必修一函数奇偶性及综合题型大全
函数奇偶性练习题高一
函数奇偶性练习题高一一、判断函数的奇偶性1. 判断函数 $f(x) = x^3 3x$ 的奇偶性。
2. 判断函数 $f(x) = \frac{1}{x}$ 的奇偶性。
3. 判断函数 $f(x) = \sqrt{x^2 + 1}$ 的奇偶性。
4. 判断函数 $f(x) = x^2 x^4$ 的奇偶性。
5. 判断函数 $f(x) = \cos(x)$ 的奇偶性。
二、证明函数的奇偶性6. 证明函数 $f(x) = x^2 + x$ 是偶函数。
7. 证明函数 $f(x) = x^3 x$ 是奇函数。
8. 证明函数 $f(x) = \ln(x^2)$ 是偶函数。
9. 证明函数 $f(x) = \tan(x)$ 是奇函数。
10. 证明函数 $f(x) = e^{x^2}$ 是偶函数。
三、求给定函数的奇偶部分11. 求函数 $f(x) = x^4 2x^2 + 1$ 的奇偶部分。
12. 求函数 $f(x) = \sin(x) + \cos(x)$ 的奇偶部分。
13. 求函数 $f(x) = x^5 3x^3 + 2x$ 的奇偶部分。
14. 求函数 $f(x) = \frac{1}{x^2 + 1}$ 的奇偶部分。
15. 求函数 $f(x) = \sqrt{x} \frac{1}{\sqrt{x}}$ 的奇偶部分。
四、综合运用16. 已知函数 $f(x) = ax^3 + bx^2 + cx + d$,若 $f(x)$ 是偶函数,求 $a$、$b$、$c$ 的关系。
17. 已知函数 $f(x) = ax^4 + bx^3 + cx^2 + dx + e$,若$f(x)$ 是奇函数,求 $a$、$b$、$c$、$d$ 的关系。
18. 设函数 $f(x)$ 是奇函数,且 $f(1) = 2$,求 $f(1)$ 的值。
19. 设函数 $f(x)$ 是偶函数,且 $f(2) = 3$,求 $f(2)$ 的值。
20. 已知函数 $f(x) = x^3 + g(x)$ 是奇函数,求 $g(x)$ 的表达式。
高中 必修一 函数的奇偶性 知识点+例题 全面
辅导讲义――函数的奇偶性[例1] 下面四个结论中,错误有____________(填序号)①偶函数的图象一定与x 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于原点对称;[巩固1] 已知函数f(x)为偶函数,则函数f(x-1)有( ).A.对称轴y 轴B.对称中心(0,0)C. 对称轴x=1D. 对称中心(1,0)[巩固2] 已知函数f (x )=x 2+2mx+1是偶函数,则m=_________;[例2] 设偶函数f(x)的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集是________.[巩固1] 已知函数f(x)是定义在(-3,3)上的奇函数,当0<x <3时,f(x)的图象如图所示,则不等式f(-x )•x>0的解集 是__________________.[巩固2]若定义在[-1,1]上的两个函数f(x),g(x)分别是偶函数和奇函数,且它们在[0,1]上图象如图所示,则不等式0)()(<x g x f 的解集是___________________.(例2) (巩固1) (巩固2)1、定义法:①先判断函数的定义域是不是关于原点对称;②判断f (-x )= f (x )或f (-x )=- f (x )是否成立;③若f (-x )= f (x ),则f (x )为偶函数;若f (-x )=- f (x ),则f (x )为奇函数;若f (-x )= f (x )且f (-x )=- f (x ),则f (x )既是奇函数又是偶函数,即f (x )=0,x ∈D ,D 关于原点对称; 若f (-x )≠f (x )且f (-x )≠- f (x ),则f (x )为非奇非偶函数.[例1]判断下列函数是否具有奇偶性.1、3)(2-=x x f2、11)(-+-=x x x f3、1)1)(1(2---=x x x y 4、 233)(x x x f -=知识模块3函数奇偶性的判断方法精典例题透析[巩固1]判断下列函数的奇偶性.1、11)(22-+-=xxxf2、xxxxf-+•-=11)1()(3、)0()(≠=aaxf4、11)(-++=xxxf2、图像法:奇(或偶)函数的充要条件就是它的图象关于原点(或y轴)对称;且在判断奇函数的时候,一定要注意在函数在原点处有无意义,如果有意义,则f(0)=0.[例1]下列图象表示的函数中具有奇偶性的是()[巩固1] 画出下列函数的函数图象,并判断它们的奇偶性.(1)1)(2-=xxf;(2)3)(xxf=;(3)xxxf-=2)(.根据函数奇偶性的定义,判断一次函数、二次函数、反比例函数以及常数函数的单调性.奇函数关于原点对称,偶函数关于y轴对称,即我们只需把(0,+∞)上函数的图象和性质讨论清楚,就可以知道函数在(-∞,0)上的图象及性质.奇偶函数图象的对称性可做如下推广:(表中a,b,c为常数)f(x)在定义域内恒满足y= f(x)的图象关于_____对称f(a+x)= f(a-x)直线x=a精典例题透析知识模块4奇偶函数的对称性10。
高一函数的奇偶性和周期性知识点+例题+练习 含答案
1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数y=f(x)的定义域为A如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.关于y轴对称奇函数如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建改编)下列函数中,①y=x;②y=|sin x|;③y=cos x;④y=e x-e-x为奇函数的是________.(填函数序号)答案 ④解析 对于④,f (x )=e x -e -x 的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.而y =x 的定义域为{x |x ≥0},不具有对称性,故y =x 为非奇非偶函数.y =|sin x |和y =cos x 为偶函数.2.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________. 答案 0解析 由f (x +1)是偶函数得f (-x +1)=f (x +1),又f (x )是定义在R 上的奇函数,所以f (-x +1)=-f (x -1),即-f (x -1)=f (x +1),所以f (x +2)=-f (x ),即f (x )+f (x +2)=0,所以f (1)+f (3)=0,f (2)+f (4)=0,因此f (1)+f (2)+f (3)+f (4)=0. 3.(2015·天津)已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为______________. 答案 c <a <b解析 由函数f (x )=2|x -m |-1为偶函数,得m =0, 所以f (x )=2|x |-1,当x >0时,f (x )为增函数, log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).4.(2014·天津)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2, -1≤x <0,x , 0≤x <1,则f (32)=________.答案 1解析 函数的周期是2, 所以f (32)=f (32-2)=f (-12),根据题意得f (-12)=-4×(-12)2+2=1.5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.解 (1)定义域为R ,关于原点对称, 又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x ) =-f (x ), ∴函数为奇函数.(2)由1-x1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞), 均有f (-x )=-f (x ).∴函数为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)下列四个函数:①f (x )=-x |x |;②f (x )=x 3;③f (x )=sin x ;④f (x )=ln xx,同时满足以下两个条件:①定义域内是减函数;②定义域内是奇函数的是________.(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )分别是______________(填奇偶性). 答案 (1)① (2)偶函数,奇函数解析 (1)①中,f (x )=⎩⎪⎨⎪⎧-x 2,x >0,x 2,x ≤0,由函数性质可知符合题中条件,故①正确;②中,对于比较熟悉的函数f (x )=x 3可知不符合题意,故②不正确;③中,f (x )=sin x 在定义域内不具有单调性,故②不正确;④中,定义域关于原点不对称,故④不正确. (2)F (x ),G (x )定义域均为(-2,2),由已知F (-x )=f (-x )+g (-x )=log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x ) =-G (x ),∴F (x )是偶函数,G (x )是奇函数.题型二 函数的周期性例2 (1)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.答案 (1)-1 (2)2.5解析 (1)因为f (x )是周期为3的周期函数, 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12+3=f ⎝⎛⎭⎫-12 =4×⎝⎛⎭⎫-122-2=-1. (2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f (x +a )=-f (x ),则T =2a , ②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0).设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=____________. 答案 12解析 ∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π, 又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, 即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12.题型三 函数性质的综合应用命题点1 函数奇偶性的应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=________.(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 (1)1 (2)1解析 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.命题点2 单调性与奇偶性、周期性结合例4 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a的取值范围为________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系是__________________. 答案 (1)(-1,4) (2)f (-25)<f (80)<f (11)解析 (1)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.(2)∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1), f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数, 且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数, f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (1)-32(2)(-5,0)∪(5,+∞)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,化简得ln1+e 3xe 3x +e 6x=2ax =ln e 2ax ,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0, ∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x , 解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).2.忽视定义域致误典例 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ).由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系.③弄清最终结果取并集还是交集.[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇、偶函数而否定函数在整个定义域的奇偶性.A 组 专项基础训练 (时间:40分钟)1.下列函数中,①y =log 2|x |;②y =cos 2x ;③y =2x -2-x 2;④y =log 22-x 2+x ,既是偶函数又在区间(1,2)上单调递增的是________. 答案 ①解析 对于①,函数y =log 2|x |是偶函数且在区间(1,2)上是增函数;对于②,函数y =cos 2x在区间(1,2)上不是增函数;对于③,函数y =2x -2-x 2不是偶函数;对于④,函数y =log 22-x2+x 不是偶函数.2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为________. 答案 -4解析 由f (x )是定义在R 上的奇函数,得f (0)=1+m =0,解得m =-1,∴f (x )=3x -1.∵log 35>log 31=0,∴f (-log 35)=-f (log 35)=3log 5(31)--=-4.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=________. 答案 -2解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.4.若函数f (x )=(ax +1)(x -a )为偶函数,且函数y =f (x )在x ∈(0,+∞)上单调递增,则实数a 的值为________. 答案 1解析 ∵函数f (x )=(ax +1)(x -a )=ax 2+(1-a 2)x -a 为偶函数, ∴f (-x )=f (x ),即f (-x )=ax 2-(1-a 2)x -a =ax 2+(1-a 2)x -a , ∴1-a 2=0,解得a =±1.当a =1时,f (x )=x 2-1,在x ∈(0,+∞)上单调递增,满足条件.当a =-1时,f (x )=-x 2+1,在x ∈(0,+∞)上单调递减,不满足条件.故a =1.5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是____________. 答案 (-2,1)解析 ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1. 7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.答案 (-∞,1]∪[3,+∞)解析 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案 2解析 依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 016)=f (2 016)=f (0)=0.B 组 专项能力提升(时间:20分钟)11.已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是____________.答案 ⎝⎛⎭⎫1,53 解析 ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ).∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∵f (x )是减函数,∴m -2<-2m +3,∵⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3.∴1<m <53. 12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a+2b=-2.①由f(-1)=f(1),得-a+1=b+2 2,即b=-2a.②由①②得a=2,b=-4,从而a+3b=-10.13.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.答案7解析因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.14.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数.∴f(x)的最大值是2,最小值是1,故③错误.15.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.。
高中数学必修第一册函数的奇偶性知识题型总结
函数的奇偶性知识提要》》》 1. 奇、偶函数的概念【注意】(1)函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.一个函数只有定义域关于原点对称,这个函数才有可能是奇函数(或偶函数),如果定义域不关于原点对称,一定不具有奇偶性。
反之,如果一个函数具有奇偶性,那么它的定义域一定关于原点对称.。
(2)是为奇函数的既不充分也不必要条件,但如果奇函数在处有定义,必有 (3)偶函数不一定与y 轴相交(4)函数既是奇函数也是偶函数; 常函数为偶函数.奇偶性定义图像特征定义域特点表达式的常见变形偶函数设函数定义域为D,如果,都有且,那么函数是偶函数图像关于 轴对称定义域关于原点对称;奇函数设函数定义域为D,如果,都有且,那么函数是奇函数图像关于 原点对称定义域关于原点对称;0)0(=f )(x f )(x f 0=x 0)0(=f 0)(=x f )0()(≠=c c x f )(x f D x ∈∀D x ∈-)()(x f x f =-)(x f y |)(|)()(x f x f x f =-=)(x f D x ∈∀D x ∈-)()(x f x f -=-)(x f 0)()(=-+x f x f2. 奇、偶函数的性质(1)若奇函数在处有定义,即有意义,则;(2)奇函数的图象关于原点对称,偶函数的图象关于轴对称,反之也成立.(3)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(4)在公共定义域内:①奇+奇=奇;②偶+偶=偶;③奇×奇=偶;④偶×偶=偶;⑤奇×偶=奇.方法提炼》》》》1.函数奇偶性的判断方法方法解读适合题型定义法确定定义域,判断是否关于原点对称。
若函数的定义域不是关于原点对称的区间,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判断与的关系函数解析式较简单,抽象函数等图像法奇(偶)函数的充要条件是它的图象关于原点(或轴)对称.函数图像容易确定、分段函数等性质法在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.组合函数、复合函数温馨提示(1)判断函数的奇偶性应树立“定义域优先的原则”;(2)对于较复杂的函数解析式,可先对其进行化简,在进行判断.)(xf0=x)0(f0)0(=fy)(xf)(xf-y2.函数奇偶性的应用技巧技巧解读求函数解析式中参数的值利用待定系数法求解,根据得到待求参数的恒等式,由系数的对等性得到系数的值或者方程(组),进而得出参数的值.求函数解析式抓住奇偶性,讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而求得的解析式.巧妙构造造奇偶函数求函数值若题设条件给出的函数不具备奇偶性,但通过变形转化为一个新的函数,进而能够确定奇偶性,便可利用此性质求解复杂式子的值,充分体现转化思想和构造技巧的应用.温馨提示(1)利用奇函数的性质求解函数的解析式需注意当时的情况,不能丢掉.(2)利用奇函数的性质求值可利用在定义域R上为奇函数,得到,或者是等特殊值,从而求得参数值.常考题型:题型一、函数奇偶性概念理解题型二、函数奇偶性的判定题型三、函数奇偶性求函数值题型四、函数奇偶性求参数题型五、函数奇偶性与单调性结合——比较大小题型六、函数奇偶性与单调性结合——解不等式题型七、利用函数奇偶性求对称区间上的函数解析式题型八、利用奇偶性构造方程组求解析式题型九、与函数奇偶性、单调性相关的综合解答题)()(=-±xfxf)(xf)(xf=x)(xf)0(=f0)1()1(=+-ff题型一、函数奇偶性概念理解 下列命题:①偶函数的图像一定与轴相交;②奇函数的图像一定通过原点; ③既是奇函数又是偶函数的函数只能是; ④偶函数的图像关于轴对称.⑤奇函数的图像关于原点对称 其中正确的是_______________ 题型二、函数奇偶性的判定 【例1】判断下列函数的奇偶性(1) (2)(3) (4)(5);(6)(7) (8);(9)【练习1】(1) ; (2)(3); (4) (5)(6)y ()()0R f x x =∈y 4)(x x f =5)(x x f =xx x f 1)(+=21)(x x f =122)(2++=x x x x f 232)(x x x f -=2211)(x x x f -+-=()2f x x =-⎩⎨⎧>+-<+=00)(22x x x x x x x f ,,2432)(xx x f +=y =()1xf x x =-()1,0,1,0.x x f x x x +>⎧=⎨-<⎩2532)(x x x f +=4212)(xx x f +=【例2】(1)(多选)下列函数是奇函数的是 ( )A .,()B .C .D . (2)下列函数是奇函数,且在定义域内单调递增是 ( ) A .B .C .D .(3)(多选)下列函数中,既是偶函数又在上单调递增的函数是 ( ) A . B . C . D .【练习2】(1)(多选)下列函数中,既是偶函数又在区间单调递增的是 ( )A . B. C . D . (2)(多选)下列函数是偶函数,且在上单调递增的是 ( )A .. C . D .【例3】设是R 上的任意函数,则下列叙述正确的是 ( )A.是奇函数B.C.是偶函数D.是偶函数【练习3】(1)(2014课标Ⅰ,理3)设函数的定义域都为R,且是奇函数,是偶函数,则下列结论中正确的是 ( )A )是偶函数 B.是奇函数 C.是奇函数 D.是奇函数(2)已知奇函数与偶函数的定义域、值域均为R ,则 ( ) A .是奇函数 B .是奇函数 C .是奇函数D .是偶函数题型y x =[0,1]x ∈23y x =3y x=||y x x =y =3y x x =-1y x=-y =(0,)+∞y x =||1y x =+2y x =21y x =-(0,)+∞22y x =+2y x =-1y x x=+1||-=x y ()0,x ∈+∞()f x =()f x x =()2f x x x =+()2(1)f x x =+)(x f )()(x f x f -|)(|)(x f x f -)()(x f x f --)()(x f x f -+)()(x g x f ,)(x f )(x g )()(x g x f )(|)(|x g x f |)(|)(x g x f |)()(|x g x f ()f x ()g x ()()f x g x +()()f x g x ()()f x g x ()f g x ⎡⎤⎣⎦题型三、函数奇偶性求函数值【例1】已知是上的奇函数,且时,,则. 【例2】若是定义在上的奇函数,当时,,则.【例3】已知,且,则 【例4】已知函数是上的偶函数,若,则_________ 【例5】已知为奇函数,则___________ 【练习】1.已知函数是定义域为的奇函数,当时,,则_____2.已知为定义在R 上的奇函数,当时,,则____________3.已知,(是常数),且,则的值为.4.已知是定义在上的奇函数,若 ,则___________ 题型四、函数奇偶性求参数 【例题剖析】1.已知奇函数的定义域为,则实数__________.2.已知函数是偶函数,则__________.3.已知是定义在上的偶函数,那么的值是______4.设是定义在上的奇函数,则_______5.已知函数是偶函数,则______.6.若函数奇函数,则=_________7.已知函数是奇函数,且,则_________ )(x f R 0>x 142)(2++-=x x x f _____)1(=-f ()f x R 0x >()258f x x x=+-()()05f f +-=2)(35++-=bx ax x x f 17)5(=-f ______)5(=f ()2y xf x =+R ()32f -=()3f =(1)1y f x =++()()02f f +=()f x R 0x >()231=-+f x x x ()3f -=)(x f 0<x 12)(2+-=x x x f =+)0()2(f f 5)(35+++=cx bx ax x f c b a ,,9)5(=f )5-(f ___3)2(-+=x f y R 4)1(=f =)3(f ()y f x =()2,1a a -a =()()21f x x a =++a =bx ax x f +=2)(]21[a a ,-b a +()()322f x x a x x =---+2,3b b b ⎡⎤---⎣⎦()f b =()()322x xx a f x -=⋅-=a ))(12()(a x x xx f -+=a 1)(2++=x b ax x f ()225f =12f ⎛⎫= ⎪⎝⎭8.已知函数的图象关于原点中心对称,则23)1()(x a x x f ++=______=a【练习】 1.已知定义在上的函数是奇函数,则实数的值为______. 2.若为偶函数,则实数3.已知函数是偶函数,定义域为,则. 5.已知定义在上的函数满足,且当时,,,则________6.若为奇函数,则__________7.若函数是定义在上的偶函数,则_________题型五、函数奇偶性与单调性结合——比较大小 【例题剖析】1.已知偶函数在上单调递减,则下列结论正确的是( )A .B .C .D .2.已知是奇函数,且在区间上单调递增,则,,的大小关系是( )A .B .C .D .【练习】1.设函数的定义域为R ,对于任意实数x 总有,当时,单调递增,则,,的大小关系是( )22,a a -⎡⎤⎣⎦()y f x =a )4)(()(-+=x a x x f ______=a b a bx ax x f +++=3)(2]21[a a ,-____)0(=f R ()f x ()()0f x f x -+=0x ≤()22xaf x bx =-+()10f =()3f =()()()211f x x a x a =+++-=a ()21f x x ax =++(,22)b b --2b f ⎛⎫= ⎪⎝⎭()f x (],0∞-()()()152f f f ->>()()()215f f f >->()()()125f f f ->>()()()521f f f >>-()f x [0,)+∞()0.5f -()1f -()0f ()()()0.501f f f -<<-()()()10.50f f f -<-<()()()00.51f f f <-<-()()()100.5f f f -<<-()f x ()()f x f x -=[)0,x ∈+∞()f x ()2f -()πf ()3f -A . B . C .D .()()()π32f f f >->-()()()2π3f f f ->->()()()3π2f f f -<-<()()()2π3f f f -<-<2.若偶函数在上单调递增,则,,的大小关系是( )A .B .C .D .3.若奇函数在上是减函数,则下列关系式中成立的是( )A .B .C .D .题型六、函数奇偶性与单调性结合——解不等式【例1】(1)设函数y =f (x )为上的偶函数,且对任意的均,则满足的实数的范围是____________(2)已知定义在上的偶函数在上为减函数,且,则实数的取值范围是__________(3)已知定义在上的奇函数在区间上是减函数,若,则实数的取值范围为__________.(4)定义在上的奇函数,当时,单调递增,则不等式的解集是__________(5)已知函数是定义在上的偶函数,当时,,则使得成立的的取值范围是__________]2,2[-)(x f ]2,0[)()1(m f m f <-m ()f x (0,)+∞(a f =π2b f ⎛⎫= ⎪⎝⎭23c f ⎛⎫= ⎪⎝⎭b ac <<b c a <<a c b <<c a b <<()y f x =(),0-∞523634f f f ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭352463f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭532643f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭532643f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R (]()1212,,0x x x x ∞∈-≠()()()21210f x f x x x ⎡⎤--<⎣⎦()()121f x f x +<-x [4,4]-()f x [0,4](1)(2)f x f +>-x R ()f x [0,)x ∈+∞()f x ()()2110f x f ++≥()f x R 0x ≥()221f x x x =-+()()21f f x ->+x (6)已知函数是定义域为的奇函数,当时,.若,则的取值范围为__________()f x R 0x ≥()()2f x x x =+()()3370f m f m ++->m【练习1】(1)已知是定义在上的偶函数,且在区间单调递减,则不等式的解集为__________(2)定义在上的奇函数是减函数,若,实数的取值范围为__________.(3)奇函数在上单调递增,且,则满足的x的取值范围__________(4)已知函数,且,则实数的取值范围是_________(5)已知函数是定义在上的偶函数;且在上单调递增,若对于任意的,不等式恒成立,则的取值范围________________【例2】(1)已知是奇函数,且在内是减函数,又,则的解集______(2)定义在上的奇函数在上单调递减,且,则满足的x 的取值范围是________【练习2】(1)已知函数是偶函数,若在上单调递增,,则的解集为______(2)定义在上的奇函数满足对任意的,有,且,则不等式的解集为____________(3)定义在上的奇函数在上单调递增,且,则不等式的解集为____________()f x R [)0,+∞()()121f x f x ->+)1,1(-)(x f 0)31()1(<-+-a f a f a()f x [)0,+∞()23f =()313f x -≤-≤()()4f x x x =+()()2230f a f a +-<a ()y f x =R (],0-∞x ∈R ()()21f ax f x >+a ()f x (0,)+∞(1)0f =()0x f x ⋅<R ()f x (),0-∞()30f =()()10x f x +≥()f x ()0,∞+()10f =()0f x x<R ()f x ()()1212,0,x x x x ∈+∞≠()()12120f x f x x x ->-()20f =()()10x f x -≤R ()f x ()0,∞+103f ⎛⎫= ⎪⎝⎭()202f x x ≤-题型七、利用函数奇偶性求对称区间上的函数解析式 【例1】(1)已知函数是定义在上的奇函数,当时,.则当时,的解析式为________(2)函数是定义在上的奇函数,已知当时,,求函数的解析式________(3)已知函数是定义在上的偶函数,当时,,则函数在上的表达式为________.(4)已知函数是定义在上的偶函数,当时,,则当x ∈(0,+∞)时,_____________【练习1】(1)已知是定义在上的奇函数,当时,,求时,函数的解析式___________(2)已知函数是定义在上的奇函数,当时,,求的解析式.(3)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x (x ―4),则函数f (x )解析式为__________(4)是定义在R 上的奇函数,当时,,则的表达式为_____题型八、利用奇偶性构造方程组求解析式【例1】是奇函数,是偶函数,且,求,的解析式.【练习1】已知函数为奇函数,函数为偶函数,,则_______()f x R 0x ≥()()1f x x x =+0x <()f x ()f x R 0x >2()23f x x x =--()f x ()f x R 0x ≥()()24f x x x =+()f x R ()f x (),∞∞-+(),0x ∞∈-()2f x x x =-()f x =()y f x =R 0x ≥2()2f x x x =-+0x <()f x ()f x R 0x <()22f x x x=-()f x ()f x 0x ≥()22f x x x =-+()f x ()f x ()g x ()()11f xg x x +=-()f x ()g x ()f x ()g x 2()()1f x g x x x +=-+(2)f =题型九、与函数奇偶性、单调性相关的综合解答题 【例1】已知函数,且其定义域为. (1)判定函数的奇偶性;(2)利用单调性的定义证明:在上单调递减;(3)解不等式.【例2】已知函数是定义在上的奇函数,且. (1)求函数的解析式;(2)判断函数在上的单调性,并用定义证明;(3)解不等式.【例3】已知函数f(x)=x 2―1x. (1)判断函数f (x )的奇偶性,并证明;(2)证明f (x )在区间(0,+∞)上是增函数;(3)求函数f (x )在区间[―4,―2]上的最大值和最小值.【例4】已知函数是上的偶函数,当,,(1)求函数的解析式;(2)若,求实数的取值范围.2()1x f x x =-(1,1)-()f x ()f x (0,1)()2(1)10f m f m -+-<()21ax b f x x -=+[]1,1-()11f =-()f x ()f x []1,1-()()210f t f t +->()f x R 0x ≤2()43f x x x =-+-()f x (21)(1)f m f m -<+m【练习1】已知函数f (x )=ax +b 1+x 2是定义在(―1,1)上的奇函数,且f (12)=25. (1)求函数f (x )的解析式;(2)用定义法证明函数f (x )的单调性;(3)若f (m )+f (2m ―1)>0,求实数m 的取值范围.【练习2】已知函数是定义在上的奇函数,且. (1)求的值;(2)判断的单调性,并用定义法证明你的结论;(3)求使成立的实数a 的取值范围.()21mx n f x x +=+[]1,1-()11f =,m n ()f x ()2(1)10f a f a -+-<。
高一数学必修1函数的单调性和奇偶性专题训练(题型全)
专题 抽象函数的单调性和奇偶性一、选择题1.设()f x 是定义在(),-∞+∞上的单调递减函数,且()f x 为奇函数.若()11f =-,则不等式()121f x -≤-≤的解集为A . []1,1-B . []0,4C . []2,2-D . []1,32.若函数()f x 的定义域为()32,1a a -+,且函数()1f x -为奇函数,则实数a 的值为( ) A . 2 B . 4 C . 6 D . 83.已知()f x 是偶函数,它在[)0,+∞上是减函数,若()()lg 1f x f > ,则x 的取值范围是( )学=科网A . 1,110⎛⎫⎪⎝⎭ B . 1,1010⎛⎫⎪⎝⎭ C . ()10,1,10⎛⎫⋃+∞ ⎪⎝⎭D . ()()0,110,⋃+∞ 4.已知函数()y f x =是R 上的偶函数,且在[)0+∞,上单调递增,则下列各式成立的是( ) A . ()()()201f f f ->> B . ()()()102f f f >>- C . ()()()210f f f ->> D . ()()()120f f f >-> 5.已知偶函数在区间上单调递减,则满足的的取值范围是( )A .B .C .D .6. ()(),f x g x 是定义在R 上的函数, ()()()h x f x g x =+若()(),f x g x 均为奇函数则下列说法不正确的是( )A . 一定是奇函数B . 不可能是偶函数C . 可以是偶函数D . 不可能是非奇非偶函数7.若偶函数()f x 在(],0-∞上单调递减, ()()3224log 3,log 5,2a f b f c f ⎛⎫=== ⎪⎝⎭,则满足( )A . a b c <<B . b a c <<C . c a b <<D . c b a <<8.已知函数()f x 为定义在[]2,1b b -上的偶函数,且在[]0,1b -上单调递增,则()()1f x f ≤的解集为( )A . []1,2B . []3,5C . []1,1-D . 13,22⎡⎤⎢⎥⎣⎦9.【河北省定州市2016-2017学年期末】已知函数()f x 是定义在R 上的偶函数,在(],0-∞上有单调性,且()()21f f -<,则下列不等式成立的是 ( )A . ()()()123f f f -<<B . ()()()234f f f <<-C . ()()1202f f f ⎛⎫-<< ⎪⎝⎭D . ()()()531f f f <-<-二、填空题10.已知函数()f x 是定义在R 上的奇函数, 在区间(),0-∞上单调递减,且()10f =. 若实数a满足()515log log f a f a ⎛⎫≥ ⎪⎝⎭, 则实数a 的取值范围是____________.11.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足的x 的取值范围是______________. 12.已知定义在上的函数满足,且,若,则实数的取值范围为______.学*科网13.定义在区间[]2,2-上的偶函数()g x ,当0x ≥时()g x 单调递减,若()()1g m g m -<,则实数m 的取值范围是____________.14.定义在R 上的偶函数()f x 在(),0-∞上是减函数且()10f =,则不等式12log 0f x ⎛⎫> ⎪⎝⎭的解集为__________.15.已知()f x 是定义在R 上的偶函数,在[)0,+∞上单调增,且()21f =,则满足()11f x ->的x 的取值范围是_______________.16.已知定义在R 上的函数()f x 满足()()f x f x -=,且对于任意1x , [)20,x ∈+∞, 12x x ≠,均有()()21120f x f x x x ->-.若1132f ⎛⎫-= ⎪⎝⎭, 182log 1f x ⎛⎫< ⎪⎝⎭,则x 的取值范围为__________.三、解答题17.已知函数()y f x =是定义在()0,+∞上的增函数,对于任意的0,0x y >>,都有()()()f xy f x f y =+,且满足()21f =. (1)求()()14f f 、的值;(2)求满足()()32f x f x +->的x 的取值范围.18.定义在R 上的函数()y f x =对任意的,x y R ∈,满足条件: ()()()1f x y f x f y +=+-,且当0x >时, ()1f x >. (1)求()0f 的值;(2)证明:函数()f x 是R 上的单调增函数; (3)解关于t 的不等式()221f t t -<.19.定义在R 上的函数()y f x =对任意的,x y R ∈,满足条件: ()()()1f x y f x f y +=+-,且当0x >时, ()1f x >. (1)求()0f 的值;(2)证明:函数()f x 是R 上的单调增函数; (3)解关于t 的不等式()221f t t -<.20.若()f x 是定义在()0,+∞上的增函数,且对一切x , 0y >,满足()()x f f x f y y ⎛⎫=- ⎪⎝⎭.(1)求()1f 的值;(2)若()61f =,解不等式()1323f x f ⎛⎫+-< ⎪⎝⎭.21.已知()f x 是定义在[]1,1-上的奇函数,且()11f =,若m , []1,1n ∈-, 0m n +≠时,有()()0f m f n m n+>+.(1)证明()f x 在[]1,1-上是增函数;(2)解不等式1121f x f x ⎛⎫⎛⎫+< ⎪ ⎪-⎝⎭⎝⎭; (3)若()221f x t at ≤-+对任意[]1,1x ∈-, []1,1a ∈-恒成立,求实数t 的取值范围. 22.函数()f x 的定义域为{|0}D x x =≠,且满足对任意12,x x D ∈,有()()1212f x x f x x ⋅=+)(. (1)求()1f 的值;(2)判断()f x 的奇偶性并证明你的结论;(3)如果()41f =, ()12f x -<,且()f x 在()0,+∞上是增函数,求x 的取值范围. 23.设函数()y f x =是定义在R 上的函数,并且满足下面三个条件:①对任意正数,x y ,都有()()()f xy f x f y =+;②当1x >时, ()0f x <;③()31f =-.(1)求()1f , 19f ⎛⎫⎪⎝⎭的值;(2)证明()f x 在()0,+∞上是减函数;(3)如果不等式()()22f x f x +-<成立,求x 的取值范围.24.已知函数()f x 满足:对任意,x y R ∈,都有()()()()()2f x y f x f y f x f y +=--+成立,且0x >时, ()2f x >,(1)求()0f 的值,并证明:当0x <时, ()12f x <<. (2)判断()f x 的单调性并加以证明.学-科网(3)若函数()()g x f x k =- 在(),0-∞上递减,求实数k 的取值范围. 25.已知函数的定义域为,若对于任意的实数,都有,且时,有.(1)判断并证明函数的奇偶性; (2)判断并证明函数的单调性;(3)设,若对所有,恒成立,求实数的取值范围.26.设()f x 是定义在R 上的奇函数,且对任意a b R ∈、,当0a b +≠时,都有()()0f a f b a b +>+.(1)若a b >,试比较()f a 与()f b 的大小关系;(2)若()()923290x x x f f k -+->对任意[)0,x ∈+∞恒成立,求实数k 的取值范围.专题7 抽象函数的单调性和奇偶性一、选择题1.【湖北省荆门市2016-2017学年期末】设()f x 是定义在(),-∞+∞上的单调递减函数,且()f x 为奇函数.若()11f =-,则不等式()121f x -≤-≤的解集为A . []1,1-B . []0,4C . []2,2-D . []1,3 【答案】D【解析】由题意可得()11,f -=,不等式()121f x -≤-≤可化为()()()121f f x f ≤-≤-,又因为()f x 是定义在(),-∞+∞上的单调递减函数,所以121,x ≥-≥-即13x ≤≤,选D .2.【山东省烟台市2016-2017学年期末】若函数()f x 的定义域为()32,1a a -+,且函数()1f x -为奇函数,则实数a 的值为( ) A . 2 B . 4 C . 6 D . 8 【答案】C3.【内蒙古赤峰市2016-2017学年期末】已知()f x 是偶函数,它在[)0,+∞上是减函数,若()()lg 1f x f > ,则x 的取值范围是( ) A . 1,110⎛⎫⎪⎝⎭ B . 1,1010⎛⎫⎪⎝⎭ C . ()10,1,10⎛⎫⋃+∞ ⎪⎝⎭D . ()()0,110,⋃+∞ 【答案】B【解析】试题分析:偶函数()f x 在[)0,+∞上是减函数,则在(],0-∞上为增函数,由()()lg 1f x f >可知,得,故选项B 正确.考点:偶函数的单调性及其运用.【易错点睛】解答本题时考生容易错误的理解为:偶函数在整个定义域上的单调性是一致的,而列出不等式,解得,没有正确的选项可选.偶函数的图象关于y 轴对称,则其在原点两侧对称区间的单调性也是不同的,即一侧为单调增函数,则对称的另一侧为单调减函数.只有清楚了函数的单调性,才能正确的列出不等式,进而求出正确的解.4.【海南省东方中学2016-2017学年期中】已知函数()y f x =是R 上的偶函数,且在[)0+∞,上单调递增,则下列各式成立的是( )A . ()()()201f f f ->>B . ()()()102f f f >>-C . ()()()210f f f ->>D . ()()()120f f f >-> 【答案】A5.【江西省玉山县第一中学2016-2017学年期中考】已知偶函数在区间上单调递减,则满足的的取值范围是( )A .B .C .D .【答案】B 【解析】,所以 的取值范围是,选B .点睛:利用函数单调性解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内6.【安徽省蚌埠市2015-2016学年期中】()(),f x g x 是定义在R 上的函数, ()()()h x f x g x =+若()(),f x g x 均为奇函数则下列说法不正确的是( )A . 一定是奇函数B . 不可能是偶函数C . 可以是偶函数D . 不可能是非奇非偶函数 【答案】B【解析】选项A 中,当()3f x x =-, ()3g x x =时,则()0h x =既是奇函数也是偶函数;选项B 中,两个奇函数的和不能成为偶函数,显然成立;则选项C 、D 均不正确,故选B .点睛:此题主要考查两个函数的和的奇偶性判断,属于中高档题型,也是常考知识点.函数的奇偶性的判断应从两个方面来进行,一是看函数的定义域是否关于原点对称(这是判断奇偶性的必要性),二是看()f x 与()f x -的关系,对于两个函数的和或差的奇偶性的判断,需要对特殊情况进行考虑,如解析中的两个函数等.7.【青海省西宁市2017届检测】若偶函数()f x 在(],0-∞上单调递减,()()3224log 3,log 5,2a f b f c f ⎛⎫=== ⎪⎝⎭,则满足( )A . a b c <<B . b a c <<C . c a b <<D . c b a << 【答案】B【解析】∵偶函数f (x )在(−∞,0]上单调递减, ∴f (x )在[0,+∞)上单调递增, ∵3224422log 3log 9log 5>>=>,∴()()3242log 5log 32f f f ⎛⎫<< ⎪⎝⎭,∴b <a <c . 本题选择B 选项.8.【江西省抚州市临川区第一中学2017届检测】已知函数()f x 为定义在[]2,1b b -上的偶函数,且在[]0,1b -上单调递增,则()()1f x f ≤的解集为( )A . []1,2B . []3,5C . []1,1- D . 13,22⎡⎤⎢⎥⎣⎦【答案】C【解析】由函数奇偶性的定义可知2101b b b +-=⇒=-,所以函数()f x 在[]0,2单调递增,则不等式可化为1{1102x x x ≤⇒-≤≤≤≤,应选答案C 。
高一数学必修一,函数的奇偶性题型归纳
函数的奇偶性 题型归纳题型一、函数奇偶性的概念➢ 函数奇偶性的定义:设函数D x x f y ∈=,)(,(D 为关于原点对称的区间):①如果对于任意的D x ∈,都有)()(x f x f -=,则称)(x f y =为偶函数;②如果对于任意的D x ∈,都有)()(x f x f --=,则称)(x f y =为奇函数。
➢ 函数奇偶性的性质:①函数具有奇偶性的必要条件是其定义域关于原点对称。
②奇偶函数的图像:奇函数关于原点对称;偶函数关于y 轴对称。
③奇函数)(x f y =在0=x 处有意义,则必有0)0(=f 。
④偶函数)(x f y =必满足|)(|)(x f x f =。
1. 若)(x f 是奇函数,则其图象关于( )【答案:C 】A .x 轴对称B .y 轴对称C .原点对称D .直线x y =对称2. 若函数))((R x x f y ∈=是奇函数,则下列坐标表示的点一定在函数)(x f y =图象上的是( )【答案:C 】A .))(,(a f a -B .))(,(a f a --C .))(,(a f a ---D .))(,(a f a -3. 下列说法错误的是( )【答案:D 】A.奇函数的图像关于原点对称B.偶函数的图像关于y 轴对称C.定义在R 上的奇函数()x f y =满足()00=fD.定义在R 上的偶函数()x f y =满足()00=f题型二、判断函数的奇偶性➢ 定义法:➢ 运算函数奇偶性的规律:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×÷奇=偶;奇×÷偶=奇;偶×÷偶=偶。
➢ 复合函数奇偶性判断:内偶则偶,两奇为奇。
➢ 抽象函数奇偶性:赋值法。
1、定义法:1. 下列函数中为偶函数的是( )【答案:C 】A .x y =B .x y =C .2x y =D .13+=x y2. 判断函数的奇偶性 ①)3,1(,)(2-∈=x x x f ②2)(x x f -=;③25)(+=x x f ; ④)1)(1()(-+=x x x f .⑤()xx x f 1-= ⑥()13224+-=x x x f 【答案:】(1)非奇非偶函数.(2)偶函数.(3)非奇非偶函数.(4)偶函数.(5)奇函数(6)偶函数.2、奇偶函数的四则运算法则:3. 下列函数为偶函数的是( )【答案:D 】A.()x x x f +=B.()xx x f 12+= C.()x x x f +=2 D.()2x x x f =4. 判断函数的奇偶性①53)(x x x x f ++=; ②1y 2+=x x【答案:(1)奇函数. (2)奇函数. 】5. 已知函数)(x f y =是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号)。
高中数学-函数奇偶性题型
函数奇偶性题型题型一:一般函数奇偶性的判断与证明例1:判断函数()2212---=x x x f 的奇偶性. 分析:应该首先判断函数的定义域是否关于原点对称,在定义域关于原点对称的情况下,利用奇偶函数的定义判断. 解:函数的定义域为⎪⎩⎪⎨⎧≠--≥-022012x x ,得到为01<≤-x 或10≤<x ,定义域关于原点对称,∵()2212---=x x x f =x x --21,此时有()()()x f x x x f -=--=-21,则函数()x f 为奇函数.点评:在判断一个函数的奇偶性之前,要先求定义域,看其是否关于原点对称,其次,能将解析式化简的则需要化简好再作判断.题型二:抽象函数奇偶性的判断例2:已知函数()x f ,R x ∈,若对于任意实数a 、b ,都有()()()b f a f b a f +=+,求证:()x f 为奇函数.分析:因为对于任意的实数a 、b ,都有()()()b f a f b a f +=+,则可以令a 、b 为某些特殊值,得出()x f -()x f -=.解:设0=a ,则()()()b f f b f +=0,则()00=f .又设x a -=,x b =,则()()()x f x f f +-=0,∴()x f -()x f -=.∴()x f 是奇函数. 点评:涉及抽象函数的奇偶性证明,通常用赋值法,结合条件中恒成立的式子,通过赋值,令解析式满足的式子中出现x 和x -,依据函数奇偶性的定义进行证明.题型三:分段函数奇偶性的判断例3: 例4:判断函数()()()⎩⎨⎧<-≥+=0)1(0)1(x x x x x x x f 的奇偶性. 分析:对于本题中,要注意分段来考虑函数的奇偶性,特别需要注意的是在奇偶性的定义中,涉及到()x f -与()x f 的关系时,都是以对方的存在为前提.解:当0>x 时,有0<-x ,所以())()1(x f x x x f -=+-=-;当0<x 时,有0>-x ,所以())()1(x f x x x f -=--=-;当0=x 时,()0=x f 显然有()()x f x f -==-0,综合上面所述,对任意的R x ∈,都有()()x f x f -=-成立,所以()x f 是奇函数.点评:本题中除了要分段进行考虑之外,还需要注意的是不要漏掉了对0=x 的判断. 题型四:利用函数的奇偶性求函数解析式例4:已知()x f 是奇函数,且当0>x 时,()2-=x x x f ,求0<x 时()x f 的表达式. 分析:求0<x 的解析式,将自变量转化为其相反数的范围,即得0>-x ,由0>x 的解析式及()x f 是奇函数的性质求出()x f .解:设0<x ,且满足表达式()2-=x x x f ,∴()2---=-x x x f =2+-x x ,又()x f 是奇函数,则()()x f x f -=-,∴()2+-=-x x x f ,∴()2+=x x x f ,则当0<x 时()2+=x x x f .点评:(1)在哪个区间求解析式,就设在哪个区间里;(2)转化为已知的解析式进行代入;(3)利用()x f 的奇偶性把()x f -写成()x f -或()x f ,从而求出()x f .题型五:函数单调性和奇偶性综合性问题例5:设函数()x f 在R 上是偶函数,在区间()0,∞-上递增,且()<++122a a f ()3222+-a a f ,求a 的取值范围.分析:要求a 的取值范围,就要列关于a 的不等式组,因而利用函数的单调性,奇偶性化“抽象的不等式”为具体的代数不等式则是关键.解:由于()x f 在R 上是偶函数,()x f 在R 上是偶函数,则()x f 在()+∞,0上递减, ∵874121222+⎪⎭⎫ ⎝⎛+=++a a a 0>,025********>+⎪⎭⎫ ⎝⎛-=+-a a a , 且()<++122a a f ()3222+-a a f ,∴3221222+->++a a a a ,即023>-a ,解之得32>a .点评:给出函数的奇偶性及y 轴一侧的单调性,结合函数奇偶性的性质,可得到其关于y 轴对称区间上的单调性,由此可以脱掉函数符号“f ”,则问题可以迎刃而解.对于奇偶性问题,理解了定义的特征,掌握了判断的方法,则不论题型如何变化,则始终能轻松解决.。
高中数学必修一函数性质综合问题分类总结(自己总结)
函数性质的综合问题一、利用函数的奇偶性、单调性比较大小1 已知函数f (x )在[-5,5]上是偶函数,且在[0,5]上是单调函数,若f (-4)<f (-2),则下列不等式一定成立的是( )A .f (-1)<f (3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)2.已知偶函数f (x )在区间[0,+∞)上的解析式为f (x )=x +1,下列大小关系正确的是( )A .f (1)>f (2)B .f (1)>f (-2)C .f (-1)>f (-2)D .f (-1)<f (2)3.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),都有f (x 2)-f (x 1)x 2-x 1<0成立,则( ) A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)二、利用奇函数、偶函数的图象解不等式4 设函数f (x )为奇函数,且在(-∞,0)上是减函数,若f (-2)=0,则xf (x )<0的解集为( )A .(-1,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2) 5.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则不等式f (x )x>0的解集为________. 三、利用函数的奇偶性、单调性解不等式6 奇函数f (x )是定义在(-1,1)上的减函数,若f (m -1)+f (3-2m )<0,求实数m 的取值范围.7.已知f (x )是定义在R 上的奇函数,当x ≥0,f (x )=x 2+2x ,若f (3-2a )>f (a ),则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,1)C .(-1,+∞)D .(1,+∞)8.已知函数f (x )在R 上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]9.设函数f (x )在R 上是偶函数,在区间(-∞,0)上单调递增,且f (2a 2+a +1)<f (2a 2-2a +3),则a 的取值范围是________.四、利用函数的奇偶性、单调性求函数的最值10 已知函数f (x )为奇函数,当x >0时,f (x )=⎩⎪⎨⎪⎧1x -2,0<x <1,2x -3,x ≥1,若f (x )在⎣⎡⎦⎤-4,-14上的最大值为m ,最小值为n ,求m +n .11已知奇函数f (x )在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-312.已知二次函数f (x )=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 的值为________.五、抽象函数的性质应用13 函数f (x )对任意的a ,b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )在R 上是增函数;(2)若f (4)=5,解不等式f (3m -2)<3.14.已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ).(1)求f (1);(2)证明:f (x )在定义域上是增函数;(3)如果f ⎝⎛⎭⎫13=-1,求满足不等式f (x )-f (x -2)≥2的x 的取值范围.六、函数性质的综合应用15 已知函数f (x )=ax +b x 2+1,f (x )为R 上的奇函数且f (1)=12.(1)求a ,b ;(2)判断f (x )在[1,+∞)上单调性并证明;(3)当x ∈[-4,-1]时,求f (x )的最大值和最小值.16.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x ≥0,ax 2+bx ,x <0为奇函数.(1)求a -b 的值;(2)若f (x )在区间[-1,m -2]上单调递增,求实数m 的取值范围.练习,已知函数是偶函数,则的递减区间是七、奇函数+常数类型求值17.已知f (x )=x 5+ax 3+bx -8(a ,b 是常数),且f (-3)=5,则f (3)=________.练习,设函数1sin )1()(22+++=x xx x f 的最大值为M ,最小值为m ,则m M +=_18.函数f (x )在R 上为奇函数,且x ≥0时,f (x )=x 2-x +2-b ,则f (-2)等于( )A .6-bB .-4+bC .2D .-2八、函数周期性和对称性19.已知)(x f 在R 上是奇函数,且满足)()4(x f x f =+,当)2,0(∈x 时,22)(x x f =,则)7(f 的值为 ( )2()(2)(1)3f x k x k x =-+-+)(x fA .2-B .2C .98-D .9820.已知定义在R 上的函数()f x ,对任意x R ∈,都有()()()63f x f x f +=+成立,若函数()1y f x =+的图象关于直线1x =-对称,则()2013()f =A .0B .2013C .3D .2013-21.设偶函数()f x 对任意x R ∈都有()()13f x f x +=-,且当[]3,2x ∈--时,()4f x x =,则()107.5f =( )A .10B .110C .-10D .110- 22.奇函数f (x )的定义域为R ,若f(x+2)为偶函数,则f(1)=1,则f(8)+f(9)= ( )A. -2B.-1C. 0D. 123.定义在R 上的奇函数)(x f 满足=-=+=-)1(,2)2014(),23()(f f x f x f 则 .1、已知()1+x f是偶函数,则函数()x f y 2=的图象的对称轴是( ) A. 1-=x B. 1=x C . 21-=x D. 21=x 2.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( ) A .0 B .1 C .25 D .53.设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线x=3对称,则下面正确的结论是 ( )(A)()()()1.5 3.5 6.5f f f <<; (B)()()()3.5 1.5 6.5f f f <<;(C)()()()6.5 3.5 1.5f f f <<; (D)()()()3.5 6.5 1.5f f f <<4.已知定义在R 上的奇函数)x (f 满足)x (f )2x (f -=+,则)6(f 的值为( )A. 1-B. 0C. 1D. 25.函数)x (f 对于任意实数x 满足条件)x (f 1)2x (f =+,若5)1(f -=,则))5(f (f 等于A. 5B. 5-C. 51D. 51- 6.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是( )A.0 B. C.1 D. 7.在R 上定义的函数)x (f 是偶函数,且)x 2(f )x (f -=,若)x (f 在 区间]2,1[上是减函数,则)x (f ( )A. 在区间]1,2[--上是增函数,在区间]4,3[上是增函数B. 在区间]1,2[--上是增函数,在区间]4,3[上是减函数C. 在区间]1,2[--上是减函数,在区间]4,3[上是增函数D. 在区间]1,2[--上是减函数,在区间]4,3[上是减函数8.已知定义在R 上的函数)x (f y =满足下列三个条件:① 对于任意的R x ∈,都有)x (f )4x (f =+;② 对于任意的2x x 021≤<≤,都有)x (f )x (f 21<;③ 函数)2x (f y +=的图象关于y 轴对称。
必修一函数奇偶性及综合题型大全
必修一函数奇偶性及综合题型大全函数的奇偶性是指函数图像关于y轴或原点的对称性。
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数。
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数。
判定函数奇偶性的常用方法有定义法和图象法。
在判断分段函数的奇偶性时,需要注意定义域内x取值的任意性,应分段讨论。
讨论时可依据x的范围取相应的解析式化简,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断。
在进行函数奇偶性的操作时,乘以任何系数k不改变奇偶性,不管是kf(x)还是f(kx);偶函数在加上或减去常数a时不变(相当于图象上下平移,不改变偶函数的对称性),奇函数不行;奇函数加上或减去奇函数仍为奇函数,奇函数乘以奇函数为偶函数,偶函数乘以偶函数为偶函数。
例题1、判断下列函数的奇偶性:1) f(x)=x^2+2(x>0)2) f(x)=x-1+1-x3) f(x)=3(x=0)x^2-2(x<0)例题2、定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,则f(x)为偶函数;y=f(x)的奇偶性为偶函数。
又如定义在(-1,1)上的函数f(x),对任意x,y∈(-1,1)都有f(x)+f(y)=f((x+y)/(1-xy)),则f(x)为奇函数。
变式1、判断下列函数的奇偶性:1) f(x)=2x+x(x<0)。
f(x)=9-x。
f(x)=x-1)(x>0)x-x(x<0)变式2、设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则f(x)g(x)是奇函数。
函数的奇偶性是函数的重要性质,常与函数的单调性及周期性相结合命题,以选择题或填空题的形式考查,难度稍大,为中高档题。
高考对函数奇偶性考查主要有以下四个命题角度:1) 求函数值;2) 求函数解析式;3) 已知单调性求参数的值;4) 作函数图象或判断单调性。
高中数学必修1函数单调性和奇偶性专项练习(含答案)
高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。
证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。
因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。
因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。
因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。
函数的奇偶性十大题型归类总结-高一数学(人教A版2019必修第一册)
(7)定义域:
x2 1
1
x2
0 0
,解得
x
1 ,所以
f
x
0 ,所以
f
x
既是奇函数又为偶函数
(8)定义域: 1 x 0 ,即 x 1 x 1 ,所以 f x 为非奇非偶函数 1 x
【例
2】判断函数
f
(x)
x2
x
2
(x (x
0) 0)
的奇偶性。
【答案】奇函数
【解析】法一:当 x 0 时, x 0,所以 f x x2 x2 f x
1 x2 , x [1, 0) ,
1 x2 , x (0,1]
当 x1,0 时, 0 f x 1;
当 x0,1时, 1 f x 0 ,
故 f x 的值域为 1,1 ,故 B 正确.
由 f 1 f 1 0 可得 f x 不是定义域上的增函数,故 C 错误.
故选:C. 【题型专练】 1.设函数 f(x),g(x)的定义域都为 R,且 f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )
奇函数对 B 当 x 0 时, x 0,所以 f x x2 x x2 x f x
当 x 0 时, x 0,所以 f x x2 x x2 x f x ,所以为偶函数
对 C 定义域:1 x2 0 ,即 x 1 x 1 ,所以 x 2 2 x 2 2 x
对 C 定义域: x x 0 ,奇函数除奇函数=偶函数 对 D 定义域: x x 0 ,所以 f x 为非奇非偶函数
5.(2022·全国·高一课时练习)下列函数既是偶函数,又在 (0, ) 上单调递增的是( )
A. y x 【答案】C
B. y x2
C. y x
高中必修一函数的奇偶性详细讲解及练习(详细答案)
函数的单一性和奇偶性例 1(1)画出函数y= -x2+2| x|+3 的图像,并指出函数的单一区间.解:函数图像以以下图所示,当 x≥0时,y= -x2+2x+3 = -( x-1)2+4;当 x< 0 时,y= -x2-2x+3 = -( x+1)2+4 .在( -∞,-1]和[ 0, 1]上,函数是增函数:在[-1, 0]和[ 1, +∞)上,函数是减函数.评析函数单一性是对某个区间而言的,对于单唯一个点没有增减变化,所以对于区间端点只需函数存心义,都能够带上.( 2)已知函数 f( x)= x2+2 ( a-1)x+2在区间( -∞, 4]上是减函数,务实数 a 的取值范围.剖析要充足运用函数的单一性是以对称轴为界限这一特点.解: f( x)= x2+2( a-1)x+2 =[ x+ ( a-1)]2x= 1-a.因为-( a-1)2+2,此二次函数的对称轴是在区间( -∞, 1-a]上 f( x)是单一递减的,若使f( x)在( -∞,4]上单一递减,对称轴x=1-a 一定在 x=4 的右边或与其重合,即 1-a≥4, a≤-3.评析这是波及逆向思想的问题,即已知函数的单一性,求字母参数范围,要注意利用数形联合.例 2判断以下函数的奇偶性:( 1) f ( x)=-( 2) f ( x)=( x-1).解:( 1)f ( x)的定义域为R.因为f ( -x)=| -x+1 | -| -x-1 |=| x-1| -| x+1 |= -f (x).所以 f( x)为奇函数.(2) f ( x)的定义域为{ x| -1≤x< 1},不对于原点对称.所以f( x)既不是奇函数,也不是偶函数.评析用定义判断函数的奇偶性的步骤与方法以下:(1)求函数的定义域,并考察定义域能否对于原点对称.( 2)计算 f( -x),并与f( x)比较,判断 f ( -x)= f( x)或 f(-x)= -f( x)之一能否建立.f ( -x)与 -f ( x)的关系其实不明确时,可考察f( -x)±f(x)= 0 能否建立,从而判断函数的奇偶性.例 3已知函数f( x)=.(1)判断 f( x)的奇偶性.(2)确立 f( x)在( -∞, 0)上是增函数仍是减函数 ?在区间( 0,+∞)上呢 ?证明你的结论.解:因为 f ( x)的定义域为R,又f ( -x)=== f ( x),所以 f( x)为偶函数.( 2)f( x)在( -∞,0)上是增函数,因为f( x)为偶函数,所以f(x)在( 0,+∞)上为减函数.其证明:取 x1< x2< 0,f ( x1) -f ( x2)=-==.因为 x1< x2< 0,所以x2-x1> 0, x1+x 2< 0,x21 +1> 0, x22+1> 0,得 f ( x1) -f ( x2)< 0,即 f ( x1)< f(x2).所以 f( x)在( -∞, 0)上为增函数.评析奇函数在( a,b)上的单一性与在( -b,-a)上的单一性同样,偶函数在( a,b)与( -b,-a)的单一性相反.例 4 已知 y=f ( x)是奇函数,它在( 0, +∞)上是增函数,且 f( x)< 0,试问 F( x)=在( -∞, 0)上是增函数仍是减函数 ?证明你的结论.剖析依据函数的增减性的定义,能够任取x1< x2< 0,从而判断F( x1)-F( x2)=-=的正负.为此,需分别判断f( x1)、 f ( x2)与 f ( x2)的正负,而这能够从已条件中推出.解:任取 x1、x2∈( -∞,0)且 x1< x2,则有 -x1> -x2> 0.∵ y=f (x)在( 0,+∞)上是增函数,且 f ( x)< 0,∴ f ( -x2)< f( -x1)< 0.①又∵ f( x)是奇函数,∴ f ( -x2)= -f( x2), f( -x1)= -f ( x1)②由①、②得f( x2)> f(x1)> 0.于是F(x1) -F( x2)=> 0,即F(x1)> F( x2),所以 F( x)=在( -∞, 0)上是减函数.评析本题最简单发生的错误,是受已知条件的影响,一开始就在(0, +∞)内任取 x1< x2,睁开证明.这样就不可以保证-x1,-x2,在( -∞, 0)内的随意性而致使错误.防止错误的方法是:要明确证明的目标,有针对性地睁开证明活动.-1, 1)内的单一性.例 5 议论函数 f( x)=( a≠0)在区间(剖析依据函数的单一性定义求解.解:设 -1< x1< x2<1,则f ( x1) -f ( x2)=-=∵ x1, x2∈( -1,1),且 x1< x2,∴x1-x2< 0, 1+x1x2> 0,( 1-x 21)( 1-x 22)> 0于是,当a> 0 时, f (x1)< f( x2);当 a< 0 时, f (x1)> f( x2).故当 a>0 时,函数在(-1, 1)上是增函数;当a<0 时,函数在(-1, 1)上为减函数.评析依据定义议论(或证明)函数的单一性的一般步骤是:( 1)设 x1、x2是给定区间内随意两个值,且x1< x2;(2)作差 f( x1) -f ( x2),并将此差式变形;(3)判断 f( x1) -f ( x2)的正负,从而确立函数的单一性.例 6 求证: f( x)= x+(k>0)在区间(0,k]上单一递减.解:设 0<x1<x2≤k,则f ( x1) -f ( x2)= x1+-x2-=∵ 0< x1< x2≤k,∴x1-x2< 0, 0< x1x2< k2,∴f ( x1) -f ( x2)> 0∴f ( x1)> f ( x2),∴f ( x)= x+中(0,k]上是减函数.评析函数 f ( x)在给定区间上的单一性反应了函数 f (x)在区间上函数值的变化趋向,是函数在区间上的整体性质.所以,若要证明f( x)在[ a,b]上是增函数(减函数),就一定证明对于区间[ a,b]上随意两点x1, x2,当 x1< x2时,都有不等式f( x1)< f( x2)( f (x1)> f ( x2))近似能够证明:函数 f( x)= x+(k>0)在区间[k,+∞]上是增函数.例 7剖析判断函数f( x)=的奇偶性.确立函数的定义域后可脱去绝对值符号.解:由得函数的定义域为[-1,1].这时,|x-2 |= 2-x.∴ f ( x)=,∴ f ( -x)===f(x).且注意到 f (x)不恒为零,从而可知, f (x)=是偶函数,不是奇函数.评析因为函数分析式中的绝对值使得所给函数不像拥有奇偶性,若不作深入思虑,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭露以后,函数的奇偶性就特别显然了.这样看来,解题中先确立函数的定义域不单能够防止错误,并且有时还能够避开议论,简化解题过程.函数奇偶性练习一、选择题1.已知函数f(x)=ax2+bx+c(a≠ 0)是偶函数,那么g( x)= ax3+ bx2+ cx()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数2.已知函数f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则()A.1a, b=0. a=-, b=0. a=,b=0.a=, b=0C D33.已知f(x)是定义在 R 上的奇函数,当x≥ 0 时,f(x)=x2- 2x,则f(x)在 R 上的表达式是()A.y= x( x- 2)B.y = x(| x|- 1) C.y =| x|( x-2)D.y= x(| x|- 2)4.已知f(x)=x5+ax3+bx- 8,且f(- 2)= 10,那么f( 2)等于()A.- 26B.- 18C.- 10D.105.函数1x 2x1)f ( x)x 2是(1x1A.偶函数B.奇函数C.非奇非偶函数D.既是奇函数又是偶函数6.若(x) ,g(x)都是奇函数, f ( x)a bg ( x) 2 在(0,+∞)上有最大值5,则 f ( x)在(-∞,0)上有()A.最小值- 5B.最大值- 5C.最小值- 1D.最大值- 3二、填空题x22 7.函数f ( x)1的奇偶性为 ________(填奇函数或偶函数).x 28.若y =(-1)x2+2+ 3 是偶函数,则= _________.m mx m9.已知f(x)是偶函数,g(x)是奇函数,若1,则 f ( x)的分析式为_______.f (x) g (x)x110.已知函数f( x)为偶函数,且其图象与 x 轴有四个交点,则方程 f( x)=0的全部实根之和为________.三、解答题11.设定义在[- 2,2]上的偶函数f ()在区间[ 0, 2]上单一递减,若f(1-)<f(),务实x m m数 m的取值范围.12.已知函数 f ( x)知足 f (x+ y)+ f ( x- y)=2f ( x)· f ( y)(x R,y R),且f(0)≠0,试证 f ( x)是偶函数.13. 已知函数f ()是奇函数,且当x>0 时,f()=x3+2 2—1,求f()在 R上的表达式.x x x x14. f(x)是定义在(-∞,-5][5,+∞)上的奇函数,且 f (x)在[5,+∞)上单一递减,试判断 f (x )在(-∞,- 5]上的单一性,并用定义赐予证明.15. 设函数 y = f ( x )( x R 且 x ≠0)对随意非零实数x 1、 x 2 知足 f ( x 1· x 2)= f ( x 1)+ f ( x 2),求证 f ( x )是偶函数.函数的奇偶性练习参照答案1. 分析: f ( x )= ax 2+ bx + c 为偶函数, ( x) x 为奇函数,∴ g ( x )= ax 3+ bx 2+ cx = f ( x )· ( x) 知足奇函数的条件. 答案: A2.分析: 由f( )=2+ bx+ 3 + b 为偶函数,得 b = 0.xax a1 .应选 A .又定义域为[ a -1, 2a ],∴ a - 1=2a ,∴ a33.分析: 由 x ≥ 0 时, f ( x )= x 2- 2x , f ( x )为奇函数,∴当 x < 0 时, f ( x )=- f (- x )=-( x 2+2x )=- x 2- 2x = x (- x -2).x(x 2) ( x 0) ,∴ f ( x)2) ( x 0) 即 f (x )= x (| x | - 2)x( x,答案: D4.分析: f (x )+ 8=x 5+ ax 3+ bx 为奇函数,f (- 2)+ 8= 18,∴ f (2)+ 8=- 18,∴ f ( 2)=- 26.答案: A5.分析: 本题直接证明较烦,可用等价形式f (- x )+ f (x )= 0.答案: B6.分析:( x) 、 g (x )为奇函数,∴ f (x)2 a ( x) bg (x) 为奇函数.又 f (x )在( 0,+∞)上有最大值5,∴ f ( x )- 2 有最大值3.∴ f ( x )- 2 在(-∞, 0)上有最小值- 3, ∴ f ( x )在(-∞, 0)上有最小值- 1. 答案:C7.答案: 奇函数8.答案: 0 分析: 因为函数 y =( m - 1) x 2+ 2mx + 3 为偶函数,∴ f (- x )= f (x ),即( m - 1)(- x ) 2+ 2m (- x )+ 3=( m — 1) x 2+ 2mx + 3,整理,得 m= 0.9.分析: 由 f ( x )是偶函数, g ( x )是奇函数,可得f (x)g( x) 1 ,联立 f ( x) g ( x)1x 1x,∴1 (1111f ( x)x 11 ) .2 x x 2 1答案: f (x)1 10.答案: 011 . 答案: m1x21212. 证明: 令 x = = 0,有 f ( 0)+f (0)= 2 ( 0)· (0),又 f ( 0)≠ 0,∴可证 f ( 0)= 1.令xyf f= 0,∴ f ( y )+ f (- y )= 2f (0)· f ( y ) f (- y )= f ( y ),故 f ( x )为偶函数.13. 分析: 本题主假如培育学生理解观点的能力.f ( x )= x 3+ 2x 2- 1.因 f (x )为奇函数,∴ f ( 0)= 0.当 x <0 时,- x > 0, f (- x )=(- x ) 3+ 2(- x ) 2-1=- x 3+ 2x 2- 1, ∴ f ( x )= x 3- 2x 2+ 1.x 3 2 x 21 ( x 0) , 所以, f (x)( x 0) ,x 32x 21( x0) .评论: 本题主要考察学生对奇函数观点的理解及应用能力.14. 分析: 任取 x 1< x 2≤- 5,则- x 1>- x 2≥- 5.因 f (x )在[ 5,+∞]上单一递减,所以f (- x 1)< f (- x 2) f ( x 1)<- f ( x 2) f ( x 1)>f ( x 2),即单一减函数.评论: 本题要注意灵巧运用函数奇偶性和单一性,并实时转变.15. 分析: 由 x 1, x 2 R 且不为 0 的随意性,令 x 1= x 2= 1 代入可证,f ( 1)= 2f ( 1),∴ f ( 1)=0.又令 x 1=x 2=- 1,∴ f [- 1×(- 1)]= 2f (1)= 0,∴(- 1)= 0.又令 x 1=- 1, x 2= x ,∴ f (- x )= f (- 1)+ f ( x )= 0+ f ( x )= f ( x ),即 f ( x )为偶函数.评论: 抽象函数要注意变量的赋值,特别要注意一些特别值,如,x 1= x 2= 1, x 1=x 2=- 1 或 x 1=x2=0等,而后再联合详细题目要求结构出合适结论特点的式子即可.。
高中数学必修1函数单调性和奇偶性专项练习(含答案)
高中数学必修1第二章 函数单调性和奇偶性专项练习一、函数单调性相关练习题1、(1)函数2)(-=x x f ,∈x {0,1,2,4}的最大值为_____.(2)函数123)(-=x x f 在区间[1,5]上的最大值为_____,最小值为_____. 2、利用单调性的定义证明函数21)(xx f =在(-∞,0)上是增函数. 3、判断函数12)(+=x x f 在(-1,+∞)上的单调性,并给予证明. 4、画出函数322丨+丨+=-x x y 的图像,并指出函数的单调区间.5、已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小:(1)f(6)与f(4); (2)f (2)f (15)与6、已知)(x f y =在定义域(-1,1)上是减函数,且)23()1(-<-a f a f ,求实数a 的取值范围. 7、求下列函数的增区间与减区间(1)y =|x 2+2x -3|(2)y (3)y ==x x x x x 2221123-----+||(4)2012--=x x y 8、函数f(x)=ax 2-(3a -1)x +a 2在[1,+∞]上是增函数,求实数a 的取值范围.9、【例4】判断函数=≠在区间-,上的单调性.f(x)(a 0)(11)ax x 21- 10、求函数xx x f 4)(+=在[1,3]上的最大值和最小值. 二、函数奇偶性相关练习题11、判断下列函数是否具有奇偶性.(1)11)1()(-+-=x x x x f ;(2)a x f =)( (R x ∈); (3)3232)52()52()(--+=x x x f 12、若32)1(2++-=mx x m y 是偶函数,则m =_________.13、已知函数c bx ax x f ++=2)( (0≠a )是偶函数,那么cx bx ax x g ++=23)(是 ( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数14、已知函数b a bx ax x f +++=3)(2是偶函数,且其定义域为[1-a ,a 2],则 ( )A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 15、已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 2)(2-=,则)(x f 在R 上的表达式是 ( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)16、函数1111)(22+++-++=x x x x x f 是( )A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数17、若)(x ϕ,)(x g 都是奇函数,2)()()(++=x bg x a x f ϕ在(0,+∞)上有最大值5,则)(x f 在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-318、函数2122)(x x x f ---=的奇偶性为________(填奇函数或偶函数) .19、判断函数=)(x f ⎪⎩⎪⎨⎧0130132323<,-+>,+-x x x x x x 的奇偶性.20、f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明.21、已知)(x f 是偶函数,)(x g 是奇函数,若11)()(-=+x x g x f ,则)(x f 的解析式为_______,)(x g 的解析式为_______.22、已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0.试证f (x )是偶函数.23、设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2).求证f (x )是偶函数.高中数学必修1第二章 函数单调性和奇偶性专项练习答案1、【答案】(1)2 (2)3,31 2、略3、【答案】减函数,证明略.4、【答案】分为0≥x 和0<x 两种情况,分段画图.单调增区间是(-∞,-1)和[0,1]; 单调减区间是[-1,0)和(1,+∞)5、【答案】(1)f(6)<f(4) ; (2)∴>,即>.f(15)f(4)f(15)f(2)6、【答案】实数a 的取值范围是(31,43) 7、【答案】(1)递增区间是[-3,-1],[1,+∞); 递减区间是(-∞,-3],[-1,1](2)增区间是(-∞,0)和(0,1); 减区间是[1,2)和(2,+∞)(3)∴函数的增区间是[-3,-1],减区间是[-1,1].(4)函数的增区间是(-∞,-4)和(-4,21);减区间是[21,5)和(5,+∞) 8、【答案】a 的取值范围是0≤a ≤1.9、【答案】当a >0时,f(x)在(-1,1)上是减函数;当a <0时,f(x)在(-1,1)上是增函数.10、【答案】先判断函数在[1,2]上是减函数,在(2,3]上是增函数,可得)2(f =4是最小值,)1(f =5是最大值.二、函数奇偶性相关练习题11、【答案】(1)定义域不关于原点对称,所以是非奇非偶函数;(2)0=a ,)(x f 既是奇函数又是偶函数;0≠a ,)(x f 是偶函数;(3))(x f 是奇函数.12、【答案】 013、【答案】选A14、【答案】选B15、【答案】选D16、【答案】选B17、【答案】 选C18【答案】 奇函数19、【答案】 奇函数【提示】分x >0和x <0两种情况,分别证明)()(x f x f =--即可.20、【答案】解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5. 因f (x )在[5,+∞]上单调递减, 所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.21、【答案】11)(2-=x x f ,1)(2-=x x x g 22、证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ), 故f (x )为偶函数.23、证明:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证, f (1)=2f (1),∴f (1)=0.又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0,∴f (-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数.。
高一函数奇偶性题型练习(全)
)
A 函 数 才 z) 土 叹 是 奇 函 数
B 函 数 (z) + Iz| 是 偶 函 数
C. 函 数 “ 个(z是 )奇 函 数
D. 函数 lzIf是(偶z)函 数
5. 已 知 f【z),g(z) 分 别 是 定 义 在R 上 的 偶 函 数 和 奇 函 数 ,昆 ) g 一 史 十 吉 +1, 则 D+50 = ( )
2 已 知 函 数 () = 2 八 史 丁 是 定 义 在 (-10) 上 的 奇 函 数 , 则 常 数 m,n 的 值
分 别 为.
题 型六 抽 象 函 数 奇偶 性
1. 设 函 数 f(a) 是 定 义 在 R 上 的 奇 函 数 , 则 下 列 结 论 中 一 定 正 确 的 是 (
)
A 函 数 扎 (e) + 史 是 奇 函 数 “ B, 函 数 (z) + Iz| 是 健 函 数
表 达 式是 (
)
A fl@)=2"+2
B. fl@)=-a*-2z
c. f@=a-20
p f(@)=-2'+2
3. 已 知 书 a) 是 定 义 在 R 上 的 奇 函 数 , 当 a > onf, (@) 一 古 土 8z 一 1, 求 仪 ) 的 解 析 式.
4 已 知 y = 丁 (z) 是 定 义 在 R 上 的 奇 函 数 ,当 z 么 0 时 , 了 四 二 史 一 2z, 则 f(a在 )R 上 的解 析 式 为 .
9(2)
f@)+g(@) | f@)—9(@ | [fl2)g(=)
俩 函数
佳 丽敌
俊 函数
俊 函数
不: 能 一确 确定定 奇奇俊倩 f性
高一上学期函数的单调性-奇偶性及周期性知识点和题型
(一)函数的单调性1.函数单调性定义:对于给定区间D 上的函数f(x),若对于任意x 1,x 2∈D,当x 1<x 2时,都有f(x 1) <f(x 2),则称f(x)是区间D 上的增函数,D 叫f(x)单调递增区间.当x 1<x 2时,都有f(x 1)> f(x 2),则称f(x)是区间D 上的减函数,D 叫f(x)单调递减区间.2.函数单调性的判断方法:(1)从直观上看,函数图象从左向右看,在某个区间上,图象是上升的,则此函数是增函数,若图象是下降的,则此函数是减函数。
(2)一般地,设函数)(x f y =的定义域为I .如果对于属于定义域I 内某个区间A 上的任意两个自变量的值1x ,2x ,且21x x <,则021<-x x(1)()()则0-21<x f x f ()()()1212120f x f x x x x x -⇔>≠-)(x f 即在区间A 上是增函数; (2)()()则21x f x f >()()()1212120f x f x x x x x -⇔<≠-)(x f 即在区间A 上是减函数. 如果函数)(x f y =在某个区间上是增函数或减函数,那么就说函数在这一区间具有(严格的)的单调性,这一区间叫做)(x f y =的单调区间.单调区间是函数定义域的子区间,因此函数单调性是函数的局部性质,应以定义域为前提;必须指明在某个区间上函数是增函数或减函数(3)复合函数单调性判断方法:设()()[][],,,,,y f u u g x x a b u m n ==∈∈若内外两函数的单调性相同,则()y f g x =⎡⎤⎣⎦在x 的区间D 内单调递增,若内外两函数的单调性相反时,则()y f g x =⎡⎤⎣⎦在x 的区间D 内单调递减.(同增异减)3.常见结论若f(x)为减函数,则-f(x)为增函数 ;若f(x)>0(或<0)且为增函数,则函数)(1x f 在其定义域内为减函数.【题型一、单调性的判断】例、写出下列函数的单调区间(1),b kx y += (2)x k y =, (3)c bx ax y ++=2.如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上, 它是增函数还是减函数【题型二、用定义法证明单调性】例、定义法证明函数y=2x+3在),(+∞-∞的单调性.例、判断函数f (x )=x x 1+在(0,1)上的单调性.【变式训练1】证明函数12)(++=x x x f 在),1(+∞-上是增函数.【方法技巧】根据函数的定义法来进行判别,记好步骤。
函数单调性奇偶性综合性质题型总结
函数综合性质归纳题型总结 一、函数的单调性(一)函数的单调性和单调区间定义:1、增函数与减函数的定义:设函数)(x f y =的定义域为A ,区间A M ⊆,如果取区间M 中的任意两个值1x 、2x ,改变量012>-=∆x x x ,则当0)()(12>-=∆x f x f y 时,就称函数)(x f y =在区间M 上是增函数;当0)()(12<-=∆x f x f y 时,就称函数)(x f y =在区间M 上是减函数。
2、函数的单调性与单调区间:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间)。
此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
[多选] 例1.下列给定函数中,在区间)10(,上单调递减的函数是( )A 、x x f =)(B 、)1(log )(21+=x x g C 、|1|)(-=x x h D 、12)(+=x x w【解析】x x f =)(在)0[∞+,上是增函数,)1(log )(21+=x x g 在)1(∞+-,上是减函数,|1|)(-=x x h 在]1(,-∞上是减函数,12)(+=x x w 在R 上是增函数,则)(x g 和)(x h 在区间)10(,上单调递减的函数,选BC 。
(二)对函数单调性定义的理解1、函数的单调性是局部性质:从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,即单调区间是定义域的子集,是函数的局部特征。
函数的单调性只在定义域内讨论,可以是整个定义域,也可以是定义域的某个子区间;如果一个函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的。
但在某个区间上单调,在整个定义域上不一定单调。
如函数2x y =的定义域为R ,当)0[∞+∈,x 时是增函数,当]0(,-∞∈x 时是减函数。
2、任意性:①“任意取1x 、2x ”,不能取两个特殊值;②1x 、2x 有大小,通常规定012>-=∆x x x ;③1x 、2x 必须同属于定义域的某个子区间。
高一数学必修1函数奇偶性专项练习、题型分析
奇偶性概念考察1.下面四个结论中, 正确命题的个数是( )①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称④既是奇函数, 又是偶函数的函数一定是f(x)=0(x ∈R) A. 1 B. 2 C. 3 D. 42.下列判断正确的是( )A.定义在R 上的函数f(x), 若f(-1)=f(1),且f(-2)=f(2), 则f(x)是偶函数;B.定义在R 上的函数f(x)满足f(2)>f(1), 则f(x)在R 上不是减函数;C.定义在R 上的函数f(x)在区间 上是减函数, 在区间 上也是减函数, 则f(x)在R 上是减函数;D.既是奇函数又是偶函数的函数有且只有一个。
3.对于定义域为R 的任意奇函数f(x)一定有( ) A. f(x)-f(-x)>0 B. f(x)-f(-x)≤0 C. f(x)·f(-x)<0D. f(x)·f(-x)≤04、 是定义在R 上的奇函数, 下列结论中, 不正确的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=--(C ))(x f ·)(x f -≤0 (D )1)()(-=-x f x f判断函数奇偶性1. 下列函数中:①y =x2(x ∈[-1, 1]); ②y =|x |; ④y =x3(x ∈R), 奇函数的个数是( ) A. 1个 B. 2个 C. 3个D. 4个. 2.下列函数中是偶函数的是... )A.y=x4 (x<0) B 、y=|x+1| C 、y= D 、y=3x-13. 判断下列函数的奇偶性: (1)x x x f -+-=11)( (2)2211)(x x x f -+-=(3)x x y 2112-+-= (4)⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y(5)y =(6)⎩⎨⎧<+≥-=)0(1)0(1)(x x x x x f(7)122)(2++=x xx x f ; (8) a x f =)( (R x ∈)(9)⎩⎨⎧+-=)1()1()(x x x x x f .0,0<≥x x (10)()f x =(11) (12)22x (0)f(x)=x (0)x x x x ⎧+<⎪⎨->⎪⎩(13)|1||1|y x x =-++若f(x)是偶函数, 则 ______.5.下列给出的函数中, 既不是奇函数也不是偶函数的是 (A )2xy =(B )2y x x =-(C )2y x =(D )3y x =已知函数 的图象关于原点对称, 则 ________________奇偶函数四则运算性质1.判断下列函数的奇偶性(1)2413)(x x x f += (2)xx y 13+= (3)x x y +=4(4) x x x f 2)(3-=;(5)2||1y x x =-+ (6)y = 2.函数 , 是( )A. 偶函数B. 奇函数C. 不具有奇偶函数D. 与 有关已知函数 是 上的偶函数, 则实数 _____;不等式 的解集为_____.若 是偶函数, 讨论函数 的单调区间?已知函数 是偶函数, 判 的奇偶性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数奇偶性
1
[规律方法] 1
(1)定义法
(2)图象法
2.分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x
的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.
3、函数奇偶性的操作:
1.乘以任何系数k ,不改变奇偶性,不管是()kf x 还是()f kx ;
2.()f x a ±,偶函数不变(相当于图象上下平移,不改变偶函数的对称性),奇函数不行; 3.奇函数±奇函数=奇函数,奇函数⨯奇函数=偶函数,偶函数⨯偶函数=偶函数;
题型一_判定函数的奇偶性
例题1、判断下列函数的奇偶性.
(1) f (x )=x 3
-1x ; (2) f (x )=x 2-1+1-x 2
; (3) f (x )=⎩⎨⎧x 2+2(x >0)
0(x =0)-x 2-2(x <0)
变式1、判断下列函数的奇偶性
x x x x f -+-=11)1()( ②2
9)(x x f -=, ③22
(0)()(0)
x x x f x x x x ⎧+<⎪=⎨->⎪⎩
.
题型二 判断抽象函数奇偶性
例题1、 定义在实数集上的函数)(x f ,对任意R y x ∈,,有)()(2)()(y f x f y x f y x f ⋅=-++,
且0)0(≠f ,则)0(f =_________;)(x f y =的奇偶性为_________
变式、定义在(1,1)-上的函数()f x ,对任意,(1,1)x y ∈-都有()()(
)1x y
f x f y f xy
++=-,则 ()f x 的奇偶性为____________
例2、设()f x 是R 上的任意函数,则下列叙述正确的是 ( )
(A)()()f x f x -是奇函数 (B)()()f x f x -是奇函数 (C) ()()f x f x --是偶函数 (D) ()()f x f x +-是偶函数
变式、设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论
中正确的是( )
A. )()(x g x f 是偶函数
B. )(|)(|x g x f 是奇函数
C. |)(|)(x g x f 是奇函数
D. |)()(|x g x f 是奇函数
考点二、_函数奇偶性的应用(高频考点)________
函数的奇偶性是函数的重要性质,常与函数的单调性及周期性相结合命题,以选择题或填空题的形式考查,难度稍大,为中高档题.
高考对函数奇偶性考查主要有以下四个命题角度: (1)求函数值; (2)求函数解析式;
(3)已知单调性求参数的值; (4)作函数图象或判断单调性.
题型一 求函数值
例题、已知53()2013f x x ax bx =++-,且(3)10f =,则(3)f -=____.
变式1、设函数3()21f x ax bx =+-,且(1)3,f -=则(1)f 等于( )
变式2、设函数3()21f x ax bx =+-,且(1)3,f -=则(1)f 等于( )
题型二 求函数解析式
例题1、已知偶函数()f x 的定义域是),0()0,(+∞⋃-∞,当0<x 时1)(3+=x x f ,求()
f x 的解析式.
2、已知奇函数()g x 的定义域是R ,当0x >时x x x g 2)(2+=,求()g x 的解析式.
变式 1、已知()f x 是定义在R 上的奇函数,且当0x >时,32)(2+-=x x x f ,求()f x 解
析式。
2、已知函数)(x f 是定义在),(∞+∞-上的偶函数。
当)0,(∞-∈x 时,4)(x x x f -=,
则当),0(∞+∈x 时,=)(x f .
题型三 已知函数奇偶性,求参数值
例1、f (x )=k ·2x +2-x 为偶函数,则k =________,为奇函数,则k =________.
变式1、若y =(m -1)x 2+2mx +3是偶函数,则m =_________.
2、22+,0
(),0
x x x f x ax bx x ⎧≤⎪=⎨+>⎪⎩为奇函数,则a+b=_________
题型四 奇函数与图象
例题1、设定义在R 上的函数()y f x =是奇函数,且()f x 在(0)-∞,上为增函数,(1)0f -=,
则不等式()0f x ≥的解集为( )
A .(10)(1)-+∞,,
B .[)[)101-+∞,,
C .[)10-,
D .[)[10]1-+∞,,
2、定义在R 上的奇函数f (x )在(0,+∞)上是增函数,又f (-3)=0,则不等式x
f (x )<0的解集为 ( )
A.(-3,0)∪(0,3)
B.(-∞,-3)∪(3,+∞)
C.(-3,0)∪(3,+∞)
D.(-∞,-3)∪(0,3)
变式1、已知()f x 为奇函数,在(0)+∞,上单调递增,()10f =,则()20f x ->的解集为
______.
2、 若定义在(0)(0)-∞+∞,,上的函数()f x 为奇函数,且在(0)-∞,上是减函数,
又 (2)0
f -=,则()0x f x ⋅<的解集为____________.
例2、设奇函数()f x 在(0,)+∞上是增函数,且f(1)=0,则不等式]()()0x f x f x ⎡--<⎣解
集( )
变式1、已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]上递减,则满足 f (1-
m )+f (1-m 2)<0的实数m 的取值范围是________.
题型五、偶函数与图象
例题 1、已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是
________.
2、已知定义在R 上的偶函数()f x 在区间(]0-∞,上为减函数,则满足()1213
⎛⎫
-< ⎪
⎝⎭f x f 的x 的取值范围是( )
A .1
2
33
⎛⎫ ⎪⎝
⎭,
B .12
33⎡⎫
⎪⎢⎣
⎭
,
C .12
23
⎛⎫
⎪⎝
⎭
,
D .1
2
23⎡⎫
⎪
⎢⎣
⎭,
3、已知定义域为R 的函数()f x 在()8+∞,上为减函数,且函数()8y f x =+为偶函数,则( )
A .()()67f f >
B .()()69f f >
C .()()79f f >
D .()()710f f >
变式1、定义在[-2,2]上的 偶函数g (x ),当 x ≥0时,g (x )单 调 递 减,若g (1
-m )<g (m ),求m 的取值范围
2、已知函数y =f (x )是偶函数,y =f (x -2)在[0,2]上是单调减函数,则( )
A.f (0)<f (-1)<f (2)
B.f (-1)<f (0)<f (2)
C.f (-1)<f (2)<f (0)
D.f (2)<f (-1)<f (0)
3、已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1
()3
f 的x 值范围
是( )
例题6、抽象函数综合:
1、()f x 是定义在R 上的函数,对任意,x y 都有()()()
f x y f x f y +=+,且当0x >时
()0
f x <,(3)f -=(1)求证:()f x 为奇函数; (2)求证:()f x 在R 上是减函数 (3)求()f x 在区间[9,6]-上的最值;
2、已知函数()f x 的定义域为{}0x x ≠,且对任意{},0a b x x ∈≠恒有()()()f ab f a f b =+(1)求()1f 的值 (2)、判断()f x 的奇偶性
(3)若f (4)=1且(31)(26)3f x f x ++-≤, ()f x 为()0,+∞上的增函数,求x 的取
值范围
变式1、设函数()f x 的定义域为R ,且对任意的,m n 总有()()()f m n f m f n +=,且当
0x >时,()1f x >,(0)0f ≠ 。
(1)证明:(0)1f =,
(2)证明:当x R ∈时,有()0f x > (3)证明:()f x 为R 上的增函数
(4)解不等式:2()(2)1f x f x x ->求x 的取值范围。
2、若()f x 是定义在()0,+∞上的函数,且对一切实数(),0,a b ∈+∞,都有
()()a f f a f b b ⎛⎫
=- ⎪⎝⎭
,且
x>1时,f (x )>0。
(1)求()1f ;
(2)判断()f x 的单调性
(3)若(3)1f =-,解不等式()2f x <-。