定积分知识总结

合集下载

考研定积分知识点总结

考研定积分知识点总结

一、定积分的定义和性质1. 定积分的概念定积分是微积分学中的重要概念,它是对函数在一个区间上的积分值进行求解的操作。

具体来说,如果函数f(x)在区间[a,b]上是连续的,则我们可以通过定积分的形式来求解函数f(x)在区间[a,b]上的积分值,即∫(a to b) f(x)dx。

这里,∫表示积分符号,a和b分别表示区间的起点和终点,f(x)表示要求解的函数,dx表示积分变量,并代表着在区间[a,b]上x的变化范围。

因此,定积分的求解可以看做是对函数在一个区间上的积分值进行求解的过程。

2. 定积分的性质定积分具有一系列的性质,这些性质在定积分的求解中起着重要的作用。

主要的性质包括线性性、可加性、积性、保号性、保序性等。

具体来说,线性性指的是定积分的线性组合仍然可以进行积分求解;可加性指的是如果一个区间可以分解成若干个子区间,那么对应的积分值也可以进行求和;积性指的是如果一个函数是另一个函数的乘积,那么对应的积分值也可以进行相乘;保号性指的是如果函数在区间上恒大于等于零(小于等于零),那么对应的积分值也恒大于等于零(小于等于零);保序性指的是如果函数在区间上恒大于等于另一个函数(小于等于另一个函数),那么对应的积分值也恒大于等于(小于等于)另一个函数在相同区间上的积分值。

这些性质在定积分的具体求解中是非常有用的,可以帮助我们简化求解的过程,提高计算的效率。

二、定积分的计算1. 定积分的计算方法定积分的计算方法主要包括定积分的定义法、不定积分法、分部积分法、换元积分法和定积分的几何意义。

其中,定积分的定义法是直接根据定积分的定义进行求解;不定积分法是将定积分转化成不定积分,通过求解不定积分再将得到的结果代入原来的定积分式中,从而得到最终的定积分值;分部积分法是将被积函数进行分解,然后利用分部积分公式对各项进行积分求解;换元积分法是通过变量代换的方法将被积函数进行转化,然后再进行积分求解;定积分的几何意义则是利用定积分代表曲线下面积的特性来进行求解。

定积分知识点总结数学

定积分知识点总结数学

定积分知识点总结数学一、定积分的定义1. 定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分进行定义的一种方法。

定积分可以表示函数在一个区间上的“累积效果”,即函数在该区间上的总体积或总面积。

2. 定积分的符号表示定积分可以用符号∫ 来表示,即∫f(x)dx,其中f(x)是要积分的函数,dx表示自变量x的微元。

3. 定积分的定义设函数f(x)在区间[a, b]上连续,将区间[a, b]等分成n个小区间,每个小区间的长度为Δx,取每个小区间上任意一点ξi,计算出函数在每个小区间上的面积,然后将所有小区间上的面积相加,得到一个近似值。

当n趋于无穷大时,这个近似值趋于一个确定的值,称为定积分,记作∫a到b f(x)dx。

4. 定积分的几何意义定积分的几何意义是函数f(x)在区间[a, b]上的图像和坐标轴之间的面积,当函数为正值时,定积分表示曲线下面积;当函数为负值时,定积分表示曲线上面积减去曲线下面积。

二、定积分的性质1. 定积分的存在性定积分的存在性是指对于一个函数在一个区间上的定积分是否存在,存在的充分必要条件是函数在该区间上连续。

2. 定积分的线性性定积分具有线性性质,即若f(x)和g(x)在区间[a, b]上可积,c和d为常数,则有∫a到b(c*f(x)+d*g(x))dx=c*∫a到b f(x)dx+d*∫a到b g(x)dx。

3. 定积分的区间可加性若函数f(x)在区间[a, b]、[b, c]上都可积,则有∫a到c f(x)dx=∫a到b f(x)dx+∫b到c f(x)dx。

4. 定积分的不变性对于函数f(x)在区间[a, b]上的定积分,若将区间[a, b]内的点重新排列,定积分的结果不会受到影响。

5. 定积分的估值通过使用上下和左右长方形法、梯形法等方法,可以对定积分进行估值,获得定积分的近似值。

三、定积分的计算1. 定积分的基本计算方法定积分的基本计算方法是使用定积分的定义进行计算,即按照定义对函数在区间内每个小区间上的面积进行求和,并计算出极限值。

定积分知识点总结文字

定积分知识点总结文字

定积分知识点总结文字一、定积分的基本概念定积分是微积分中的一个重要内容,它是对给定区间内函数值的“积分”,通俗地说就是曲线下的面积。

设函数f(x)在闭区间[a, b]上有界,将[a, b]区间分成n份,在第i个区间上任取一点ξi,作出任意形式的ξi对于x的函数值f(ξi),再用第i个小区间长度Δx为宽、f(ξi)为高的长方形来逼近曲线f(x)围成的图形,然后将n个小矩形的面积加在一块,且去极限,即可得到[a, b]上函数f(x)的定积分。

二、定积分的计算方法定积分的计算方法主要有几种:几何法、牛顿-莱布尼茨公式、定积分的分部积分法、定积分的换元积分法、定积分的定积分法、定积分的换限积分法等。

(一) 几何法:如计算函数y = x^2在区间[0, 1]上的定积分,可以通过几何法计算曲线y = x^2和x轴所围成的面积。

首先画出y = x^2曲线和x轴,然后在区间[0, 1]上做垂直于x轴的线段,对于每一个x值,可以得到一个矩形,然后得到所有矩形的面积之和,即为y = x^2在区间[0, 1]上的定积分值。

(二) 牛顿-莱布尼茨公式:若函数f(x)在区间[a, b]上连续,则f(x)在[a, b]间的定积分为该函数的一个不定积分在区间[a, b]上的值。

即如果F(x)是f(x)的一个不定积分,则∫[a, b]f(x)dx = F(b) - F(a)。

(三) 分部积分法:设u = u(x)和v = v(x)是定义在闭区间[a, b]上具有连续导数的函数,令u(x)v'(x)dx =u(x)v(x) - ∫v(x)u'(x)dx,那么∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx。

(四) 换元积分法:设φ(x)是[a, b]上的可导函数,且φ'(x)在[a, b]上连续,f(φ(x))φ'(x)定义在φ[a, b](a ≤ x ≤ b)上,则∫[a, b]f(φ(x))φ'(x)dx = ∫[φ(a), φ(b)]f(u)du。

数学定积分知识总结

数学定积分知识总结

定积分1. 概念: 定积分源自于求曲边梯形的面积, 它的计算形式为:01()lim ()nbk k a k f x dx f x λξ→==∆∑⎰, 结果是一个数值, 其值的大小取决于两个因素(被积函数与积分限).2. 几何意义: 是曲线[](),y f x a b =介于之间与x 轴所围的面积的代数和;3. 经济意义: 若()f x 是某经济量关于x 的变化率(边际问题), 则()ba f x dx ⎰是x 在区间[],ab 中的该经济总量.4. 性质: 本章共列了定积分的八条性质, 其中以下几条在计算定积分中经常用到.(1)()()baabf x dx f x dx =-⎰⎰;(2)[]()()()()b bbaaaf xg x dx f x dx g x dx ±=±⎰⎰⎰;(3)()()bbaakf x dx k f x dx =⎰⎰; (4)()()()bcbaac f x dx f x dx f x dx =+⎰⎰⎰;(5)00()2()aaaf x f x dx f x dx f x -⎧⎪=⎨⎪⎩⎰⎰为奇函数时()()为偶函数时.1.公式: 若()f x 在[],a b 上连续, ()F x 是()f x 的一个原函数, 则()()()baf x dx F b F a =-⎰.2.换元法: 若()f x 在[],a b 连续, ()x t ϕ=在[],c d 上有连续的导数'()t ϕ, 且()t ϕ单调, 则有()()(())'()bdx t acf x dxf t t dt ϕϕϕ=⋅⎰⎰.3. 分部积分法: 若()u x 与()v x 在[],a b 上有连续的导数, 则有()()()()()()bbaabu x dv x u x v x v x du x a =⋅-⎰⎰.1.=⎰__42a π_____; 2. 定积分112121x e dx x⎰ = ___e e -_____;3. 若广义积分2011k dx x +∞=+⎰ , 其中k 为常数,则k = __π2_____;4. 定积分1321sin x xdx -=⎰__0____ ; 5.1211xdx x -=+⎰___0___; 6. 30(sin )xt t dt '=⎰__3sin x x _____ ;7. 广义积分211dx x +∞=⎰__1_____ ; 8. ()bad f x dx dx =⎰ __0______; 9. 设 )(x f 在 [,]a b 上连续,则()()bbaaf x dx f t dt -=⎰⎰ __0_____ ;10. 若函数 )(x f 在 [,]a b 上连续,)(x h 可导,则()()h x ad f t dt dx=⎰_)()]([x h x h f '⋅_____ ;11. 当 =x _0___ 时,⎰-=xt dt te x F 02)( 有极值;12. 设 0()xt f x te dt =⎰ ,则 (0)f ''= __1_______ ;13. 若2kxedx +∞-=⎰ ,则 k = ___21_______ ;14.21(ln )edx x x +∞=⎰_1_______ ; 15. 2131x x e dx -=⎰__0_________ ;二1.arctan xxdx =⎰ ( B )(A)1112-+x(B) 21arctan ln(1)2x x x -+ (C) 1112++x (D) 211x + 2. 下列积分可直接使用牛顿─莱不尼兹公式的有 ( A )(A)53201x dx x +⎰(B)1-⎰ (C)4322(5)xdx x -⎰ (D)11ln eedx x x ⎰ 3. 设 )(x f 为连续函数,则()xaf t dt ⎰为 ( C )(A) ()f t 的一个原函数 (B) ()f t 的所有原函数 (C) )(x f 的一个原函数 (D) )(x f 的所有原函数4.11()()22xf t dt f x =-⎰,且 (0)1f =,则 ()f x = ( A ) (A) 2x e (B)12x e (C) 2x e (D) 212x e 5.1211dx x -=⎰ ( D ) (A) -2 (B) 2 (C) 0 (D) 发散三、1.求下列各函数的导数:(1)211()1xF x dt t =+⎰解:.1111)(212x dt t dx d x F x +=+='⎰ (2)02()cos xF x t tdt =⋅⎰ 求'()F π解:.cos )('.cos cos )cos (cos )(222020202ππππ-===-=-=='⎰⎰⎰F x x tdt t dx d tdt t dx d tdt t dx d x F x x x (3)22()1tx xte F x dt t =+⎰解:⎰⎰⎰⎰⎰+-+=+++=+=x tx t x t x t x x t dt tte dx d dt t te dx d dt t te dt t te dx d dt t te dx d x F 020********)11(1)('222 2223222221)(121)()(122x xe x e x x xe x dx d x e x xx x x +-+=+-⋅+= 2.求下列各极限: (1)203sin limxx tdt x →⎰解:).(3lim 3sin lim )()sin (limsin lim312202203020320上代换倒数第二步用等价无穷===''=→→→→⎰⎰xx x x x tdt xtdt x x xx xx (2)02(2)limxt t x e e dtx-→+-⎰解:.02lim )2()2(lim 22lim )())2((lim)2(lim0002002=-=''-+=-+=''-+=-+-→-→-→-→-→⎰⎰xx x x x x x x x xt t x xt t x e e x e e x e e x dt e e xdte e 3.求下列各定积分:(1)1(1)x dx -⎰10221|)(x x -= (2)120(3)x x dx +⎰103313ln 1|)3(x x+=(3)20cos 2xdx π⎰2021|2sin πx = (4)1310x e dx -⎰=10331103|)(x x e e dx e e =⎰ (5)212x dx -⎰⎰⎰+-=-200122xdx xdx (6)0cos x dx π⎰⎰⎰-=πππ22cos cos 0xdx xdx(7)2adx ⎰a ax x a ax dx x x a a 0221340|)()2(2321+-=+-=⎰(8)21201x dx x +⎰⎰+-=102)111(dx x (9)4⎰ 解:令t =x 2,则d t =2x d x ,当t =0时,x =0;当t =4时,x =2.于是.|))1ln((2)111(2121120202040x x dx x dx x x dt t +-=+-=+=+⎰⎰⎰(10)20ax ⎰解:令x =a sin t ,则d x =a cos t d t ,当x =0时,t =0;当x =a 时,t =2π.于是.|)4sin ()4cos 1(24cos 1)2(sin )2sin ()cos (sin cos sin cos sin sin 16041880402402214242242222202224242424242222πππππππππa a a a a at t dt t dt tdt t dt t a dtt t a tdt t a tdta t a a t a dx x a x =-=-=-=====⋅-⋅=-⎰⎰⎰⎰⎰⎰⎰⎰(11)101dx x+⎰解:令x =t 2,则d x =2t d t ,当x =0时,t =0;当x =1时,t =1.于是).1(2|)arctan (2)111(212211410102102210210π-=-=+-=+=⋅+=+⎰⎰⎰⎰t t dt tdtt t tdt t tdx x x(12)21dx x⎰解:令x =sec t ,则d x =tan t sect t d t ,当x =1时,t =0;当x =2时,t =3π.于是.|)(tan )1(sec tan sec tan sec 1sec 133330121212212ππππt t dt t tdt tdtt tt dx xx -=-==⋅-=-⎰⎰⎰⎰(13)2210x e dx -⎰20122121221|)12(--=-=⎰x x e x d e (14)0cos3xdx π⎰ππ031031|3sin )3(3cos x x xd ==⎰(15)20cos 2xdx π⎰ππ0210)sin (2cos 1x x dx x +=+=⎰ (16)212ln e xdx x+⎰=⎰⎰+=2200ln 2e e dx x x dx x22220221000|)(ln |ln 2)(ln ln 12e e e e x x x xd dx x +=+=⎰⎰. (17)210x xe dx ⎰101221|22x x e dx e ==⎰(18)120x ⎰⎰-=133311dx x.|)1()1()1(110394103331133312321x x d x dx x --=---=-=⎰⎰(19)1201x xe dx e +⎰ .|)arctan()(1110102x x x e de e =+=⎰ (20)12⎰⎰-=2121)(arcsin )(arcsin 2x d x2121|)(arcsin 331-=x四、解答题1.求0()(4)xF x t t dt =-⎰在区间[]1,5-上的最大值与最小值;解:)4()(-='x x x F ,令0)(='x F ,得x =0,x =4.由此可得在),4[]0,(+∞-∞ 上F(x)单调增加,在[0,4]单调减少. 由此可知,在[-1,5]中,F(x)在x =0处取极大值,极大值为F(0)=0;在x =4处取极小值,极小值为F(4)=.|)2()4()4(332402331424-=-=-=-⎰⎰t t dt t t dt t t又F(-1)=.|)2()4()4(371023311240-=-=-=---⎰⎰t t dt t t dt t tF(5)=.|)2()4()4(325502331525-=-=-=-⎰⎰t t dt t t dt t t故在[-1,5]上的最大值为F(0)=0,最小值为F(4)=.332- 2.设20()(1)xf t dt x x =+⎰, 求(0),'(0)f f ;解:两边求导得26)(,23)1(2))1(()(222+='+=++='+=x x f x x x x x x x x f ,故.2)0(,0)0(='=f f。

定积分的知识点总结

定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。

定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。

定积分的符号表示为∫。

对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。

定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。

二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。

这就是定积分的计算方法。

在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。

这就是黎曼和的基本思想。

2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。

对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。

这个面积就是曲线下的面积。

如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。

3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。

在物理学中,可以用定积分来计算物体的质量、质心等物理量。

对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。

其中c1、c2为常数,f1(x)、f2(x)为函数。

定积分的计算知识点总结

定积分的计算知识点总结

定积分的计算知识点总结一、定积分的定义。

1. 概念。

- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。

在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。

当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。

- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。

2. 几何意义。

- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。

- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。

- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。

二、定积分的基本性质。

1. 线性性质。

- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。

2. 区间可加性。

- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。

3. 比较性质。

- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。

- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。

积分知识点总结公式

积分知识点总结公式

积分知识点总结公式一、基本概念1. 定积分定积分是对函数f(x)在区间[a, b]上积分的概念,表示为∫f(x)dx。

它的几何意义是函数f(x)与x轴所围成的面积。

定积分的概念可以表示成:∫f(x)dx = lim[n→∞]∑[i=1]ⁿ f(xᵢ)Δx其中,Δx = (b - a)/n,xᵢ = a + iΔx。

求解定积分通常使用牛顿-莱布尼茨公式:∫[a, b]f(x)dx = F(b) - F(a)其中,F(x)是f(x)的不定积分。

2. 不定积分不定积分是对函数f(x)的积分的概念,表示为∫f(x)dx。

它的几何意义是求解函数f(x)的原函数F(x)。

求解不定积分的常用方法包括换元法、分部积分法、特殊积分法等。

3. 曲线的长、面积、体积通过积分的方法可以求解曲线的长度、曲线围成的面积以及体积。

曲线的长度可以表示成:L = ∫[a, b]√(1 + (dy/dx)²)dx曲线围成的面积可以表示成:S = ∫[a, b]f(x)dx体积可以表示成:V = ∫[a, b]A(x)dx其中A(x)是截面积。

二、常见积分公式1. 基本积分公式基本积分公式包括:∫xⁿdx = (1/(n+1))x^(n+1) + C,其中n≠-1∫eˣdx = eˣ + C∫aˣdx = (1/lna)aˣ + C,其中a>0,a≠1∫sinxdx = -cosx + C∫cosxdx = sinx + C∫sec²xdx = tanx + C∫csc²xdx = -cotx + C∫secxtanxdx = secx + C∫cscxcotxdx = -cscx + C∫1/(1+x²)dx = arctanx + C∫1/√(1-x²)dx = arcsinx + C∫1/(x²+a²)dx = (1/a)arctan(x/a) + C2. 分部积分公式分部积分公式是对两个函数的积分的概念,表示为∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx。

定积分知识点总结等价

定积分知识点总结等价

定积分知识点总结等价在本文中,我们将对定积分的基本概念、性质和求解方法进行总结,希望能够帮助读者更好地理解和运用定积分。

一、定积分的基本概念定积分可以看作是一个区间上面积的度量,它描述了函数在一定区间上的总体变化情况。

在数学上,定积分可以理解为函数在指定区间内的面积或者是曲线的弧长,在物理上可以表示为质量、能量、熵等的总量。

1.1 定积分的定义设f(x)在区间[a, b]上有定义,且[a, b]是有限闭区间,将[a, b]上的分割记作Δ,记Δ的任一分点为x0, x1, ..., xn,对应的区间为[x0, x1], [x1, x2], ..., [xn-1, xn]。

则对应的分割Δ表示为:Δ = {x0, x1, ..., xn}Δ的长度记作δxi = xi - xi-1,假设Δ长度的最大值为δ = max{δxi}。

我们将区间[a, b]分成n个小区间,当n趋于无穷大时,(也就是每个小区间的长度趋于0),则这个过程称为区间[a, b]的分割,也称之为区间[a, b]的划分。

对于函数f(x)在区间[a, b]上的定积分,可以用如下的极限形式定义:∫(a->b)f(x)dx = lim(Δ->0)Σ(i=1->n)f(xi*)δxi其中,xi*是区间[xi-1, xi]上的任意一点。

1.2 定积分的几何意义定积分的几何意义是非常直观的,它表示了曲线与坐标轴以及两条直线之间的面积。

当函数f(x)在区间[a, b]上是非负的时候,定积分表示了曲线y=f(x)与x轴以及直线x=a, x=b之间的面积。

当函数f(x)在区间[a, b]上是有正有负的时候,定积分表示了曲线y=f(x)与x轴之间的面积,其中函数f(x)在区间[a, b]上的正值与负值部分面积互相抵消,最终得到曲线与x轴之间的面积。

1.3 定积分的物理意义在物理上,定积分可以用来描述某一物理量在一定的时间或空间范围内的总量。

例如,对于质量密度为ρ(x)的一根杆在区间[a, b]上的质量总量可以表示为:m = ∫(a->b)ρ(x)dx这里ρ(x)dx表示了杆上长度为dx的小段的质量。

定积分知识点总结[汇编]

定积分知识点总结[汇编]

定积分知识点总结[汇编]一、定积分定义定积分是一种数学概念,它表示函数在一定区间内的面积或体积。

如果将定积分定义为数学公式,则其表示为:∫abf(x)dx其中,a和b是定积分的区间,f(x)是积分被积函数,dx表示积分的自变量。

二、定积分的性质定积分具有以下性质:1. 定积分与区间无关性如果一个函数在a和b两个点之间积分结果相同,则称该函数在这个区间上有定积分。

换句话说,定积分与积分的区间无关。

2. 可积性如果一个函数在一个区间上是有限的,则称该函数是“可积的”。

在这种情况下,函数的积分是一个有限的数。

如果一个函数可积,则它的积分在区间上是可加的。

4. 积分中值定理如果一个函数f在一个区间[a,b]上连续,则在这个区间上有一个c,使得积分的平均值等于函数在这个点的值。

即,其中,c位于[a,b]范围内的某个点。

三、定积分的求解方法1. 不定积分求解定积分对于给定的被积函数f(x),可以通过求解它的不定积分F(x)来解决定积分的问题。

即,这种方法也被称为“牛顿-莱布尼茨公式”。

定积分可以通过几何方法求解。

即将定积分的积分区间分成若干小区间,计算每个小区间与x轴之间的面积,并将这些小区间的面积相加。

通过计算所有小区间的面积,可以得到整个函数曲线与x轴之间的面积。

如果无法使用解析方法求解定积分,则可以使用数值积分法来进行近似计算。

数值积分法基于面积法的原理,通过数值计算来估计定积分的值。

最常见的数值积分法包括梯形法、辛普森法和矩形法等。

定积分在数学和物理科学领域有广泛的应用。

例如:1. 确定函数之间的关系定积分可以用于确定函数之间的关系,例如求出两个函数之间的相关系数、协方差和提高回归模型。

2. 计算物体的体积通过找到物体的外形和切割平面之间的物体的截面积,可以使用定积分来计算物体的体积。

4. 计算电子包络通过使用定积分来计算电子包络的位置和波函数,可以推导出相关的量子力学方程。

高三定积分知识点总结

高三定积分知识点总结

高三定积分知识点总结高三阶段,定积分是数学学科中重要的一部分,掌握定积分的知识点对学生来说至关重要。

在这篇文章中,我将对高三阶段定积分的知识点进行总结和归纳,以便帮助同学们更好地复习和掌握这一部分内容。

一、定积分的概念定积分是微积分的重要概念之一,它可以理解为曲线与坐标轴之间的有界区域的面积。

定积分的基本概念包括定积分的上下限、积分区间的分割以及极限等。

二、定积分的计算方法1. 函数的原函数在计算定积分的过程中,首先需要找到被积函数的原函数,也就是导函数。

通过求导反过来求解原函数,即可得到被积函数的原函数。

2. 定积分的基本计算方法定积分的基本计算方法包括积分的线性性质、定积分的区间可加性、换元积分法等。

这些方法能够简化定积分的计算过程,使得计算更加方便快捷。

3. 特殊函数的定积分计算对于一些特殊函数,如指数函数、对数函数、三角函数等,需要掌握相应的定积分计算公式和技巧,以便能够快速准确地计算出定积分的结果。

三、定积分的应用1. 几何应用定积分在几何中有着广泛的应用。

通过定积分,可以计算曲线和坐标轴之间的面积、曲线的弧长以及曲线的旋转体体积等几何问题。

2. 物理应用定积分在物理学中也有着重要的应用。

例如,通过定积分可以计算物体的质量、质心位置、重心位置以及力学和流体力学中的有关问题。

3. 经济和金融应用定积分在经济学和金融学中也有广泛的应用。

例如,通过定积分可以计算收益曲线下的总收益、消费曲线下的总消费等经济和金融问题。

四、定积分的性质1. 积分的性质定积分具有线性性质、区间可加性、保号性等性质。

这些性质在定积分的计算过程中起到了重要的作用,可以帮助我们更好地理解和运用定积分。

2. 无穷定积分无穷定积分是定积分的一种特殊形式,其中上下限存在无穷大的情况。

掌握无穷定积分的计算方法和性质,可以更好地解决一些复杂的数学问题。

五、定积分的应用举例在高三阶段,定积分的应用举例如下:1. 计算曲线下的面积,如椭圆的面积、抛物线的面积等;2. 计算曲线的弧长,如圆的弧长、正弦曲线的弧长等;3. 计算平面图形的重心位置和质心位置,如矩形的质心位置、三角形的重心位置等;4. 计算物体的质量和质量分布情况,如线密度、面密度和体密度的计算等。

定积分知识总结(总9页)

定积分知识总结(总9页)

定积分知识总结(总9页)1. 定积分的定义定积分是数学中的一个概念,它表示将一个函数沿着一条给定的路径积累起来的总和。

在数学上,定积分是描述函数在一定区间上的面积、体积、虚功等概念的一种工具。

(1)可加性:若f(x)在[a,b]、[b,c]上可积,则:∫(a,c)f(x)dx=∫(a,b)f(x)dx+∫(b,c)f(x)dx∫(a,b)f(x)dx≥03. 函数可积的充分条件Riemann可积的充分条件有:(1)区间[a,b]上f(x)存在上下积分,且上下积分相等;(2)对任意ϵ>0,可找到划分P及加细之后的划分P1,使得S(P1,f)-s(P1,f)<ϵ,其中S(P1,f)表示P1的上和式,s(P1,f)表示P1的下和式。

4. 定积分的计算方法定积分可以通过换元法、分部积分法、牛顿-莱布尼茨公式等数学方法进行计算。

(1)求曲线下面的面积;(2)求曲线绕x轴或y轴旋转的体积;(3)求物理问题中的虚功;(4)求平均值、方差等统计量。

6. 常用定积分公式$\int x^ndx={x^{n+1}}/{n+1}+C$$\int\sin xdx=-\cos x+C$7. 例题(1)计算定积分: $\int_{0}^{\frac{\pi}{2}}\sin xdx$解:$ \int_{0}^{\frac{\pi}{2}}\sin xdx=\left . -\cos x \right |\begin{matrix} 0\\\frac{\pi}{2} \end{matrix} =1$8. 求导与积分的对应关系如果函数f(x)在区间[a,b]上可导,则:$\int_{a}^{b}f'(x)dx = f(b)-f(a)$微积分是数学的一个分支,其中包括微分和积分两个部分。

微积分对象是函数的导数和原函数。

定积分是微积分中的积分部分,用于计算函数在一定区间内的积累量。

因此,微积分中的求导和积分是密不可分的,两者相辅相成,是微积分学中的核心概念。

定积分求解知识点总结

定积分求解知识点总结

定积分求解知识点总结一、定积分的引入1. 定积分的概念:在数学中,定积分是微积分的一个重要概念,它是函数在一个区间上的“累积总和”。

定积分通常表示为∫abf(x)dx,其中a、b为区间端点,f(x)为被积函数,dx表示自变量的微小变化量。

2. 定积分的引入:定积分最初是由数学家魏尔斯特拉斯引入的,它在物理学、经济学、工程学等领域都有广泛的应用。

3. 定积分的几何意义:定积分也可以理解为曲线与坐标轴之间的“面积”,这是由牛顿和莱布尼兹最初提出的。

它可以用来描述曲线下方的面积、弧长、旋转体的体积等几何量。

4. 定积分的物理学意义:在物理学中,定积分通常表示为对时间、空间或其他物理量的积分,可以用来求解速度、加速度、质量、能量等物理量。

二、定积分的计算方法1. 定积分的求解:定积分的求解通常需要用到数学中的积分技巧,如不定积分、换元积分、分部积分、积分表等。

2. 定积分的区间划分:对于一些复杂函数,可以通过区间划分来简化定积分的计算,将积分区间等分为若干小区间,然后对各小区间进行求和,再求出极限值即可得到定积分的值。

3. 定积分的数值计算:对于一些无法用解析方法求解的定积分,可以通过数值积分方法,如梯形法、辛普森法、龙贝格积分法等来近似计算定积分的值。

4. 定积分的工程应用:在工程学中,定积分经常用来计算曲线下的面积、求解旋转体的体积、计算弹簧的弹性势能等。

三、定积分的性质1. 定积分的线性性质:对于任意函数f(x)和g(x),定积分具有线性性质,即∫ab[f(x) +g(x)]dx = ∫abf(x)dx + ∫abg(x)dx。

2. 定积分的区间可加性:如果a < c < b,那么∫abf(x)dx = ∫acf(x)dx + ∫cbf(x)dx。

3. 定积分的保号性:如果在[a, b]区间上f(x)≥0,则∫abf(x)dx≥0;如果f(x)在[a, b]区间上非负,则∫abf(x)dx = 0。

高数定积分知识点总结

高数定积分知识点总结

高数定积分知识点总结一、定积分的定义定积分是微积分中的一个重要概念,它是对一个函数在一个区间上的积分结果进行计算的过程。

在数学上,定积分是用来计算曲线下面的面积或者函数在某一区间上的平均值的方法。

定积分可以写成以下形式:\[ \int_{a}^{b} f(x)dx \]其中,\( f(x) \)是被积函数,\( a \)和\( b \)是积分区间的端点。

定积分的计算过程就是求解被积函数在给定区间上的曲线下面的面积。

定积分在物理学、工程学和经济学等领域都有着广泛的应用,是微积分中不可或缺的重要工具。

二、定积分的性质1. 定积分的可加性如果函数\( f(x) \)在区间\([a, b]\)上是可积的,那么对于任意的\( c \)满足\( a \leq c \leq b \),都有:\[ \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \]这个性质表明了定积分的可加性,即在一个区间上进行积分的结果可以根据任意划分点\( c \)进行分割。

2. 定积分的线性性对于任意的实数\( \alpha, \beta \)和函数\( f(x), g(x) \),如果\( f(x), g(x) \)在区间\([a, b]\)上是可积的,那么有:\[ \int_{a}^{b} (\alpha f(x) + \beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx \]这个性质表明了定积分的线性性,即在一个区间上进行线性组合的函数的积分等于线性组合的函数的积分的线性组合。

3. 定积分的保号性如果在区间\([a, b]\)上有\( f(x) \geq 0 \),那么有:\[ \int_{a}^{b} f(x)dx \geq 0 \]这个性质表明了定积分的保号性,即当被积函数在一个区间上非负时,其积分结果也是非负的。

定积分计算知识点总结

定积分计算知识点总结

定积分计算知识点总结一、定积分的概念1.1 定积分的定义定积分是在微积分学中给定一个连续函数$f(x)$,对它在区间$[a, b]$上的积分值的确定。

具体地,定积分可以定义为:$$\int_{a}^{b} f(x) dx = \lim _{n \rightarrow \infty} \sum _{i=1}^{n} f(x_{i}^{*})\Delta x $$其中,$\Delta x = (b-a)/n$,$x_i^* \in [x_{i-1}, x_i]$。

1.2 定积分的几何意义定积分的几何意义是函数$y=f(x)$在区间$[a, b]$上的曲边梯形的面积,可以用积分来表示。

当积分区间的$[a, b]$上的函数是非负值函数时,它的定积分可以表示该函数与$x$轴所夹的曲边梯形的面积。

1.3 定积分的基本性质① 定积分与积分区间的顺序无关,即$\int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx$。

② 定积分的线性性:$\int_{a}^{b}(\alpha f(x)+\beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx$。

③ 定积分的加法性:$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$。

1.4 定积分的计算方法定积分的计算方法主要包括:几何意义法、切割法、定积分的性质、换元积分法、分部积分法等。

这些方法在不同的情况下都有其适用范围,学习者需要根据具体问题进行选择和灵活运用。

二、定积分的计算2.1 几何意义法几何意义法是通过将定积分代表的曲边梯形进行适当的分割和逼近,最终得到定积分的值。

这种方法适用于简单的函数和几何形状,容易理解和操作。

2.2 切割法切割法是将定积分的积分区间进行适当的分割,然后对每个小区间内的函数求积分,最后将所得的和加起来。

定积分知识点汇总

定积分知识点汇总

定积分知识点汇总定积分是微积分中的一个重要概念,它在数学、物理、工程等领域都有着广泛的应用。

下面就来对定积分的相关知识点进行一个全面的汇总。

一、定积分的定义如果函数\(f(x)\)在区间\(a,b\)上连续,用分点\(a =x_0 < x_1 < x_2 <\cdots < x_n = b\)将区间\(a,b\)等分成\(n\)个小区间,在每个小区间\(x_{i 1}, x_i\)上取一点\(\xi_i\)(\(i = 1, 2, \cdots, n\)),作和式\(\sum_{i = 1}^n f(\xi_i) \Delta x\)(其中\(\Delta x =\dfrac{b a}{n}\))。

当\(n\)无限趋近于正无穷大时,上述和式无限趋近于某个常数,这个常数叫做函数\(f(x)\)在区间\(a,b\)上的定积分,记作\(\int_{a}^{b} f(x)dx\)。

二、定积分的几何意义1、当函数\(f(x)\)在区间\(a,b\)上恒为正时,定积分\(\int_{a}^{b} f(x)dx\)表示由曲线\(y = f(x)\),直线\(x = a\),\(x = b\)和\(x\)轴所围成的曲边梯形的面积。

2、当函数\(f(x)\)在区间\(a,b\)上恒为负时,定积分\(\int_{a}^{b} f(x)dx\)的值为上述曲边梯形面积的相反数。

3、当函数\(f(x)\)在区间\(a,b\)上有正有负时,定积分\(\int_{a}^{b} f(x)dx\)表示曲线\(y = f(x)\)在\(x\)轴上方部分与\(x\)轴所围成的面积减去曲线\(y = f(x)\)在\(x\)轴下方部分与\(x\)轴所围成的面积。

三、定积分的性质1、\(\int_{a}^{a} f(x)dx = 0\)2、\(\int_{a}^{b} f(x)dx =\int_{b}^{a} f(x)dx\)3、\(\int_{a}^{b} f(x) ± g(x)dx =\int_{a}^{b} f(x)dx ±\int_{a}^{b} g(x)dx\)4、\(\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx\)(其中\(k\)为常数)四、定积分的计算1、牛顿莱布尼茨公式如果函数\(F(x)\)是连续函数\(f(x)\)在区间\(a,b\)上的一个原函数,那么\(\int_{a}^{b} f(x)dx = F(b) F(a)\)。

定积分知识点总结

定积分知识点总结

定积分知识点总结一、定积分的概念定积分是微积分中的一个重要概念,它是求解曲线下面积的一种方法。

当我们要计算一个曲线在两个点之间的面积时,可以使用定积分来求解。

定积分通常由一个区间上的函数来定义,它表示这个函数在这个区间上的面积。

二、定积分的符号表示定积分通常用符号∫关于x代表积分,下限和上限之间的函数表示要积分的函数,dx表示积分变量。

即∫ab f(x)dx表示在区间[a, b]上的函数f(x)的定积分。

三、定积分的性质1. 线性性质:若f(x)和g(x)是[a, b]上的可积函数,k1和k2是常数,则有∫ab(k1f(x)+k2g(x))dx=k1∫abf(x)dx+k2∫abg(x)dx。

2. 区间可加性:若f(x)在[a, b]和[b, c]上都可积,则有∫ac f(x)dx=∫ab f(x)dx+∫bc f(x)dx。

3. 积分的保号性:若在[a, b]上有f(x)≥0,则∫ab f(x)dx≥0。

4. 积分的单调性:若在[a, b]上有f(x)≥g(x),则∫ab f(x)dx≥∫ab g(x)dx。

五、定积分的计算方法1. 几何法:通过几何图形的面积来计算定积分,通常使用在能够用几何图形表示的函数上,例如多项式函数。

2. 积分表法:通过积分表中的已知积分公式,来计算定积分,通常用于一些常见函数。

3. 定积分的换元积分法:通过变量替换的方法来进行定积分的计算,通常适用于需要进行一定变量替换后才能计算的函数。

4. 定积分的分部积分法:通过分部积分的方法来进行定积分的计算,通常适用于需要进行一定的分部积分后才能计算的函数。

六、定积分的应用定积分在数学和物理学中有着极其重要的应用,例如计算曲线下面积、求解函数的平均值、求解体积、求解质量、质心和弧长等。

在数学中,定积分是微积分的基础,它还被广泛应用于概率统计、微分方程、傅立叶变换等领域。

在物理学中,定积分被用来求解各种场和力的功、能量、质心等问题。

大一高数知识点总结定积分

大一高数知识点总结定积分

大一高数知识点总结定积分大一高数知识点总结:定积分一、基本概念大一高数中,我们学习了很多数学知识,其中涉及到的一个重要概念就是定积分。

定积分是微积分中的重要内容,它可以用于计算曲线下面的面积、求解长度、质量等实际问题。

二、定积分的定义定积分的定义是通过给定一个函数和积分区间,求该函数在该区间上的面积。

具体来说,对于函数f(x)在区间[a, b]上求定积分,可以将该区间分割成无数个小的纵向矩形,并计算这些矩形的面积之和。

当这些小的矩形的宽度趋近于零时,定积分的定义就可以表示为:∫(a到b) f(x)dx = lim(Δx→0) Σ(f(xi)Δx)其中,f(xi)表示在每个小矩形的高度,Δx表示每个小矩形的宽度。

三、定积分的性质1. 定积分的线性性质:对于任意的函数f(x)和g(x),以及标量c,有:∫(a到b) [cf(x) + g(x)] dx = c∫(a到b) f(x) dx + ∫(a到b) g(x) dx2. 定积分的加减性质:对于给定的函数f(x)和区间[a, b],以及一个中间点c,有:∫(a到b) f(x) dx = ∫(a到c) f(x) dx + ∫(c到b) f(x) dx3. 定积分和反函数的关系:对于给定的函数f(x)和区间[a, b],如果存在反函数g(x),则有:∫(a到b) f(x) dx = ∫(f(a)到f(b)) g(x) dx四、定积分的计算方法1. 几何意义:定积分可以通过几何图形的面积来计算,例如计算曲线y=f(x)与x轴所围成的面积。

2. 基本积分公式:根据不同函数的特性,可以使用基本积分公式来计算定积分。

例如,对于多项式函数和三角函数,可以通过基本积分公式进行计算。

3. 换元法:对于某些复杂的函数,可以通过换元法将其转化为简单的函数形式,再进行定积分的计算。

4. 分部积分法:对于某些函数乘积的定积分,可以利用分部积分法进行化简,从而进行计算。

五、定积分的应用定积分在实际生活中有着广泛的应用。

定积分知识复习总结

定积分知识复习总结

定积分知识总结一、基本概念和性质(1)定义[]()[]())()(lim )()()(,,,,0max ...,)()(lim lim )(11111111011-=∞→-=----∞→∞→=∞→-⋅-⋅=-⋅≈=→-∞→==-⋅=⋅∑∑∑∑⎰i i ni i n i i ni i i i i i i i i i i i i i i i i n i nn i n ni iban x x f x x f S x x f S I S I S I x x I x x n b x x x a n b a x x f S dx x f ξξξξξ④求极限:即③求和:,上任取一点在上用矩形代替在上的代数面积为在②记时,要求当<<<个小区间,区间分成①把的定义:[]dxx g dx x f dx x g x f ab babababa⋅⋅+⋅⋅=⋅⋅+⋅-=⎰⎰⎰⎰)()()()(12βαβα②线性运算性质:①)定积分的性质()()()(=⋅⋅-=⋅⎰⎰⎰aaabba dx x f dxx f dx x f()))(定要求的区间可积即可,不一其中,包含③区间的可加性:b a c c b a dxx f dx x f dx x f bccaba,,,()()()(∈⋅+⋅=⋅⎰⎰⎰[][][][]⎰⎰⎰⎰⎰⎰⋅⋅≥≡=⋅≥⋅≥⋅≥≥⋅≥babababab abadxx g dx x f x g x f x g x f b a x g x f x f x f dx x f x f x f b a x f dxx g dx x f x g x f b a x g x f dx x f x f b a x f )()(),()(),()(,)(),(0:0)(00:0)(0)(0)(0)(,)()()(),()(,)()(0)(0)(,)(>则:不恒等于且上连续,在区间推论:若区间上都等于则是指在整个;,也可能整个区间均为可能个别点上等于>,则不恒等于,上连续,在⑥若则上可积且在,⑤若,则上可积且在④ [][][][][])()()(,,)()()()(,)(,)()()(,)(a b f dx x f b a b a x f a b M dx x f a b m M m b a x M x f m b a x f dxx f dx x f b a x f bababa ba-⋅=⋅∈-≤⋅≤-∈≤≤⋅≤⋅⎰⎰⎰⎰ξξ,使得:点上连续,则至少存在一在闭区间若⑨(积分中值定理)均为常数,则:,,,上可积,在⑧若上可积,则在⑦若二、微积分基本公式1、积分上限函数及其导数定义:设函数)(x f 在区间],[b a 上连续,对于任意],[b a x ∈,)(x f 在区间],[x a 上也连续,所以函数)(x f 在],[x a 上也可积.显然对于],[b a 上的每一个x 的取值,都有唯一对应的定积分⎰xadt t f )(和x 对应,因此⎰xadt t f )(是定义在],[b a 上的函数.记为⎰=Φxadt t f x )()(,],[b a x ∈.称)(x Φ叫做变上限定积分,有时又称为变上限积分函数.定理1:如果函数)(x f 在区间],[b a 上连续,则⎰=Φxadt t f x )()(在],[b a 上可导,且)()()()(b x a x f dt t f dxd x xa ≤≤==Φ'⎰定理2、3:如果)(x f 在区间],[b a 上连续,则它的原函数一定存在,且其中的一个原函数为⎰=Φxadt t f x )()(.2、牛顿——莱布尼茨公式定理4(微积分基本公式)如果函数)(x f 在区间],[b a 上连续,且)(x F 是)(x f 的任意一个原函数,那么⎰-=b aa Fb F dx x f )()()(.证 由定理5.2知,⎰=Φx adt t f x )()(是)(x f 在区间],[b a 的一个原函数,则)(x Φ与)(x F 相差一个常数C ,即C x F dt t f x a+=⎰)()(.又因为C a F dt t f a a+==⎰)()(0,所以)(a F C -=.于是有)()()(a F x F dt t f x a -=⎰.所以 ⎰-=baa Fb F dx x f )()()(成立.为方便起见,通常把)()(a F b F -简记为ba x F )(或b a x F )]([,所以公式可改写为)()()()(a F b F x F dx x f b a b a-==⎰三、定积分的积分法1、定积分的换元积分法定理1设函数)(x f 在区间],[b a 上连续,并且满足下列条件:(1))(t x ϕ=,且)(αϕ=a ,)(βϕ=b ;(2))(t ϕ在区间],[βα上单调且有连续的导数)(t ϕ';(3)当t 从α变到β时,)(t ϕ从a 单调地变到b . 则有⎰⎰'=b adt t t f dx x f βαϕϕ)()]([)(上述公式称为定积分的换元积分公式.在应用该公式计算定积分时需要注意以下两点:①从左到右应用公式,相当于不定积分的第二换元法.计算时,用 把原积分变量 换成新变量 ,积分限也必须由原来的积分限 和 相应地换为新变量 的积分限 和 ,而不必代回原来的变量 ,这与不定积分的第二换元法是完全不同的.②从右到左应用公式,相当于不定积分的第一换元法(即凑微分法).一般不用设出新的积分变量,这时,原积分的上、下限不需改变,只要求出被积函数的一个原函数,就可以直接应用牛顿—莱布尼兹公式求出定积分的值. 2、定积分的分部积分法设函数)(x u u =和)(x v v =在区间],[b a 上有连续的导数,则有)()()]()([)()(x du x v x v x u x dv x u bab ab a⎰⎰-=.上述公式称为定积分的分部积分公式.选取)(x u 的方式、方法与不定积分的分部积分法完全一样.四、定积分的应用1、定积分应用的微元法为了说明定积分的微元法,我们先回顾求曲边梯形面积A 的方法和步骤: (1)将区间],[b a 分成n 个小区间,相应得到n 个小曲边梯形,小曲边梯形的面积记为i A ∆),2,1(n i =;(2)计算i A ∆的近似值,即i i i x f A ∆≈∆)(ξ(其中],[,11i i i i i i x x x x x --∈-=∆ξ); (3)求和得A 的近似值,即i ni i x f A ∆≈∑=1)(ξ;(4)对和取极限得⎰∑=∆==→bai ni i dx x f x f A )()(lim 1ξλ.下面对上述四个步骤进行具体分析:第(1)步指明了所求量(面积A )具有的特性:即A 在区间],[b a 上具有可分割性和可加性.第(2)步是关键,这一步确定的i i i x f A ∆≈∆)(ξ是被积表达式dx x f )(的雏形.这可以从以下过程来理解:由于分割的任意性,在实际应用中,为了简便起见,对i i i x f A ∆≈∆)(ξ省略下标,得x f A ∆≈∆)(ξ,用],[dx x x +表示],[b a 内的任一小区间,并取小区间的左端点x 为ξ,则A ∆的近似值就是以dx 为底,)(x f 为高的小矩形的面积(如图5.7 阴影部分),即dx x f A )(≈∆.通常称dx x f )(为面积元素,记为dx x f dA )(=.将(3),(4)两步合并,即将这些面积元素在],[b a 上“无限累加”,就得到面积A .即⎰=ba dx x f A )(.一般说来,用定积分解决实际问题时,通常按以下步骤来进行: (1)确定积分变量x ,并求出相应的积分区间],[b a ;(2)在区间],[b a 上任取一个小区间],[dx x x +,并在小区间上找出所求量F 的微元dx x f dF )(=;(3)写出所求量F 的积分表达式⎰=ba dx x f F )(,然后计算它的值.利用定积分按上述步骤解决实际问题的方法叫做定积分的微元法. 注 能够用微元法求出结果的量F 一般应满足以下两个条件: ①F 是与变量x 的变化范围],[b a 有关的量;②F 对于],[b a 具有可加性,即如果把区间],[b a 分成若干个部分区间,则F 相应地分成若干个分量.2、定积分求平面图形的面积(1)直角坐标系下面积的计算(1)由曲线)(x f y =和直线0,,===y b x a x 所围成曲边梯形的面积的求法前面已经介绍,此处不再叙述.(2)求由两条曲线)(),(x g y x f y ==,))()((x g x f ≥及直线b x a x ==,所围成平面的面积A (如图5.8所示).下面用微元法求面积A . ①取x 为积分变量,],[b a x ∈.②在区间],[b a 上任取一小区间],[dx x x +,该区间上小曲边梯形的面积dA 可以用高)()(x g x f -,底边为dx 的小矩形的面积近似代替,从而得面积元素dx x g x f dA )]()([-=. ③写出积分表达式,即⎰-=badx x g x f A )]()([.⑶求由两条曲线)(),(y x y x ϕψ==,))()((y y ϕψ≤及直线d y c y ==,所围成平面图形(如图5.9)的面积. 这里取y 为积分变量,],[d c y ∈, 用类似 (2)的方法可以推出:⎰-=dcdy y y A )]()([ψϕ.(2)极坐标系下面积的计算设曲边扇形由极坐标方程)(θρρ=与射线)(,βαβθαθ<==所围成(如图5.13所示).下面用微元法求它的面积A.以极角θ为积分变量,它的变化区间是],[βα,相应的小曲边扇形的面积近似等于半径为)(θρ,中心角为θd 的圆扇形的面积,从而得面积微元为θθρd dA 2)]([21=于是,所求曲边扇形的面积为 ⎰=βαθθρd A 2)]([21.3.定积分求体积 (1)旋转体的体积旋转体是一个平面图形绕这平面内的一条直线旋转而成的立体.这条直线叫做旋转轴.设旋转体是由连续曲线)0)()((≥=x f x f y 和直线b x a x ==,及x 轴所围成的曲边梯形绕x 轴旋转一周而成(如图5.15).取x 为积分变量,它的变化区间为],[b a ,在],[b a 上任取一小区间],[dx x x +,相应薄片的体积近似于以)(x f 为底面圆半径,dx 为高的小圆柱体的体积,从而得到体积元素为dx x f dV 2)]([π=,于是,所求旋转体体积为dx x f V bax ⎰=2)]([π.(2)平行截面面积为已知的立体体积设一物体被垂直于某直线的平面所截的面积可求,则该物体可用定积分求其体积.不妨设直线为x 轴,则在x 处的截面面积)(x A 是x 的已知连续函数,求该物体介于a x =和)(b a b x <=之间的体积(如图5.19).取x 为积分变量,它的变化区间为],[b a ,在微小区间],[dx x x +上)(x A 近似不变,即把],[dx x x +上的立体薄片近似看作)(x A 为底,dx 为高的柱片,从而得 到体积元素dx x A dV )(=.于是该物体的体积为⎰=badx x A V )(.类似地,由曲线)(y x ϕ=和直线d y c y ==,及y 轴所围成的曲边梯形绕y 轴旋转一周而成(如图5.16),所得旋转体的体积为dy y V dcy ⎰=2)]([ϕπ.。

定积分知识点

定积分知识点

定积分知识点定积分是微积分中非常重要的概念之一。

它在实际问题的建模和求解中起着至关重要的作用。

本文将介绍定积分的基本定义、性质以及一些常见的应用。

1. 定积分的基本定义定积分是函数积分学的重要概念,它可以将函数的定义域上的函数值从一个点到另一个点的累加。

设函数f(x)在闭区间[a, b]上有定义,将[a, b]分成n个小区间,其中第i个小区间的长度为Δx_i,选择每个小区间中任意一点ξ_i,称为取样点。

则定义Δx_i乘以f(ξ_i)的和对应的极限值,当区间的个数趋向于无穷大时,即Δx_i趋于0,就得到了函数f(x)在闭区间[a, b]上的定积分。

定积分的数值即为积分的结果。

2. 定积分的性质定积分具有一些重要的性质,下面我们简要介绍其中的几个。

2.1 可加性设函数f(x)在区间[a, b]上可积,如果将该区间分成两个子区间[a, c]和[c, b],则有定积分的可加性质,即∫[a, c]f(x)dx + ∫[c, b]f(x)dx = ∫[a, b]f(x)dx。

这个性质可以推广到多个子区间的情况。

2.2 线性性质定积分还具有线性性质。

即对于任意的实数k、l,函数f(x)和g(x)在区间[a, b]上可积,则有∫[a, b](k*f(x) + l*g(x))dx = k * ∫[a,b]f(x)dx + l * ∫[a, b]g(x)dx。

2.3 积分中值定理如果函数f(x)在闭区间[a, b]上连续,则存在一个点ξ∈[a, b],使得∫[a, b]f(x)dx = f(ξ) * (b - a)。

这个定理说明了定积分与函数在区间上的平均值的关系。

3. 定积分的应用定积分在各个领域都有广泛的应用。

下面我们介绍一些常见的应用。

3.1 几何应用通过定积分可以计算曲线与坐标轴所围的区域面积。

例如,如果给定函数f(x),在区间[a, b]上,可以通过定积分∫[a, b]f(x)dx来计算曲线y=f(x)与x轴之间的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分知识总结一、基本概念和性质(1)定义[]()[]())()(lim )()()(,,,,0max ...,)()(limlim )(11111111011-=∞→-=----∞→∞→=∞→-⋅-⋅=-⋅≈=→-∞→==-⋅=⋅∑∑∑∑⎰i i ni i n i i ni i i i i i i i i i i i i i i i i n i nn in ni iban x x f x x f S x x f S I S I S I x x I x x n b x x x a n b a xx f S dx x f ξξξξξ④求极限:即③求和:,上任取一点在上用矩形代替在上的代数面积为在②记时,要求当<<<个小区间,区间分成①把的定义:[]dxx g dx x f dx x g x f ab babababa⋅⋅+⋅⋅=⋅⋅+⋅-=⎰⎰⎰⎰)()()()(12βαβα②线性运算性质:①)定积分的性质()()()(=⋅⋅-=⋅⎰⎰⎰aaabb a dx x f dxx f dx x f()))(定要求的区间可积即可,不一其中,包含③区间的可加性:b a c c b a dxx f dx x f dx x f bccaba,,,()()()(∈⋅+⋅=⋅⎰⎰⎰[][][][]⎰⎰⎰⎰⎰⎰⋅⋅≥≡=⋅≥⋅≥⋅≥≥⋅≥babababab abadxx g dx x f x g x f x g x f b a x g x f x f x f dx x f x f x f b a x f dxx g dx x f x g x f b a x g x f dx x f x f b a x f )()(),()(),()(,)(),(0:0)(00:0)(0)(0)(0)(,)()()(),()(,)()(0)(0)(,)(>则:不恒等于且上连续,在区间推论:若区间上都等于则是指在整个;,也可能整个区间均为可能个别点上等于>,则不恒等于,上连续,在⑥若则上可积且在,⑤若,则上可积且在④ [][][][][])()()(,,)()()()(,)(,)()()(,)(a b f dx x f b a b a x f a b M dx x f a b m M m b a x M x f m b a x f dxx f dx x f b a x f bababa ba-⋅=⋅∈-≤⋅≤-∈≤≤⋅≤⋅⎰⎰⎰⎰ξξ,使得:点上连续,则至少存在一在闭区间若⑨(积分中值定理)均为常数,则:,,,上可积,在⑧若上可积,则在⑦若二、微积分基本公式1、积分上限函数及其导数定义:设函数)(x f 在区间],[b a 上连续,对于任意],[b a x ∈,)(x f 在区间],[x a 上也连续,所以函数)(x f 在],[x a 上也可积.显然对于],[b a 上的每一个x 的取值,都有唯一对应的定积分⎰xadt t f )(和x 对应,因此⎰xadt t f )(是定义在],[b a 上的函数.记为⎰=Φxadt t f x )()(,],[b a x ∈.称)(x Φ叫做变上限定积分,有时又称为变上限积分函数.定理1:如果函数)(x f 在区间],[b a 上连续,则⎰=Φxadt t f x )()(在],[b a 上可导,且)()()()(b x a x f dt t f dx d x xa≤≤==Φ'⎰定理2、3:如果)(x f 在区间],[b a 上连续,则它的原函数一定存在,且其中的一个原函数为⎰=Φxadt t f x )()(.2、牛顿——莱布尼茨公式定理4(微积分基本公式)如果函数)(x f 在区间],[b a 上连续,且)(x F 是)(x f 的任意一个原函数,那么⎰-=b aa Fb F dx x f )()()(.证 由定理5.2知,⎰=Φx adt t f x )()(是)(x f 在区间],[b a 的一个原函数,则)(x Φ与)(x F 相差一个常数C ,即C x F dt t f x a+=⎰)()(.又因为C a F dt t f a a+==⎰)()(0,所以)(a F C -=.于是有)()()(a F x F dt t f x a-=⎰.所以⎰-=b aa Fb F dx x f )()()(成立.为方便起见,通常把)()(a F b F -简记为ba x F )(或b a x F )]([,所以公式可改写为)()()()(a F b F x F dx x f b a b a-==⎰三、定积分的积分法1、定积分的换元积分法定理1设函数)(x f 在区间],[b a 上连续,并且满足下列条件:(1))(t x ϕ=,且)(αϕ=a ,)(βϕ=b ;(2))(t ϕ在区间],[βα上单调且有连续的导数)(t ϕ'; (3)当t 从α变到β时,)(t ϕ从a 单调地变到b . 则有⎰⎰'=b adt t t f dx x f βαϕϕ)()]([)(上述公式称为定积分的换元积分公式.在应用该公式计算定积分时需要注意以下两点:①从左到右应用公式,相当于不定积分的第二换元法.计算时,用 把原积分变量 换成新变量 ,积分限也必须由原来的积分限 和 相应地换为新变量 的积分限 和 ,而不必代回原来的变量 ,这与不定积分的第二换元法是完全不同的.②从右到左应用公式,相当于不定积分的第一换元法(即凑微分法).一般不用设出新的积分变量,这时,原积分的上、下限不需改变,只要求出被积函数的一个原函数,就可以直接应用牛顿—莱布尼兹公式求出定积分的值. 2、定积分的分部积分法设函数)(x u u =和)(x v v =在区间],[b a 上有连续的导数,则有)()()]()([)()(x du x v x v x u x dv x u bab ab a ⎰⎰-=.上述公式称为定积分的分部积分公式.选取)(x u 的方式、方法与不定积分的分部积分法完全一样.四、定积分的应用1、定积分应用的微元法为了说明定积分的微元法,我们先回顾求曲边梯形面积A 的方法和步骤:(1)将区间],[b a 分成n 个小区间,相应得到n 个小曲边梯形,小曲边梯形的面积记为i A ∆),2,1(n i Λ=;(2)计算i A ∆的近似值,即i i i x f A ∆≈∆)(ξ(其中],[,11i i i i i i x x x x x --∈-=∆ξ); (3)求和得A 的近似值,即i ni i x f A ∆≈∑=1)(ξ;(4)对和取极限得⎰∑=∆==→bai ni i dx x f x f A )()(lim 1ξλ.下面对上述四个步骤进行具体分析:第(1)步指明了所求量(面积A )具有的特性:即A 在区间],[b a 上具有可分割性和可加性.第(2)步是关键,这一步确定的i i i x f A ∆≈∆)(ξ是被积表达式dx x f )(的雏形.这可以从以下过程来理解:由于分割的任意性,在实际应用中,为了简便起见,对i i i x f A ∆≈∆)(ξ省略下标,得x f A ∆≈∆)(ξ,用],[dx x x +表示],[b a 内的任一小区间,并取小区间的左端点x 为ξ,则A ∆的近似值就是以dx 为底,)(x f 为高的小矩形的面积(如图5.7阴影部分),即dx x f A )(≈∆.通常称dx x f )(为面积元素,记为dx x f dA )(=.将(3),(4)两步合并,即将这些面积元素在],[b a 上“无限累加”,就得到面积A .即⎰=ba dx x f A )(.一般说来,用定积分解决实际问题时,通常按以下步骤来进行: (1)确定积分变量x ,并求出相应的积分区间],[b a ;(2)在区间],[b a 上任取一个小区间],[dx x x +,并在小区间上找出所求量F 的微元dx x f dF )(=;(3)写出所求量F 的积分表达式⎰=ba dx x f F )(,然后计算它的值.利用定积分按上述步骤解决实际问题的方法叫做定积分的微元法. 注 能够用微元法求出结果的量F 一般应满足以下两个条件: ①F 是与变量x 的变化范围],[b a 有关的量;②F 对于],[b a 具有可加性,即如果把区间],[b a 分成若干个部分区间,则F 相应地分成若干个分量. 2、定积分求平面图形的面积(1)直角坐标系下面积的计算(1)由曲线)(x f y =和直线0,,===y b x a x 所围成曲边梯形的面积的求法前面已经介绍,此处不再叙述.(2)求由两条曲线)(),(x g y x f y ==,))()((x g x f ≥及直线b x a x ==,所围成平面的面积A (如图5.8所示).下面用微元法求面积A . ①取x 为积分变量,],[b a x ∈.②在区间],[b a 上任取一小区间],[dx x x +,该区间上面积小曲边梯形的面积dA 可以用高)()(x g x f -,底边为dx 的小矩形的近似代替,从而得面积元素dx x g x f dA )]()([-=.③写出积分表达式,即⎰-=ba dx x g x f A )]()([.⑶求由两条曲线)(),(y x y x ϕψ==,))()((y y ϕψ≤及直线d y c y ==,所围成平面图形(如图5.9)的面积. 这里取y 为积分变量,],[d c y ∈, 用类似 (2)的方法可以推出:⎰-=dc dy y y A )]()([ψϕ.(2)极坐标系下面积的计算设曲边扇形由极坐标方程)(θρρ=与射线)(,βαβθαθ<==所围成(如图5.13所示).下面用微元法求它的面积A.以极角θ为积分变量,它的变化区间是],[βα,相应的小曲边扇形的面积近似等于半径为)(θρ,中心角为θd 的圆扇形的面积,从而得面积微元为θθρd dA 2)]([21=于是,所求曲边扇形的面积为 ⎰=βαθθρd A 2)]([21.3.定积分求体积 (1)旋转体的体积旋转体是一个平面图形绕这平面内的一条直线旋转而成的立体.这条直线叫做旋转轴.设旋转体是由连续曲线)0)()((≥=x f x f y 和直线b x a x ==,及x 轴所围成的曲边梯形绕x 轴旋转一周而成(如图5.15).取x 为积分变量,它的变化区间为],[b a ,在],[b a 上任取一小区间],[dx x x +,相应薄片的体积近似于以)(x f 为底面圆半径,dx 为高的小圆柱体的体积,从而得到体积元素为dx x f dV 2)]([π=,于是,所求旋转体体积为dx x f V bax ⎰=2)]([π.(2)平行截面面积为已知的立体体积设一物体被垂直于某直线的平面所截的面积可求,则该物体可用定积分求其体积.不妨设直线为x 轴,则在x 处的截面面积)(x A 是x 的已知连续函数,求该物体介于a x =和)(b a b x <=之间的体积(如图5.19).取x 为积分变量,它的变化区间为],[b a ,在微小区间],[dx x x +上)(x A 近似不变,即把],[dx x x +上的立体薄片近似看作)(x A 为底,dx 为高的柱片,从而得到体积元素dx x A dV )(=.于是该物体的体积为⎰=badx x A V )(.类似地,由曲线)(y x ϕ=和直线d y c y ==,及y 轴所围成的曲边梯形绕y 轴旋转一周而成(如图5.16),所得旋转体的体积为dy y V dcy ⎰=2)]([ϕπ.4、平面曲线的弧长5、定积分在物理学上的应用。

相关文档
最新文档