二、小组讨论,例题精讲
解: 3
2 3 2
(1). ( 2).
1 (2). ( 3). 2
7 1 2
1 ) 71 6 7 42 6( 3 6 2 2
3 2 2 32 3 2 1 32 3 32 16 6 4 2 2
2
( 4). 2 3 6 4 原式 2 3 6

36 6
三、运用拓展
1.请计算下列式子:
(1)
(一)牛刀小试:
()()
(2)
(3)
2.计算:
(3)
2 3 3ab
三运用拓展 ——(二)初露锋芒:
1.
1 10x xy 10
2.
b3 a3 a b
3.比较大小:(一题多解)
1. 小组讨论。请**同学进行二次根式乘法法则进行总结。 2. 学生概括总结:两个算术平方根的积,等于它们被 开方数的积的算术平方根。 3.字母表示为: a · b =
ab
(a≥ห้องสมุดไป่ตู้,b≥0)
二、小组讨论,探疑精讲
要点精讲: (1)根据二次根式的定义,a、b都应取非负数。 (2).注意二次根式乘法法则的逆用。即: 字母表示为:
48
5 3
三运用拓展——(三)大展宏图:
1.式子 a2 4 a2 a 2成立的条件是:() A .a 2 B.a 2 C .a 2 D. 2 a 2 2 已知:已知 . m = 3 (2 21) ,有:( 3 A. 5<m<6 B. 4<m<5 C. ﹣ 5<m<﹣ 4 D. ﹣ 6<m<﹣ 5 )
----------------
-----------------
-----------------
一、创设情景,设疑导学
根据上面的探究,猜想下列式子是不是也存在上面的类似关 系,并用计算器验证你的猜想。
1. 2 3 2. 2 5 3. 5 6 4. 4 5
-----------------
四、教师小结:
本节课主要学习了二次根式乘法法则及简单的运用。 1.二次根式乘法法则:两个算术平方根的积,等于它们被 开方数的积的算术平方根。 2.字母表示为: a · =
ab
(a≥0,b≥0)
3.(1)根据二次根式的定义,a、b都应取非负数。 (2).注意二次根式乘法法则的逆用。即: b 字母表示为: ab = (a≥0,b≥0) a ·
一、创设情景,设疑导学
下面请同学们结合课本5-6页自主学习,完成以下问题: 1. 前4组左右两边相等,请根据结果猜想后4组结果。 2.后四组计算结果和你的猜想是否一致。 3.针对二次根式的乘法计算,你有什么结论? 4.通过类比,请归纳出二次根式的乘法法则。 5.请尝试用字母表示出来。
二、小组讨论,探疑精讲
6 10 30 20
----------------
-----------------
-----------------
一、创设情景,设疑导学
上面的几个问题要用到二次根式乘法的相关知识。 这节课我们一起来学习《二次根式的乘法》,下面请看 本节课的学习目标。
一、创设情景,设疑导学
知识与技能: 1.掌握二次根式的乘法运算法则,会用它进行简单的二次根式乘法 运算。 2.掌握积的算术平方根性质,会运用这一性质熟练地花间二次根式。 3.培养学生合情推理的能力。 过程与方法: 1.让学生在原有知识基础上,经历知识产生的过程,探索新知识。 体会类比的思想研究二次根式乘法,体验研究数学的常用方法:有 特殊到一般,由简单到复杂。 情感态度价值观: 关注学生思考问题的过程,鼓励学生在探索规律过程中从多个角度 思考,品尝成功的喜悦,激发学生应用数学的热情。培养学生主动 探索,敢于实践,善于发现的科学精神及合作精神,树立创新意识。
相关文档
最新文档