数学几何计数课件《四年级奥数》
四年级奥数第二讲图形的计数问题含答案
四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。
练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。
人教版四年级数学奥数 数数图形(课件)(共20张PPT)
【例题1】数一数下图中有多少个锐角。
【思路导航】 数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点, 因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得: 1+2+3+4=10(个).
【例题2】 数一数下图中有多少个长方形?
【思路导航】 图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边பைடு நூலகம்的
第12讲 数数图形
小学奥数 四年级
同学们对于图形肯定不陌生,但数学中经常会出现这样的题目: (1)下图中共有几条线段? (2)下图中共有几个长方形?
要正确解答这类问题,就要做到数图形时不重复、不遗漏。这就需要 我们按照一定的顺序去数,并找出它的规律,巧妙地数出图形的个数。数 图形的方法一般有两种:按顺序数和分类数。今天就让我们用数学的方法 巧妙地数图形吧!
实践与应用
【练习5】 P94 数一数,下图中共有多少个长方形?
同学们,图形世界是不是非赏精彩呢?数学的魅力就在于千变万化的图形和数字。通过 这一进,我们对图形有了更深的认识,遇到数图形的问题也能有序、严密地思索,关于数 图形,我们来总结一些最基本的方法吧。
(1)数线段。假设端点有n个(n是整数),那么线段的总条数就是从比n小1的数开始, 一直加到1。
每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有 6×3=18个长方形。 数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数
【例题3】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个 长度单位的正方形)
【思路导航】 边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有 2×1=2个。所以,图中正方形的总数为:6+2=8个。 经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份, 宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为: mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.
【精品奥数】四年级上册数学思维训练讲义-第九讲 几何计数 人教版(含答案)
第九讲几何计数第一部分:趣味数学解析几何的产生十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。
比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。
这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。
1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。
当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。
笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。
后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。
从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。
他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。
x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。
这就是解析几何的基本思想。
具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。
从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。
解析几何的产生并不是偶然的。
在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。
小学四年级数学 奥数 第17讲 数数图形
小学四年级数学奥数第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。
4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段。
练习1:数出下列图中有多少条线段。
(2)【例题2】数一数下图中有多少个锐角。
练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。
练习3::数一数下面图中各有多少个三角形。
【例题4】数一数下图中共有多少个三角形。
练习4::数一数下面各图中各有多少个三角形。
【例题5】数一数下图中有多少个长方形。
练习5::数一数下面各图中分别有多少个长方形。
【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形。
【例题9】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习9:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题10】求下列图中线段长度的总和。
四年级奥数第17讲 数数图形
第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果.要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段.练习1:数出下列图中有多少条线段.(2)【例题2】数一数下图中有多少个锐角.练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形.练习3::数一数下面图中各有多少个三角形.【例题4】数一数下图中共有多少个三角形.练习4::数一数下面各图中各有多少个三角形.【例题5】数一数下图中有多少个长方形.练习5::数一数下面各图中分别有多少个长方形.【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形.【例题9】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习9:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题10】求下列图中线段长度的总和.(单位:厘米)上式中的5是线段上的5个点,如果设线段上的点数为n,基本线段分别为a1、a2、…a(n-1).以上各线段长度的总和为L,那么L= a1×(n-1)×1+ a2×(n-2)×2+ a3×(n-3)×3+…+ a(n-1)×1×(n-1).练习10:1.一条线段上有21个点(包括两个端点),相邻两点的距离都是4厘米,所有线段长度的总和是多少?2.求下图中所有线段的总和.(单位:米)3.求下图中所有线段的总和.(单位:厘米)三、课后作业1、数一数共有多少条线段?(1)(2)2、数一数共有多少个锐角?EA B C D EDO CBA3、数出下图中有多少个长方形?4、数出下图中有多少个正方形?5、下图中有多少个长方形,其中有多少个是正方形?DC B A。
【精品奥数】四年级上册数学思维训练讲义-第九讲 几何计数 人教版(含答案)
第九讲几何计数第一部分:趣味数学解析几何的产生十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。
比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。
这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。
1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。
当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。
笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。
后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。
从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。
他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。
x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。
这就是解析几何的基本思想。
具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。
从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。
小学奥数- 几何计数(一)
7-8-1几何计数(一)教学目标1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.知识要点一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成212232)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.例题精讲模块一、简单的几何计数【例1】七个同样的圆如右图放置,它有_______条对称轴.【例2】下面的表情图片中:,没有对称轴的个数为()(A )3(B )4(C )5(D )6【巩固】中心对称图形是:绕某一点旋转180°后能和原来的图形重合的图形,轴对称图形是:沿着一条直线对折后两部分完全重合的图形,图的4个图形中,既是中心对称图形又是的轴对称图形的有个。
四年级上册奥数知识点总结第7课-几何中的计数问题.doc
奥数知识点第7课・几何中的计数问题(1)笫七讲几何中的计数问题(一)几何中的计数问题包括:数线段、数角、数长方形、数正方形、数三角形、数综合图形等•通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、思考问题的良好习惯,逐步学会通过观察、思考探寻事物规律的能力.一、数线段我们把直线上两点间的部分称为线段,这两个点称为线段的端点•线段是组成三角形、正方形、长方形、多边形等最基本的元素•因此,观察图形中的线段,探寻线段与线段之间、线段与其他图形之间的联系,对于了解图形、分析图形是很重要的.例1数一数下列图形中各有多少条线段.A B C A B C p A B C DE(1)(2)(3)例2数出右图中总共有多少个角•ClC2C3例3数一数右图中总共有多少个角?三、数三角形例4如右图中,各个图形内各有多少个三角形?A例5如右图中,数一数共有多少条线段?共有多少个三角形?例6如右图中,共有多少个角?习题七1 •数一数下图中,各有多少条线段?2.数一数下图中各有多少角?3•数一数下图中,各有多少条线段?4•数一数下图中,各有多少条线段,各有多少个三角形?(1) (2)课后作业:(1) (2)CB答案:第七讲几何中的计数问题(一)形、曙麟「專湃羯蟲聽辟思考问题的良好习惯, 逐歩学会通过观察、思考探寻事物规律的能力.一、数线段我们把直线上两点间的部分称为线段,这两个点称为线段的端点•线段是组成三角形、正方形、长方形、多边形等最基本的元素•因此,观察图形中的线敲犧評之间' 线段煮他图形之间的联系’对于了解图形' 分析例1数一数下列图形中各有多少条线段.B C A B C D A B C DE(1)(2)(3)分析要想使数出的每一个图形中线段的总条数,不重复、不遗漏,就需要按照一定的顺序、按照一定的规律去观察、去数•这样才不至于杂乱无章、毫无头绪•我们可以按照两种顺序或两种规律去数.第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A为左端点的线段有AB、AC两条以B为左端点的线段有BC—条,所以上图(1)中共有线段2 +1 = 3条•同样按照从左至右的顺序观察图(2)中,以A为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD两条,以C为左端点曲线段有CD—条・E斤以上页图〔2)中共有殳腰为3 +2 +1 = 6条.第二种:按照基本线段多少的顺序去数•所谓基本线段是指一条大线段中若有n个分点,则这条大线段就被这n个分点分成n+1条小线段,这每条小线段称为基本线段•如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD 分成AB、BC^ CD三条基本线巖,那么线段AD总箕有参少条线段?首宪有三条基本线段,其次是包含有二条基本线段的是:AC、BD二条,然后是包含有三条基本线段的是AD这样一条•所以线段AD上总共有线段3+2 + 1 = 6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:首先有4条基本线段,其次是包含有二条基本线段的有3条,然后是包含有三条基本线段的有2条,最后是包含有4条基本线段的有一条,所以线段AE 上总共有线段是4 + 3 + 2 + 1 = 10条.解:①2 + 1 = 3 (条)・②3 + 2+1 = 6 (条)・第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A 为左端点的线段有AB、AC两条以B为左端点的线段有BC—条,所以上图(1)中共有线段2 +1 = 3条•同样按照从左至右的顺序观察图(2)中,以A为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD两条,以C为左端点商线段有CD—条•所以上页图⑵ 申共有妄腰为3 +2 +1 = 6条.第二种:按照基本线段多少的顺序去数•所谓基本线段是指一条大线段中若有门个分点,则这条大线段就被这n个分点分成门+1条小线段,这每条小线段称为基本线段•如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD 分成AB、BC、CD三条基本线農,邮么线段AD总唉有参少条线段?音晁有三条基本殘段,其次是包备有二条基本殁段的是:AC、BD二条,然后是包含有三条基未线段0勺是AD这样一秦•所以线腰AD丄总共有线段3 + 2 + 1 = 6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:音先有4素量本线段,箕次是包•备有二累盘未殳陵馬有3氯然后是包鸟有三条基车塚凌6勺有2条,最后是窃含有4条基未线段的有一条,紡以冬段AE 上总共有线段是4丄3 + 2丄1 = 10条.解:①2 + 1 = 3 (条)・②3 + 2 + 1 = 6〔条)・③ 4+3+2+1=10(条)・小结:上述三例说明:要想不重复、不遗漏地数出所有线段,必须按照一定顺序有规律的去数,这个规律就是:线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1 •也就是基本线段的条数•例如右图中线段AF上麻有点数(包岳两个端点A、F)共有6个,所以从1开始的连续自然数的和申最大的加数是6-1 = 5,或者线段AF上的分点有4个(B、C、D、E)•所以从1开始的连续自然数的和中最大的加数是4 + 1 = 5.也就是线段AF上基本线段(AB、BC、CD、DE、EF)的条数是5•所以线段AF上总共有线段的条数是5+4 +3 +2 + 1 =15 (条)・二数角例2数出右图中总共有多少个角.分析在ZAOB内有三条角分线OC1、OC2、OC3, ZAOB被这三条角分线分成4 个基本角,那么ZAOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个〔即ZAOC2. ZC1OC3、ZC2OB),然后是包含有3 个基本角组成的角有2个(即ZAOC3、ZC1OB),最后是包含有4个基本角组成的角有1个(即ZAOB),所以ZAOB内总共有角:4+3+2+1=10(个)・解:4+3+2+1=10(个)・小结:数角的方法可以采用例1数线段的方法来数,就是角的总数等于从1 开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1,也就是基本角的个数.例3数一数右图中总共有多少个角?W:因为ZAOB内角分线0C1、OC2-OC9共有9条,即9+1二10个基本角.所以总共有角:10+9+8+…+4+3+2+1=55 (个).三.数三角形例4如右图中,各个图形内各有多少个三角形?分析可以采用类似例1数线段的两种方法来数,如图(2):第一种方法:先数以AB为一条边的三角形共有:△ABD、ZXABE、Z\ABF、ZXABC四个三角形.再数以AD为一条边的三角形共有:△ADE、ZXADF、ZXADC三个三角形.以AE为一条边的三角形共有:△AEF、ZXAEC二个三角形.最后以AF为一条边的三角形共有AAFC—个三角形.所以三角形的个数总共有4+3+2+1=10.第二种方法:先数图中小三角形共有:△ABD、ZXADE、Z\AEF、ZXAFC四个三角形.再数由两个小三角形组合在一起的三角形共有:△ABE、AADF. ZXAEC三个三角形,以三个小三角形组合在一起的三角形共有: △ABF 、ZXADC 二个三角形,最后数以四个小三角形组合在一起的只有AABC —个. 所以图中三角形的个数总共有:4+3+2+1=10 (个)・ 解:①3+2+1 二6 (个) ② 4+3+2+1=10 (个)・答:图(1)及图(2)中各有三角形分别是6个和10个.小结:计算三角形的总数也等于从1开始的几个连续自然数的和,其中最大例5如右图中,数一数共有多少条线段?共有多少个三角形?分析在数的过程中应充分利用上几例总结的规律,明确数什么?怎么数?这样两个问题•数:就是要数出图中基本线段(基本三角形)的条 数,算:就是以基本线段(基本三角形)条数为最大加数的从1开始的连续几个 自然数的和.①要数多少条线段:先看线段AB 、AD 、AE 、AF 、AC 、上各有2个分点,各分 成3条基本线段,再看BC 、MN 、GH 这3条线段上各有3个分点,各分成4条基本线 最・0T 以鹵中总共有第段是:(3+2+1) X5+(4+3+2+1) X 3二30+30=60 (条).②要数有多少个三角形,先看在AAGH 中,在GH 上有3个分点,分成基本小 三的加数就是三角形一边上的分点数加1,也就是三角形这边上分成的基本线段的 条数.角形有4个•所以在ZXAGH中共有三角形4+3+2+1=10 (个)•在ZXAMN与ZXABC 中,三角形有同样的个数,所以在ZXABC中三角形个数总共:〔4+3+2+1) X 3=10X3=30 (个)・解:①在△ ABC中共有线段是:〔3+2+1) X5+(4+3+2+1) X 3二30+30二60〔条)②在△ABC中共有三角形是:(4+3+2+1) X 3=10X3=30〔个)・例6如右图中,共有多少个角?分析本题虽然与上几例有区别,但仍可以采用上几例所总结的规律去解决.Zl、Z2、Z3、Z4我们可视为4个基本角,由2个基本角组成的有:Z1与Z2、Z2与Z3、Z3与Z4、Z4与Z1,共4个角•由3个基本角组成的角有:Z 1、上2与Z3; Z2. Z3与上4; Z3、上4与Z1;上4、Z1与上2,共4个角,由4个基本角组成的角只有一个.所以图中总共有角是:4X3+1二13 (个)・解:所以图中共有角是:4X3+1二13 (个)・小结:由本题可以推出一般情况:若周角中含有n个基本角,那么它上面角的总薮是n (n-1) +1.课后作业答案:习题七解答1 •①在AB线段上有4个分点,所以它上面线段的总条数为:5+4+3+2+1二15 (条)・②在线段AB上有3个分点,所以它上面线段的总条数为:4+3+2+1=10 (条)・在线段CD上有4个分点:所以它上面线段的总条数为:5+4+3+2+1=15 (条)・・・・整个图(2)共有线段10+15二25 (条)・③在线段AB上有3个分点,它上面线段的条数为:44-34-2+1=10 (条)・在线段CD上有2个分点,它上面线段的条数为:占。
苏科版四(下)奥数教案第1讲~几何计数
四(下)奥数第1讲~几何计数
【知识精讲】
本讲主要内容是几何计数,简单的来说就是数图形,本讲主要介绍了两种数图形的方法:1.按分类数图形。
2.利用乘法原理数图形。
小热身
1:数数下图一共有多少条不同的线段?
2:数数下图一共有多少个不同的长方形?
3:数数下面一共有多少个不同的三角形?
第一部分:按分类数图形
例1:下列图形中各有多少个三角形?
练1: 下图中各有多少个三角形?
例2:下列图形中,分别有多少个正方形?
练2:下列图形中,分别有多少个正方形?
第二部分:乘法原理数图形
例3:下列图形中,分别有多少个长方形(包括正方形)?
练3:下列图形中,分别有多少个长方形(包括正方形)?
例4:数一数下图中包含星星的长方形(包括正方形)有多少个?
练4:数一数下图中包含星星的长方形(包括正方形)有多少个?
自我挑战:
1:下图中各有多少个三角形?
2:下列图形中,分别有多少个正方形?
3:下列图形中,分别有多少个长方形(包括正方形)?
4:数一数下图中包含星星的长方形(包括正方形)有多少个?
温故而知新!
1:右图中共有__________个三角形。
2:右图是由25个小正方形组成,数一数图中一共有__________个正方形。
3:右图是由12个小正方形组成,数一数图中一共有__________个正方形。
4:右图是由15个小正方形组成,数一数图中一共有__________个长方形(长方形包括正方形)。
5:数一数下图中包含星星的长方形(包括正方形)有__________个。
6:数一数下图中包含两颗星星的长方形(包括正方形)有多少个?。
3第三讲 几何计数 (奥数班)
【教学重难点】
掌握常见的数图形的方法:枚举法、对应法、容斥原理、和面积相关、利用图形对称性。
【课前预习】
根据辅导书相应地给孩子预习的内容。
【教学内容】
方法一:枚举法——按照大小和位置
【例1】(★★)
下图中可以数出多少个三角形?
【例2】(★★★★)
如图,木板上钉着20个钉子,形成4行5列的正方形钉阵。那么橡皮筋一共能套出个正方形。(注意正放和斜放)
方法五:和面积相关——熟悉公式利用图形对称性
【例6】(★★★★)
如图,用9枚钉子钉成水平和竖直间隔都为1的正方阵。用一根橡皮筋将3枚不共线的钉子连接起来就形成一个三角形。其中面积为1的三角形有多少个?
【例7】(★★★★★)
图中一共有多少个三角形?
小结:
枚举法——按照大小和位置
对应法——找到对应关系
圈猪法鼠标法
4.一块木板上有13枚钉子。用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等,如图。那么一共可以构成多少个不同的正方形?
计算巩固:
1、
2、(7.88+6.77+5.66)×(9.31+10.98+10)—(7.88+6.77+5.66+10)×(9.31+10.98)
容斥原理——不重不漏
和面积相关——熟悉公式
利用图形对称性
自我挑战Hale Waihona Puke 1.下图中共有多少个正方形?
2.下图中ABCD是平行四边形,图中的线段分别与AB,AD或BE平行。图中包含阴影三角形的平行四边形共有多少个?
3.如图,18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形.那么图中包含“*”的各种大小的正三角形一共有多少个?
小学奥数:7-8-2 几何计数(二).学生版
7-8-2.几何计数(二)教学目标1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.知识要点一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.E DCB A数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn个.例题精讲模块二、复杂的几何计数【例1】如下图在钉子板上有16个点,每相邻的两个点之间距离都相等,用绳子在上面围正方形,你可以得到个正方形.【考点】复杂的几何计数【难度】4星【题型】填空【关键词】学而思杯,2年级,第4题【解析】先看横着的正方形如下图⑴,可以得到94114++=个正方形,再看斜着的正方形如下图⑵可以得到4个正方形,如下图⑶可以得到2个正方形.这样一共可以得到144220++=个正方形.⑴⑵⑶<考点>图形计数【答案】20个【巩固】如图,44⨯的方格纸上放了16枚棋子,以棋子为顶点的正方形有个.【解析】根据正方形的大小,分类数正方形.共能组成五种大小不同的正方形(如右图).11⨯的正方形:1个;⨯的正方形:4个;33⨯的正方形:9个;22以11⨯长方形对角线为边长的正方形:2个.⨯正方形对角线为边长的正方形:4个;以12故可以组成9414220++++=(个)正方形.【巩固】下图是3×3点阵,同一行(列)相邻两个点的距离均为1。
2023年通用版小学数学四年级奥数第五讲《图形的计数》课件
能力冲浪 2
1、下图中分别有多少个三角形?
2、下图中共有多少个三角形?其中直角三角形有多少个?
3、下图中共有多少个长方形?
其他
1、在下列各图中,每个最小的正三角形的面积都等于 1,分别求出每个图中所 有各种三角形的面积之和。
2、下图中共有多少个正方形?
3、下图中大大小小共有 42 个正方形,在这些正方形中,所含的数字之和能被 5 整除的有多少个?
5、在 6×6 的方格棋盘中,可以找到多少个下图中所示的“凸”字形图形?
第五讲 图形的计数
Lorem ipsum dolor sit amet, consectetur adipisicing elit.
例 1:下列各图中各有多少个小于 180°的角?
能力冲浪 1
1、右图中∠1=∠2=∠3,如果图中所有角的和等于 180°, 那么∠AOB 是多少度?
2、圆周上有 6 个点,以其中两个点为端点的弧共有多少条?
4、下列各图中分别有多少个梯形? 5、左下角中有许多大大小小的三角形,其中包含阴影部分的三角形有几个?
6、在 4×4 的方格棋盘中,取出一个由三个小方格组成的“L”型(如下图), 共有多少种不同的取法?
7、把 0~9 十个数字像下图那样描在同一张 3×5 的方格纸上,每个小方格被涂的 次数有多有少,最多的被涂了 9 次,被涂了 9 次的小方格有多少个?
变式:把 0~9 十个数字像下图那样描在同一张次数有多有少,没有被涂到的小方格共有多少个?
1、数一数,下图中共有 条线段。
随堂练习
2、图中有几种角?各有几个?将它们表示出来。(只考虑小于平角的角)
4、如下图,ABCD 是平行四边形,图中的线段分别与 AB,AD 或 BE 平行。图中包 含阴影三角形的平行四边形共有多少个?
全国通用四年级下册数学课件-图形计数问题 (共14 张ppt)
提升思维:
例1.数出图中共有多少条线段。
图形二:如何数角的个数
有多少个角?
有没有更加简单 的方法???
想一想?
1个
3个
1+2=3
6个
1+2+3=6Fra bibliotek2×3÷2 3×4÷2
10个
1+2+3+4=10
5×4÷2
有什么规律:
总结
若由一个点引出n条射线, 则一共可数出n(n-1)÷2个 角。
图形三:如何数三角形的个数
总结
长边上的线段条数×宽边上 的线段条数=长方形的总个 数
图形五:如何数正方形
有多少个正方形?
有没有更加简单 的方法???
数出下图中有几个正方形?
8个 3×2+(3-1)×(2-1)=8个
20个
3×4+(3-1)×(4-1)+(3-2)×(4-2) =20个
40个
5×4+(5-1)×(4-1)+(5-2)×(4-2)+(5-3)× (4-3)=40
THE END famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
。2021年3月15日星期一2021/3/152021/3/152021/3/15 • 15、会当凌绝顶,一览众山小。2021年3月2021/3/152021/3/152021/3/153/15/2021 • 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/3/152021/3/15March 15, 2021
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识链接
不重不漏—— 几何计中的容斥原理
例题六(★★★★)
如图,用9枚钉子钉成水平和竖直间隔都为1的正方阵。用一根 橡 皮筋将3枚不共线的钉子连接起来就形成一个三角形。其中 面积为1的三角形有多少个?
面积为1的三角形共有: 16+8+8=32(个)
知识链接
和面积相关——熟悉公式 利用图形对称性
点击此处添加标题
您的内容打在这里,或者通过复制您的文本 后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本 后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本 后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。
共能套出
个正方形。
共有正方形: 20+6+4=30(个) 答:共能出正方形30个。
知识链接
分类★)
车间里有五台车床同时出现故障,已知第一台到第五台修复时间依 次为18,30,17,25,20分钟,每台车床停产一分钟造成经济损失 5元。现有两名工作效率相同的修理工 ⑴怎样安排才能使得经济损失最少? ⑵怎样安排才能使从开始维修到维修结束历时最短?
例题七(★★★)
图中一共有多少个三角形?
设最小的三角形面积为1份 共16+24+20+8+4=72(个) 答:图中一共有72个三角形。
知识链接
按面积分类 利用图形对称性
知识链接
枚举法——按照大小和位置 对应法——找到对应关系 容斥原理——不重不漏 和面积相关——熟悉公式 利用图形对称性 重点例题:例4,例5,例6
点击此处添加标题
您的内容打在这里,或者通过复制您的文本 后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。 您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
目录
01
单击添加标题
02
单击添加标题
03
单击添加标题
04
单击添加标题
01 点击添加文字
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
几何计数
四年级 第24课
例题一(★★)
下图中可以数出多少个三角形?
由一部分构成的三角形有16个。 由两部分构成的三角形有16个。 由三部分构成的三角形有8个。 共有三角形16+16+8=40(个)
知识链接
小技巧—— 利用图形对称性
例题二(★★★)
如图,木板上钉着20个钉子,形成4行5列的正方形钉阵。那么橡皮筋一
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
以下赠品教育通用模板
前言
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后,在此框中选择粘贴,并选择只保留文字。 在此录入上述图表的综合描述说明。 您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。您的内容打在这 里,或者通过复制您的文本后。
知识链接
化繁为简——对应法
例题四(★★★)
下图中包含★的长方形共有多少个?
★
包含★的长方形有: 2×3×3×4=72(个) 答:包含★的长方形有72个。
知识链接
圈猪法—— 寻找对应关系
例题五(★★★★)
在下图中只包含一个★的长方形有多少个?
★
★
包含★1的长方形有:2×3×3×5=90(个) 包含★2的长方形有:3×4×2×4=96(个) 同时包含两个★的长方形有:2×3×2×4=48(个)
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您的文本后,在此框中选择粘贴,并 选择只保留文字。在此录入上述图表的综合描述说明。
01 点击此处添加标题 02 点击此处添加标题 03 点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此录 入上述图表的综合描述说明。
(2)因为(18+30+17+25+20)÷2=55(分)
知识链接
短时优先 与排队原则
例题三(★★★★)
用橡皮筋可以在6×6的格点阵中套出多少个如图所示的格 点三角形?(三角形可旋转、翻转)
每个2×4的格点阵中有4三角形形。 6×6的格点阵中有2×4的格点阵3×5×2=30(个) 所以共有三角形30×4=120(个) 答:可以套出三角形120个。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。
您的内容打在这里,或者 通过复制您的文本后,在 此框中选择粘贴,并选择 只保留文字。在此录入上 述图表的综合描述说明。