平面解析几何综合检测卷

合集下载

平面解析几何单元测试题1

平面解析几何单元测试题1

平面向量与平面解析几何练习一、选择题1、已知平面向量a =,1x (),b =2,x x (-), 则向量a b += ( ). A 、平行于y 轴 B 、平行于第一、三象限的角平分线C 、平行于x 轴D 、平行于第二、四象限的角平分线2、设M(-2,1),N(1,2)为平面直角坐标系中的两点,将M 和N 按向量)1,1(=a平移到点M '和N ',则N M ''的坐标是( )A 、(4,2)B 、(3,1)C 、(2,0)D 、(-1,3)3、下列直线中,垂直于直线01=+-y x 且与圆422=+y x 相切的是( ).A 、022=--y xB 、02=--y xC 、022=++y xD 、02=-+y x4、抛物线24x y =的焦点坐标为( ).A 、1(0,)16B 、1(,0)16C 、(0,1)D 、(1,0) 5、若向量(1,1)=-a ,(2,1)=-b , ,则向量3-a b 的模|3|-=a b ( )A.6、已知直线l 过点(1,1)P -,且与直线310x y +-=垂直,则直线l 的方程为( )A.13(1)y x +=-B.11(1)3y x -=-+C.13(1)y x -=+D.11(1)3y x +=-- 7、设P 是椭圆2212510x y +=上的一点,则P 到两焦点的距离的和为( )A.5B.6C.8D.108、设(2,1),(1,2)M N =-=为平面直角坐标系中两点,将,M N 按向量a =(1,1)平移到'',M N ,则''N M 的坐标为( )9、已知直线l 1:2y=x ,直线l 2:y+2x+1=0则l 1与 l 2 ( )A. 相交不垂直B.相交且垂直C. 平行不重合D.重合10、双曲线191622=-y x 的焦距为( ) A. 7 B.5 C. 72 D.1011、已知直线y=x-2与圆x 2+y 2=4交于两点M 和N ,O 是坐标原点,则=•ON OM ( )A. -1B.0C. 1D.212、垂直于x 轴的直线l 交抛物线y 2=4x 于A 、B 两点,且|AB|=43,则该抛物线的焦点到直线l 的距离是( )A.1B.2 B.3 D.413、以点(2,-1)为圆心且与直线0543=+-y x 相切的圆的方程( )A.3)1()2(22=++-y xB. 3)1()2(22=-++y xC. 9)1()2(22=-++y x D .9)1()2(22=++-y x14、以141222=-x y 的顶点为焦点,长半轴长为4的椭圆方程为( ) A .1526422=+y x B .1121622=+y xC .141622=+y xD .116422=+y x 15、若抛物线==p px y ,则的点之横坐标为上到焦点的距离为2322( )A .4B .3C .2D .1二、填空题16、圆2240x x y -+=的圆心到直线40x +-=的距离为__________.17、已知m 为实数,椭圆1322=+m y x 的一个焦点为抛物线y 2=4x 的焦点,则m = .18、经过点(0,-1)与点(1,0),且圆心在直线y=x+1上的圆的方程是____________19、双曲线112422=-y x 的离心率是20、以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,通常称它们互为共轭双曲线.共轭双曲线的四个焦点在同一个圆上. 如果已知双曲线22124x y -=和22124x y -=-,那么它们的焦点所在的这个圆的方程为_______________.三、解答题21、(14分) 已知圆k C :0214222=--++y kx y x )(R k ∈. 椭圆M 的中心在坐标原点,长轴在x 轴上,离心率为23, 两个焦点分别为1F 和2F , 椭圆M 上一点到1F 和2F 的距离之和为12. (1)求椭圆M 的方程;(2)求过焦点且与长轴垂直的直线被椭圆M 所截得的线段的长;(3)问是否存在实数k,使得椭圆M 在圆k C 的内部? 请说明理由.22、(本小题满分12分) 已知椭圆1xy y x 2222=+的左、右两个焦点F1、F2为双曲线13y 4x 2222=-的顶点。

2020人教B版高中数学必修二第二章平面解析几何初步综合测试B含解析

2020人教B版高中数学必修二第二章平面解析几何初步综合测试B含解析

【成才之路】2015-2016学年高中数学第二章平面解析几何初步综合测试B 新人教B版必修2时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.直线x+(m+1)y+3=0与直线mx+2y-1=0平行,则m的值为( )A.1 B.-2C.2或-1 D.-2或1[答案] D[解析]由题意,得1×2-m(m+1)=0,即m2+m-2=0,解得m=-2或1.经检验知当m=-2或1,满足题意.2.(2015·辽宁沈阳二中高一期末测试)在空间直角坐标系中,以点A(4,1,9)、B(10,-1,6)、C(x,4,3)为顶点的△ABC是以BC为底边的等腰三角形,则实数x的值为( ) A.-2 B.2C.6 D.2或6[答案] D[解析]由题意得10-42+-1-12+6-92=x-42+4-12+3-92,解得x=2或6.3.(2015·甘肃天水市泰安县二中月考)直线l:x-y+1=0关于y轴对称的直线方程为( )A.x+y-1=0 B.x-y+1=0C.x+y+1=0 D.x-y-1=0[答案] A[解析]用-x替换方程x-y+1=0的x,得-x-y+1=0,即x+y-1=0,故选A.4.如果方程Ax+By+C=0表示的直线是y轴,则A、B、C满足( )A.B·C=0 B.A≠0C.B·C=0且A≠0 D.A≠0且B=C=0[答案] D[解析]直线是y轴,则斜率不存在且过点(0,0).斜率不存在,得B=0.A、B不同时为0,得A≠0,又过点(0,0),得C=0.5.直线(m+2)x+my+1=0与直线(m-1)x+(m-4)y+2=0互相垂直,则m的值为( )A .12B .-2C .-12或2D .-2或12[答案] C[解析] 由题意,得(m +2)(m -1)+m (m -4)=0, 解得m =-12或2.6.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切C .相交但直线不过圆心D .相交且直线过圆心 [答案] C[解析] 本题考查直线与圆的位置关系,点到直线的距离公式. 圆心C (0,0)到直线kx -y +1=0的距离d =11+k2≤1< 2.所以直线与圆相交,故选C .7.(2015·云南曲靖市陆良县二中高一期末测试)若圆的一条直径的两端点分别是(-1,3)和(5,-5),则此圆的方程是( )A .x 2+y 2+4x +2y -20=0 B .x 2+y 2-4x -2y -20=0 C .x 2+y 2-4x +2y +20=0 D .x 2+y 2-4x +2y -20=0 [答案] D[解析] 圆心坐标为(2,-1),半径为2+12+-1-32=5,故所求圆的方程为(x -2)2+(y +1)2=25,即x 2+y 2-4x +2y -20=0.8.方程x 2+y 2+2kx +4y +3k +8=0表示圆,则k 的取值范围是( ) A .k =4或k =-1 B .k >4或k <-1 C .-1<k <4 D .以上都不对[答案] B[解析] 方程x 2+y 2+2kx +4y +3k +8=0,可化为(x +k )2+(y +2)2=k 2-3k -4,由题意,得k 2-3k -4>0,∴k >4或k <-1.9.(2015·广州二中高一期末测试)直线y =kx +1与圆x 2+y 2-2y =0的位置关系是( )A .相交B .相切C .相离D .取决于k 的值[答案] A[解析] 解法一:∵直线y =kx +1过定点(0,1),又点(0,1)在圆x 2+y 2-2y =0的内部, ∴直线与圆相交.解法二:由⎩⎪⎨⎪⎧y =kx +1x 2+y 2-2y =0,得(1+k 2)x 2-1=0,Δ=4(1+k 2)>0,故直线与圆相交.10.已知直线x +3y -7=0,kx -y -2=0与x 轴,y 轴围成的四边形有外接圆,则实数k 的值是( )A .-3B .3C .-6D .6[答案] B[解析] 由题意,知两直线垂直, ∴1·k +3·(-1)=0,∴k =3.11.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝ ⎛⎭⎪⎫y -732=1B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝ ⎛⎭⎪⎫x -322+(y -1)2=1 [答案] B[解析] 设圆心坐标为(x ,y ),由题意知x >0,y =1. 由点到直线的距离公式,得|4x -3|42+32=1, ∴4x -3=±5,∵x >0,∴x =2.故所求圆的标准方程是(x -2)2+(y -1)2=1.12.将直线2x -y +λ=0沿x 轴向左平移一个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( )A .-3或7B .-2或8C .0或10D .1或11[答案] A[解析] 直线2x -y +λ=0沿x 轴向左平移一个单位后为2(x +1)-y +λ=0,即2x -y +2+λ=0,又直线2x -y +2+λ=0与圆x 2+y 2+2x -4y =0相切,则|-2-2+2+λ|5=5,解得λ=-3或7.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2015·广州二中高一期末测试)已知a <0,直线l 1:2x +ay =2,l 2:a 2x +2y =1,若l 1⊥l 2,则a =________.[答案] -1[解析] ∵l 1⊥l 2,∴2a 2+2a =0, ∴a =-1或a =0.∵a <0,∴a =-1.14.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是________. [答案] x -y +1=0[解析] 由x 2+2x +y 2=0得圆心C (-1,0), 所求直线与x +y =0垂直,∴所求直线的斜率为1, ∴所求直线的方程为x -y +1=0.15.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于____________.[答案]254[解析] ∵点A (1,2)在圆x 2+y 2=5上,故过点A 的圆的切线方程为x +2y -5=0,令x =0,得y =52,令y =0,得x =5, ∴S △=12×52×5=254.16.一束光线从点A (-2,2)出发,经x 轴反射到圆C :(x -4)2+(y -6)2=1上的最短路程是______.[答案] 9[解析] A 关于x 轴对称点A 1(-2,-2),⊙C 的圆心C (4,6),|A 1C |=10, ∴最短路程为|A 1C |-1=9.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)(2015·湖南益阳市高一期末测试)已知两直线l 1:(3+m )x +9y =m -1,l 2:2x +(1+2m )y =6.(1)m 为何值时,l 1与l 2垂直; (2)m 为何值时,l 1与l 2平行.[解析] (1)由题意得2(3+m )+9(1+2m )=0, 解得m =1516.(2)由题意得(3+m )(1+2m )-18=0, 解得m =-5或32.当m =-5时,l 1与l 2重合;当m =32时,l 1与l 2平行.18.(本题满分12分)已知直线l 1:x +2y -3=0与l 2:2x -y -1=0的交点是P ,直线l 过点P 及点A (4,3).(1)求l 的方程;(2)求过点P 且与l 垂直的直线l ′的方程.[解析] (1)由⎩⎪⎨⎪⎧x +2y -3=02x -y -1=0,得⎩⎪⎨⎪⎧x =1y =1.∴P (1,1),∴l 的方程为:y -13-1=x -14-1,即l :2x -3y +1=0.(2)∵所求直线l ′与l 垂直, ∴斜率为-32.又∵l ′过点(1,1),∴所求直线l ′的方程为y -1=-32(x -1),即3x +2y -5=0.19.(本题满分12分)(2015·云南曲靖市陆良县二中高一期末测试)△ABC 中,点A (1,1)、B (4,2)、C (-4,6).(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高及△ABC 的面积.[解析] (1)BC 边的中点D 的坐标为(0,4),∴中线AD 的斜率k =4-10-1=-3,故中线AD 的方程为y -4=-3(x -0), 即3x +y -4=0.(2)BC 边所在直线的斜率为k BC =6-2-4-4=-12,BC 边所在直线的方程为y -2=-12(x -4),即x +2y -8=0.点A 到BC 边的距离d =|1+2-8|12+22=5, ∴BC 边上的高为5, |BC |=-4-42+6-22=4 5.∴S △ABC =12×45×5=10.20.(本题满分12分)如图所示,在Rt △ABC 中,已知A (-2,0),直角顶点B (0,-22),点C 在x 轴上.(1)求Rt △ABC 外接圆的方程;(2)求过点(-4,0)且与Rt △ABC 外接圆相切的直线的方程.[解析] (1)由题意可知点C 在x 轴的正半轴上,可设其坐标为(a,0),又AB ⊥BC ,则k AB ·k BC =-1,即-222·22a=-1,解得a =4. 则所求圆的圆心为(1,0),半径为3,故所求圆的方程为(x -1)2+y 2=9.(2)由题意知直线的斜率存在,故设所求直线方程为y =kx +4,即 kx -y +4k =0. 当圆与直线相切时,有d =|5k |k 2+1=3,解得k =±34,故所求直线方程为y =34(x -4)或y =-34(x -4),即3x -4y -12=0或3x +4y -12=0.21.(本题满分12分)一圆与两平行直线x +3y -5=0和x +3y -3=0都相切,圆心在直线2x +y +1=0上,求圆的方程.[解析] 两平行直线之间的距离为|-5+3|1+9=210,∴圆的半径为110,设圆的方程为(x -a )2+(y -b )2=110,则⎩⎪⎨⎪⎧2a +b +1=0|a +3b -5|10=110|a +3b -3|10=110,解得⎩⎪⎨⎪⎧a =-75b =95.故所求圆的方程为⎝ ⎛⎭⎪⎫x +752+⎝ ⎛⎭⎪⎫y -952=110.22.(本题满分14分)已知P 是直线3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 面积的最小值是多少?[解析] 解法一:将圆的一般方程化为标准方程得(x -1)2+(y -1)2=1,圆心C (1,1),r =1,如图所示,当动点P 沿直线3x +4y +8=0向左上方或向右下方无穷远处运动时,Rt△PAC 的面积S Rt △PAC =12|PA |·|AC |,|PA |越来越大,从而S 四边形PACB =|PA |·|AC |也越来越大.当点P 从左上、右下两个方向向中间运动时,S 四边形PACB 变小,显然,当点P 到达一个特殊的位置,即CP 垂直于直线3x +4y +8=0时,S 四边形PACB 取得最小值.此时|PC |=|3×1+4×1+8|32+42=3,∴|PA |=|PC |2-|AC |2=32-12=22,故(S 四边形PACB )最小值=2·12·|PA |·|AC |=2 2.解法二:设点P 的坐标为(x ,y ), 则|PC |=x -12+y -12,由勾股定理及|AC |=1, 得|PA |=|PC |2-|AC |2=x -12+y -12-1,故S 四边形PACB =2S △PAC =2·12·|PA |·|AC |=|PA |=x -12+y -12-1.欲求S 四边形PACB的最小值,只需求|PA |的最小值,即定点C (1,1)与直线上动点P (x ,y )的距离的平方的最小值,也就是点C (1,1),到直线3x +4y +8=0距离的平方,这个最小值d 2=⎝ ⎛⎭⎪⎫|3×1+4×1+8|32+422=9. 故(S 四边形PACB )最小值=9-1=2 2.。

《平面解析几何》测试卷及答案解析

《平面解析几何》测试卷及答案解析

2021年新高考数学总复习第九章《平面解析几何》测试卷及答案解析(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.抛物线y 2=4x 的焦点坐标是( )A.⎝⎛⎭⎫0,116 B .(0,1)C .(1,0) D.⎝⎛⎭⎫116,0答案 C解析 抛物线y 2=2px 的焦点坐标为⎝⎛⎭⎫p 2,0,由抛物线y 2=4x 得2p =4,解得 p =2,则焦点坐标为(1,0),故选C.2.过点(2,1)且与直线3x -2y =0垂直的直线方程为( )A .2x -3y -1=0B .2x +3y -7=0C .3x -2y -4=0D .3x +2y -8=0答案 B解析 设要求的直线方程为2x +3y +m =0,把点(2,1)代入可得4+3+m =0,解得m =-7.可得要求的直线方程为2x +3y -7=0,故选B.3.直线ax -by =0与圆x 2+y 2-ax +by =0的位置关系是() A .相交 B .相切C .相离D .不能确定答案 B解析 将圆的方程化为标准方程得⎝⎛⎭⎫x -a 22+⎝⎛⎭⎫y +b 22=a 2+b24,∴圆心坐标为⎝⎛⎭⎫a 2,-b 2,半径r =a 2+b 22,∵圆心到直线ax -by =0的距离d =a 2+b 22a 2+b 2=a 2+b 22=r ,∴圆与直线的位置关系是相切.故选B.4.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),右焦点F 到渐近线的距离为2,点F 到原点的距离为3,则双曲线C 的离心率e 为( ) A.53 B.355 C.63 D.62答案 B解析 ∵右焦点F 到渐近线的距离为2,∴F (c ,0)到y =b a x 的距离为2,即|bc |a 2+b 2=2,又b >0,c >0,a 2+b 2=c 2,∴bc c=b =2.∵点F 到原点的距离为3,∴c =3, ∴a =c 2-b 2=5,∴离心率e =c a =35=355. 5.已知双曲线E 的渐近线方程是y =±2x ,则E 的离心率为( )A.2或2B. 5C.52D.5或52 答案 D解析 当双曲线焦点在x 轴上时,依题意得b a=2, 故双曲线的离心率为e =c a =1+⎝⎛⎭⎫b a 2= 5. 当双曲线焦点在y 轴上时,依题意得a b =2,即b a =12, 故双曲线的离心率为e =c a =1+⎝⎛⎭⎫b a 2=52.故选D.6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且椭圆C 的长轴长与焦距之和为6,则椭圆C 的标准方程为( )A.4x 225+y 26=1 B.x 24+y 22=1 C.x 22+y 2=1 D.x 24+y 23=1 答案 D解析 由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,得c a =12, 椭圆C 的长轴长与焦距之和为6,即2a +2c =6,解得a =2,c =1,则b =3,。

平面解析几何测试题(卷)带答案解析

平面解析几何测试题(卷)带答案解析

1.(本小题满分12分)已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.2.设椭圆ax 2+by 2=1与直线x +y -1=0相交于A 、B 两点,点C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程.3.(本小题满分12分)(2010·模拟)已知动圆过定点F (0,2),且与定直线l :y =-2相切.(1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过F (0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ.4.已知圆(x -2)2+(y -1)2=203,椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的离心率为22,若圆与椭圆相交于A 、B ,且线段AB 是圆的直径,求椭圆的方程.5.已知m 是非零实数,抛物线)0(2:2>=p px y C 的焦点F 在直线2:02m l x my --=上. (I )若m=2,求抛物线C 的方程(II )设直线l 与抛物线C 交于A 、B 两点,F AA 1∆,F BB 1∆的重心分别为G,H.求证:对任意非零实数m,抛物线C 的准线与x 轴的焦点在以线段GH 为直径的圆外。

6. (本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB |=8,动点P 满足AP u u u r =35PB u u u r,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM 交曲线C 于另外一点Q .(1)求曲线C 的方程; (2)求△OPQ 面积的最大值.7.(文)有一个装有进出水管的容器,每单位时间进出的水量各自都是一定的,设从某时刻开始10分钟只进水、不出水,在随后的30分钟既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示,若40分钟后只放水不进水,求y 与x 的函数关系.8(理)已知矩形ABCD 的两条对角线交于点M ⎝ ⎛⎭⎪⎫12,0,AB 边所在直线的方程为3x -4y -4=0.点N ⎝ ⎛⎭⎪⎫-1,13在AD 所在直线上.(1)求AD 所在直线的方程及矩形ABCD 的外接圆C1的方程;(2)已知点E ⎝ ⎛⎭⎪⎫-12,0,点F 是圆C1上的动点,线段EF 的垂直平分线交F M 于点P ,求动点P 的轨迹方程.9.已知直线l1过点A(-1,0),且斜率为k ,直线l2过点B(1,0),且斜率为-2k ,其中k≠0,又直线l1与l2交于点M.(1)求动点M 的轨迹方程;(2)若过点N ⎝ ⎛⎭⎪⎫12,1的直线l 交动点M 的轨迹于C 、D 两点,且N 为线段CD 的中点,求直线l 的方程.10.如图,在平面直角坐标系xOy 中,平行于x 轴且过点A(33,2)的入射光线l1被直线l :y =33x 反射,反射光线l2交y 轴于B 点,圆C 过点A 且与l1、l2都相切,求l2所在直线的方程和圆C 的方程.11设)1,0,2(),1,1,3(),0,0,1(C B A 为o ——xyz 的点。

平面解析几何测试题

平面解析几何测试题

精品资料《平面解析几何》单元测试本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1~2页,第Ⅱ卷3~4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题均无效。

满分100分。

考试时间100分钟。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共45分)注意事项:1.选择题必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

2.第Ⅰ卷共1个大题,15个小题。

每小题3分,共45分。

一.选择题:(每小题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l 的倾斜角α,斜率k ,正确的是( )A.α=4π,k =1 B.α=4π,k =-1 C.α=43π,k =1 D.α=43π,k =-12.直线4x +3y -3=0的斜率为 ( )A.34 B.43 C.-34D.-433.已知直线l 1的斜率为-1,直线l 2的斜率为1,那么这两条直线 ( ) A.相交但不垂直 B.平行 C.重合D.垂直相交4.过点A (0,4)与B (3,0)的直线方程是 ( )A.4x -3y +12=0 B.4x -3y -12=0 C.4x +3y +12=0 D.4x +3y -12=05.已知直线x +5y -1=0与直线ax -5y +3=0平行,则a =精品资料( )A.25 B.1 C.-1 D.-256.曲线x 2-y 2+y -1=0与曲线y =x 2的交点个数是 ( )A.1 B.2 C.3 D.47.已知直线Ax+By+C=0,且AC <0,BC <0,则此直线通过的象限是 ( ) A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限8.b =0是直线y =kx +b 过原点的( )A.充要条件 B.充分但不必要条件 C.必要但不充分条件D.既不充分也不必要条件9.已知直线l 与直线3x +6y -4=0垂直,且两直线在y 轴上的截距相等,则直线l 的方程可以是 ( ) A.6x -3y +2=0B.6x -3y -2=0C.3x -6y +4=0D.3x -6y -4=010. 过点(1,-2),倾斜角α的正弦值等于53的直线方程是 ( )A.y+2=43±(x -1) B.y+2=34±(x -1) C.y+2=43(x -1) D.y+2=53(x -1)11.已知圆方程是x 2-2x+y 2+4y+3=0,则它的圆心和半径分别是 ( ) A.(1,-2),r =2 B.(-1,2),r =2 C.(-1,2),r =2 D.(1,-2),r =212.已知圆x 2+y 2+2x -4y -a =0的半径为3,则()A.a=8B.a=4C.a=2D.a=1413.圆x2+y2-2x+2y=0的圆心到直线2x+3y+m=0的距离为13,则m的值是()A.-12B.14C.-12或14D.12或-1414.直线2x+y-4=0与圆(x+2)2+(y-1)2 =1的位置关系是()A.相交且过圆心 B.相离 C.相切 D.相交且不过圆心15.过圆(x+1)2+(y-1)2 =9外一点P(3,-2)的直线与该圆相交于A、B两点,则|AB|的最大值是()A.18 B.9 C.6 D.3第Ⅱ卷(非选择题共90分)注意事项:1.非选择题必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答。

2023北京重点校高二(上)期末数学汇编:平面解析几何章节综合

2023北京重点校高二(上)期末数学汇编:平面解析几何章节综合

2023北京重点校高二(上)期末数学汇编平面解析几何章节综合1,2,半径x+.()21x+D.()21A.Q B.R C.SP−6.(2023秋·北京海淀·高二统考期末)经过点(1,0)A.310−−=B.x yC.330−−=D.xx y上,且120MF MF⋅=,则B.2北京朝阳·高二统考期末)已知B.231+45901201352023秋高二统考期末)如图是一个椭圆形拱桥,当水面在处时,在如图所示的截面里,桥洞与其倒影恰好构成一个椭圆.此时拱顶离水面,水面宽,那么当水位上升)A.33m B.33m2二、填空题16.(2023秋·北京东城·高二统考期末)已知点ABC的周长为21.(2023a则实数=22.(2023是__.23.(2023两点,求EBC的面积的最小值.>>的长轴长为0)b椭圆C 上.(1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 椭圆C 交于()()1122,,,A x y B x y 两点,且120y y ≠.问:x 轴上是否存在点N 使得直线NA ,直线NB 与y 轴围成的三角形始终是底边在y 轴上的等腰三角形?若存在,求点N 的坐标;若不存在,说明理由. ______________;经过原点且斜率不为最大时,12PF PF ⋅=_____________1,2,半径)229−=;【详解】PF,则设火星半径为R,椭圆左焦点为1F,连接1则1222MF MF a −==①,因为120MF MF ⋅=,所以MF 由勾股定理得212MF MF +①②联立可得151MF =+所以12112F F MSMF MF ==故选:B D.0a >,∴的方程,再联立直线MN的最大值为圆心到点1,1为圆心,)(213−++135.图1(2)若P 不是直角顶点,如图2,则,满足PMN 是等腰直角三角形的非直角顶点个,图2故4t =时,使得MNP △是等腰直角三角形的点对④:04t <<时,(1)若P 为直角顶点,如图1,则|MN (2)若P 不是直角顶点,如图3,则个,图3故04t <<时,使得MNP △是等腰直角三角形的点故答案为:②③④.【点睛】椭圆的参数方程是x =故ABC的周长CC=1∴圆C和圆(2)当过∴可设所求切线方程为:∴圆心C到切线的距离的方程,联立直线与抛物线的方程,可知EBC的面积的距离与它到直线为准线的抛物线,所以EBC的面积(2−1616m m所以EBC的面积的最小值为(1)22 4xy+存在,(1,0N【分析】(1)根据椭圆的定义即可求解;【详解】(1)因为12PF F S =12PF F S=最大时,面积最大,则此时为短轴顶点.不妨设()0,1P .(1F −,所以(11,PF =−,(21,PF =−所以121PF PF ⋅=−⨯故答案为:22;。

高中数学 第二章 平面解析几何初步综合测试A(含解析)新人教B版必修2

高中数学 第二章 平面解析几何初步综合测试A(含解析)新人教B版必修2

【成才之路】2015-2016学年高中数学 第二章 平面解析几何初步综合测试A 新人教B 版必修2时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.数轴上三点A 、B 、C ,已知AB =2.5,BC =-3,若A 点坐标为0,则C 点坐标为( ) A .0.5 B .-0.5 C .5.5 D .-5.5[答案] B[解析] 由已知得,x B -x A =2.5,x C -x B =-3,且x A =0,∴两式相加得,x C -x A =-0.5,即x C =-0.5.2.(2015·福建南安一中高一期末测试)已知直线经过点A (0,4)和点B (1,2),则直线AB 的斜率为( )A .3B .-2C .2D .不存在[答案] B[解析] 由斜率公式得,直线AB 的斜率k =2-41-0=-2.3.已知点A (1,2,2)、B (1,-3,1),点C 在yOz 平面上,且点C 到点A 、B 的距离相等,则点C 的坐标可以为( )A .(0,1,-1)B .(0,-1,6)C .(0,1,-6)D .(0,1,6)[答案] C[解析] 由题意设点C 的坐标为(0,y ,z ), ∴1+y -22+z -22=1+y +32+z -12,即(y -2)2+(z -2)2=(y +3)2+(z -1)2. 经检验知,只有选项C 满足.4.过两点(-1,1)和(3,9)的直线在x 轴上的截距是( ) A .-32B .-23C .25D .2[答案] A[解析] 由题意,得过两点(-1,1)和(3,9)的直线方程为y =2x +3.令y =0,则x =-32, ∴直线在x 轴上的截距为-32,故选A .5.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或2[答案] C[解析] 当k =3时,两直线显然平行;当k ≠3时,由两直线平行,斜率相等,得-k -34-k=2k -32.解得k =5,故选C .6.在平面直角坐标系中,正△ABC 的边BC 所在直线的斜率为0,则AC 、AB 所在直线的斜率之和为( )A .-2 3B .0C . 3D .2 3[答案] B[解析] 如图所示.由图可知,k AB =3,k AC =-3,∴k AB +k AC =0.7.直线3x -2y +m =0与直线(m 2-1)x +3y +2-3m =0的位置关系是( ) A .平行B .垂直C .相交D .与m 的取值有关[答案] C[解析] 由3×3-(-2)×(m 2-1)=0,即2m 2+7=0无解.故两直线相交. 8.若点(2,2)在圆(x +a )2+(y -a )2=16的内部,则实数a 的取值范围是( ) A .-2<a <2 B .0<a <2 C .a <-2或a >2 D .a =±2[答案] A[解析] 由题意,得(2+a )2+(2-a )2<16, ∴-2<a <2.9.(2015·辽宁沈阳二中高一期末测试)设A 、B 是x 轴上的点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程为( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .2x +y -7=0[答案] A[解析] 由题意知,点P 在线段AB 的垂直平分线x =2上.由⎩⎪⎨⎪⎧x =2x -y +1=0,得y =3.∴P (2,3).令x -y +1=0中y =0,得x =-1, ∴A (-1,0).又∵A 、B 关于直线x =2对称, ∴B (5,0).∴直线PB 的方程为y 3-0=x -52-5,即x +y -5=0.10.设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( ) A .相切 B .相交 C .相切或相离 D .相交或相切[答案] C[解析] ∵m >0,∴圆心(0,0)到直线2(x +y )+1+m =0的距离d =|1+m |2+2=1+m2,圆x 2+y 2=m 的半径r =m ,由1+m 2-m =1-2m +m2=1-m22≥0,得d ≥r ,故选C .11.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公切线有( )A.1条B.2条C.3条D.4条[答案] C[解析]x2+y2-4x+2y+1=0的圆心为(2,-1),半径为2,圆x2+y2+4x-4y-1=0的圆心为(-2,2),半径为3,故两圆外切,即两圆有三条公切线.12.一辆卡车宽1.6 m,要经过一个半圆形隧道(半径为3.6 m)则这辆卡车的平顶车篷篷顶距地面高度不得超过( )A.1.4 m B.3.5 mC.3.6 m D.2.0 m[答案] B[解析]圆半径OA=3.6 m,卡车宽1.6 m,∴AB=0.8 m,∴弦心距OB= 3.62-0.82≈3.5 m.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.若点(2,k)到直线3x-4y+6=0的距离为4,则k的值等于________.[答案]-2或8[解析]由题意,得|6-4k+6|32+-42=4,∴k=-2或8.14.以点A(2,0)为圆心,且经过点B(-1,1)的圆的方程是________.[答案](x-2)2+y2=10[解析]由题意知,圆的半径r=|AB|=-1-22+1-02=10.∴圆的方程为(x -2)2+y 2=10.15.若直线x +3y -a =0与圆x 2+y 2-2x =0相切,则a 的值为________. [答案] -1或3[解析] 圆心为(1,0),半径r =1,由题意,得|1-a |1+3=1,∴a =-1或3.16.(2015·山东莱州市高一期末测试)已知直线l 垂直于直线3x +4y -2=0,且与两个坐标轴构成的三角形的周长为5个单位长度,直线l 的方程为________.[答案] 4x -3y +5=0或4x -3y -5=0[解析] 由题意可设直线l 的方程为y =43x +b ,令x =0,得y =b ,令y =0,得x =-34b .∴三角形的周长为|b |+34|b |+54|b |=5,解得b =±5,故所求直线方程为4x -3y +5=0或4x -3y -5=0.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)正方形ABCD 的对角线AC 在直线x +2y -1=0上,点A 、B 的坐标分别为A (-5,3)、B (m,0)(m >-5),求B 、C 、D 点的坐标.[解析] 如图,设正方形ABCD 两顶点C 、D 坐标分别为(x 1,y 1)、(x 2,y 2).∵直线BD ⊥AC ,k AC =-12,∴k BD =2,直线BD 方程为y =2(x -m ),与x +2y -1=0联立解得⎩⎪⎨⎪⎧x =15+45m y =25-25m,点E 的坐标为⎝ ⎛⎭⎪⎫15+45m ,25-25m ,∵|AE |=|BE |, ∴⎝ ⎛⎭⎪⎫15+45m +52+⎝ ⎛⎭⎪⎫25-25m -32 =⎝ ⎛⎭⎪⎫15+45m -m 2+⎝ ⎛⎭⎪⎫25-25m 2, 平方整理得m 2+18m +56=0,∴m =-4或m =-14(舍∵m >-5),∴B (-4,0).E 点坐标为(-3,2),∴⎩⎪⎨⎪⎧-3=-5+x 122=3+y12,∴⎩⎪⎨⎪⎧x 1=-1y 1=1.即点C (-1,1), 又∵⎩⎪⎨⎪⎧-3=-4+x 222=0+y22,∴⎩⎪⎨⎪⎧x 2=-2y 2=4,即点D (-2,4).∴点B (-4,0)、点C (-1,1)、点D (-2,4).18.(本题满分12分)已知一直线通过点(-2,2),且与两坐标轴所围成的三角形的面积为1,求这条直线的方程.[解析] 设直线方程为y -2=k (x +2),令x =0得y =2k +2,令y =0得x =-2-2k,由题设条件12⎪⎪⎪⎪⎪⎪-2-2k ·||2k +2=1,∴2(k +1)2=|k |,∴⎩⎪⎨⎪⎧k >02k 2+3k +2=0或⎩⎪⎨⎪⎧k <02k 2+5k +2=0,∴k =-2或-12,∴所求直线方程为:2x +y +2=0或x +2y -2=0.19.(本题满分12分)已知直线y =-2x +m ,圆x 2+y 2+2y =0. (1)m 为何值时,直线与圆相交? (2)m 为何值时,直线与圆相切? (3)m 为何值时,直线与圆相离?[解析] 由⎩⎪⎨⎪⎧y =-2x +mx 2+y 2+2y =0,得5x 2-4(m +1)x +m 2+2m =0.Δ=16(m +1)2-20(m 2+2m )=-4[(m +1)2-5], 当Δ>0时,(m +1)2-5<0, ∴-1-5<m <-1+ 5. 当Δ=0时,m =-1±5,当Δ<0时,m <-1-5或m >-1+ 5.故(1)当-1-5<m <-1+5时,直线与圆相交; (2)当m =-1±5时,直线与圆相切;(3)当m <-1-5或m >-1+5时,直线与圆相离.20.(本题满分12分)求与圆C 1:(x -2)2+(y +1)2=4相切于点A (4,-1),且半径为1的圆C 2的方程.[解析]解法一:由圆C 1:(x -2)2+(y +1)2=4,知圆心为C 1(2,-1), 则过点A (4,-1)和圆心C 1(2,-1)的直线的方程为y =-1, 设所求圆的圆心坐标为C 2(x 0,-1), 由|AC 2|=1,即|x 0-4|=1, 得x 0=3,或x 0=5,∴所求圆的方程为(x -5)2+(y +1)2=1,或(x -3)2+(y +1)2=1. 解法二:设所求圆的圆心为C 2(a ,b ), ∴a -42+b +12=1,①若两圆外切,则有a -22+b +12=1+2=3,②联立①、②解得a =5,b =-1, ∴所求圆的方程为(x -5)2+(y +1)2=1; 若两圆内切,则有a -22+b +12=2-1=1,③联立①、③解得a =3,b =-1, ∴所求圆的方程为(x -3)2+(y +1)2=1.∴所求圆的方程为(x -5)2+(y +1)2=1,或(x -3)2+(y +1)2=1.21.(本题满分12分)(2014·甘肃庆阳市育才中学高一期末测试)已知两圆x 2+y 2+6x -4=0,x 2+y 2+6y -28=0.求:(1)它们的公共弦所在直线的方程; (2)公共弦长.[解析] (1)由两圆方程x 2+y 2+6x -4=0,x 2+y 2+6y -28=0相减,得x -y +4=0. 故它们的公共弦所在直线的方程为x -y +4=0.(2)圆x 2+y 2+6x -4=0的圆心坐标为(-3,0),半径r =13, ∴圆心(-3,0)到直线x -y +4=0的距离d =|-3-0+4|12+-12=22, ∴公共弦长l =2132-222=5 2.22.(本题满分14分)(2015·湖南郴州市高一期末测试)已知圆的方程为x 2+y 2-2x -4y +m =0.(1)若圆与直线x +2y -4=0相交于M 、N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(2)在(1)的条件下,求以MN 为直径的圆的方程. [解析] (1)圆的方程可化为(x -1)2+(y -2)2=5-m , ∴m <5.设M (x 1,y 1)、N (x 2,y 2).由⎩⎪⎨⎪⎧x +2y -4=0x 2+y 2-2x -4y +m =0,得5y 2-16y +m +8=0, ∴y 1+y 2=165,y 1y 2=m +85.x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,∵OM ⊥ON ,∴k OM ·k ON =-1, 即x 1x 2+y 1y 2=0.∴16-8(y 1+y 2)+5y 1y 2=0, ∴16-8×165+8+m =0,∴m =85.(2)以MN 为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0, 即x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.又x 1+x 2=4-2y 1+4-2y 2=8-2(y 1+y 2)=85,∴以MN 为直径的圆的方程为x 2+y 2-85x -165y =0.。

平面解析几何测试题及答案

平面解析几何测试题及答案

平面解析几何测试题一、选择题(本大题20个小题,每小题3分,共60分) 1.直线3x+4y-24=0在x 轴,y 轴上的截距为 ( ) A.6,8 B.-6,8 C.8,6 D.-8,6 2.x=29y -表示的曲线是 ( )A.一条直线B.两条直线C.半个圆D.一个圆3.已知直线x-ay+8=0与直线2x-y-2=0垂直,则a 的值是 ( )A.-1B.2C.1D.-24.已知圆x 2+y 2+ax+by=0的圆心为(-4,3),则a,b 的值分别是 ( )A.8,6B.8,-6C.-8,-6D.-8,6 5.已知A (3,-6),B (-5,2),C (6,y )三点共线,则点C 的纵坐标是 ( )A.-13B.9C.-9D.136.已知过点P (2,2)的直线与圆(x-1)2+y 2 =5相切,且与直线ax-y+1=0垂直,则a 的值为( )A.2B.1C.-21D.21 7. 直线2x-y=0与圆x 2+y 2-2x-4y-1=0的位置关系为 ( ) A. 相交但不过圆心 B.相离 C.相切 D.相交过圆心8.已知双曲线22a x -22b y =1的渐近线的斜率k=±34,则离心率等于 ( )A.53B.45C.34D.359.若椭圆22a x +22by =1(a>b>0)的左右焦点分别为F 1,F 2,点A 是椭圆上一点,若▲AF 1F 2为正三角形,则椭圆的离心率为 ) A.22 B.21 C.41D.3-1 10.已知双曲线22x -22by =1(b>0)的左右焦点分别为F 1,F 2,其中一条渐近线方程为y=x ,点P (3,y 0)在双曲线上,则1PF •2PF 等于 ( ) A.-12 B.-2 C.0 D.4 11.已知椭圆焦点在x 轴上,长轴长为18,且焦点将长轴三等分,则椭圆的方程为( )A.812x +722y =1B.812x +92y =1 C.812x +452y =1 D.812x +162y12.设点F 为抛物线y 2=3x 的焦点,过点F 且倾斜角为30°的直线交抛物线于A ,B 两点,则|AB|等于 ( ) A.330B.6C.12D.37 13.已知圆x 2+y 2-4x-4y=0与x 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为( )A.6π B.3π C.2π D.3π2 14.已知椭圆的中心在原点,焦点在x 轴上,长轴是短轴的3倍,且过点(-3,1),则椭圆的方程为 ( )A.92x +y 2=1 B.121822=+x y .121822=+y x D.92y +x 2=1 15.关于x ,y 的方程x 2+my 2=1,给出下列命题: ①当m<0时,方程表示双曲线; ②当m=0时,方程表示抛物线; ③当0<m<1时,方程表示椭圆; ④当m=1时,方程表示等轴双曲线; ⑤当m>1时,方程表示椭圆. 其中真命题的个数是 ( )A.2个B.3个C.4个D.5个x-y-1≦016.已知变量x ,y 满足的约束条件是 x+y ≦1,目标函数z=10x+y 的最优解是 ( ) x ≧0 A. (0,1),(1,0) B.(0,1),(0,-1) C.(0,-1),(1,0) D.(0,-1),(0,0) 17.已知双曲线17922=-y x ,直线AB 过焦点F 1,且|AB|=4,则▲ABF 2的周长是 ( )A.12B.20C.24D.48 18.已知椭圆的焦点F 1(0,-1),F 2(0,1),P 是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|,构成等差数列,则椭圆的方程为 ( )A.191622=+y x B.1121622=+y x C.13422=+x y D.13422=+y x 19. 已知点P 是等轴双曲线上除顶点外的任一点,A 1,A 2是双曲线的顶点,则直线PA 1与PA 2的斜率之积是( )A.1B.-1C.2D.-2 20.圆(x+1)2+(y+2)2=8上到直线x+y+1=0的距离等于2的点共有 ( )A.1个B.2个C.3个D.4个 二、填空题(本大题5个小题,每小题4分,共20分) 21.圆x 2+y 2=1上的点到直线3x+4y-25=0的最大距离为 . 22.已知点(2,-1)与点(a ,-2)在直线3x+y-4=0的两侧,则a 的取值范围是 .23.物线的顶点在原点,焦点是双曲线3x 2-y 2=12的左顶点,则其标准方程为 .24.若方程142222=-+-m y m x 表示椭圆,则m 的取值范围是 . 25.设点F 1,F 2为双曲线1422=-y x 的两焦点,点P 在双曲线上,且∠F 1PF 2=90°,则▲F 1F 2P 的面积等于 . 三、解答题(本大题5个小题,共40分)26.(本小题6分)已知抛物线y=241x ,点P (0,2)作直线l 交抛物线A ,B 两点,O 为坐标原点.(1)求证:OA •OB 为定值;(2)直线l 与向量n=(1,2)平行,求▲AOB 的面积.27.(本小题8分)已知点P 是椭圆16410022=+y x 上一点,点F 1,F 2是左、右焦点,若∠F 1PF 2=60°,求▲PF 1F 2的面积.28.(本小题8分)在抛物线y=2x 2上求一点P ,使P 到直线l :y=2x-3的距离最短,求P 点的坐标.29.(本小题8分)已知椭圆22a x +22by =1(a>b>0)经过点(0,3),离心率为21.(1)求椭圆的标准方程;(2)已知直线l :y=2x+m 与椭圆相交于A ,B 两点,以OA ,OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆上,O 为坐标原点,求直线l 的方程.30.(本小题10分)已知双曲线22a x -22by =1(a>0,b>0)的离心率为2,两顶点的距离为4.(1)求双曲线的标准方程;(2)已知直线l 过圆x 2+y 2-6x+2y+6=0的圆心并与双曲线交于A ,B 两点,且点A ,B 关于点M 对称,求直线l 的方程.第八章 平面解析几何测试题答案一、选择题1.C2.C3.D4.B5.C6.A7.D8.D9.B 10.C 11.A 12.C 13.C 14.C 15.B 16.C 17.B 18.C 19.A 20.C 二、填空题 21. 6 22. (2,∞-) 23. y 2=-8x24. (2,3)U (3,4) 25. 1三、解答题 26.(1)-4 (2)4627.3364 28.(21,21) 29.(1)13422=+y x (2)y=2x+219或y=2x -21930.(1)112422=-y x (2)0269=-+y x。

平面解析几何测试题(文科)

平面解析几何测试题(文科)

平面解析几何测试题(文科)(临朐 叶付国 王世红)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)1a =“”是“直线x+y =0和直线0x ay -=互相垂直”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件(2)设A 、B 是x 轴上的两点,点P 的横坐标为2,且||||PB PA =,若直线PA 的方程为01=+-y x ,则直线PB 的方程是 ( )A .05=-+y xB .012=--y xC .042=--y xD .072=-+y x(3)直线1y x =-上的点到圆C :224240x y x y ++-+=的最近距离为( )A. 1B.C.1 D. 1(4)0y m -+=与圆22220x y x +--=相切,则实数m 等于( )A .B .C .-D .-(5)若圆22680x y x y +--=的过点(3 5),的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .B .C .D .(6)设椭圆1C 的焦点在x 轴上且长轴长为26,且离心率为513;曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )A .2222143x y -=B .22221135x y -=C .2222134x y -=D .222211312x y -=(7)双曲线221mx y +=的虚轴长是实轴长的2倍,则m =( )A .14-B .4-C .4D .14(8).抛物线y x =2的准线方程是 ( )A.014=+xB.014=+yC.012=+xD.012=+y(9)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4(10)若点P 在抛物线24y x =上,则该点到点(21)Q -,的距离与到抛物线焦点距离之和取得最小值时的坐标为( )A.114⎛⎫- ⎪⎝⎭,B.114⎛⎫ ⎪⎝⎭,C.(12),D.(12)-, (11).我国于07年10月24日成功发射嫦娥一号卫星,并经四次变轨飞向月球.嫦娥一号绕地球运行的轨迹是以地球的地心为焦点的椭圆(地球半径忽略不计).若第一次变轨前卫星的近地点到地心的距离为m ,远地点到地心的距离为n ,第二次变轨后两距离分别为2m 、2n (近地点是指卫星到地面的最近距离,远地点是最远距离),则第一次变轨前的椭圆的离心率比第二次变轨后的椭圆的离心率 ( )A.变大B.变小C.不变D.以上都有可能(12)已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ( ) A.4. B.5. C.7. D.8. 二、填空题:本大题共4小题, 每小题4分,共16分.(13)已知实数0a >,直线l 过点22P -(,),且垂直于向量(3,3)m =-,若直线l 与圆02222=-+-+a a ax y x 相交,则实数a 的取值范围是________________ .(14)已知12, F F 为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于 A B 、两点 若2212F A F B +=,则AB = .(15)在平面直角坐标系xoy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是 .(16)已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .三、解答题:本大题共6小题. 共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知圆C :012822=+-+y y x ,直线l :02=++a y ax . (I) 当a 为何值时,直线l 与圆C 相切;(Ⅱ) 当直线l 与圆C 相交于A 、B 两点,且22=AB 时,求直线l 的方程.(18)(本小题满分12分)已知平面区域00240x y x y ⎧⎪⎨⎪+-⎩≥≥≤恰好被面积最小的圆222:()()C x a y b r -+-=及其内部所覆盖.(Ⅰ)试求圆C 的方程;(Ⅱ)若斜率为1的直线l 与圆C 交于不同两点,A B ,且满足CA CB ⊥,求直线l 的方程.(19)(本小题满分12分)在平面直角坐标系xoy 中,直线l 与抛物线2y =2x 相交于A 、B 两点. 求证:“若直线l 过点T (3,0),则→--OA →--⋅OB =3”是真命题.(20)(本小题满分12分)已知直线)0(1012222>>=+=-+b a by a x y x 与椭圆相交于A 、B 两点,M 是线段AB 上的一点,-=,且M 点在直线1: 2l y x =上. (Ⅰ)求椭圆的离心率;(Ⅱ)若椭圆的焦点关于直线l 的对称点在单位圆122=+y x 上,求椭圆的方程. (21)(本小题满分12分)在平面直角坐标系xOy 中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q .(I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,问:是否存在实数k ,使得向量OP OQ+与AB共线?给出判断并说明理由.(22)(本小题满分14分)如图,已知(10)F ,,直线:1l x =-,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且⋅=⋅(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M .(1)已知1MA AF λ= ,2MB BF λ=,求12λλ+的值;(2)求MA MB的最小值.参考答案一、选择题:CADCB AABBD C D 二、填空题(13)82<<a ; (14)8; (15)28y x =; (16)3.三、解答题(17)解:将圆C 的方程012822=+-+y y x 配方得标准方程为4)4(22=-+y x , 则此圆的圆心为(0 , 4),半径为2. (Ⅰ) 若直线l 与圆C 相切,则有21|24|2=++a a . 解得43-=a . ………………6分(Ⅱ) 解:过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎪⎪⎪⎩⎪⎪⎪⎨⎧====+++=.221,2,1|24|22222AB DA AC DA CD a a CD 解得1,7--=a . ∴直线l 的方程是0147=+-y x 和02=+-y x . ………………12分(18)解:(Ⅰ)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部,且△OPQ 是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),所以圆C 的方程是22(2)(1)5x y -+-=. ………………6分 (Ⅱ)设直线l 的方程是:y x b =+.因为CA CB ⊥ ,所以圆心C 到直线l,=. 解得:1b =-………………………………11分 所以直线l的方程是1y x =-±………………12分(19)解:设过点T(3,0)的直线l 交抛物线22y x =于点A 11(,)x y 、B 22(,)x y . (Ⅰ)当直线l 的钭率不存在时,直线l 的方程为3x =,此时, 直线l 与抛物线相交于点A(3,6)().B(3,-6),∴OB OA ⋅=3. …….............4分 (Ⅱ)当直线l 的钭率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,由22(3)y x y k x =⎧⎨=-⎩得 2122606ky y k y y --=⇒=-. …………………….….6分又 ∵ 22112211,x y x y ==, ∴2121212121()3⋅=+=+= OA OB x x y y y y y y ,………………………………….10分综上所述,命题“若直线l 过点T(3,0),则OB OA ⋅=3” 是真命题. ………………….12分 (20)解:(Ⅰ)由-=知M 是AB 的中点,设A 、B 两点的坐标分别为),(),,(2211y x B y x A由02)(:.1,0122222222222=-+-+⎪⎩⎪⎨⎧=+=-+b a a x a x b a b y ax y x 得.22221212222122)(,2ba b x x y y b a a x x +=++-=++=+, ∴M 点的坐标为),(222222b a b b a a ++. …………………………4分 又M 点在直线l 上, 02222222=+-+∴b a b b a a . 2222222)(22c a c a b a =∴-==∴, .22==∴a c e ………………6分 (Ⅱ)由(Ⅰ)知c b =,不妨设椭圆的一个焦点坐标为(,0)F b ,设(,0)F b 关于直线l x y 21=上的对称点为),(00y x , 则有⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧=⨯-+-=⋅--.5453:.0222,1210000000b y b x y b x b x y 解得. ………………10分 由已知222200341,()()155x y b b +=∴+=.12=∴b ,∴所求的椭圆的方程为1222=+y x . ………………12分 (21)解:(Ⅰ)由已知条件,直线l的方程为y kx =代入椭圆方程得22(12x kx +=.整理得221102k x ⎛⎫+++=⎪⎝⎭① ……………………………………3分 直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=->⎪⎝⎭,解得k <或k >.即k的取值范围为⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭,∞∞.………………6分(Ⅱ)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,,由方程①,12212x x k+=-+. ②又1212()y y k x x +=++ ③ …………………………………9分而(01)()A B AB =,,.所以OP OQ + 与AB共线等价于1212)x x y y +=+,将②③代入上式,解得2k =.由(Ⅰ)知2k <-或2k >,故没有符合题意的常数k .………………12分(22)解:(Ⅰ)设点()P x y ,,则(1)Q y -,,由..QP QF FP FQ =得:(10).(2)(1).(2)x y x y y +-=--,,,,,化简得2:4C y x =.……4分(Ⅱ)(1)设直线AB 的方程为:1(0)x my m =+≠.设11()A x y ,,22()B x y ,,又21M m ⎛⎫--⎪⎝⎭, 联立方程组241y x x my ⎧=⎨=+⎩,,,消去x 得:2440y my --=,2(4)120m ∆=-+>,121244y y m y y +=⎧⎨=-⎩,. ……………………………………………7分 由1MA AF λ= ,2MB BF λ=得:1112y y m λ+=-,2222y y m λ+=-,整理得:1121my λ=--,2221my λ=--, 12122112m y y λλ⎛⎫∴+=--+ ⎪⎝⎭121222.y y m y y +=--242.4m m =---0=.……10分(2)解:212.M M MA MB y y y y =--221212(1)()M M m y y y y y y =+-++2224(1)44m m m m =+-+⨯+224(1)4m m ⎛⎫=++ ⎪⎝⎭2214(2)4216m m ⎛=+++= ⎝≥. 当且仅当221m m=,即1m =±时等号成立,所以MA MB ⋅ 最小值为16. ……14分。

平面解析几何初步直线圆的方程等章节综合检测专题练习(二)附答案新高考高中数学

平面解析几何初步直线圆的方程等章节综合检测专题练习(二)附答案新高考高中数学

高中数学专题复习
《平面解析几何初步直线圆的方程等》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(2020年上海市春季高考数学试卷(含答案))已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2
MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是
( ) A .圆 B .椭圆 C .抛物线 D .双曲线 2.过点(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +≤分两部分,使得这两部分的面积之差最大,则该直线的方程为( )
A .20x y +-=
B .10y -=
C .0x y -=
D .340x y +-=(2020湖北文)
A
3.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA →·PB →的最小值为____________.
4.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么。

第二十单元 平面解析几何综合 A卷

第二十单元 平面解析几何综合 A卷

单元训练金卷▪高三▪数学卷(A )第二十单元 平面解析几何综合注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线70ax y ++=与430x ay +-=平行,则a 为( ) A .2 B .2或2-C .2-D .12-【答案】B【解析】由直线70ax y ++=与70ax y ++=平行, 可得1743a a =≠-,解得2a =±,故选B . 2.已知双曲线()2222100x y a b a b -=>,>的一条渐近线的方程是3y x =,它的一个焦点落在抛物线216y x =的准线上,则双曲线的方程的( )A .221824x y -=B .221248x y -=C .221412x y -=D .221124x y -=【答案】C【解析】双曲线()2222100x y a b a b-=>,>的一条渐近线的方程是3y x =,可得3b a =,它的一个焦点落在抛物线216y x =的准线上,可得4c =,即2216a b =+,2a =,23b =. 所求的双曲线方程为:221412x y -=.故选C .3.已知椭圆()2222:10y x E a b a b+=>>经过点()50A ,,()03B ,,则椭圆E 的离心率为( ) 此卷只装订不密封 班级 姓名 准考证号 考场号 座位号A .23B C .49 D .59【答案】A【解析】由椭圆()2222:10y x E a b a b+=>>,经过点)A,()03B ,,可得3a =,b =2c ==,其离心率23e =,故选A . 4.圆心为()2,0的圆C 与圆224640x y x y ++-+=相外切,则C 的方程为( ) A .22420x y x +++= B .22420x y x +-+= C .2240x y x ++=D .2240x y x +-=【答案】D【解析】圆224640x y x y ++-+=,即()()22239x y ++-=.圆心为()2,3-,半径为3设圆C 的半径为r 53r =+.所以2r =.错误!未找到引用源。

平面解析几何测试

平面解析几何测试

平面解析几何初步(时间:120分钟 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线ax-2y=0与直线3x-y+3=0平行,则a 的值是( ) A.6 B.-6 C.±6 D.32.经过直线x+3y+10=0和y=3x 的交点,且与原点距离为1的直线方程是( )A.3x-4y-5=0B.4x-3y-5=0C.y=1D.4x-3y-5=0或x=-13.已知A(7,1),B(1,4),直线y 12=ax 与线段AB 交于点C,且2,AC CB = 则a 等于( )45.2.1..53A B C D4.两条直线y=x+2a,y=2x+a 的交点P 在圆(x-1)2+(y-1)2=4的内部,则实数a 的取值范围是( )1.15A a -<< B.a>1或a<-15C.-15≤a<1D.a≥1或a≤-155.点Q(x,y)在以A(-3,1),B(-1,0),C(-2,0)为顶点的△ABC 的内部运动(不包含边界),则21y x --的取值范围是( )11.,1.,12211.,1.,144A B C D ⎡⎤⎛⎫ ⎪⎢⎥⎣⎦⎝⎭⎡⎤⎛⎫ ⎪⎢⎥⎣⎦⎝⎭6.圆x 2+2x+y 2+4y-3=0上到直线x+y+1=0( ) A.1个 B.2个 C.3个 D.4个7.直线x-2y-3=0与圆(x-2)2+(y+3)2=9交于E,F 两点,则△EOF(O 为原点)的面积为( )33..24A B C D8.已知直线l :ax -y +b =0,圆M :x 2+y 2-2ax +2by =0,则l 与M 在同一坐标系中的图象只可能是()9.若直线ax +by +1=0(a 、b >0)过圆x 2+y 2+8x +2y +1=0的圆心,则1a +4b 的最小值为( ) A.8B.12C.16D.2010.设圆x 2+y 2+ax -5=0,以点P (3,1)为中点的弦AB 的长为27,则弦AB 所在的直线方程为( ) A.x -y -2=0 B.x +y -4=0 C.x +2y -5=0 D.x -2y -1=011.直线l :x -3y =0与圆C :x 2+y 2-4y =0交于A 、B 两点,则△ABC 的面积为( ) A.333 C.2 3D. 312.在圆x 2+y 2=5x 内,过点⎝⎛⎭⎫52,32有n (n ∈N *)条弦,它们的长构成等差数列,若a 1为过该点最短弦的长,a n 为该点最长弦的长,公差d ∈⎝⎛⎭⎫15,13,则n 的值是( )A.2B.3C.4D.5二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上.13.已知点(0,0)在圆:x2+y2+ax+ay+2a2+a-1=0外,则a的取值范围是.14.已知直线y=-2x+a(a>0)与圆x2+y2=9相交于A,B两点,且OA·OB=92,则实数a的值等于.15.(2010·潮州模拟)设点A(1,0),B(-1,0),直线2x+y-b=0与线段AB相交,则b的取值范围是.16.直线y=x+b与曲线x=1-y2有且仅有一个公共点,则b的取值范围是.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知动直线l:(m+3)x-(m+2)y+m=0,圆C:(x-3)2+(y-4)2=9.(1)求证:无论m为何值,直线l和圆总相交;(2)求m为何值时,直线l被圆截得的弦长最小,并求出此最小值.18.(本小题满分12分)已知直线l1过点A(1,1),B(3,a),直线l2过点M(2,2),N(3+a,4).(1)若l1∥l2,求a的值;(2)若l1⊥l2,求a的值.19.(本小题满分12分)已知,圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.20.(本小题满分12分)(2011·湖南模拟题)直线l经过点P(3,2)且与x,y轴的正半轴交于A,B两点,△OAB的面积为12,求直线的方程.21.(本小题满分12分)在平面直角坐标系xOy 中,以O 为圆心的圆与直线 =4相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|PA|、|PO|、|PB|成等比数列,求PA PB的取值范围.22.(本小题满分14分)已知菱形ABCD 的顶点A 、C 在椭圆x 2+3y 2=4上,对角线BD 所在直线的斜率为1. (1)当直线BD 过点(0,1)时,求直线AC 的方程; (2)当∠ABC=60°时,求菱形ABCD 面积的最大值.参考答案1.解析:由2a=3,得a=6. 答案:A 2.解析:由3100,3x y y x ++=⎧⎨=⎩解得1,3x y =-⎧⎨=-⎩即交点为(-1,-3),如图,斜率不存在时,x=-1;斜率存在时,4x-3y-5=0. 答案:D3.解析:由2AC CB = 得,点C 的坐标为(3,3),又点C 在直线y=12ax 上,∴a=2. 答案:A4.解析:由2,2y x a y x a=+⎧⎨=+⎩得P(a,3a).∴(a -1)2+(3a-1)2<4,解得-15<a<1 . 答案:A5.解析:目标函数21y kx -=-表示△ABC 内部的点与定点P(1,2)连线斜率的最值. 如图,易知当直线过点B 时斜率最大,过点A 时斜率最小.求得k PB =1,k PA =1,4∵所讨论的区域在△ABC 的内部,故端点不取. ∴14<k<1. 答案:D6.解析:圆x 2+2x+y 2+4y-3=0化为标准方程为(x+1)2+(y+2)2=8,∴圆心坐标为(-1,-2),半径为圆心到直线的距离=,共3个.答案:C7.解析:由方程组223,22(2)(3)9x y x y ⎧=-⎪⎨⎪-++=⎩得5x 2-10x-11=0.∵12122,115x x x x +=⎧⎪⎨=-⎪⎩21|4,2x x -==由点O到直线的距离公式得d =∴S △EOF=5答案:C 8.解析:∵圆M 的圆心(a ,-b ),半径为a 2+b 2且过原点,直线l 的斜率为a ,在y 轴上的截距为b ,∴只能是B. 答案:B9.解析:解法一:圆心(-4,-1)在直线上,∴4a +b =1,∴1a +4b =()1a +4b (4a +b )=8+b a +16ab≥8+216=16.解法二:1=4a +b ≥24ab ⇒ab ≤116, ∴1a +4b =4a +b ab =1ab ≥16. 答案:C10.解析:圆()x +a22+y 2=a 24+5,圆心O (-a2,0),半径r =a 24+5, |OP |= ()3+a 22+1=a 24+3a +10, 由弦心距、半弦长及半径的关系得 ()a 24+3a +10+7=a 24+5,∴a =-4,即圆心为(2,0),∴弦AB 的斜率为k =-3-21-0=-1,∴弦AB 所在的直线方程为y -1=-(x -3),即x +y -4=0. 答案:B 11.解析:直线l 与圆C 交于A 、B 两点,可设点B 在第一象限,如图所示,联立方程组 x 2+y 2-4y =0,x -3y =0, 得 x =0,y =0 或 x =3,y =1,即A (0,0),B (3,1),知|AB |=2.由圆C :x 2+y 2-4y =0,可知x 2+(y -2)2=4,圆心C 为(0,2),∴圆心C 到直线l 的距离d =|0-23|1+(3)2= 3.故S △ABC =12·|AB |·d =12×2×3= 3. 答案:D12.解析:x 2+y 2=5x ,即()x -522+y 2=()522,过点()52,32最长的弦为直径,长为5,最短的弦为2()522-()322=4,则a 1=4,a n=5,故5=4+(n -1)·d ,∴n =1d+1. ∵15<d <13,∴3<1d <5,则4<n <6,故n =5. 答案:D13.解析:D 2+E 2-4F >0且2a 2+a -1>0,即 a 2+a 2-4(2a 2+a -1)>0且2a 2+a -1>0,解得a ∈⎝⎛⎭⎫-1-73,-1∪⎝⎛⎭⎫12,-1+73. 答案:⎝⎛⎭⎫-1-73,-1∪⎝⎛⎭⎫12,-1+73 14.解析:设A (x 1,y 1),B (x 2,y 2),联立 y =-2x +a ,x 2+y 2=9,消去y 得5x 2-4ax +a 2-9=0,则OA ·OB =(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=5x 1x 2-2a (x 1+x 2)+a 2=5·a 2-95-2a ·4a 5+a 2=92,解得a =3152.答案:315215.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点B (-1,0)和点A (1,0)时b 分别取得最小值和最大值.∴b 的取值范围是[-2,2]. 答案:[-2,2]16.解析:作出曲线x =1-y 2和直线y =x +b ,利用图形直观考察它们的关系,寻找问题的解决办法.将曲线x =1-y 2变为x 2+y 2=1(x ≥0). 当直线y =x +b 与曲线x 2+y 2=1相切时,则满足|0-0-b |2=1,|b |=2,b =± 2.观察图形,可得当b =-2或-1<b ≤1时, 直线与曲线x =1-y 2有且仅有一公共点. 答案:-1<b ≤1或b =- 217.解:(1)证明:直线方程可化为(3x -2y )+m (x -y +1)=0.当且仅当3x -2y =0,x -y +1=0,即x =2,y =3时,方程对任意实数m 恒成立,∴直线恒过定点P (2,3).又C (3,4),|PC |=(3-2)2+(4-3)2=2<r , ∴点P 在圆内,∴无论m 取何值,直线l 与圆C 总相交.(2)由平面几何知识知,当CP 与弦垂直时,弦长最小.∵k PC =4-33-2=1,∴k l =-1,即m +3m +2=-1,m =-52.此时弦长=232-|PC |2=27.18.解:(1)∵k 1=a -13-1=a -12,∴k 2存在,且k 2=4-23+a -2=2a +1,由l 1∥l 2,∴k 1=k 2,即a -12=2a +1,解得a =± 5.又当a =±5时,k AM ≠k BM ,∴A 、B 、M 不共线,∴a =±5符合题意.(2)∵k 1=a -12.①当a =1时,k 1=0,k 2=1,k 1·k 2=0不合题意. ②当a ≠-1时,k 1≠0, ∵l 1⊥l 2,则k 2存在,且k 2=2a +1(a ≠-1),由于l 1⊥l 2,∴k 1·k 2=-1,即a -12·2a +1=-1.解得a =0.∴l 1⊥l 2时a 为0.19.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得⎩⎪⎨⎪⎧CD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB = 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.20.解:解法一:设直线l 的方程为x a +yb=1(a >0,b >0),∴A (a,0),B (0,b ).由题意得ab =24,,3a +2b=1,解得a =6,,b =4.∴所求直线的方程为:x 6+y4=1,即2x +3y -12=0.解法二:设直线l 的方程为:y -2=k (x -3).令y =0,得直线l 在x 轴上的截距a =3-2k,令x =0,得直线l 在y 轴上的截距b =2-3k . ∴23k ⎛⎫-⎪⎝⎭(2-3k)=24,解得k=-23.所求直线的方程为y-2=-23(x-3),即2x+3y-12=0.21.解:(1)依题设有,圆O 的半径r 等于原点O 到直线的距离,即得圆O 的方程为x 2+y 2=4. (2)不妨设A(x 1,0),B(x 2,0),x 1<x 2.将A 、B 两点坐标分别代入圆O 的方程即得A(-2,0),B(2,0). 设P(x,y),由|PA|、|PO|、|PB|成等比数列,得2+y 2,即x 2-y 2=2.PA PB=(-2-x,-y)•(2-x,-y)=x 2-4+y 2=2(y 2-1).由于点P 在圆O 内,故22224,2,x y x y ⎧+<⎨-=⎩由此得y 2<1.∴PA PB的取值范围为[-2,0). 22.解:(1)由题意得,直线BD 的方程为y=x+1. ∵四边形ABCD 为菱形,∴AC⊥BD. 于是可设直线AC 的方程为y=-x+n.由2234x y y x n ⎧+=⎨=-+⎩,得4x 2-6nx+3n 2-4=0.∵A 、C 在椭圆上,∴Δ=-12n 2+64>0,解得33n -<<设A,C 两点坐标分别为(x 1,y 1),(x 2,y 2), 则x 1+x 2=3,2n x 1x 2=234,4n - y 1=-x 1+n,y 2=-x 2+n. ∴y 1+y 2=.2n ∴AC 的中点坐标为3,.44n n ⎛⎫⎪⎝⎭由四边形ABCD 为菱形可知, 点3,44n n ⎛⎫⎪⎝⎭在直线y=x+1上, ∴31,44n n =+解得n=-2. ∴直线AC 的方程为y=-x-2, 即x+y+2=0.(2)∵四边形ABCD 为菱形,且∠ABC=60°, ∴|AB|=|BC|=|CA|.∴菱形ABCD 的面积2S=|AC|2.由(1)可得|AC|2=(x 1-x 2)2+(y 1-y 2)2=2316,2n -+∴S=4 (-3n 2+16),.33n ⎛⎫-<< ⎪ ⎪⎝⎭∴当n=0时,菱形ABCD 的面积取得最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面解析几何综合检测卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在x 轴和y 轴上截距分别是-2,3的直线方程为 ( )A .2x -3y -6=0B .3x -2y -6=0C .3x -2y +6=0D .2x -3y +6=0 2.k =1是直线x -y +k =0与圆x 2+y 2=1相交的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.设斜率为2的直线l 过抛物线y 2=ax(a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF(O 为 坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x4. 直线x +a 2y -a =0(a>0,a 是常数),当此直线在x 、y 轴上的截距和最小时,a 的值是( ) A .1 B .2 C .12D .±15. 已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2| 等于( )A .2B .4C .6D .8 6.过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( ) A. 3 B .2 C. 6 D .2 37.已知抛物线y 2=4x 上两个动点B ,C 和点A(1,2),且∠BAC =90°,则动直线BC 必过 定点( )A .(2,5)B .(-2,5)C .(5,-2)D .(5,2)8.如果方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F>0)所表示的曲线关于x +y =2对称,则 D 、E 满足( )A .D +E +2=0B .D +E +4=0C .D +E -2=0 D .D +E -4=09.已知直线l 与圆x 2+y 2=1相切于第二象限,并且直线l 在两个坐标轴上的截距之和等于3,则直线l 与两坐标轴围成的三角形的面积是( )A.32B.12 C .1或3 D.12或3210.已知抛物线y 2=2px(p>0)与双曲线x 2a 2-y 2b2=1(a>0,b>0)有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,若l 为双曲线的一条渐近线,则l 的倾斜角所在的区间可能 是( )A .(0,π4)B .(π6,π4)C .(π4,π3)D .(π3,π2)二、填空题(本大题共7小题,每小题4分,共28分)11.若点P(2,0)到双曲线x 2a 2-y 2b2=1(a>0,b>0)的一条渐近线的距离为2,则该双曲线的离心率为______.12.已知点F 2为椭圆x 225+y 29=1的右焦点,点P 为椭圆上的任意一点,点P 关于原点(0,0)的对称点为P ′,则|PF 2|+|P ′F 2|=______.13.直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的充要条件为________. 14.在△ABC 中,B(-2,0),C(2,0),A(x ,y),给出△ABC 满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:则满足条件①②③的轨迹方程分别为________(用代号C 1、C 2、C 3填入).15.过双曲线M :x 2-y 2b2=1(b>0)的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线相交于B ,C 两点,且|AB|=|BC|,则双曲线M 的离心率为______.16.已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________________.17.经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为______.三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤) 18.(14分)如图所示,直角三角形ABC 的顶点A(-2,0),直角顶点B(0,-22),顶点C 在x 轴上,点P 为线段OA 的中点.(1)求BC 边所在直线的方程;(2)M 为直角三角形ABC 外接圆的圆心,求圆M 的方程; (3)若动圆N 过点P 且与圆M 内切,求动圆N 的圆心的轨迹方程.19.(14分)求过直线2x +y +4=0和圆x 2+y 2+2x -4y +1=0的交点,且满足下列条件之一的圆的方程. (1)过原点; (2)有最小面积.20.(14分)如图,在椭圆x 2a 2+y 28=1(a>0)中,F 1,F 2分别为椭圆的左、右焦点,B ,D 分别为椭圆的左、右顶点,点A 为椭圆在第一象限内的任意一点,直线AF 1交椭圆于另一点C , 交y 轴于点E ,且点F1,F 2三等分线段BD. (1)求a 的值;(2)若四边形EBCF 2为平行四边形,求点C 的坐标.21.(15分)已知点A ,B 分别是椭圆x 2a 2+y 2b2=1(a>b>0)长轴的左、右端点,点C 是椭圆短轴的一个端点,且离心率e =63,S △ABC = 3. (1)求椭圆方程;(2)设直线l 经过椭圆的右焦点,且与椭圆相交于P ,Q 两点,求线段PQ 的中点到原点 的距离等于12|PQ|时的直线方程.22.(15分)已知m 是非零实数,抛物线C :y 2=2px(p>0)的焦点F 在直线l :x -my -m 22=0上(1)若m =2,求抛物线C 的方程;(2)设直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的准线的垂线,垂 足为A 1,B 1,△AA 1F ,△BB 1F 的重心分别为G ,H.求证:对任意非零实数m ,抛物 线C 的准线与x 轴的交点在以线段GH 为直径的圆外.参考答案1、解析:由题意知所求直线方程为x -2+y3=1,即3x -2y +6=0,故选C 项.答案:C2、解析:当k =1时,直线为x -y +1=0,代入圆的方程x 2+y 2=1得2x 2+2x =0,该方程有两解,故充分性成立;而当x -y +k =0与圆x 2+y 2=1相交时,有2x 2+2kx +k 2-1=0,由Δ≥0得-2≤k ≤2,故必要性不成立.答案:A3、解析:由题意可知抛物线焦点坐标为(a4,0),于是过焦点且斜率为2的直线的方程为y =2(x -a 4),令x =0,可得A 点坐标为(0,-a 2),所以S △OAF =12·|a|4·|a|2=4,∴a =±8,故选B 项.答案:B4、解析:方程可化为x a +y 1a =1,因为a>0,所以截距之和t =a +1a ≥2,当且仅当a =1a即a =1时取等号.故选A 项.答案:A5、解析:在△PF 1F 2中|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|,即(22)2=22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. 答案:B6、解析:直线为y =3x ,点(0,2)到y =3x 的距离为d =1,设弦长为2x ,则d 2=4-x 2,∴x 2=3,∴x =3,则2x =2 3.答案:D7、解析:设B(y 214,y 1),C(y 224,y 2),BC 的中点为D(x 0,y 0),则y 1+y 2=2y 0,直线BC :x -y 214y 224-y 214=y -y 1y 2-y 1,即:4x -2y 0y +y 1y 2=0.① 又AB →·AC →=0,∴y 1y 2=-4y 0-20,代入①式得:2(x -5)-y 0(y +2)=0,则动直线BC 恒过x -5=0与y +2=0的交点(5,-2),选C 项.答案:C8、解析:由题设知,方程x 2+y 2+Dx +Ey +F =0表示以(-D 2,-E2)为圆心的圆.由圆的几何性质可知,圆心(-D 2,-E 2)在直线x +y =2上,所以-D 2-E2=2,得D +E +4=0,故选B 项.答案:B9、解析:由题意设直线l :x a +yb =1,即bx +ay -ab =0.则圆心到直线l 的距离d =|ab|a 2+b 2=1, ∴a 2+b 2=a 2b 2=(a +b)2-2ab , ∵ab<0,a +b =3,∴a 2b 2+2ab -3=0,∴(ab +3)(ab -1)=0,∴ab =-3.∴S =12|ab|=32.选A 项.答案:A10、解析:由抛物线与双曲线有相同的焦点可得p2=c =a 2+b 2,再由AF ⊥x 轴可得,在双曲线中|AF|=b 2a ,在抛物线中|AF|=p ,故又有b 2a =p =2c =2a 2+b 2,即b 4=4a 2(a 2+b 2)b 4-4a 2b 2-4a 4=0,解得b 2a 2=2+22>3=tan 2π3(或b 2a2=2-22<0舍去),故l 的倾斜角所在的区间可能是(π3,π2).答案:D11、解析:由于双曲线渐近线方程为bx±ay =0,故点P 到直线的距离d =2ba 2+b 2=2 a =b ,即双曲线为等轴双曲线,故其离心率e =1+(ba)2= 2.答案: 212、解析:据椭圆的几何性质知 |PF 2|+|P ′F 2|=|PF 2|+|PF 1|=2a =10. 答案:1013、解析:当a =0或a =1时,都不满足条件, 当a ≠0且a ≠1时,两直线平行, 则-a 2=-3a -1,即a 2-a -6=0,解得a =3或a =-2,经验证a =3时两直线平行且不重合,a =-2时两直线重合.反之,也成立. 答案:a =314、解析:若条件是①,则|AB|+|AC|=6>4,故A 点的轨迹是以B 、C 为焦点的椭圆(除去长轴两端点),故方程为C 3.若条件是②,则12×|BC|×|y|=10,∴|y|=5,即y 2=25,故方程为C 1,若条件是③,则A 点轨迹是以BC 为直径的圆(去掉B 、C 两点),故方程为C 2. 答案:C 3、C 1、C 215、解析:由题知左顶点A 的坐标为(-1,0),又直线l 的斜率为1,可得直线l 的方程为y =x +1.根据双曲线方程为x 2-y 2b2=1(b>0)得其渐近线方程为y =±bx.因此交点为B(-1b +1,b b +1),C(1b -1,b b -1).根据|AB|=|BC|知AC 的中点为B.因此b b -1=2b b +1,解得b =3(b =0舍去),故离心率e =c a =a 2+b 2a =32+11=10.答案:1016、解析:由双曲线渐近线方程有ba =3,又抛物线焦点为(4,0),得c =4,a 2+b 2=16.求得a 2=4,b 2=12.答案:x 24-y 212=117、解析:先解方程组⎩⎪⎨⎪⎧3x +2y -1=05x +2y +1=0,得l 1、l 2的交点(-1,2),再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.答案:5x +3y -1=018、解:(1)∵k AB =-2,AB ⊥BC ,∴k BC =22, ∴BC 边所在直线的方程为y =22x -2 2. (2)由y =22x -22,令y =0得C(4,0), ∴圆心M(1,0),又∵AM =3,∴圆M 的方程为(x -1)2+y 2=9. (3)∵P(-1,0),M(1,0), 又∵圆N 过点P(-1,0), ∴PN 是该圆的半径. 又∵动圆N 与圆M 内切, ∴MN =3-PN ,即MN +PN =3>2.∴点N 的轨迹是以M ,P 为焦点,长轴长为3的椭圆. ∴a =32,c =1,b =a 2-c 2=54.∴动圆N 的圆心的轨迹方程为x 294+y 254=1.19、解:设所求圆的方程为x 2+y 2+2x -4y +1+λ(2x +y +4)=0, 即x 2+y 2+2(1+λ)x +(λ-4)y +(1+4λ)=0. (1)因为此圆过原点,∴1+4λ=0,λ=-14.故所求圆的方程为x 2+y 2+32x -174y =0.(2)方法一:当半径最小时,圆面积也最小,对圆的方程左边配方得 [x +(1+λ)]2+(y +λ-42)2=54(λ-85)2+45. ∴当λ=85时,此圆面积最小.故满足条件的圆的方程为(x +135)2+(y -65)2=45.方法二:当圆心在直线2x +y +4=0上时,圆面积最小. 易求得圆心坐标为(-(1+λ),-λ-42),代入直线方程得-2(1+λ)-λ-42+4=0, 解得λ=85.∴当λ=85时,此圆面积最小.故满足条件的圆的方程为 x 2+y 2+265x -125y +375=0. 20、解:(1)∵F 1,F 2三等分BD ,∴F 1F 2=13BD ,即2c =13·2a ,∴a =3c.∵a 2=b 2+c 2,b 2=8,∴a 2=9, ∵a>0,∴a =3.(2)由(1)知a =3,B(-3,0),F 1(-1,0), ∴F 1为BF 2的中点,∵若四边形EBCF 2为平行四边形, ∴C ,E 关于F 1(-1,0)对称, 设C(x 0,y 0),则E(-2-x 0,-y 0), ∵E 在y 轴上,∴-2-x 0=0,x 0=-2,∵点C(x 0,y 0)在椭圆上,∴x 209+y 28=1,∴49+y 208=1,解得y 0=±2103, 依题意y 0=-2103, 因此点C 的坐标为(-2,-2103). 21、解:(1)依题意得⎩⎨⎧e =c a =63S △ABC=12×2a ×b =3,解得:a =3,b =1,c =2, 故所求的椭圆方程为x 23+y 2=1.(2)当直线l 的斜率不存在时,直线l 的方程为x =2,代入椭圆方程,解得:y =±33,易知|PQ|=233,而线段PQ 的中点到原点的距离为2,不合题意,故直线l 的斜率存在,设直线l 的方程为y =k(x -2),由题意易知OP ⊥OQ ,设P(x 1,y 1),Q(x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -2)x 23+y 2=1,消去y 得:x 2+3k 2(x-2)2-3=0.化简得:(1+3k)2x 2-62k 2+6k 2-3=0, 所以x 1+x 2=62k 21+3k 2,x 1x 2=6k 2-31+3k 2,y 1y 2=k(x 1-2)·k(x 2-2)=k 2x 1x 2-2x 2(x 1+x 2)+2k 2, 由OP ⊥OQ 得:x 1x 2+y 1y 2=(1+k 2)x 1x 2-2k 2(x 1+x 2)+2k 2=0, 即:(1+k 2)(6k 2-3)1+3k 2-12k 41+3k 2+2k 2=0, 化简得5k 2-31+3k 2=0,解得:k =±155, ∴直线l 的方程为y =155x -305或y =-155+305. 解:(1)因为焦点F(p2,0)在直线l 上,得p =m 2,又m =2,故p =4.所以抛物线C 的方程为y 2=8x.(2)证明:因为抛物线C 的焦点F 在直线l 上, 所以p =m 2,所以抛物线C 的方程为y 2=2m 2x.(m ≠0) 设A(x 1,y 1),B(x 2,y 2), 由⎩⎪⎨⎪⎧x =my +m 22y 2=2m 2x,消去x 得y 2-2m 3y -m 4=0,由于m ≠0,故Δ=4m 6+4m 4>0, 且有y 1+y 2=2m 3,y 1y 2=-m 4.设M 1,M 2分别为线段AA 1,BB 1的中点, 由于2M 1G →=GF →,2M 2H →=HF →, 可知G(x 13,2y 13),H(x 23,2y 23),所以x 1+x 26=m (y 1+y 2)+m 26=m 43+m 26,2y 1+2y 26=2m 33, 所以GH 的中点M(m 43+m 26,2m 33).设R 是以线段GH 为直径的圆的半径. 则R 2=14|GH|2=19(m 2+4)(m 2+1)m 4.设抛物线的准线与x 轴交点N(-m 22,0),则|MN|2=(m 22+m 43+m 26)2+(2m 33)2=19m 4(m 4+8m 2+4) =19m 4[(m 2+1)(m 2+4)+3m 2] >19m 4(m 2+1)(m 2+4)=R 2, 故N 在以线段GH 为直径的圆外.。

相关文档
最新文档