正比例、反比例练习题.

合集下载

人教版六年级下册数学 正比例和反比例 同步练习

人教版六年级下册数学 正比例和反比例 同步练习

人教版六年级下册数学 正比例和反比例 同步练习(共20题,共100分)一、单选题(共5题,共15分)1.在比例里,两个外项的积一定,两个内项成( )A .正比例B .反比例C .不成比例D .无法判断2.下面式子中a 和b 成反比例关系的是( )。

A .b=4aB .a :4=b :9C .a 5 = 4bD .a+b=103.有两个相关联的量,它们的关系如图所示,这两个量不可能是()。

A .路程一定,已走的路程和剩下的路程B .圆的周长与直径C .圆柱的底面积一定,体积和高D .单价一定时,购物的总价和购物数量4.下面是关于正比例和反比例的描述,其中正确的是( ) ①正比例的图像是一条直线。

②一个人的年龄和体重既不成正比例关系,也不成反比例关系。

③圆柱的底面积一定,体积和高成反比例关系。

④路程一定,已走的路程和剩下的路程不成比例。

A .①②③B .①②④C .②③④D .①③④5.一本书每天看20页,15天看完,如果要10天看完,每天要看( )页。

A .10B .20C .30D .40二、判断题(共5题,共15分)6.出盐率一定,盐的质量和海水质量成正比例。

( )7.如果ab+4=40,那么a 与b 成反比例。

( )8.正比例与反比例的图象都是一条直线。

( )9.在同一时间,旗杆的高度和影子的长度成反比例关系。

( )10.如果A ×B =10,B ×C =20,那么A 与C 成正比例。

( )三、填空题(共5题,共27分)11.宽不变,长方形面积与长成 比例;运一堆煤,车的载质量和需要运的次数成 ;有15个苹果,已吃的个数与未吃的个数 。

12.若x= 15 y ,那么x和y成 比例关系;若 1y = x 5 ,那么x和y成 比例关系。

13.下表中,如果x 和y 成正比例,“?”处填 ;如果x 和y 成反比例,“?”处填 。

x4 ? y 12 24 14.小宇在操场上量得1.4m 长的标杆的影长是2.1m 。

正反比例练习题及答案

正反比例练习题及答案

正反比例练习题及答案一、选择题1. 某工厂生产零件,每小时生产零件数与生产时间成反比例。

如果工厂在4小时内生产了120个零件,那么在1小时内可以生产多少个零件?A. 30B. 60C. 120D. 2402. 一个水池的容积是固定的,水管注水的速度与注满水池所需的时间成什么比例?A. 正比例B. 反比例C. 不成比例D. 无法确定3. 某商品的总成本与生产数量成反比例,当生产数量为100时,总成本为5000元。

如果生产数量增加到200,总成本是多少?A. 2500元B. 5000元C. 10000元D. 无法确定4. 某学校学生人数与每个学生分得的图书数量成反比例。

如果学校有200名学生,每人分得5本书,那么当学生人数增加到400时,每人分得多少本书?A. 2.5本B. 5本C. 10本D. 无法确定5. 某工厂的总产量与工作时间成正比例。

如果工厂在8小时内生产了800个单位的产品,那么在4小时内可以生产多少个单位的产品?A. 200B. 400C. 800D. 1600答案:1. B 2. B 3. A 4. A 5. B二、填空题6. 某工厂的工作效率与所需时间成________比例,如果工作效率提高到原来的2倍,那么所需时间将减少到原来的________。

7. 某书店的图书销售量与销售价格成________比例,如果销售价格提高到原来的1.5倍,销售量将减少到原来的________。

8. 某产品的生产成本与生产数量成________比例,如果生产数量增加到原来的3倍,生产成本将增加到原来的________。

9. 某工厂的总产量与工作时间成________比例,如果工作时间减少到原来的一半,总产量将减少到原来的________。

10. 某学校的图书数量与学生人数成________比例,如果学生人数增加到原来的4倍,图书数量将增加到原来的________。

答案:6. 反,1/2 7. 反,2/3 8. 正,3 9. 正,1/2 10. 正,4三、判断题11. 某商品的单价与销售数量成反比例,这种说法是正确的。

(完整版)正反比例练习题

(完整版)正反比例练习题

正反比例练习题(1)一、判断下面两种相关联的量成不成比例,如果成比例,成什么比例。

11、分数的大小一定,它的分子和分母()比例。

12、全班人数一定,出勤人数和出勤率()比例。

13、正方体一个面的面积和它的表面积()比例。

14、在一定的时间里,做一个零件所用的时间和做零件的个数()比例。

15、圆的半径和面积()比例。

16、圆锥体的高一定,圆锥的底面半径和它的体积()比例。

17、4X=8Y,X和Y()比例。

18、车轮的直径一定,所行的路程和车轮的转数()比例。

19、圆柱的底面半径一定,圆柱的高和圆柱的体积()比例。

20、分数值一定,分子和分母()比例。

21、正方形的边长和面积()比例。

22、小麦的总重量一定,出粉率和面粉的重量()比例。

23、三角形的面积一定,底和高()比例。

24、要行一段路程,已行的和未行的路程()比例。

25、长方形的长一定,宽和周长()比例。

26、圆的半径和周长()比例。

27、总产量一定,单产量和数量()比例。

28、在同一时间里,杆高和影长()比例。

29、做一项工程,工作效率和工作时间()比例。

30、汽车从甲地到乙地,行车时间和速度()比例。

二、判断题,对的打√,错的打ⅹ。

1、速度和时间成反比例。

()2、圆的半径一定,圆的面积和兀不成比例()3、三角形的底一定,它的面积和高不成比例。

()4、正方形的边长和面积成正比例。

()5、出盐率一定,盐的重量和海水的重量成正比例。

()正反比例练习题(2)一、判断。

1、方砖的边长一定,要铺地面积和用砖块数成正比例()2、用瓷砖铺地,要用的砖数一定,要铺地的平方米数和每平方米用砖的数量成正比例()3、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例()4、一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。

()5、梯形的面积一定,高和上下底的和成反比例()6、圆的半径一定,圆的面积和兀不成比例()7、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例()8、南京到北京,所行驶的路程和速度不成比例()9、出盐率一定,盐的重量和海水重量成正比例。

正比例反比例练习题

正比例反比例练习题

正比例反比例练习题一、正比例关系练习题1. 甲地的人口与时间之间存在着正比例关系,已知2010年时甲地的人口为500万人,而2020年时甲地的人口为600万人。

求2015年时甲地的人口数量。

2. 小明用固定的速度每小时跑5公里,已知小明连续跑了3个小时,求小明跑的总路程。

3. 某机构对某公司年度销售额与广告费用之间的关系进行研究,数据表明销售额与广告费用呈正比例关系,当广告费用为200万元时,销售额为1600万元。

问当广告费用为350万元时,销售额是多少?4. 某工厂生产零件的速度与机器运行时间存在正比例关系,已知机器连续运行10小时可以生产240个零件。

求机器连续运行16小时可以生产多少个零件?5. 一位股民投资了某只股票,大约过了一年,他发现自己的投资金额翻了6倍。

如果他最初投资了8万元,求现在他的投资金额有多少。

二、反比例关系练习题1. 甲地的公交车以固定的速度行驶,已知当车速为30千米/小时时,需要5小时才能到达目的地,求当车速为60千米/小时时,需要多长时间才能到达目的地。

2. 某机器完成一项任务需要的时间与工人数量之间存在反比例关系,已知当有6名工人时,任务可以在8个小时内完成,求如果只有3名工人,需要多长时间才能完成任务。

3. 某水泥厂生产水泥的速度与工人数量之间存在反比例关系,已知当有8名工人时,水泥厂可以生产200吨水泥,求如果只有4名工人,水泥厂可以生产多少吨水泥。

4. 某车间生产零件的速度与工人数量之间存在反比例关系,已知当有10名工人时,车间可以生产600个零件,求如果只有5名工人,车间可以生产多少个零件。

5. 甲地离某市的距离与到达市区所需时间之间存在反比例关系,已知距离为60千米时需要1个小时到达市区,求距离为30千米时需要多长时间才能到达市区。

以上所列的练习题涉及到了正比例关系和反比例关系,通过解题可以巩固对正比例关系和反比例关系的理解,并提高解决实际问题的能力。

在实际生活和工作中,我们常常会遇到各种与比例关系相关的问题,因此掌握好这些知识对我们的学习和工作都具有重要意义。

年级正比例和反比例比例练习题

年级正比例和反比例比例练习题

年级正比例和反比例比例练习题
正比例和反比例是数学中重要的概念,在年级研究中经常会遇到这两种类型的题目。

以下是一些年级正比例和反比例比例练题,希望能帮助你更好地理解这两种关系。

正比例题目
1. 一辆汽车以每小时60公里的速度行驶,求2小时内汽车行驶的路程。

解答:
设汽车行驶的路程为x公里,则根据正比例关系可得:
60公里/1小时 = x公里/2小时
解方程得:x = 60 * 2 = 120公里
2. 小明去超市买苹果,苹果的单价是每个2元。

如果小明买了5个苹果,他要支付的金额是多少?
解答:
设小明支付的金额为y元,则根据正比例关系可得:
2元/1个 = y元/5个
解方程得:y = 2 * 5 = 10元
反比例题目
1. 一辆车以每小时60公里的速度行驶,行驶1小时后发现油
箱中的油量减少了1/6。

求这辆车油箱的容量。

解答:
设油箱的容量为z升,则根据反比例关系可得:
60公里/1小时 = z升/1/6升
解方程得:z = 60 * (1/6) = 10升
2. 5个工人需要3天时间完成一项任务,如果再增加3个工人,那么完成该任务需要多少天?
解答:
设完成任务需要的天数为t天,则根据反比例关系可得:
5个工人/3天 = 8个工人/t天
解方程得:t = 3 * 5 / 8 = 1.875天,约等于1.88天
以上是一些年级正比例和反比例比例练题的解答,在解题过程中需要注意明确所给的条件,并正确运用正比例和反比例的概念。

希望这些题目对你的研究有所帮助!。

正比例反比例练习试题

正比例反比例练习试题

正比例反比例练习题1、圆的面积和圆的半径成正比例。

()2、圆的面积和圆的半径的平方成正比例。

()3、圆的面积和圆的周长的平方成正比例。

()4、正方形的面积和边长成正比例。

()5、正方形的周长和边长成正比例。

()6、长方形的面积一定时,长和宽成反比例。

()7、长方形的周长一定时,长和宽成反比例。

()8、三角形的面积一定时,底和高成反比例。

()9、梯形的面积一定时,上底和下底的和与高成反比例。

()10、圆的周长和圆的半径成正比例。

()二:选择题。

1.根据表格判断数量间的比例关系。

时间(小时) 2 3 5 7 8 ...路程(千米)100 150 250 350 400 ...时间与路程()A.成正比例.B.成反比例.3.不成比例.2.圆柱体底面积与高()A.成正比例.b.成反比例.c.不成比例圆柱体底面积300 200 150 120 100圆柱的高 2 3 4 5 6三.看图填空.1.根据规律判断比例关系,并填空。

X 2 3 5 () 10 ...y ()4.5 7.5 12 ()...X与Y成().A.正比例B.反比例.X 2 3 5 ()10 ...Y () 4 2.4 12 () ...X与Y()A.正比例.B.反比例3.选择填空.A除以B=C,当C一定时A和B();当A一定时B和C();当B一定时A和C()A.成正比例.b.成反比例。

四.判断对错.1.路程一定,速度和时间成正比例。

()2.一堆煤的总量不变,烧去的煤与剩下的煤成反比例。

()3.花生的出油率一定,花生的重量与榨出花生油的重量成正比例。

()4.平行四边形的面积不变,它的底与高成反比例。

()五、选择题。

1.长方形的________,它的长和面积成正比例。

A.周长一定。

B.宽一定。

C.面积一定。

2.圆柱体体积一定,______和高成反比例。

A.底面半径.B.底面积.C.表面积.六.应用题。

1.工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例方法解答)2.一个晒盐场用500千克的海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)正比例和反比例”过关测试题一、对号入座1、35:()=20÷16==()%=()(填小数)2、因为X=2Y,所以X:Y=():(),X和Y成()比例。

正比例和反比例概念题

正比例和反比例概念题

正比例和反比例概念题练习(一)1. 判断题正方形的边长与周长成反比例. ( )2. 单选题公顷数一定,总产量和平均单位产量 [ ]A.成正比例 B.成反比例 C.不成比例3. 填空题圆锥的高一定,它的体积与底面积( )比例.4. 填空题钟表上的分针,旋转的圈数与天数( )比例5. 填空题长方形的周长一定,长和宽( )比例练习(二)1. 判断题一个分数的分母一定,分子和分数值成正比例. ( )2. 单选题一台织布机,前4小时织布22.4米,后3小时织布16.8米,织布的米数和时间[ ] A.成正比例 B.成反比例 C.不成比例3. 填空题长方体的高一定,底面积和体积( )比例.4. 填空题总路程一定,已走的路程和未走路程( )比例5. 填空题车轮的周长一定,行驶的路程和车轮转动圈数( )比例练习(三)1. 判断题在一幅地图上,图上距离与实际距离成正比例. ( )2. 单选题车轮的周长一定,转数与所行的路程成 [ ]A.正比例 B.反比例 C.不成比例3. 填空题长一定,长方形的周长和宽( )比例4. 填空题同时、同地测得的杆高和影长( )比例5. 填空题分数值一定,分子和分母( )比例练习(四)1. 判断题y=3x、y和x成正比例. ( )2. 单选题正方形的边长和面积 [ ] A.不成比例 B.成反比例 C.成正比例3. 填空题速度一定,( )和( )成( )比例.4. 填空题圆的直径和它的面积( )比例.5. 填空题正方形的边长与周长( )比例练习(五)1. 判断题圆柱的高一定,它的底面半径和侧面积成正比例. ( )2. 单选题分母一定,分子与分数值成 [ ] A.正比例 B.反比例 C.不成比例3. 填空题出油率一定,原料和出油量( )比例4. 填空题糖水的重量一定,糖的重量和水的重量( )比例.5. 填空题李师傅每小时做零件的个数一定,做零件的总个数和需要的小时数成( )比例.练习(六)1. 判断题实验种子数一定,发芽的种子数和没发芽的种子数成反比例. ( )2. 单选题一段路,甲5小时走完,乙4小时走完,甲、乙速度的比是 [ ]3. 填空题()千米。

判断正比例与反比例专项练习题

判断正比例与反比例专项练习题

判断正比例与反比例专项练习题一、判断题:1、圆的面积和圆的半径成正比例。

()2、圆的面积和圆的半径的平方成正比例。

()3、圆的面积和圆的周长的平方成正比例。

()4、正方形的面积和边长成正比例。

()5、正方形的周长和边长成正比例。

()6、长方形的面积一定时,长和宽成反比例。

()7、长方形的周长一定时,长和宽成反比例。

()8、三角形的面积一定时,底和高成反比例。

()9、梯形的面积一定时,上底和下底的和与高成反比例。

()10、圆的周长和圆的半径成正比例。

()二.选择题时间与路程()。

A.成正比例 B.成反比例 C.不成比例(2A.三、看图表填空(2)根据规律判断比例关系,并填空。

与Y()。

A. 成正比例 B. 成反比例3.选择填空。

a÷b=c,当c一定时a和b();当a一定时b和c();当b一定时a和c()。

A. 成正比例B. 成反比例四、判断对错(1)路程一定,速度和时间成正比例。

()(2)一堆煤的总量不变,烧去的煤与剩下的煤成反比例。

()(3)花生的出油率一定,花生的重量与榨出花生油的重量成正比例。

()(4)平行四边形的面积不变,它的底与高成反比例。

()五、选择题(1)长方形的_________________,它的长和面积成正比例。

A.周长一定B.宽一定C.面积一定(2)圆柱体体积一定,________________和高成反比例。

A.底面半径B.底面积C.表面积六、练习1.判断下面每题中的三个量成什么比例?(1)速度、路程和时间(2)工作总量、工作效率和工作时间(3)单价、总价和数量(4)平行四边形的面积、底和高2.下列各题中的两种量是不是成比例,成什么比例,并说明理由。

(1)买相同的电脑,购买的电脑台数与总价单价(一定),(2)每捆练习本的本数相同,练习本的总本数与捆数每捆练习本的本数(一定)(3)总路程一定,已行的路程与未行的路程(4)分数值一定,分数的分子与分母比值(一定),(5)长方形的长一定,它的面积和宽不成比例(6)长方体的体积一定,底面积和高底面积×高=体积(一定)(7)一本书的总页数一定,看的天数与平均每天看的页数看的天数平均每天看的页数一本书的总页数(一定)(8)圆的周长和直径∏(一定)(9)订阅《扬子晚报》,订的份数与总价单价(一定)(10)图上距离一定,实际距离与比例尺图上距离(一定)(11)小麦的出粉率一定,小麦的质量与面粉的质量(12)六(1)班同学做操,每排站的人数与排数总人数(一定)。

正比例反比例经典题型

正比例反比例经典题型

正比例反比例经典题型一、选择题(每题3分,共30分)1. 下面两种相关联的量,不成正比例关系的是()。

A. 一个人的年龄和体重。

B. 正方形的周长和边长。

C. 路程和时间(速度一定时)。

D. 圆柱的底面积一定,体积和高。

答案:A。

解析:一个人的年龄和体重不是成比例关系,年龄增长体重不一定按照固定比例变化;而正方形周长÷边长 = 4(一定),是正比例关系;路程÷时间=速度(一定),是正比例关系;圆柱体积÷高 = 底面积(一定),是正比例关系。

2. 当()时,x和y成反比例关系。

A. x+y = 5B. xy = 5C. x÷y = 5D. y = 5x答案:B。

解析:如果xy = k(k为常数且k≠0),那么x和y 成反比例关系,这里xy = 5符合反比例关系的定义;x + y=5不是比例关系;x÷y = 5即x = 5y是正比例关系;y = 5x也是正比例关系。

3. 长方形的面积一定,长和宽()。

A. 成正比例B. 成反比例C. 不成比例D. 无法确定答案:B。

解析:因为长方形面积 = 长×宽,面积一定,也就是长和宽的乘积是固定值,所以长和宽成反比例关系。

4. 下面成正比例关系的是()。

A. 圆的面积和半径B. 圆的周长和半径C. 圆锥的体积和高(底面积一定时)。

D. B和C答案:D。

解析:圆的面积÷半径的平方=π(一定),但圆的面积和半径不成正比例;圆的周长÷半径= 2π(一定),是正比例关系;圆锥体积÷高= 1/3×底面积(底面积一定时),是正比例关系,所以圆的周长和半径、圆锥的体积和高(底面积一定时)成正比例关系。

5. 已知y = 8x,x和y()。

A. 成正比例B. 成反比例C. 不成比例D. 无法确定答案:A。

解析:y÷x = 8(一定),所以x和y成正比例关系。

6. 一本书的总页数一定,已经看的页数和未看的页数()。

正比例和反比例习题精选

正比例和反比例习题精选

正比例和反比例习题(一)一、判断.1.一个因数不变,积与另一个因数成正比例.()2.长方形的长一定,宽和面积成正比例.()3.大米的总量一定,吃掉的和剩下的成反比例.()4.圆的半径和周长成正比例.()5.分数的分子一定,分数值和分母成反比例.()6.铺地面积一定,方砖的边长和所需块数成反比例.()7.铺地面积一定,方砖面积和所需块数成反比例.()8.除数一定,被除数和商成正比例.()二、选择题(填序号).1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.()A.成正比例B.成反比例C.不成比例2.和一定,加数和另一个加数.()A.成正比例B.成反比例C.不成比例3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是().A.汽车每次运货吨数一定,运货次数和运货总吨数.B.汽车运货次数一定,每次运货的吨数和运货总吨数.C.汽车运货总吨数一定,每次运货的吨数和运货的次数.三、填空.1.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成正比例的量,它们的关系叫做(),关系式是().2.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成反比例的量,它们的关系叫做(),关系式是().3.一房间铺地面积和用砖数如下表,根据要求填空.铺地面积(平方米)1 2 3 4 5用砖块数25 50 75 100 125(1)表中()和()是相关联的量,()随着()的变化而变化.(2)表中第三组这两种量相对应的两个数的比是(),比值是();第五组这两种量相对应的两个数的比是(),比值是().(3)上面所求出的比值所表示的的意义是(),铺地面积和砖的块数的()是一定的,所以铺地面积和砖的块数().4.练习本总价和练习本本数的比值是().当()一定时,()和()成()比例.二、判断下面每题中的两种量是不是成比例,成什么比例,并说明理由.1.平行四边形的高一定,它的底和面积.2.被除数一定,商和除数.3.小明的年龄和他的体重.4.天数一定,生产零件的总个数和每天生产零件的个数.三、思考.、、三种量的关系是:×=1.如果一定,那么和成()比例;2.如果一定,那么和成()比例;3.如果一定,那么和成()比例.正比例反比例练习(二)一、判断题:1、圆的面积和圆的半径成正比例。

六年级下学期数学 正比例与反比例的判断50题训练 带答案

六年级下学期数学 正比例与反比例的判断50题训练 带答案

正比例与反比例的判断50题训练1、速度一定,路程和时间(正)比例路程一定,速度和时间(反)比例时间一定,路程和速度(正)比例2、工作效率一定,工作总量和工作时间(正)比例工作时间一定,工作效率和工作总量(正)比例工作总量一定,工作效率和工作时间(反)比例3、总价一定,单价和数量(反)比例数量一定,单价和总价(正)比例单价一定,数量和总价(正)比例4、每公顷产量一定,总产量和公顷数(正)比例公顷数一定,每公顷产量和总产量(正)比例总产量一定,每公顷产量和公顷数(反)比例5、份数一定,每份数和总数(正)比例每份数一定,份数和总数(正)比例总数一定,每份数和份数(反)比例6、商一定,除数和被除数(正)比例除数一定,商和被除数(正)比例被除数一定,除数和商(反)比例7、积一定,两个因数(反)比例一个因数一定,另一个因数和积(正)比例8、和一定,两个加数(不成)比例一个加数一定,另一个加数与和(不成)比例9、差一定,减数和被减数(不成)比例减数一定,被减数和差(不成)比例被减数一定,减数和差(不成)比例10、前项一定,比的后项和比值(反)比例比值一定,比的前项和后项(正)比例后项一定,比的前项和比值(正)比例11、分数值一定,分子和分母(正)比例分母一定,分数值和分子(正)比例分子一定,分数值和分母(反)比例12、在长方形中,长一定,面积和宽(正)比例宽一定,面积和长(正)比例面积一定,长和宽(反)比例周长一定,长和宽(不成)比例长一定,周长和宽(不成)比例宽一定,周长和长(不成)比例13、在平行四边形里,底一定,面积和高(正)比例高一定,面积和底(正)比例面积一定,底和高(反)比例14、在三角形里,底一定,面积和高(正)比例高一定,面积和底(正)比例面积一定,底和高(反)比例15、在正方形中,边长和周长(正)比例面积和边长(不成)比例16、在圆中,面积和半径(不成)比例周长和半径(正)比例直径和半径(正)比例直径和面积(不成)比例17、在长方体中,底面积一定,体积和高(正)比例体积一定,底面积和高(反)比例高一定,底面积和体积(正)比例18、在比例尺中,比例尺一定,图上距离和实际距离(正)比例图上距离一定,比例尺和实际距离(反)比例实际距离一定,比例尺和图上距离(正)比例19、用大豆榨油时,出油率一定时,油的重量和大豆的重量(正)比例大豆的重量一定,油的重量和出油率(正)比例油的重量一定时,大豆的重量和出油率(反)比例20、甲×乙=丙,当丙一定时,甲和乙(反)比例当甲一定时,丙和乙(正)比例当乙一定时,甲和丙(正)比例21、车轮的周长(或半径、直径)一定,车轮前进路程和转数(正)比例22、一堆煤的总重量一定,烧去的和剩下的(不成)比例23、要行的总路程一定,已经走过的路程和剩下的路程(不成)比例24、在规定的时间里,制造每个零件的时间和制造零件的个数(反)比例25、一批纸总页数一定,装订练习本本数和每本练习本的页数(反)比例26、每件上衣用布量一定,做上衣的件数和用布总米数(正)比例27、每块砖的面积一定,铺地总面积和用砖的总块数(正)比例28、铺地总面积一定,每块砖的面积和用砖的总块数(反)比例29、每立方厘米的铁的重量一定,铁的总重量和体积(正)比例30、购买各种货物的总价和数量(正)比例31、互相咬合的齿轮的齿数和转数(反)比例32、一个人的身高和体重(不成)比例33、总人数一定,每排人数和排数(反)比例34、一堆货物的总重量一定,每辆车的载重量和汽车辆数(反)比例35、正方体的棱长一定,它的体积和表面积(不成)比例36、一条公路的全长一定,已经修好的和没修好的(不成)比例37、同样的铁丝,每米长的重量一定,铁丝总重量和长度(正)比例38、正方体的棱长和体积(不成)比例。

小学数学正比反比练习题

小学数学正比反比练习题

小学数学正比反比练习题正文:一、正比例关系练习题1. 小明每天骑自行车上学,他的速度和用时的关系是什么?如果他以每小时15公里的速度骑行,那么骑行5小时能够走多远?2. 一辆汽车以每小时80公里的速度行驶,行驶4小时后,它能够走多远?3. 将正比例关系列为函数的形式:设x是小明骑自行车所花费的时间(小时),y是他骑行的距离(公里),写出函数y和x之间的关系式。

4. 小明骑自行车到山上游玩,用时与距离的关系是正比例关系。

他用时2小时到达离家20公里的山脚,那么他用时3小时能够到达离家多远的山脚?5. 一辆汽车以每小时60公里的速度行驶,行驶2小时15分钟后,它能够走多远?二、反比例关系练习题1. 公司A生产一批产品需要5个工人工作3天完成,那么如果只有3个工人参与生产,需要多少天才能完成?2. 某项工程由6个工人完成,需要12天,如果增加工人的数量,能否缩短工期?为什么?3. 设x是某项工程所需要的工人数,y是完成这项工程所需的天数。

当工人数增加时,工期缩短了吗?写出x和y之间的关系式。

4. 利用反比例关系解决实际问题:某项工程由10个工人完成,需要20天。

如果只有5个工人参与工作,那么需要多少天才能完成?5. 公司A和公司B生产某种产品,两个公司的产能成反比例关系。

如果公司B的产能是公司A的2倍,那么公司B需要多久才能完成和公司A一样多的产品?结语:通过以上练习题,我们可以更好地理解小学数学中的正比例关系和反比例关系。

掌握了这两种关系的概念和求解方法,我们可以更好地应用于实际生活中的问题求解。

希望同学们能够通过不断地练习,加深对正反比例关系的理解和运用能力。

正比例与反比例练习题

正比例与反比例练习题

正比例与反比例练习题一、选择题1. 某商品的单价和数量成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定2. 圆的周长与直径之间的关系是什么?A. 正比例B. 反比例C. 无关D. 无法确定3. 速度一定时,路程与时间成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定4. 工作总量一定时,工作效率与工作时间成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定5. 长方形的长一定时,面积与宽成什么关系?A. 正比例B. 反比例C. 无关D. 无法确定二、填空题6. 某工厂生产零件,每天生产的零件数与生产天数的乘积是______。

7. 某工厂生产零件,每天生产的零件数与生产天数的比值是______。

8. 某商品的单价为10元,买了5个,总价为______元。

9. 某商品的总价为100元,单价为10元,可以买______个。

10. 某商品的总价为100元,如果单价减少一半,可以买______个。

三、应用题11. 某工厂生产零件,如果每天生产100个零件,需要20天完成。

如果每天生产200个零件,需要多少天完成?12. 某工厂生产零件,如果每天生产100个零件,需要20天完成。

如果每天生产零件的数量减少一半,需要多少天完成?13. 某工厂生产零件,如果每天生产零件的数量增加一倍,生产天数会减少多少?14. 某工厂生产零件,生产总量为2000个。

如果每天生产100个,需要20天完成。

如果每天生产200个,需要多少天完成?15. 某工厂生产零件,生产总量为2000个。

如果每天生产200个,需要10天完成。

如果生产总量增加到4000个,需要多少天完成?四、探究题16. 某工厂生产零件,生产总量一定。

请探究每天生产零件的数量与生产天数之间的关系,并用数学公式表达。

17. 某工厂生产零件,生产总量一定。

如果每天生产零件的数量增加,生产天数会如何变化?18. 某工厂生产零件,生产总量一定。

正反比例练习题大全

正反比例练习题大全

正反比例练习题大全1、判断正方形的边长和周长是否成比例。

2、判断正方形的边长和面积是否成比例。

3、判断数a和数b是否成正比例,已知a是b的5倍。

4、已知4a=3b,判断a和b是否成反比例,成比例的比值是多少。

5、判断圆的直径和圆周率是否成正比例,已知圆的周长一定。

6、已知8A=B,判断A和B是否成反比例。

7、判断长方体的底面积和高是否成正比例,已知体积一定。

8、判断x与y是否成比例,已知3x与y成比例。

9、判断圆的面积和半径的平方是否成正比例。

10、判断圆锥的底面积和高是否成正比例,已知体积一定。

11、判断三角形的底和面积是否成正比例,已知高一定。

12、判断车轮的直径和转数是否成正比例,已知路程一定。

13、判断出勤人数和出勤率是否成正比例,已知全班总人数一定。

14、判断已走路程和未走路程是否成反比例,已知从甲地到乙地。

15、判断被减数和差是否成正比例,已知减数一定。

16、已知甲数的3/4是乙数,判断甲数和乙数是否成比例。

17、已知3x=y(x和y都不等于0),判断x和y是否成比例。

18、已知xy=1,判断x和y是否成反比例。

19、已知5A=B,判断A和B是否成反比例。

20、已知x+y=6,判断x和y是否成反比例。

21、已知x和y互为倒数,判断x和y是否成反比例。

22、已知3:x=y:16,判断x和y是否成比例。

23、已知20:x=12:y,判断x和y是否成比例。

24、已知ab=k+2(k一定),判断a和b是否成反比例。

25、已知《小学生作文》的单价一定,判断总价和订阅的数量是否成正比例。

26、判断小新跳高的高度和他的身高是否成比例。

27、已知学校全班的人数一定,判断每组的人数和级数是否成正比例。

28、判断圆柱的底面积和高是否成正比例,已知体积一定。

29、已知书的总册数一定,判断每包的册数和包数是否成正比例。

30、判断在一块菜地上种的黄瓜和西红柿的面积是否成比例。

31、已知小麦每公顷产量一定,判断小麦的公顷数和总产量是否成正比例。

数学正比例和反比例试题

数学正比例和反比例试题

数学正比例和反比例试题1.若a是b的,则a和b成正比例..【答案】√.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:a÷b=(一定),则a和b成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.2.一辆汽车行驶的速度一定,这辆汽车的载重量和行驶的总路程..【答案】不成比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:路程÷时间=速度(一定),所以行驶的路程与时间成正比例;但这辆汽车的载重量和行驶的总路程的比值和乘积都不一定,所以这辆汽车的载重量和行驶的总路程不成比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.判断变化的量是否成正比例,说明理由.比值一定,比的前项和比的后项.【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为比的前项÷比的后项=比值(一定),符合正比例的意义,所以比的前项和后项成正比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.4.判断变化的量是否成正比例,说明理由.正方体的体积一定,底面积和高.【答案】成反比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为正方体的棱长×棱长×棱长=底面积×高=体积(一定),是乘积一定,所以正方体的底面积和高成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.5.判断题中的两种量是不是成比例,成什么比例,并说明理由.圆的半径和它的周长.【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.因为圆的周长÷它的半径=2π(一定),是比值一定,所以圆的半径和它的周长成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.判断题中的两种量是不是成比例,成什么比例,并说明理由:被除数一定,商和除数.【答案】成反比例.【解析】判断两种相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为商×除数=被除数(一定),是乘积一定,符合反比例的意义,所以被除数一定,商和除数成反比例.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.买笔记本的数量和钱数的关系如下表:(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)哪个量没变?数量和总价之间成什么比例?(3)从图中可以看出,如果买9本笔记本,需要多少元钱?【答案】单价不变,数量与总价之间成正比例,需要13.5元.【解析】①每本的价格是1.5元,由此可以完成上表,从而完成统计图;②根据数量和总价之间的变化关系得出数量与总价成正比例的特点;③代入数据即可计算得出.解:(1)根据题意可得,每本的价格为1.5元,由此可完成下表:根据表格中数据可在右图中描点连线,得出统计图如右图:(2)单价没有变,数量与总价之间成正比例.(3)9×1.5=13.5(元),答:单价不变,数量与总价之间成正比例,如果买9本笔记本,需要13.5元.点评:此题考查了绘制折线统计图的方法,以及成正比例关系的量的特点.8. x=y,(x、y均不为0),x与y成正比例..【答案】正确.【解析】要想判定x和y成什么比例关系,必须根据所给等式,进行等式变形,然后根据正、反比例的意义,分析数量关系,找出定量,然后看那两个变量是对应的比值一定还是乘积一定,从而判定成什么比例关系.解:因为x=y,所以x:y=1(一定),是x和y对应的比值一定,符合正比例的意义,所以x和y成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.9.小麦的出粉率一定,小麦的总重量和面粉的重量成正比例关系..【答案】正确.【解析】判断小麦的总重量和面粉的重量是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.解:面粉的重量÷小麦的总重量×100%=小麦的出粉率(一定),是比值一定,小麦的总重量和面粉的重量成正比例.点评:此题属于辨识成正比例的量,就看这两种量是否是对应的比值一定,再做出判断.10.把一车沙子堆成圆锥体,沙堆的占地面积和高成反比例..【答案】正确.【解析】判断沙堆的占地面积和高是否成反比例,就看这两种量是否是对应的乘积一定,如果是乘积一定,就成反比例,如果不是乘积一定或乘积不一定,就不成反比例.据此进行判断.解:沙堆的占地面积×高=沙堆的体积(一定),是沙堆的占地面积和高对应的乘积一定,所以沙堆的占地面积和高成反比例.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出判断.11.平行四边形的高一定,它的面积和底.○=因为和的一定,所以和正比例.【答案】成正比例,平行四边形的面积,底,比值,平行四边形的面积,底.【解析】判断两种量成不成比例,成什么比例,就看这两种量是否是①相关联;②一种量变化,另一种量也随着变化,变化方向相同或相反;③对应的比值或乘积一定;如果这两种量相关联的量都是变量,且对应的比值一定,就成正比例;如果两种量相关联的量都是变量,且对应的乘积一定,就成反比例;如果是其它的量一定或乘积、比值不一定,就不成比例.解:因为平行四边形的面积÷底=高(一定),所以平行四边形的面积和底的比值一定,所以平行四边形的高一定,它的面积和底成正比例;点评:此题属于根据正、反比例的意义,辨识两种相关联的量成不成比例,成什么比例,就看这两种量是否都是变量,且对应的比值一定,或是对应的乘积一定,再做出判断.12.出米率一定,大米的千克数和稻谷的千克数..(是否成反比例)理由:.【答案】不成反比例,大米的千克数÷稻谷的千克数×100%=出米率(一定).【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:大米的千克数÷稻谷的千克数×100%=出米率(一定),所以大米的千克数和稻谷的千克数成正比例,不成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.13.单价一定,数量与总价成比例.【答案】正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为总价÷数量=单价(一定),所以数量与总价成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.14.圆柱的体积和底面积成正比例..(判断对错)【答案】×.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆柱的体积=底面积×高,所以圆柱的体积÷底面积=高,因为高不一定,所以圆柱底面积与体积不成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.15.文具盒的单价一定,买文具盒的个数和总价成正比例..(判断对错)【答案】√.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为总价÷文具盒的个数=文具盒的单价(一定),是对应两个量的比值一定,所以文具盒的单价一定,买文具盒的个数和总价成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.16.判断是否成比例,成什么比例:长方形的宽一定,它的面积和长..【答案】成正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为长方形的面积=长×宽,所以长方形的面积÷长=宽(一定),即长方形的面积与长的比值一定,符合正比例的意义,所以一个长方形的宽一定,它的面积和长成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.17.同时同地,物体的高度和影长成比例.【答案】正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为在同时同地,物体的高度与它的影长的比值是一定的,所以物体的高度与它的影长成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.18.汽车的耗油量一定,油箱中汽油的数量与行驶的路程成比例关系.【答案】正.【解析】根据正反比例的意义,分析数量关系,找出一定的量,然后看那两个变量行驶路程与耗油量是比值一定还是乘积一定,从而判定成什么比例关系.解:一辆汽车的耗油率一定,油箱中汽油的数量与行驶路程是两种相关联的量,耗油率一定,也就是油箱中汽油的数量与与行驶路程的比值一定,符合正比例的意义,所以油箱中汽油的数量与行驶路程成正比例.点评:此题重点考查用正比例和反比例的意义来辨识成正比例的量和成反比例的量.19.总价一定,与成反比例.【答案】单价,数量.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为:单价×数量=总价(一定),所以单价和数量成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.20. Y=8÷X,X和Y 成比例关系;圆的周长与直径成比例关系.【答案】反,正.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为Y=8÷X,则XY=8(一定),所以X和Y成反比例关系;因为圆的周长÷直径=π(一定),所以圆的周长与直径成正比例关系;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.21.大豆油的总质量一定,大豆的千克数和出油率成比例.【答案】反.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为大豆的千克数×出油率=豆油的重量(一定),所以大豆油的总质量一定,大豆的千克数和出油率成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.22. A:10=B( B 不为 0 ),A 与 B 成反比例..【答案】×.【解析】由A:10=B,可得出=10,符合正比例关系式:(一定),由此即可判断.解:由A:10=B,得出A:B=10,所以A与B成正比例.点评:此题主要考查正比例与反比例的意义.23.长方形的长一定,面积和宽成比例.长方形的面积一定,长和宽成比例.【答案】正,反.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:(1)因为长方形的面积=长×宽,所以长方形的面积÷宽=长(一定),符合正比例的意义,所以长方形的长一定,面积和宽成正比例;(2)因为长方形的面积=长×宽,即长×宽=长方形的面积(一定),符合反比例的意义,所以长方形的面积一定,长和宽成反比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.24.若A×B=C(A、B均不等于0),当B一定时,和成比例;当C一定时,和成比例.【答案】C;A;正;A;B;反.【解析】判定两种相关联的量是否成正、反比例,要看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定就成正比例;如果是乘积一定就成反比例.解:因为A×B=C,所以C÷A=B,当B一定时,即C和A的比值一定,所以C与A成正比例;因为A×B=C,当C一定时,即A和B乘积一定,所以A和B成反比例;点评:此题属于根据正、反比例的意义,判断两种相关联的量是成正比例还是成反比例,就看两种量是对应的比值一定,还是对应的乘积一定,再做出解答.25.如果6α=b,则α与b成比例.【答案】正比例.【解析】要想判定a和b成什么比例关系,必须根据式子,进行推导,然后判定.解:因为6α=b,所以b:a=6(一定);可以看出,b和a是两个相关联的变化的量,它们相对应的比值是6,是一定的,所以b和a成正比例关系.点评:此题重点考查辨识成正比例的量与成反比例的量.26.两种相关联的量,不一定成比例关系.【答案】√.【解析】判断两种相关联的量之间成不成比例,成什么比例,就看这两个量是否是对应的比值一定,或者是否是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例;如果是其它的量一定,或比值乘积不一定,则不成比例.解:根据正反比例的意义,可知:两种相关联的量,如果比值或乘积不一定,或者是其它的量一定,就不成比例关系;点评:此题属于考查辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.27.小明从家里去学校,所需时间与所行速度成正比例..【答案】错误.【解析】判定两种相关联的量是否成正、反比例,要看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定就成正比例;如果是乘积一定就成反比例.解:所行速度×所需时间=家到学校的距离(一定),是乘积一定,所以所需时间与所行速度成反比例;点评:此题属于根据正、反比例的意义,判断两种相关联的量是成正比例还是成反比例,就看两种量是对应的比值一定,还是对应的乘积一定,再做出解答.28.判断下面各种相关联的量成不成比例,成什么比例?把它写在括号里.(1)工作总量一定,时间和工作效率.(2)同一个圆的半径和面积.(3)三角形的高一定,面积和底.(4)和一定,一个加数和另一个加数.(5)正方形边长和面积.(6)正方形的边长和周长.【答案】反比例,不成比例,正比例,不成比例,不成比例,正比例.【解析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:(1)因为:工作时间×工作效率=工作总量(一定),所以时间和工作效率成反比例.(2)因为S÷r=πr,r变化,πr就变化,所以圆的面积和它的半径不成比例;(3)三角形的面积÷底=高×(一定),是比值一定,三角形的面积和高就成正比例;(4)加数+加数=和(一定),是两个数的和一定,所以一个加数和另一个加数不成比例;(5)正方形的面积÷边长=边长(不一定),比值不一定,所以正方形的面积和边长不成比例;(6)正方形的周长÷边长=4(一定),是比值一定,所以正方形的周长和它的边长成正比例;点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.29.完成一件工程,甲单独做要6天,乙单独做要8天,那么,甲与乙工作效率比是,此时工作时间与工作效率成比例.【答案】4:3,反.【解析】①把工作总量看作单位“1”,根据“工作总量÷工作时间=工作效率”分别求出甲和乙的工作效率,进而根据题意,进行比即可;②因为:工作效率×工作时间=工作总量(一定),所以工作时间与工作效率成反比例;据此解答.解:①(1÷6):(1÷8),=:,=4:3;②工作效率×工作时间=工作总量(一定),所以工作时间与工作效率成反比例;点评:解答此题用到的知识点:(1)比的意义;(2)工作总量、工作效率和工作时间三者之间的关系;(3)辨识成正比例和反比例的方法.30.每袋面粉的质量一定,面粉的总质量和袋数成比例.【答案】正.【解析】判断面粉的总质量和袋数之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为面粉的总质量÷面粉的袋数=每袋面粉的质量(一定),符合正比例的意义,所以每袋面粉的质量一定,面粉的总质量和袋数成正比例,点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.31.小红的身高和体重总是成比例..【答案】错误.【解析】判断小红的身高和体重成不成比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例.解:小红的身高和体重,这两种量既不是对应的比值一定,也不是对应的乘积一定,所以小红的身高和体重不成比例.点评:此题属于辨识成正、反比例的量,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.32.(2012•宜宾县模拟)速度一定,汽车的行驶路程和时间成反比例..【答案】×.【解析】依据正反比例的意义,即若两个相关联量的商一定,则这两个量成正比例;若两个相关联量的乘积一定,则这两个量成反比例,于是即可判断题干的正误.解:由题意可得:若速度一定,则路程÷时间=速度(一定),则路程和时间成正比例;点评:解答此题的主要依据是:正、反比例的意义.33.(2013•黎平县模拟)比的后项一定时,比的前项和比值成正比例..【答案】正确.【解析】判断比的前项和比值是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果是比值不一定,就不成正比例.解:比的前项÷比值=比的后项(一定),是比值一定,比的前项和比值成正比例.点评:此题属于辨识成正比例的量,就看这两种量是否是对应的比值一定,再做出判断.34.(2013•陇川县模拟)正方形的面积与边长不成比例..【解析】根据正比例和反比例的意义,在成比例的数量关系中,都有一个一定的量,两个变化的量,如果三个量都是变化的,那么就不成比例关系.解:正方形的面积=边长×边长,当正方形的边长发生变化时,它的另一条边也随着变化,面积也同时发生变化,这三个量都是变化的,所以正方形的面积与边长不成比例.点评:此题重点考查正比例和反比例的意义.35. A÷=B×3,则A和B成比例.【答案】正.【解析】判断A和B成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定或乘积、比值不一定,就不成比例.解:因为A÷=B×3,则有A×4=B×3,A:B=3:4=(一定),是A和B对应的比值一定,所以A和B成正比例关系;点评:此题属于根据正、反比例的意义,辨识两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,还是对应的其它量一定,再做出判断.36.路程一定,已行的路程和还剩的路程比例;总时间一定,加工一个零件的时间与零件的个数比例;直径一定,圆的周长与圆周率.【答案】不成,反,不成比例【解析】根据正反比例的意义,分析数量关系,找出一定的量,然后看那两个变量是比值一定还是乘积一定,从而判定成什么比例关系.解:①路程一定,已行的路程和还剩的路程是“和与差”的关系,它们的比值和乘积都不是一定的,所以已行的路程和还剩的路程不成任何比例关系.②总时间一定,也就是加工一个零件的时间与零件的个数的“乘积”一定,符合反比例的意义,所以加工一个零件的时间与零件的个数是成反比例关系.③直径一定,而圆周率也是固定的值,也是一定的,在这三个数量关系中,直径一定,圆周率一定,所以圆的周长也一定,三个量没有变化的量,不符合任何比例的意义.所以当直径一定时,圆的周长与圆周率不成任何比例关系.点评:此题重点考查正比例和反比例的意义37.(2006•泸西县模拟)=y表示x和y成正比例..【答案】错误.【解析】由“”可得:xy=3,则x和y的乘积一定,于是可判断出x和y成反比例.解:因为,则xy=3(定值),所以说x和y成反比例.点评:解答此题的主要依据是:若两个量的商一定,则成正比例;若两个量的乘积一定,则成反比例.38.(2012•陆良县模拟)实验种子数一定,发芽的种子数与发芽率成正比例..【答案】正确.【解析】判断发芽的种子数与发芽率是否成正比例,就看这两种量相对应的比值是否一定,如果一定,则成正比例,否则,不成正比例.解:发芽的种子数÷发芽率=实验种子数(一定),是比值一定,所以发芽的种子数与发芽率成正比例.点评:此题属于辨识成正比例的量,就看这两种量是不是对应的比值一定,再做判断.39.一对互相咬合的齿轮,齿数与转数成反比例..。

(完整版)正比例与反比例的意义练习题

(完整版)正比例与反比例的意义练习题

正比例与反比例的练习题一、填空。

1.k x y ,y 与x 是成( )的量,它们的关系叫做( )关系。

2.A :B =C ,如果( )一定,A 与B 成正比例。

3.a ×b =c ,当a 一定时,( )和( )成正比例,当b 一定时,( )和( )成正比例。

4.单价书总价=本数,书的总价和单价成( )比例;本数书总价=单价,书的总价和本数成( )比例;单价×本数=书的总价,书的单价和本数成( )比例。

5.a b=c ,当b 是不变量时,a 和c 成( )比例。

6.从甲地到乙地,所用的时间和速度成( )比例。

7.路程、速度、时间之间存在着以下关系:当( )一定时,( )和( )成( )关系; 当( )一定时,( )和( )成( )关系; 当( )一定时,( )和( )成( )关系。

8.一百米赛跑,跑的( )和( )成( )比例。

9.长方形的长是A ,宽是B ,面积是S ,则S =A ×B 。

如果A 一定,那么B 和S 成( )比例;如果B 一定,那么A 和S 成( )比例;如果S 一定,那么A 和B 成( )比例;二、判断。

1.正方体的棱长和它的体积成正比例。

( )2.a是b的40%,a和b成正比例。

()3.一个平行四边形的底是8cm,它的面积和高成正比例。

()4.在同圆或等圆里,圆的周长和直径成正比例。

()5.小红有20本练习本,用完的本数与剩下的本数。

()6.食堂购进煤的总量一定,每天的用煤量与用的天数。

()7.长方形的周长一定,它的长和宽。

()4.长方体的体积一定,底面积与高。

()三、选择题。

1.表示X和y成正比例关系的是()。

2xA.x—y=4B.y×x=100C.x+y=24D.y=52.下面每组中的两个量,成正比例的量是()。

A.长方形的面积一定,长和宽B.男工人数一定,女工人数和全车间人数C. 时间一定,路程和速度D.日产量一定,生产总量和剩下的天数3.正方形的边长和周长()。

正比例反比例练习题

正比例反比例练习题

正比例反比例练习题一、选择题1. 已知A和B成正比例,若A=3时,B=9,则当A=6时,B的值为多少?A. 18B. 12C. 24D. 362. 某工厂的产量与工作时间成正比例,若工作8小时产量为160件,则工作10小时的产量是多少?A. 200B. 180C. 160D. 2203. 反比例函数y=1/x的图象上,当x=2时,y的值为多少?A. 0.5B. 1C. 2D. 44. 甲乙两地之间的距离是固定的,若汽车速度与所需时间成反比例,汽车以60公里/小时的速度行驶需要2小时,则以40公里/小时的速度行驶需要多少时间?A. 3B. 4C. 6D. 85. 已知反比例函数y=k/x,当x=3时,y=2,则k的值为多少?A. 6B. 5C. 3D. 2二、填空题6. 若A和B成正比例,比例系数为5,当A=10时,B的值为_________。

7. 某商品的单价与购买数量成反比例,若单价为10元时,购买数量为20件,则单价为20元时,购买数量为_________。

8. 已知正比例函数y=kx,当x=4时,y=8,则k的值为_________。

9. 反比例函数y=6/x的图象上,当x=3时,y的值为_________。

10. 若速度与时间成反比例,且当速度为5米/秒时,时间为10秒,则当速度为10米/秒时,时间为_________。

三、解答题11. 某工厂生产某种零件,其生产效率与所需时间成反比例。

若生产100个零件需要2小时,请回答:(1) 写出该工厂生产零件的反比例函数关系式。

(2) 若该工厂需要生产200个零件,需要多少时间?12. 某城市出租车的计价规则是:起步价为10元,之后每公里收费2元。

若乘客行驶了15公里,请计算乘客需要支付的费用。

13. 已知正比例函数y=kx,其中k=4,求当x=5时,y的值。

14. 某学校规定,学生的体育成绩与学习时间成正比例。

若学生学习2小时,体育成绩为80分,则学习3小时时,体育成绩为多少?15. 某工厂的产量与工作时间成正比例,若工作8小时产量为160件,求该工厂的产量与工作时间的正比例系数。

正比例和反比例(含试题和答案)

正比例和反比例(含试题和答案)

三、考点分析1、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。

2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。

对照图像,能根据一种量的值,估计另一种量相对应的值。

3、两种相关联的量,一种量变化,另一种量也随着变化。

如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。

如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K (一定)。

4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。

【典型例题】例1、(正比例的意义)一列火车行驶的时间和路程如下表。

这两种量有什么关系?分析与解:(1)从上表可以看出,表中有时间和路程两种量。

(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。

所以它们是两种相关联的量。

(3)路程和时间的比值始终不变,1120 = 120,2240= 120,3360 = 120……这个比值就是火车的行驶速度。

通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:时间路程= 速度(一定)。

具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。

点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。

完整版)正比例和反比例练习题

完整版)正比例和反比例练习题

完整版)正比例和反比例练习题1.圆的面积和圆的半径成正比例。

正确。

因为圆的面积公式为πr²,半径r增大,面积也会增大,成正比例关系。

2.圆的面积和圆的半径的平方成正比例。

错误。

圆的面积公式为πr²,半径r的平方与面积成正比例。

3.圆的面积和圆的周长的平方成正比例。

错误。

圆的面积和周长没有直接的正比例关系。

4.正方形的面积和边长成正比例。

正确。

正方形的面积公式为a²,边长a增大,面积也会增大,成正比例关系。

5.正方形的周长和边长成正比例。

正确。

正方形的周长公式为4a,边长a增大,周长也会增大,成正比例关系。

6.长方形的面积一定时,长和宽成反比例。

正确。

长方形的面积公式为lw,面积一定,长和宽成反比例关系。

7.长方形的周长一定时,长和宽成反比例。

错误。

长方形的周长公式为2(l+w),周长一定时,长和宽没有直接的反比例关系。

8.三角形的面积一定时,底和高成反比例。

正确。

三角形的面积公式为1/2bh,面积一定,底和高成反比例关系。

9.梯形的面积一定时,上底和下底的和与XXX反比例。

错误。

梯形的面积和上下底线段之和与高没有直接的反比例关系。

10.圆的周长和圆的半径成正比例。

正确。

圆的周长公式为2πr,半径r增大,周长也会增大,成正比例关系。

11.一个因数不变,积与另一个因数成正比例。

错误。

一个因数不变时,积与另一个因数成反比例关系。

12.长方形的长一定,宽和面积成正比例。

错误。

长方形的长一定时,宽和面积成反比例关系。

13.大米的总量一定,吃掉的和剩下的成反比例。

正确。

大米的总量不变,吃掉的越多,剩下的越少,成反比例关系。

14.圆的半径和周长成正比例。

正确。

圆的周长公式为2πr,半径r增大,周长也会增大,成正比例关系。

15.分数的分子一定,分数值和分母成反比例。

正确。

分数的值为分子除以分母,分子一定时,分数值与分母成反比例关系。

16.铺地面积一定,方砖的边长和所需块数成反比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例与反比例练习题一
一、判断题:
1、圆的面积和圆的半径成正比例。

(
2、圆的面积和圆的半径的平方成正比例。

(
3、圆的面积和圆的周长的平方成正比例。

(
4、正方形的面积和边长成正比例。

(
5、正方形的周长和边长成正比例。

(
6、长方形的面积一定时,长和宽成反比例。

(
7、长方形的周长一定时,长和宽成反比例。

(
8、三角形的面积一定时,底和高成反比例。

(
9、梯形的面积一定时,上底和下底的和与高成反比例。

(
10、圆的周长和圆的半径成正比例。

(
11.一个因数不变,积与另一个因数成正比例.(
12.长方形的长一定,宽和面积成正比例.(
13.大米的总量一定,吃掉的和剩下的成反比例.(
14.圆的半径和周长成正比例.(
15.分数的分子一定,分数值和分母成反比例.(
16.铺地面积一定,方砖的边长和所需块数成反比例.(
17.铺地面积一定,方砖面积和所需块数成反比例.(
18.除数一定,被除数和商成正比例.(
二、选择题
(1长方形的____,它的长和面积成正比例。

A.周长一定
B.宽一定
C.面积一定
(2圆柱体体积一定,____和高成反比例。

A.底面半径
B.底面积
C.表面积
(3a÷b=c,当c一定时a和b(;当a一定时b和c(;当b
一定时a和c(。

A. 成正比例
B. 成反比例
(4把一堆化肥装入麻袋,麻袋的数量和每袋化肥的量.(
A.成正比例
B.成反比例
C.不成比例
(5在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例
关系是(,成反比例关系是(.
A.汽车每次运货吨数一定,运货次数和运货总吨数.
B.汽车运货次数一定,每次运货的吨数和运货总吨数.
C.汽车运货总吨数一定,每次运货的吨数和运货的次数.
三、应用题
(1工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例方法解答
(2一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答
四.判断对错
(1路程一定,速度和时间成正比例。

(
(2一堆煤的总量不变,烧去的煤与剩下的煤成反比例。

(
(3花生的出油率一定,花生的重量与榨出花生油的重量成正比例。

(
(4平行四边形的面积不变,它的底与高成反比例。

(
正比例与反比例练习二
一、练习
1.判断下面每题中的三个量成什么比例?http://w ww.xkb1 .com
(1速度、路程和时间
(2工作总量、工作效率和工作时间
(3单价、总价和数量
(4平行四边形的面积、底和高
(5出示“练一练”第5题
2.下列各题中的两种量是不是成比例,成什么比例,并说明理由。

(1买相同的电脑,购买的电脑台数与总价
(2每捆练习本的本数相同,练习本的总本数与捆数第-一-网
(3总路程一定,已行的路程与未行的路程
(4分数值一定,分数的分子与分母
(5长方形的长一定,它的面积和宽
(6长方体的体积一定,底面积和高
(7一本书的总页数一定,看的天数与平均每天看的页数
(8圆的周长和直径
(9订阅《扬子晚报》,订的份数与总价
(10图上距离一定,实际距离与比例尺
(11班同学做操,每排站的人数与排数
三、用正反比例解决问题。

1、光辉服装厂4天加工服装160套,照这样计算,生产360套服装,需要多少天?
2、化肥厂有一批煤,每天用12吨,可用40天。

如果这批煤要用60天,每天只能用多少吨?
3、修路队3天修路150米,照这样的速度,再修10天,又修多少米?
4、一辆汽车从甲城开往乙城,每小时行45千米,5小时到达。

返回时,每小时行驶50千米,几小时回到甲城?
5、一间房子,用面积是16平方分米的方砖铺地,需要54块。

如果改用面积是9平方分米的方砖,需要多少块?。

相关文档
最新文档