大学物理学(第三版上)课后习题6答案详解

合集下载

大学物理答案(第三版)

大学物理答案(第三版)

习题七气体在平衡态时有何特征?气体的平衡态与力学中的平衡态有何不同?答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化.力学平衡态与热力学平衡态不同.当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡.而个别粒子所受合外力可以不为零.而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零.气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统.是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,再由实验确认的方法.从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高.理想气体的微观模型是把分子看成弹性的自由运动的质点.何谓微观量?何谓宏观量?它们之间有什么联系?答:用来描述个别微观粒子特征的物理量称为微观量.如微观粒子(原子、分子等)的大小、质量、速度、能量等.描述大量微观粒子(分子或原子)的集体的物理量叫宏观量,如实验中观测得到的气体体积、压强、温度、热容量等都是宏观量.气体宏观量是微观量统计平均的结果.2864215024083062041021++++⨯+⨯+⨯+⨯+⨯==∑∑iii NV N V7.2141890== 1s m -⋅ 方均根速率28642150240810620410212232222++++⨯+⨯+⨯+⨯+⨯==∑∑iii NV N V6.25= 1s m -⋅7.7 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度,N 为系统总分子数).(1)v v f d )( (2)v v nf d )( (3)v v Nf d )((4)⎰vv v f 0d )( (5)⎰∞d )(v v f (6)⎰21d )(v v v v Nf解:)(v f :表示一定质量的气体,在温度为T 的平衡态时,分布在速率v 附近单位速率区间的分子数占总分子数的百分比.(1) v v f d )(:表示分布在速率v 附近,速率区间v d 的分子数占总分子数的百分比.(2) v v nf d )(:表示分布在速率v 附近、速率区间dv 的分子数密度. (3) v v Nf d )(:表示分布在速率v 附近、速率区间dv 的分子数.(4)⎰vv v f 0d )(:表示分布在21~v v 区间的分子数占总分子数的百分比.(5)⎰∞d )(v v f :表示分布在∞~0的速率区间所有分子,其与总分子数的比值是1.(6)⎰21d )(v v v v Nf :表示分布在21~v v 区间的分子数.7.8 最概然速率的物理意义是什么?方均根速率、最概然速率和平均速率,它们各有何用处? 答:气体分子速率分布曲线有个极大值,与这个极大值对应的速率叫做气体分子的最概然速率.物理意义是:对所有的相等速率区间而言,在含有P v 的那个速率区间的分子数占总分子数的百分比最大.分布函数的特征用最概然速率P v 表示;讨论分子的平均平动动能用方均根速率,讨论平均自由程用平均速率.7.9 容器中盛有温度为T 的理想气体,试问该气体分子的平均速度是多少?为什么?答:该气体分子的平均速度为0.在平衡态,由于分子不停地与其他分子及容器壁发生碰撞、其速度也不断地发生变化,分子具有各种可能的速度,而每个分子向各个方向运动的概率是相等的,沿各个方向运动的分子数也相同.从统计看气体分子的平均速度是0.7.10 在同一温度下,不同气体分子的平均平动动能相等,就氢分子和氧分子比较,氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子大,对吗? 答:不对,平均平动动能相等是统计平均的结果.分子速率由于不停地发生碰撞而发生变化,分子具有各种可能的速率,因此,一些氢分子的速率比氧分子速率大,也有一些氢分子的速率比氧分子速率小.7.11 如果盛有气体的容器相对某坐标系运动,容器的分子速度相对这坐标系也增大了, 温度也因此而升高吗?答:宏观量温度是一个统计概念,是大量分子无规则热运动的集体表现,是分子平均平动动能的量度,分子热运动是相对质心参照系的,平动动能是系统的动能.温度与系统的整体运动无关.只有当系统的整体运动的动能转变成无规则热运动时,系统温度才会变化.7.12 题7.12图(a)是氢和氧在同一温度下的两条麦克斯韦速率分布曲线,哪一条代表氢?题6-10图(b)是某种气体在不同温度下的两条麦克斯韦速率分布曲线,哪一条的温度较高? 答:图(a)中(1)表示氧,(2)表示氢;图(b)中(2)温度高.题7.12图7.13 温度概念的适用条件是什么?温度微观本质是什么?答:温度是大量分子无规则热运动的集体表现,是一个统计概念,对个别分子无意义.温度微观本质是分子平均平动动能的量度. 7.14 下列系统各有多少个自由度: (1)在一平面上滑动的粒子;(2)可以在一平面上滑动并可围绕垂直于平面的轴转动的硬币; (3)一弯成三角形的金属棒在空间自由运动. 解:(1) 2,(2)3,(3)67.15 试说明下列各量的物理意义. (1)kT 21 (2)kT 23 (3)kT i2(4)RT i M M mol 2 (5)RT i 2 (6)RT 23解:(1)在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为k 21T . (2)在平衡态下,分子平均平动动能均为kT 23. (3)在平衡态下,自由度为i 的分子平均总能量均为kT i2. (4)由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的能为RT iM M 2mol .(5) 1摩尔自由度为i 的分子组成的系统能为RT i2. (6) 1摩尔自由度为3的分子组成的系统的能RT 23,或者说热力学体系,1摩尔分子的平均平动动能之总和为RT 23.7.16 有两种不同的理想气体,同压、同温而体积不等,试问下述各量是否相同?(1)分子数密度;(2)气体质量密度;(3)单位体积气体分子总平动动能;(4)单位体积气体分子的总动能. 解:(1)由kTpn nkT p ==,知分子数密度相同; (2)由RTpM V M mol ==ρ知气体质量密度不同; (3)由kT n23知单位体积气体分子总平动动能相同; (4)由kT in 2知单位体积气体分子的总动能不一定相同.7.17 何谓理想气体的能?为什么理想气体的能是温度的单值函数?解:在不涉及化学反应,核反应,电磁变化的情况下,能是指分子的热运动能量和分子间相互作用势能之总和.对于理想气体不考虑分子间相互作用能量,质量为M 的理想气体的所有分子的热运动能量称为理想气体的能.由于理想气体不计分子间相互作用力,能仅为热运动能量之总和.即RT iM M E 2mol =是温度的单值函数.7.18 如果氢和氦的摩尔数和温度相同,则下列各量是否相等,为什么?(1)分子的平均平动动能;(2)分子的平动动能;(3)能. 解:(1)相等,分子的平均平动动能都为kT 23. (2)不相等,因为氢分子的平均动能kT 25,氦分子的平均动能kT 23. (3)不相等,因为氢分子的能RT 25υ,氦分子的能RT 23υ.7.19 有一水银气压计,当水银柱为0.76m 高时,管顶离水银柱液面0.12m ,管的截面积为2.0×10-4m 2,当有少量氦(He)混入水银管顶部,水银柱高下降为0.6m ,此时温度为27℃,试计算有多少质量氦气在管顶(He 的摩尔质量为0.004kg ·mol -1)?解:由理想气体状态方程RT M MpV mol=得 RTpVM M mol =汞的重度 51033.1⨯=Hg d 3m N -⋅氦气的压强 Hg )60.076.0(d P ⨯-= 氦气的体积 4100.2)60.088.0(-⨯⨯-=V 3m)27273()100.228.0()60.076.0(004.04Hg +⨯⨯⨯⨯-⨯=-R d M )27273(31.8)100.228.0()60.076.0(004.04Hg +⨯⨯⨯⨯⨯-⨯=-d61091.1-⨯=Kg7.20 设有N 个粒子的系统,其速率分布如题7.20图所示.求 (1)分布函数)(v f 的表达式; (2)a 与0v 之间的关系;(3)速度在1.50v 到2.00v 之间的粒子数. (4)粒子的平均速率.(5)0.50v 到10v 区间粒子平均速率.题7.20图解:(1)从图上可得分布函数表达式⎪⎩⎪⎨⎧≥=≤≤=≤≤=)2(0)()2()()0(/)(00000v v v Nf v v v a v Nf v v v av v Nf ⎪⎩⎪⎨⎧≥≤≤≤≤=)2(0)2(/)0(/)(00000v v v v v Na v v Nv av v f )(v f 满足归一化条件,但这里纵坐标是)(v Nf 而不是)(v f 故曲线下的总面积为N ,(2)由归一化条件可得⎰⎰==+000002032d d v v v v Na Nv a N v v avN (3)可通过面积计算N v v a N 31)5.12(00=-=∆(4) N 个粒子平均速率⎰⎰⎰⎰+===∞∞00202d d d )(1d )(v v v v av v v av v v vNf Nv v vf v02020911)2331(1v av av N v =+=(5)05.0v 到01v 区间粒子平均速率⎰⎰==0005.0115.0d d v v v v NNv N N N Nv v ⎰⎰==00005.05.00211d d )(v v v v v Nv av N N v v vf N N2471)243(1d 12103003015.002100av N v av v av N v v av N v v v =-==⎰ 05.0v 到01v 区间粒子数N av v v a a N 4183)5.0)(5.0(210001==-+=9767020v N av v ==7.21 试计算理想气体分子热运动速率的大小介于1100-⋅-p p v v 与1100-⋅+p p v v 之间的分子数占总分子数的百分比. 解:令Pv vu =,则麦克斯韦速率分布函数可表示为 du e u N dN u 224-=π因为1=u ,02.0=∆u由 u e u N N u ∆=∆-224π得 %66.102.0141=⨯⨯⨯=∆-e N N π7.22 容器中储有氧气,其压强为p =0.1 MPa(即1atm)温度为27℃,求(1)单位体积中的分子n ;(2)氧分子的质量m ;(3)气体密度ρ;(4)分子间的平均距离e ;(5)平均速率v ;(6)方均根速率2v ;(7)分子的平均动能ε.解:(1)由气体状态方程nkT p =得242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n 3m - (2)氧分子的质量26230mol 1032.51002.6032.0⨯=⨯==N M m kg (3)由气体状态方程RT M MpV mol=得 13.030031.810013.11.0032.05mol =⨯⨯⨯⨯==RT p M ρ 3m kg -⋅(4)分子间的平均距离可近似计算932431042.71045.211-⨯=⨯==ne m(5)平均速率58.446032.030031.860.160.1mol =⨯≈=M RT v 1s m -⋅ (6) 方均根速率87.48273.1mol2=≈M RTv 1s m -⋅ (7) 分子的平均动能20231004.13001038.12525--⨯=⨯⨯⨯==kT εJ7.23 1mol 氢气,在温度为27℃时,它的平动动能、转动动能和能各是多少? 解:理想气体分子的能量RT iE 2υ= 平动动能 3=t 5.373930031.823=⨯⨯=t E J 转动动能 2=r 249330031.822=⨯⨯=r E J能5=i 5.623230031.825=⨯⨯=i E J7.24 一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求(1)氧气和氢气分子数密度之比;(2)氧分子和氢分子的平均速率之比. 解:(1)因为 nkT p =则1=HOn n (2)由平均速率公式mol60.1M RTv = 41mol mol ==O H HOM M v v7.25 一真空管的真空度约为1.38×10-3Pa(即1.0×10-5mmHg),试 求在27℃时单位体积中的分子数及分子的平均自由程(设分子的有效直径d =3×10-10m). 解:由气体状态方程nkT p =得172331033.33001038.11038.1⨯=⨯⨯⨯==-kT p n 3m - 由平均自由程公式 nd 221πλ= 5.71033.3109211720=⨯⨯⨯⨯=-πλ m 7.26 (1)求氮气在标准状态下的平均碰撞频率;(2)若温度不变,气压降到1.33×10-4Pa ,平均碰撞频率又为多少(设分子有效直径10-10m)? 解:(1)碰撞频率公式v n d z 22π= 对于理想气体有nkT p =,即kTp n =所以有 kTpv d z 22π=而 mol60.1M RTv ≈ 43.4552827331.860.1=⨯≈v 1s m -⋅ 氮气在标准状态下的平均碰撞频率805201044.52731038.110013.143.455102⨯=⨯⨯⨯⨯⨯⨯=-πz 1s - 气压下降后的平均碰撞频率123420s714.02731038.11033.143.455102----=⨯⨯⨯⨯⨯⨯=πz7.27 1mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间(1)气体分子方均根速率之比; (2)分子平均自由程之比. 解:由气体状态方程2211T p T p =及 3322V p V p = 方均根速率公式 mol273.1M RTv = 21212122===p p T T v v 末初 对于理想气体,nkT p =,即 kTpn = 所以有 pd kT 22πλ=12121==T p p T 末初λλ 7.28 飞机起飞前机舱中的压力计指示为1.0 atm(1.013×105Pa),温度为27 ℃;起飞后压力计指示为0.8 atm(0.8104×105Pa),温度仍为27 ℃,试计算飞机距地面的高度. 解:气体压强随高度变化的规律:由nkT p =及kT mgz en n 0=RTgz M kT mgz kTmgz ep e p kTen p mol 000---=== pp g M RTz 0mol ln =31096.18.01ln 8.90289.030031.8⨯=⨯⨯=z m7.29 上升到什么高度处大气压强减少为地面的75%(设空气的温度为0℃). 解:压强随高度变化的规律pp g M RTz 0mol ln =3103.275.01ln 8.90289.027331.8⨯=⨯⨯=z m(7.30 7.31 7.32没有)习题八8.3下列表述是否正确?为什么?并将错误更正.(1)A E Q ∆+∆=∆ (2)⎰+=V p E Q d(3)121Q Q -≠η (4)121Q Q -<不可逆η 解:(1)不正确,A E Q +∆=(2)不正确,⎰+=Vp E Q d Δ(3)不正确,121Q Q -=η(4)不正确,121Q Q -=不可逆η8.4 V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高?答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关. 8.5 如题8.5图所示,有三个循环过程,指出每一循环过程所作的功是正的、负的,还是零,说明理由.解:各图中所表示的循环过程作功都为0.因为各图中整个循环分两部分,各部分面积大小相等,而循环方向一个为逆时针,另一个为顺时针,整个循环过程作功为0.题8.5图8.6 用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题8.6图解:1.由热力学第一定律有A E Q +∆=若有两个交点a 和b ,则 经等温b a →过程有0111=-=∆A Q E 经绝热b a →过程012=+∆A E 022<-=∆A E从上得出21E E ∆≠∆,这与a ,b 两点的能变化应该相同矛盾.2.若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 8.7 一循环过程如题8.7图所示,试指出: (1)ca bc ab ,,各是什么过程;(2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积? (5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率 由vRT pV = 得K vR p =故bc 过程为等压过程 ca 是等温过程(2)V p -图如题8.7图题8.7图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形.(5)ab ca bc abQ Q Q Q e -+=题8.7图 题8.8图8.8 两个卡诺循环如题7-6图所示,它们的循环面积相等,试问:(1)它们吸热和放热的差值是否相同;(2)对外作的净功是否相等;(3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.8.9 评论下述说确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程.答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功;(2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程.8.10 根据⎰=-BAAB TQSS可逆d及⎰>-BAAB TQSS不可逆d,这是否说明可逆过程的熵变大于不可逆过程熵变?为什么?说明理由.答:这不能说明可逆过程的熵变大于不可逆过程熵变,熵是状态函数,熵变只与初末状态有关,如果可逆过程和不可逆过程初末状态相同,具有相同的熵变.只能说在不可逆过程中,系统的热温比之和小于熵变.8.11 如题8.11图所示,一系统由状态a沿acb到达状态b的过程中,有350 J热量传入系统,而系统作功126 J.(1)若沿adb时,系统作功42 J,问有多少热量传入系统?(2)若系统由状态b沿曲线ba返回状态a时,外界对系统作功为84 J,试问系统是吸热还是放热?热量传递是多少?题8.11图解:由abc过程可求出b态和a态的能之差AEQ+∆=224126350=-=-=∆AQE Jabd过程,系统作功42=A J26642224=+=+∆=AEQ J系统吸收热量ba过程,外界对系统作功84-=A J30884224-=--=+∆=AEQ J系统放热8.12 1 mol单原子理想气体从300 K加热到350 K,问在下列两过程中吸收了多少热量?增加了多少能?对外作了多少功?(1)体积保持不变;(2)压力保持不变. 解:(1)等体过程由热力学第一定律得E Q ∆= 吸热)(2)(1212V T T R iT T C E Q -=-=∆=υυ25.623)300350(31.823=-⨯⨯=∆=E Q J对外作功 0=A(2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ吸热 75.1038)300350(31.825=-⨯⨯=Q J)(12V T T C E -=∆υ能增加 25.623)300350(31.823=-⨯⨯=∆E J对外作功 5.4155.62375.1038=-=∆-=E Q A J8.13 一个绝热容器中盛有摩尔质量为mol M ,比热容比为γ的理想气体,整个容器以速度v 运动,若容器突然停止运动,求气体温度的升高量(设气体分子的机械能全部转变为能).解:整个气体有序运动的能量为221mu ,转变为气体分子无序运动使得能增加,温度变化2V 21mu T C M m E =∆=∆ )1(211212mol V 2mol -==∆γu M R C u M T8.14 0.01 m 3氮气在温度为300 K 时,由0.1 MPa(即1 atm)压缩到10 MPa .试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功. 解:(1)等温压缩 300=T K 由2211V p V p = 求得体积3211210101.0101-⨯=⨯==p V p V 3m对外作功21112ln lnp pV p V V VRT A ==01.0ln 01.010013.115⨯⨯⨯⨯=31067.4⨯-=J(2)绝热压缩R C 25V = 57=γ 由绝热方程 γγ2211V p V p = γγ/12112)(p V p V =1121/12112)()(V p p p V p V γγγ==3411093.101.0)101(-⨯=⨯=m由绝热方程γγγγ---=22111p T p T 得K579)10(30024.04.1111212=⨯==--T p p T T γγγγ热力学第一定律A E Q +∆=,0=Q所以)(12molT T C M MA V --=RT M MpV mol =,)(2512111T T R RT V p A --=35105.23)300579(25300001.010013.1⨯-=-⨯⨯⨯⨯-=A J8.15 理想气体由初状态),(11V p 经绝热膨胀至末状态),(22V p .试证过程中气体所作的功为12211--=γV p V p A ,式中γ为气体的比热容比.答:证明: 由绝热方程C V p V p pV ===γγγ2211 得γγV V p p 111=⎰=21d V V Vp A⎰-----==21)11(1d 11121111V V r V V V p v v V p A γγγγγ]1)[(112111---=-γγV VV p又 )(1111211+-+----=γγγγV V V p A112221111--=+-+-γγγγγV V p V V p所以 12211--=γV p V p A8.16 1 mol 的理想气体的T-V 图如题7-15图所示,ab 为直线,延长线通过原点O .求ab过程气体对外做的功.题8.16图解:设KV T =由图可求得直线的斜率K 为002V T K =得过程方程VV T K 002= 由状态方程 RT pV υ= 得V RTp υ=ab 过程气体对外作功⎰=02d V v Vp A⎰⎰⎰====000000200022002d 2d 2d V V V v V V RTV V RT VV V T V R V V RT A8.17 某理想气体的过程方程为a a Vp,2/1=为常数,气体从1V 膨胀到2V .求其所做的功.解:气体作功⎰=21d V v Vp A⎰-=-==-2121)11()(d 2121222V V V V V V a V a V V a A8.18 设有一以理想气体为工质的热机循环,如题7-17图所示.试证其循环效率为1112121---=p p VV γη答:等体过程吸热)(12V 1T T C Q -='υ)(1221V 11R V p R V p C Q Q -='=绝热过程 03='Q等压压缩过程放热)(12p 2T T C Q -='υ)(12P 22T T C Q Q --='=υ)(2212P R V p R V p C -= 循环效率121Q Q -=η )1/()1/(1)()(1121212221V 2212p 12---=---=-=p p V p V p C V p V p C Q Q ννγηη题8.18图 题8.20图8.19 一卡诺热机在1000 K 和300 K 的两热源之间工作,试计算 (1)热机效率;(2)若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少? (3)若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少?解:(1)卡诺热机效率121T T -=η%7010003001=-=η(2)低温热源温度不变时,若%8030011=-=T η要求 15001=T K ,高温热源温度需提高500K (3)高温热源温度不变时,若%80100012=-=T η要求 2002=T K ,低温热源温度需降低100K8.20 如题8.20图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为2T 和3T .求此循环效率.这是卡诺循环吗?解:(1)热机效率121Q Q -=η AB 等压过程 )(12P 1T T C Q -='υ 吸热)(P mo 1A B lT T C M MQ -=CD 等压过程 )(12P 2T T vC Q -=' 放热 )(P mol22D C T T C M M Q Q -='-=)/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--=根据绝热过程方程得到AD 绝热过程γγγγ----=D D A A T p T p 11 BC 绝热过程 γγγγ----=C C B B T p T p 111又B C D D C B A T TT T p p p p ===231T T -=η (2)不是卡诺循环,因为不是工作在两个恒定的热源之间.8.21 (1)用一卡诺循环的致冷机从7℃的热源中提取1000 J 的热量传向27℃的热源,需要多少功?从-173℃向27℃呢?(2)一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于作功就愈有利.当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利?为什么? 解:(1)卡诺循环的致冷机2122T T T A Q e -==静7℃→27℃时,需作功4.71100028028030022211=⨯-=-=Q T T T A J173-℃→27℃时,需作功2000100010010030022212=⨯-=-=Q T T T A J(2)从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的.8.22 如题8.22图所示,1 mol 双原子分子理想气体,从初态K 300,L 2011==T V 经历三种不同的过程到达末态K 300,L 4022==T V . 图中1→2为等温线,1→4为绝热线,4→2为等压线,1→3为等压线,3→2为等体线.试分别沿这三种过程计算气体的熵变.题8.22图 解:21→熵变 等温过程 AQ d d =, V p A d d =RT pV =⎰⎰==-21111221d 1d V V VV RT T T Q S S76.52ln ln !212===-R V VR S S J 1K -⋅321→→熵变⎰⎰+=-312312d d T QT Q S S32V 13p V p 12ln ln d d 2331T TC T T C T T C TT C S S T T T T +=+=-⎰⎰31→等压过程 31p p = 3211T V T V =1213V V T T =23→等体过程 2233T p T p =3232p p T T = 1232p p T T =12V 12P 12ln ln p pC V V C S S +=-在21→等温过程中 2211V p V p =所以2ln ln ln ln1212V 12P 12R V VR V V C V V C S S ===-241→→熵变⎰⎰+=-412412d d T QT Q S S41p 42p p 12ln lnd 024T T C T T C TT C S S T T ==+=-⎰41→绝热过程111441144111----==γγγγV V T T V T V Tγγγγ/121/141144411)()(,p pp p V V V p V p ===在21→等温过程中 2211V p V p =γγγ/112/121/14114)()()(V V p p p p V V ===γγ11241)(-=V V T T2ln ln 1ln12P 41P 12R V V C T T C S S =-==-γγ8.23 有两个相同体积的容器,分别装有1 mol 的水,初始温度分别为1T 和2T ,1T >2T ,令其进行接触,最后达到相同温度T .求熵的变化,(设水的摩尔热容为mol C ). 解:两个容器中的总熵变⎰⎰+=-TT T T lT TC T T C S S 12d d mo mol 0212mol 21mol ln)ln (ln T T T C T T T T C =+= 因为是两个相同体积的容器,故)()(1mol 2mol T T C T T C -=-得212T T T +=21212mol 04)(lnT T T T C S S +=- 8.24 把0℃的0.5kg 的冰块加热到它全部溶化成0℃的水,问:(1)水的熵变如何?(2)若热源是温度为20 ℃的庞大物体,那么热源的熵变化多大? (3)水和热源的总熵变多大?增加还是减少?(水的熔解热334=λ1g J -⋅) 解:(1)水的熵变612273103345.031=⨯⨯==∆T Q S J 1K -⋅(2)热源的熵变570293103345.032-=⨯⨯-==∆T Q S J 1K -⋅(3)总熵变4257061221=-=∆+∆=∆S S S J 1K -⋅熵增加。

大学物理学(第三版)课后习题答案解析

大学物理学(第三版)课后习题答案解析

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ tsv v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 mv=0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .(提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图 (1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵ 1211ρv a n =∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o60cos 2⨯=g a n∴ m 8060cos 10)20(22222=︒⨯==n a v ρ1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 1222121h km 50-⋅=+=v v v方向北偏西 ︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v-=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v 1h km -⋅2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ①Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α 2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0kmv ;(4)证明当k m t =时速度减至0v 的e1,式中m 为质点的质量. 答: (1)∵ tvm kv a d d =-=分离变量,得mtk v v d d -=即 ⎰⎰-=vv t mt k v v00d d m kte v v -=ln ln 0∴ tm k ev v -=0(2) ⎰⎰---===tttm k m ke kmv t ev t v x 000)1(d d (3)质点停止运动时速度为零,即t →∞,故有 ⎰∞-=='00d kmv t ev x tm k(4)当t=km时,其速度为 ev e v ev v km m k 0100===-⋅- 即速度减至0v 的e1. 2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm,问击第二次时能击入多深,假定铁锤两次打击解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=ssky ky y f y f A 112d d d ① 式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y kky y ky A ② 由题意,有2)21(212kmv A A =∆== ③即222122k k ky =- 所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端 一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆ 弹性势能之比为12222211121212k kx k x k E E p p =∆∆= 2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ 式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122mm khgh m m v +-+-=μ题2-17图2-19 质量为M 的大木块具有半径为R 的四分之一弧形槽,如题2-19图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0=-MV mv联立,以上两式,得()M m MgR v +=2习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强Sq E 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p=,场点到偶极子中心O 点的距离为r ,矢量r与l 的夹角为θ,(见题8-5图),且l r >>.试证P点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r平行的分量θsin p 和垂直于r 的分量θsin p .∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cmAB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P -=λε222)(d π4d x a x E E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅方向水平向右(2)2220d d π41d +=x xE Qλε 方向如题8-6图所示由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε 22π4d d ελ⎰==l QyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x==ϕϕελϕπd cos π4)cos(d d 0RE E y-=-= 积分RR E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x0π2ελ==,方向沿x 轴正向. 8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强PEd方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE+++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ∴ 2)4(π422220l r l r qrE P++=ε 方向沿8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xR arctan =α)解: (1)由高斯定理0d εq S E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εqe=Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则24εq e =Φ,如果它包含q 所在顶点则0=Φe.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq =[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E )(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E,ρ-球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场dπ4d 3430301E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='EOO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E O P PO P=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-] R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e0π2ελ== ∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势 200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U E rεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反; (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同. 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB ACU U =,即 ∴ AB AB AC AC E E d d =∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC ACAC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q(1)外球壳上的电荷分(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电 2q q =',小球3再与小球2接触后,小球2与小球3均带电 q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为 32q .∴ 小球1、2间的作用力 00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得 Sq 261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E 00422εεσ+==)2d(212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强 303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强 303π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势 rQE U 0r π4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε (3)金属球的电势 r d r d 221⋅+⋅=⎰⎰∞R R RE E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdr r Q εεε)11(π4210R R Qr r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得 11σ=D ,22σ=D 而 101E D ε=,202E D r εε=d21U E E ==∴r D D εσσ==1212 r d r d ⋅+⋅=⎰⎰∞∞rrE E U 外内题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S DS π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQ D π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量 ⎰⎰===211222ln π4π4d d R RV R R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度.解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF 、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF (2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿. 8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε=3R r >时 302π4r r Q E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r r Q E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向? 解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcdμ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ 外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B的轴向分量为零,而垂直于轴的圆周方向分量rI B πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2x轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb(或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB产生 01=B CD产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理学答案第3版修订版上册北京邮电大学完全版(供参考)

大学物理学答案第3版修订版上册北京邮电大学完全版(供参考)

zz 大学物理习题及解答习题一1.6 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1.7 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

上海交大第三版大学物理学答案上册

上海交大第三版大学物理学答案上册

第一章 运动的描述1、解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v2、解:=a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)3、解: ct b t S +==d /d vc t a t ==d /d v()R ct b a n /2+=根据题意:a t =a n即()R ct b c /2+=解得cb c R t -=4、解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvs t 1=时,v = 4Rt 2 = 8 m/s 2s /168/m Rt dt d a t ===v22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 25、解:(1) 球相对地面的初速度=+='v v v 030 m/s抛出后上升高度9.4522='=gh v m/s 离地面高度H = (45.9+10) m =55.9 m(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 08.420==gt v s 6、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得ts s t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的,∴tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s lt l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v s lv s v v s t sl t l st v a =+-=+-=-==船船 7、解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如图(a)由图可知1222121h km 50-⋅=+=v v v方向北偏西︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v-=,依题意作出速度矢量图如图(b),同上法,得5012=v 1h km -⋅,方向南偏东o 87.36第二章 运动定律与力学中的守恒定律1、解:(1)位矢j t b i t a rωωsin cos += (SI)可写为t a x ωcos =,t b y ωsin =t a t x x ωωsin d d -==v ,t b ty ωωυcos d dy == 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v 在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v (2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22--由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω2、解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得B B A A A A m m m v v v +=0①2220212121B B A A A A m m m v v v +=② 联立解出0A B A B AA m m m m v v +-=,02A BA AB m m m v v += 由于二球同时落地,∴0>A v ,B A m m >;且B B A A L L v v //=∴52==B A B A L L v v ,522=-A B Am m m 解出5/=B A m m3、解:(1) 释放后,弹簧恢复到原长时A 将要离开墙壁,设此时B 的速度为v B 0,由机械能守恒,有2/3212020B m kx v = 得mk x B 300=v A 离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧伸长量为x 时有022211B m m m v v v =+①202222221121212121B m m kx m v v v =++②当v 1 =v 2时,由式①解出v 1 =v 2mkx B 3434/300==v (2) 弹簧有最大伸长量时,A 、B 的相对速度为零v 1 =v 2 =3v B 0/4,再由式②解出0max 21x x =4、解:二滑块在弹力作用下将沿水平导杆作振动. 因导杆光滑,不产生摩擦阻力, 故整个系统的机械能守恒,而且沿水平方向的动量守恒(等于零).当二滑块运动到正好使弹簧垂直于二导杆时,二滑块所受的弹力的水平分力同时为零,这时二滑块的速度将分别达到其最大速度v 1和v 2且此时弹簧为原长,弹簧势能为零。

大学物理第6章真空中的静电场课后习题及答案

大学物理第6章真空中的静电场课后习题及答案

⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。

试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。

3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。

求该直线段受到的电场⼒。

解:先求均匀带电圆环在其轴线上产⽣的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。

+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。

在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。

大学物理课后习题答案第六章

大学物理课后习题答案第六章

第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε根据电荷分布的对称性知,0==z y E E23220)(41cos R x xdqdE dE x +==πεθR Oλ1λ2lxy z式中:θ为dq 到场点的连线与x 轴负向的夹角。

⎰+=23220)(4dq R x xE x πε232210)(24R x Rx+⋅=πλπε232201)(2R x xR +=ελ下面求直线段受到的电场力。

在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ 方向沿x 轴正方向。

大学物理学(上)北京邮电大学第三版习题答案

大学物理学(上)北京邮电大学第三版习题答案

习题解答习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v ts d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tvt v t v d d d d d d ττ+= 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d trv =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t xt r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxyx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

(完整版)大学物理学(第三版上)课后习题6答案详解

(完整版)大学物理学(第三版上)课后习题6答案详解

习题66.1选择题(1)一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A)它的动能转化为势能. (B)它的势能转化为动能.(C)它从相邻的一段质元获得能量其能量逐渐增大.(D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.[答案:D ](2) 某时刻驻波波形曲线如图所示,则a,b 两点位相差是(A)π (B)π/2 (C)5π/4 (D)0[答案:A](3) 设声波在媒质中的传播速度为u,声源的频率为v s .若声源S不动,而接收器R相对于媒质以速度V B 沿着S、R连线向着声源S运动,则位于S、R连线中点的质点P的振动频率为 (A)s v (B)s Bv uV u + (C)s B v V u u + (D) s Bv V u u-[答案:A]6.2填空题(1)频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距____m 。

[答案:0.5m ](2)一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是____,波长是____,频率是____,波的传播速度是____。

[答案:0.02;2.5;100;250/m m Hz m s ](3) 设入射波的表达式为])(2cos[1πλνπ++=xt A y ,波在x =0处反射,反射点为一固定端,则反射波的表达式为________________,驻波的表达式为____________________,入射波和反射波合成的驻波的波腹所在处的坐标为____________________。

[答案:)(2cos 2λνπxt A y -= ;2cos(2)cos(2)22x A t ππππνλ++ (21)4x k λ=-]6.3产生机械波的条件是什么?两列波叠加产生干涉现象必须满足什么条件?满足什么条件的两列波才能叠加后形成驻波?在什么情况下会出现半波损失?答:产生机械波必须具备两个条件:有作机械振动的物体即波源;有连续的介质。

大学物理(上册—第三版—修订版)课后习题答案

大学物理(上册—第三版—修订版)课后习题答案

大学物理(上册)课后习题答案第三版·修订版习题一1-6|r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同?t d d v 和td d v 有无不同?其不同在哪里?试举例说明。

解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v tsd d .trd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr +=式中trd d 就是速度径向上的分量,∴trt d d d d 与r 不同如题1-1图所示.题1-6图(3)t d d v 表示加速度的模,即t v a d d=,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ+=式中dt dv就是加速度的切向分量.(tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-7设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t r d d ,及a =22d d tr 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x yx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a t rv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

大学物理(上册—第三版—修订版)课后习题答案

大学物理(上册—第三版—修订版)课后习题答案

篇一:大学物理学北京邮电·第3版.修订版下册习题答案习题99.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A处点电荷为研究对象,由力平衡知:q?为负电荷1q212cos304π?0a24π?0qq?(2a)3解得q?3q 3(2)与三角形边长无关.题9.3图题9.4图9.4 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2? ,如题9.4图所示.设小球的半径和线的质量都可以忽略不解: 如题9.4图示Tcosmg??q2 ?TsinF?1e?4π?0(2lsin?)2?解得 q?2lsin?40mgtan? 9.5 根据点电荷场强公式E?q40r2,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解??解: E?q4π?0r2?r0仅对点电荷成立,当r?0时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.19.6 在真空中有A,B两平行板,相对距离为d,板面积为S,其带电量分别为+q和-q.则这两板之间有相互作用力f,有人说f=q240d2,又有人说,因为qq2,所以f=.试问这两种说法对吗?为什么? f到底应等于f=qE,E0S?0S多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强E?q看成是一个带电板在另一带电板处的场强也是不对?0Sq2?0S的.正确解答应为一个板的电场为E?,另一板受它的作用力q2,这是两板间相互作用的电场力. f?q?2?0S2?0Sq9.7 长l=15.0cmAB上均匀地分布着线密度?=5.0x10-9C·m-1荷.试求:(1)在导线的延长线上与导线B端相距a1=5.0cm处P点的场强;(2)在导线的垂直平分线上与导线中点相距d2=5.0cm 处Q解:如题9.7图所示(1) 在带电直线上取线元dx,其上电量dq在P点产生场强为dEP?1?dx24π?0(a?x)?EPdEP?4π?0?l2l?2dx题9.7图 2(a?x)??1[?]ll4π?0a?a?221??lπ?0(4a2?l2)2用l?15cm,5.0?10?9C?m?1, a?12.5cm代入得EP?6.74?102N?C?1方向水平向右(2)dEQ?1?dx方向如题9.7图所示 224π?0x?d2由于对称性?dEQx?0,即EQ只有y分量,l∵ dEQy1?dx?4π?0x2?d22d2x?d222EQydEQyld24π?2?l2l?2dx(x2?d22)32??l2π?0l?4d222以5.0?10?9C?cm?1, l?15cm,d2?5cm代入得EQ?EQy?14.96?102N?C?1,方向沿y轴正向9.8 一个半径为R的均匀带电半圆环,电荷线密度为?,求环心处O点的场强.解: 如9.8图在圆上取dl?Rd?题9.8图dqdl?R?d?,它在O点产生场强大小为dE??Rd?方向沿半径向外4π?0R2则 dEx?dEsin?sin?d?4π?0Rcos?d? 4π?0R3dEy?dEcos(?)?积分Ex?sin?d4π?0R2π?0REycos?d0 4π?0R∴ E?Ex??,方向沿x轴正向.2π?0R9.9 均匀带电的细线弯成正方形,边长为l,总电量为q.(1)求这正方形轴线上离中心为r处的场强E;(2)证明:在rl处,它相当于点电荷q产生的场强E解: 如9.9图示,正方形一条边上电荷?q在P点产生物强dEP方向如图,大小为 4dEP?cos?1?cos?2?4π?0r2?lr2?l22l42∵ cos?1?cos?2cos?1∴ dEP??4π?0r2?l42lr2?l22?dEP在垂直于平面上的分量dEdEPcos? ∴dE?l4π?0r2?l42rr2?l22r2?l424题9.9图由于对称性,P点场强沿OP方向,大小为EP?4?dE4?lr4π?0(r2?ll)r2?4222∵∴ EP?q 4lqr4π?0(r2?ll)r2?4222方向沿OP9.10(1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?q解: (1)由高斯定理E?dS?s?0立方体六个面,当q在立方体中心时,每个面上电通量相等∴各面电通量?e?q. 6?0(2)电荷在顶点时,将立方体延伸为边长2a的立方体,使q处于边长2a的立方体中心,则边长2a的正方形上电通量?e?q 6?0q, 24?0对于边长a的正方形,如果它不包含q所在的顶点,则?e?如果它包含q所在顶点则?e?0.如题9.10图所示.题9.10图9.11 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×10?5C·m-3求距球心5cm,8cm ,12cm 各点的场强.5篇二:大学物理学(第三版)上课后习题答案第一章运动的描述|与有无不同?1-1 |和有无不同? 和有无不同?其不同在哪里?试举例说明.解:(1)是位移的模,是位矢的模的增量,即,(2)是速度的模,即.只是速度在径向上的分量.∵有(式中叫做单位矢),则式中就是速度径向上的分量,∴不同如题1-1图所示.题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.∵有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论);1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r=,然后根据=,及=计算速度和加速度的分量,再合成求得结果,即而求得结果;又有人先=及=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。

大学物理学(第三版)课后习题答案

大学物理学(第三版)课后习题答案

习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 与t d d r 有无不同? t d d v 与td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆就是位移得模,∆r 就是位矢得模得增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 就是速度得模,即t d d r ==v ts d d 、 trd d 只就是速度在径向上得分量、 ∵有rr ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr += 式中trd d 就就是速度径向上得分量, ∴tr t d d d d 与r 不同如题1-1图所示、题1-1图(3)t d d v 表示加速度得模,即t v a d d =,tv d d 就是加速度a 在切向上得分量、∵有ττ(v =v 表轨道节线方向单位矢),所以tv t v t v d d d d d d ττ+= 式中dt dv就就是加速度得切向分量、 (tt r d ˆd d ˆd τ 与得运算较复杂,超出教材规定,故不予讨论) 1-2 设质点得运动方程为x =x (t ),y =y (t ),在计算质点得速度与加速度时,有人先求出r=22y x +,然后根据v =tr d d ,及a =22d d t r 而求得结果;又有人先计算速度与加速度得分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 您认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确、因为速度与加速度都就是矢量,在平面直角坐标系中,有j y i x r+=,jty i t xt r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们得模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxyx而前一种方法得错误可能有两点,其一就是概念上得错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能就是将22d d d d t r t r 与误作速度与加速度得模。

大学物理课后习题答案(北邮第三版)上

大学物理课后习题答案(北邮第三版)上

大学物理课后习题答案(北邮第三版)上信息与计算科学系自动化专业物理学习题答案123练习11-3解:(1)R(3t?5)?我(1?2t2?3t?4)jm(2)将t?1,t?2代入上式即有r1.8i?0.5jr M2?11j?4j?r??r?r??m2.1.3j?4.5jm(3)R4.j、 r∵0? 5j4?17i?16j∴五、RTR4.r04?12i?20j?3.我5.吉咪?s1.04v??博士3.我(t?3)?吉咪?s1(4)dt?则v4?3i?7jm?s?1(5)∵v??i?3?j,v0?34?3i?7jav??v?4.v0?4.1.吉咪?s2.t44?A.dv?1.吉咪?s2(6)dt这说明该点只有y方向的加速度,且为恒量。

1-6a?dv?4?3t解:∵dt分离变量,得到DV吗?(4?3t)dtv?4t?3t2?c积分,得21从问题来看,t?0,v0?0,∴c1?0v?4t?3t2故2五、dx?4t?3t2因为dt2dx?(4t?3t2)dt分离变量,2十、2t?TC积分22由题知t?0,x0?5,∴c2?5十、2t2?13原因2t?5那么,t?10秒v110?4?10?32?102?190m?s?x2?102?110?2?103?5?705m 1-7解:??d?dt?9t2,??d?dt?18t(1)t?2s时A.R1.18? 2.3600万?s二a222?2n?r??1?(9?2)?1296m?s(2)当加速度方向与半径ο角成45°时,是tan45??a?a?1n即r?2?r?亦即(9t2)2?18tt3?2.答案是什么9所以角位移是2?3t3?2?3?29?2.67rad(1)y?2rsin??2sin2?r(1?cos?)?r(1?cos?t)(2)vx?dxdt?r?(1?cos?t)?vy?dydt?rsin?t)斧头?R2英寸?Tdvx?dt是吗?R2秒?Tdvydt1-10一信息与计算科学系自动化专业物理学习题答案解决方案:让小球形成的抛物线轨道如图1-10所示题1-12图1-13题1-10图(1)在最高点,v?v2?v1,依题意作速解:(1)大船看小艇,则有21度矢量图如题1-13图(a)v1?vx?v0cos60oan1?G10米?s二又∵an1?v12?一由广场题1-13图图形方向北可以偏v12(20?60?)2.1.an110∴(2)在落地点,知道10m2v21v12v250kmh1西v2?v0?20m?s?1,和∴2v2(20)2?2.80man210?cos60?2an2?Gcos60ov13?arctan?36.87?v24(2)当一艘小船看着一艘大船时,有V12吗?v1?V2,根据主题的意思制作速度向量arctan量图如题1-13图(b),同上法,得v12?50公里?H一方向南偏东36.87O1-11飞轮半径为0.4米,从静态开始。

大学物理学(上)第三版习题答案

大学物理学(上)第三版习题答案

习题解答习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v tsd d .trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r +=式中trd d 就是速度径向上的分量, ∴trt d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢),所以tvt v t v d d d d d d ττ+= 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =trd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jty i t xt r a jty i t x t r v222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxyx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

大学物理学(第三版)课后习题参考答案

大学物理学(第三版)课后习题参考答案

习题 11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为(A)dtdr (B)dtr d (C)dtr d ||(D)22)()(dtdy dt dx [答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2,瞬时加速度2/2s m a ,则一秒钟后质点的速度(A)等于零(B)等于-2m/s (C)等于2m/s(D)不能确定。

[答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)tR t R 2,2(B) t R2,0(C) 0,0(D) 0,2tR[答案:B]1.2填空题(1) 一质点,以1s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。

[答案:10m ;5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。

[答案:23m ·s -1](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。

如人相对于岸静止,则1V 、2V 和3V 的关系是。

[答案:0321V V V ]1.3一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

1.4下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。

给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题 66.1 选择题(1) 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移 处的过程中:(A) 它的动能转化为势能 . (B) 它的势能转化为动能 . (C)它从相邻的一段质元获得能量其能量逐渐增大 .(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小 .[ 答案: D](2) 某时刻驻波波形曲线如图所示,则 a,b 两点位相差是(A)π (C)5π/4[ 答案: A](3) 设声波在媒质中的传播速度为u,声源的频率为 v s .若声源S不动,而接收器R相对于媒质以速度 V B 沿着S、R连线向着声源S运动,则位于S、 R连线中点的质点P的振动频率为[ 答案: A]6.2 填空题(1) ______________________ 频率为 100Hz ,传播速度为 300m/s 的平面简谐波,波线上两点振动的相位 差为 π /3,则此两点相距 m 。

[答案: 0.5m ](2)一横波的波动方程是 y 0.02sin2 (100t 0.4x)( SI ) ,则振幅是 ________ ,波长是 ___ ,频率是 __ ,波的传播速度是 __ 。

[ 答案: 0.02m;2.5 m;100 Hz;250 m / s ]x(D)0(A) v s(B)u V B u (C)vsu V B s(D)u u V Bvs(B)π/2(3) 设入射波的表达式为y1 Acos[2 ( t ) ] ,波在x =0处反射,反射点为一固定端,则反射波的表达式为__________________ ,驻波的表达式为____________________ ,入射波和反射波合成的驻波的波腹所在处的坐标为x[ 答案:y2 Acos2 ( t ) ;x2 A cos(2 )cos(2 t )22x (2k 1) ]46.3 产生机械波的条件是什么?两列波叠加产生干涉现象必须满足什么条件?满足什么条件的两列波才能叠加后形成驻波?在什么情况下会出现半波损失?答:产生机械波必须具备两个条件:有作机械振动的物体即波源;有连续的介质。

两列波叠加产生干涉现象必须满足三个相干条件:频率相同,振动方向相同,在相遇点的位相差恒定。

两列波叠加后形成驻波的条件除频率相同、振动方向相同、在相遇点的位相差恒定三个相干条件外,还要求两列波振幅相同,在同一直线上沿相反方向传播。

出现半波损失的条件是:波从波疏媒质入射并被波密媒质反射,对于机械波,还必须是正入射。

6.4 波长、波速、周期和频率这四个物理量中,哪些量由传播介质决定?哪些量由波源决定?答:波速由传播介质决定;周期和频率由波源决定。

6.5 波速和介质质元的振动速度相同吗?它们各表示什么意思?波的能量是以什么速度传播的?答:波速和介质质元的振动速度不相同。

波速是振动状态在介质中的传播速度,而质元的振动速度是质元在其平衡位置附近运动的速度。

波的能量传播的速度即为波速。

6.6 振动和波动有什么区别和联系?平面简谐波波动方程和简谐振动方程有什么不同?又有什么联系?振动曲线和波形曲线有什么不同?行波和驻波有何区别?答: (a) 振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为y f (t) ;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t的函数,即y f (x,t).(b) 在谐振动方程y f (t) 中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程y f (x,t) 中有两个独立变量,即坐标位置x和时间t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律.x当谐波方程y Acos (t ) 中的坐标位置给定后,即可得到该点的振动方程,u 而波源持续不断地振动又是产生波动的必要条件之一.(c) 振动曲线y f (t) 描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y,横轴为t ;波动曲线y f (x,t) 描述的是介质中所有质元的位移随位置,随时间变化的规律,其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图.(d) 两列频率相同、振动方向相同、在相遇点的位相差恒定、振幅相同、在同一直线上沿相反方向的行波叠加后才会形成驻波。

行波伴随有能量的传播,而驻波没有能量的传播。

6.7 波源向着观察者运动和观察者向着波源运动都会产生频率增高的多普勒效应,这两种情况有何区别?解: 波源向着观察者运动时,波面将被挤压,波在介质中的波长,将被压缩变短,( 如题 6.7 图所示) ,因而观察者在单位时间内接收到的完整数目( u/ ) 会增多,所以接收频率增高;而观察者向着波源运动时,波面形状不变,但观察者测到的波速增大,即u u v B ,因而单位时间内通过观察者完整波的数目u也会增多,即接收频率也将增高.简单地说,前者是通过压缩波面(缩短波长) 使频率增高,后者则是观察者的运动使得单位时间内通过的波面数增加而升高频率.题 6.7 图多普勒效应6.8 已知波源在原点的一列平面简谐波,波动方程为y= A cos( Bt Cx ) ,其中A,B,C为正值恒量.求:(1) 波的振幅、波速、频率、周期与波长;(2) 写出传播方向上距离波源为l 处一点的振动方程;(3) 任一时刻,在波的传播方向上相距为d 的两点的位相差.解: (1) 已知平面简谐波的波动方程Acos(Bt Cx) ( x 0)将上式与波动方程的标准形式xy Acos(2 t 2 )比较,可知:B波振幅为A ,频率波长,波速u C1波动周期T1B(2) 将x l 代入波动方程即可得到该点的振动方程y A cos(Bt Cl)(3) 因任一时刻t 同一波线上两点之间的位相差为2(x2 x1)将x2 x1 d ,及2代入上式,即得CCd .6.9 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10 t 4 x),式中x, y 以米计,t 以秒计.求:(1) 绳子上各质点振动时的最大速度和最大加速度;(2) 求x =0.2m t =1s时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25s 时刻到达哪一点?解: (1) 将题给方程与标准式2y Acos( t x)相比,得振幅A 0.05 m ,圆频率10 ,波长0.5 m ,波速1u 2.5 m s 1.2绳上各点的最大振速,最大加速度分别为v max A 10 0.05 0.5 m s2 2 2 2a max A (10 ) 0.05 5 m s(2) x 0.2 m 处的振动比原点落后的时间为0.20.08 s 2.5即9.2 π .设这一位相所代表的运动状态在 t 1.25s 时刻到达 x 点,则x x 1 u(t t 1) 0.2 2.5(1.25 1.0) 0.825 m6.10 如题 6.10 图是沿 x 轴传播的平面余弦波在 t 时刻的波形曲线. (1) 若波沿 x 轴正向传播,该时刻 O , A , B , C 各点的振动位相是多少 ?(2) 若波沿 x 轴负向传播,上述各点的 振动位相又是多少 ?对于 O 点:∵ y O 0,v O 0 ,∴ O2对于A点:∵y AA,v A 0 ,∴ A 0对于B点:∵yB0,v B 0 ,∴ B23 对于C 点:∵ y C 0,v C 0 ,∴ C2 (取负值:表示 A 、B 、C 点位相,应落后于 O点的位相 ) (2) 波沿 x 轴负向传播,则在 t 时刻,有对于O 点:∵y O0,v O 0 ,∴ O2对于A点:∵y AA ,v A 0 ,∴ A 0对于 B 点:∵ y B 0,v B 0 ,∴ B2对于 C 点:∵ y C 0,v C 0 ,∴ C 32( 此处取正值表示 A 、B 、C 点位相超前于 O 点的位相 )故 x 0.2 m , t 1s 时的位相就是原点( x 0) ,在 t 0 1 0.08 0.92 s 时的位相,解: (1)6.11 一列平面余弦波沿 x 轴正向传播,波速为 5m ·s -1,波长为 2m ,原点处质点的振动曲线 如题 6.11 图所示.(1) 写出波动方程;(2) 作出 t =0时的波形图及距离波源 0.5m 处质点的振动曲线.解: (1) 由题 6.11(a) 图知, A 0.1 m ,且 t 0时, y 0 0,v 0 0,∴ 0u5又2.5 Hz ,则 2 52x取 y Acos[ (t ) 0 ],u则波动方程为xy 0.1cos[5 (t ) ] m52(2) t 0 时的波形如题 6.11(b) 图如题 6.11(c) 图所示.6.12 如题6.12图所示,已知 t =0时和 t =0.5s 时的波形曲线分别为图中曲线 (a) 和(b) ,波沿 x轴正向传播,试根据图中绘出的条件求:(1) 波动方程; (2) P 点的振动方程.解: (1) 由题 6.12 图可知, A 0.1m ,4 m ,又,t 0时,y 0 0,v 0 0,∴ 0 ,2 x 1 1 u 2而 u 2 m s 1 ,0.5 Hz ,∴ 2t 0.5 4 故波动方程为xy 0.1cos[ (t ) ] m223,题 6.11 图 (b)将 x 0.5m 代入波动方程,得该点处的振动方程为5 0.5 3y 0.1cos[5 t ] 520.1cos(5 t ) m题 6.11 图(c)(2) 将 x P 1 m 代入上式,即得 P 点振动方程为5∴解得 x 5 1.67 m3(4) 根据(2) 的结果可作出旋转矢量图如题 6.13 图(a) ,则由 P 点回到平衡位置应经历的位6.13 一列机械波沿 x 轴正向传播, t =0时的波形如题 6.13图所示,已知波速为 10 m ·s 波长为 2m ,求: (1) 波动方程;(2) P 点的振动方程及振动曲线; (3) P 点的坐标; (4)P 点回到平衡位置所需的最短时间.A解: 由题 6.13 图可知 A 0.1m ,t 0时, y 0,v 0 0,∴ 0 2u 10 m s 1,则u 105 Hz 2∴ 2 10(1) 波动方程为,由题知 2 m ,3(2) 由图知, t 0 时,取负值 )0 点,故∴ P 点振动方程为 y p 0.1cos(10 t43 )(3) ∵x10 (t 1x 0) 3 |t 0yP 点的位相应落后于t 5 /6 1 s10 126.14 如题 6.14 图所示,有一平面简谐波在空间传播,已知 P 点的振动方程为 y P = A cos( t 0 ).(1) 分别就图中给出的两种坐标写出其波动方程; (2) 写出距 P 点距离为 b 的 Q 点的振动方程.解: (1) 如题 6.14 图(a) ,则波动方程为(2) 如题 6.14 图(a) ,则 Q 点的振动方程为A Q Acos[ (t b ) 0] u如题 6.14 图 (b) ,则 Q 点的振动方程为A Q Acos[ (t b )]u6.15 已知平面简谐波的波动方程为 y Acos (4t 2x) (SI) (1) 写出 t =4.2 s 时各波峰位置的坐标式,并求此时离原点最近一个波峰的位置,该波峰何 时通过原点 ? (2) 画出 t =4.2 s 时的波形曲线.解 :(1) 波峰位置坐标应满足相角5 326∴所属最短时间为 lxuu则波动方程为题 6.13 图(a)如图(b) , y Acos[ (t题 6.14 图xy Acos[ (t )u(4t 2x) 2k解得x (k 8.4) m ( k 0, 1, 2, ⋯) 所以离原点最近的波峰位置为0.4 m .x1∵ 4 t 2 x t 故知u 2 m s 1,u0.4∴ t 0.2 s,这就是说该波峰在0.2 s 前通过原点,那么从计时时刻算起,则2应是4.2 0.2 4 s,即该波峰是在4 s时通过原点的.1(2) ∵ 4 ,u 2 m s 1,∴ uT u 1m,又x 0处,t 4.2 s时,0 4.2 4 16.8y0 Acos4 4.2 0.8A 又,当y A 时,x 17 ,则应有16.8 2 x 17解得x 0.1 m ,故t 4.2 s 时的波形图如题 6.15 图所示。

相关文档
最新文档