二项式定理单元测试题(可编辑修改word版)

合集下载

二项式定理(测试卷含答案)

二项式定理(测试卷含答案)

学习目标 1.能熟练地掌握二项式定理的展开式及有关概念.2.会用二项式定理解决与二项式有关的简单问题.1.二项式定理及其相关概念 二项式定理 公式(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n nb n ,称为二项式定理 二项式系数C k n (k =0,1,…,n )通项 T k +1=C k n an -k b k(k =0,1,…n ) 二项式定理的特例 (1+x )n =C 0n +C 1n x +C 2n x 2+…+C k n x k +…+C n nx n 2.二项式系数的四个性质(杨辉三角的规律)(1)对称性:C m n =C n-mn;(2)性质:C k n +1=C k -1n +C kn ;(3)二项式系数的最大值:当n 是偶数时,中间的一项取得最大值,即2C nn最大;当n 是奇数时,中间的两项相等,且同时取得最大值,即1122CCn n nn -+=最大;(4)二项式系数之和:C 0n +C 1n +C 2n +…+C r n +…+C n n=2n ,所用方法是赋值法.类型一 二项式定理的灵活应用 命题角度1 两个二项式积的问题例1 (1)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=________.(2)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =________. 答案 (1)120 (2)-1解析 (1)f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.(2)(1+ax )(1+x )5=(1+x )5+ax (1+x )5.∴x 2的系数为C 25+a C 15,则10+5a =5,解得a =-1.反思与感悟 两个二项式乘积的展开式中特定项问题(1)分别对每个二项展开式进行分析,发现它们各自项的特点. (2)找到构成展开式中特定项的组成部分. (3)分别求解再相乘,求和即得.跟踪训练1 (x +a x )(2x -1x )5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40 答案 D解析 令x =1,得(1+a )(2-1)5=2,∴a =1,故(x +1x )(2x -1x )5的展开式中常数项即为(2x -1x )5的展开式中1x 与x 的系数之和.(2x -1x )5的展开式的通项为T k +1=C k 525-k x 5-2k (-1)k , 令5-2k =1,得k =2,∴展开式中x 的系数为C 25×25-2×(-1)2=80, 令5-2k =-1,得k =3,∴展开式中1x 的系数为C 35×25-3×(-1)3=-40, ∴(x +1x )(2x -1x )5的展开式中常数项为80-40=40.命题角度2 三项展开式问题例2 ⎝⎛⎭⎫x 2+1x +25的展开式中的常数项是________. 答案6322解析 方法一 原式=⎣⎡⎦⎤⎝⎛⎭⎫x 2+1x +25, ∴展开式的通项为11k T +=15C k ⎝⎛⎭⎫x2+1x 15k -(2)1k (k 1=0,1,2,…,5). 当k 1=5时,T 6=(2)5=42,当0≤k 1<5时,⎝⎛⎭⎫x 2+1x 15k -的展开式的通项公式为21k T '+=215C k k -⎝⎛⎭⎫x 2125k k --⎝⎛⎭⎫1x 2k =215C k k -⎝⎛⎭⎫12125k k --·1252k k x --(k 2=0,1,2,…,5-k 1).令5-k 1-2k 2=0,即k 1+2k 2=5.∵0≤k 1<5且k 1∈Z ,∴⎩⎪⎨⎪⎧ k 1=1,k 2=2或⎩⎪⎨⎪⎧k 1=3,k 2=1. ∴常数项为42+C 15C 24⎝⎛⎭⎫1222+C 35C 1212×(2)3 =42+1522+202=6322.方法二 原式=⎝ ⎛⎭⎪⎫x 2+22x +22x 5=132x5·[(x +2)2]5 =132x 5·(x +2)10. 求原式的展开式中的常数项,转化为求(x +2)10的展开式中含x 5项的系数,即C 510·(2)5. ∴所求的常数项为C 510·(2)532=6322.反思与感悟 三项或三项以上的展开问题,应根据式子的特点,转化为二项式来解决,转化的方法通常为配方法,因式分解,项与项结合,项与项结合时,要注意合理性和简捷性. 跟踪训练2 求(x 2+3x -4)4的展开式中x 的系数.解 方法一 (x 2+3x -4)4=[(x 2+3x )-4]4=C 04(x 2+3x )4-C 14(x 2+3x )3·4+C 24(x 2+3x )2·42-C 34(x 2+3x )·43+C 44·44, 显然,上式中只有第四项中含x 的项,所以展开式中含x 的项的系数是-C 34·3·43=-768. 方法二 (x 2+3x -4)4=[(x -1)(x +4)]4=(x -1)4·(x +4)4=(C 04x 4-C 14x 3+C 24x 2-C 34x +C 44)(C 04x 4+C 14x 3·4+C 24x 2·42+C 34x ·43+C 44·44),所以展开式中含x 的项的系数是-C 3444+C 3443=-768.命题角度3 整除和余数问题例3 今天是星期一,今天是第1天,那么第810天是星期( ) A .一 B .二 C .三 D .四 答案 A解析 求第810天是星期几,实质是求810除以7的余数,应用二项式定理将数变形求余数.因为810=(7+1)10=710+C 110×79+…+C 910×7+1=7M +1(M ∈N *),所以第810天相当于第1天,故为星期一.反思与感悟 (1)利用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再利用二项式定理展开,只考虑后面(或前面)一、二项就可以了. (2)解决求余数问题,必须构造一个与题目条件有关的二项式.跟踪训练3 设a ∈Z ,且0≤a <13,若512 015+a 能被13整除,则a =________. 答案 1解析 ∵512 015+a =(52-1)2 015+a =C 02 015522 015-C 12 015522 014+C 22 015522 013-…+C 2 0142 015521-1+a ,能被13整除,0≤a <13. 故-1+a 能被13整除,故a =1. 类型二 二项式系数的综合应用 例4 已知(12+2x )n .(1)若展开式中第五项、第六项、第七项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式中前三项的二项式系数之和等于79,求展开式中系数最大的项.解 (1)由已知得2C 5n =C 4n +C 6n ,即n 2-21n +98=0,得n =7或n =14.当n =7时展开式中二项式系数最大的项是第四项和第五项, ∵T 4=C 37(12)4(2x )3=352x 3,T 5=C 47(12)3(2x )4=70x 4, ∴第四项的系数是352,第五项的系数是70.当n =14时,展开式中二项式系数最大的项是第八项,它的系数为C 714(12)7×27=3 432. (2)由C 0n +C 1n +C 2n =79,即n 2+n -156=0.得n =-13(舍去)或n =12. 设T k +1项的系数最大, ∵(12+2x )12=(12)12(1+4x )12, 由⎩⎪⎨⎪⎧C k 12·4k ≥C k -112·4k -1,C k 12·4k ≥C k +112·4k +1, 解得9.4≤k ≤10.4.∵0≤k ≤n ,k ∈N *,∴k =10. ∴展开式中系数最大的项是第11项, 即T 11=(12)12·C 1012·410·x 10=16 896x 10. 反思与感悟 解决此类问题,首先要分辨二项式系数与二项展开式的项的系数,其次理解记忆其有关性质,最后对解决此类问题的方法作下总结,尤其是有关排列组合的计算问题加以细心.跟踪训练4 已知⎝⎛⎭⎫2x -1x n展开式中二项式系数之和比(2x +x lg x )2n 展开式中奇数项的二项式系数之和少112,第二个展开式中二项式系数最大的项的值为1 120,求x . 解 依题意得2n -22n -1=-112,整理得(2n -16)(2n +14)=0,解得n =4,所以第二个展开式中二项式系数最大的项是第五项.依题意得C 48(2x )4(x lg x )4=1 120,化简得x 4(1+lg x )=1,所以x =1或4(1+lg x )=0, 故所求x 的值为1或110.1.在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .10答案 C解析 因为(1+x )6的展开式的第(k +1)项为T k +1=C k 6x k ,x (1+x )6的展开式中含x 3的项为C 26x3=15x 3,所以系数为15.2.⎝⎛⎭⎫x 2+1x 2-23的展开式中常数项为( ) A .-8 B .-12 C .-20 D .20 答案 C解析 ⎝⎛⎭⎫x 2+1x 2-23=⎝⎛⎭⎫x -1x 6展开式的通项公式为T k +1=C k 6(-1)k x 6-2k.令6-2k =0解得k =3.故展开式中的常数项为-C 36=-20.3.当n 为正奇数时,7n +C 1n ·7n -1+C 2n ·7n -2+…+C n -1n ·7被9除所得的余数是( ) A .0 B .2 C .7 D .8 答案 C解析 原式=(7+1)n -C n n =8n -1=(9-1)n -1=9n -C 1n ·9n -1+C 2n ·9n -2-…+C n -1n ·9(-1)n-1+(-1)n -1.因为n 为正奇数,所以(-1)n -1=-2=-9+7,所以余数为7. 4.已知⎝⎛⎭⎫x -ax 5的展开式中含32x 的项的系数为30,则a 等于( )A. 3 B .- 3 C .6 D .-6 答案 D解析 ⎝⎛⎭⎫x -ax 5的展开式通项T k +1=C k 552kx -(-1)k a k ·2kx -=(-1)k a k C k 552k x-,令52-k =32,则k =1,∴T 2=-a C 1532x ,∴-a C 15=30,∴a =-6,故选D.5.若(x -m )8=a 0+a 1x +a 2x 2+…+a 8x 8,其中a 5=56,则a 0+a 2+a 4+a 6+a 8=________. 答案 128解析 由已知条件可得a 5=C 38·(-m )3=-56m 3=56,∴m =-1, 则a 0+a 2+a 4+a 6+a 8=(1+1)8+(-1+1)82=128.1.两个二项展开式乘积的展开式中特定项问题(1)分别对每个二项展开式进行分析,发现它们各自项的特点. (2)找到构成展开式中特定项的组成部分. (3)分别求解再相乘,求和即得. 2.三项或三项以上的展开问题应根据式子的特点,转化为二项式来解决(有些题目也可转化为计数问题解决),转化的方法通常为配方、因式分解、项与项结合,项与项结合时要注意合理性和简捷性.3.用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开,只考虑后面(或者前面)一、二项就可以了. 4.求二项展开式中各项系数的和差:赋值代入.5.确定二项展开式中的最大或最小项:利用二项式系数的性质.课时作业一、选择题1.已知C 0n +2C 1n +22C 2n +…+2n C n n =729,则C 1n +C 3n +C 5n的值等于( ) A .64 B .32 C .63 D .31 答案 B解析 由已知条件得(1+2)n =3n =729,解得n =6.C 1n +C 3n +C 5n =C 16+C 36+C 56=32. 2.二项式⎝⎛⎭⎫x 2-1x 6的展开式中不含x 3项的系数之和为( ) A .20 B .24 C .30 D .36 答案 A解析 由二项式的展开式的通项公式 T k +1=C k 6·(-1)k x 12-3k,令12-3k =3,解得k =3,故展开式中x3项的系数为C36·(-1)3=-20,而所有系数和为0,不含x3项的系数之和为20.3.在(1+x)6(2+y)4的展开式中,含x4y3项的系数为()A.210 B.120 C.80 D.60答案 B解析在(1+x)6(2+y)4的展开式中,含x4y3的项为C46x4C342·y3=120x4y3.故含x4y3项的系数为120.4.在(1+x)n(n为正整数)的二项展开式中,奇数项的和为A,偶数项的和为B,则(1-x2)n 的值为()A.0 B.ABC.A2-B2D.A2+B2答案 C解析∵(1+x)n=A+B,(1-x)n=A-B,∴(1-x2)n=(1+x)n(1-x)n=(A+B)(A-B)=A2-B2.5.9192被100除所得的余数为()A.1 B.81 C.-81 D.992答案 B解析利用9192=(100-9)92的展开式,或利用(90+1)92的展开式.方法一(100-9)92=C09210092-C19210091×9+C29210090×92-…-C9192100×991+C9292992.展开式中前92项均能被100整除,只需求最后一项除以100的余数.由992=(10-1)92=C0921092-…+C9092102-C919210+1.前91项均能被100整除,后两项和为-919,因原式为正,可从前面的数中分离出1 000,结果为1 000-919=81,∴9192被100除可得余数为81.方法二(90+1)92=C0929092+C1929091+…+C9092902+C919290+C9292.前91项均能被100整除,剩下两项为92×90+1=8 281,显然8 281除以100所得余数为81.6.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m等于()A.5 B.6 C.7 D.8答案 B解析∵(x+y)2m展开式中二项式系数的最大值为C m2m,.∴a=C m2m.同理,b=C m+12m+1∵13a=7b,∴13·C m2m=7·C m+1,2m+1∴13·(2m )!m !m !=7·(2m +1)!(m +1)!m !,∴m =6.7.(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案 C解析 易知T k +1=C k 5(x 2+x )5-k y k , 令k =2,则T 3=C 25(x 2+x )3y 2,对于二项式(x 2+x )3,由T t +1=C t 3(x 2)3-t ·x t =C t 3x 6-t ,令t =1,所以x 5y 2的系数为C 25C 13=30.二、填空题8.已知(a -x )5=a 0+a 1x +a 2x 2+…+a 5x 5,若a 2=80,则a 0+a 1+a 2+…+a 5=________. 答案 1解析 (a -x )5的展开式的通项公式为T k +1=(-1)k a 5-k C k 5x k,令k =2,得a 2=a 3C 25=80, 知a =2,令二项展开式的x =1,得 15=1=a 0+a 1+…+a 5.9.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为128,则二项式系数的最大值为________. 答案 70解析 由题意知,2n -1=128,解得n =8. 展开式共n +1=8+1=9项. 得中间项的二项式系数最大,故展开式中系数最大的项是第5项,最大值为C 48=70. 10.(1.05)6的计算结果精确到0.01的近似值是________. 答案 1.34解析 (1.05)6=(1+0.05)6=C 06+C 16×0.05+C 26×0.052+C 36×0.053+…=1+0.3+0.037 5+0.002 5+…≈1.34.11.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 答案 -2解析 在(1-2x )7的二项展开式中,令x =0,则a 0=1,令x =1,则a 0+a 1+a 2+…+a 7=-1,所以a 1+a 2+…+a 7=-1-1=-2.12.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14. 求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.解 (1)令x =1,得a 0+a 1+a 2+…+a 14=27, 令x =0,得a 0=1,所以a 1+a 2+…+a 14=27-1. (2)由(1)得a 0+a 1+a 2+…+a 14=27,① 令x =-1得a 0-a 1+a 2-…-a 13+a 14=67,②由①-②得:2(a 1+a 3+a 5+…+a 13)=27-67, 所以a 1+a 3+a 5+…+a 13=27-672.13.若等差数列{a n }的首项为a 1=C 11-2m5m-A 2m -211-3m (m ∈N *),公差是⎝ ⎛⎭⎪⎫52x -253x 2k 展开式中的常数项,其中k 为7777-15除以19的余数,求通项公式a n .解 由题意可得⎩⎪⎨⎪⎧5m ≥11-2m ,11-3m ≥2m -2,解得117≤m ≤135,∵m ∈N *,∴m =2,∴a 1=C 710-A 25=100,又7777-15=(1+19×4)77-15=C 077+C 177(19×4)+…+C 7777(19×4)77-15=(19×4)[C 177+C 277(19×4)+…+C 7777(19×4)76]-19+5,∴7777-15除以19的余数为5,即k =5. 又T k ′+1=C k ′5⎝⎛⎭⎫52x 5-k ′⎝ ⎛⎭⎪⎫-253x 2k ′ =C k ′5⎝⎛⎭⎫525-2k ′5153k x '-(-1)k ′,令5k ′-15=0可解得k ′=3, ∴d =C 35⎝⎛⎭⎫525-6(-1)3=-4, ∴a n =a 1+(n -1)d =104-4n . 四、探究与拓展14.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m =________. 答案 -3或1解析 在(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9中, 令x =-2,可得a 0-a 1+a 2-a 3+…+a 8-a 9=m 9, 即[(a 0+a 2+…+a 8)-(a 1+a 3+…+a 9)]=m 9, 令x =0,可得(a 0+a 2+…+a 8)+(a 1+a 3+…+a 9)∵(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,∴[(a 0+a 2+…+a 8)+(a 1+a 3+…+a 9)][(a 0+a 2+…+a 8)-(a 1+a 3+…+a 9)]=39, ∴(2+m )9m 9=(2m +m 2)9=39, 可得2m +m 2=3,解得m =1或-3.15.已知f (x )=(1+x )m ,g (x )=(1+5x )n (m ,n ∈N *). (1)若m =4,n =5时,求f (x )·g (x )的展开式中含x 2的项;(2)若h (x )=f (x )+g (x ),且h (x )的展开式中含x 的项的系数为24,那么当m ,n 为何值时,h (x )的展开式中含x 2的项的系数取得最小值?(3)若(1+5x )n (n ≤10,n ∈N *)的展开式中,倒数第2、3、4项的系数成等差数列,求(1+5x )n 的展开式中系数最大的项.解 (1)当m =4,n =5时,f (x )=(1+x )4=C 04x 0+C 14x 1+C 24x 2+C 34x 3+C 44x 4, g (x )=(1+5x )5=C 05(5x )0+C 15(5x )1+…+C 55(5x )5,则f (x )·g (x )的展开式中含x 2的项为(C 24·50C 05+C 14·5C 15+C 04·52C 25)x 2,即f (x )·g (x )的展开式中含x 2的项为356x 2.(2)因为h (x )=f (x )+g (x ),且h (x )的展开式中含x 的项的系数为24,则C 1m +5C 1n =24,即m =24-5n (其中1≤n ≤4,n ∈N *), 又h (x )的展开式中含x 2的项的系数为 C 2m +52C 2n=m (m -1)2+25n (n -1)2 =(24-5n )(23-5n )2+25n (n -1)2=25n 2-130n +276=25⎝⎛⎭⎫n -1352+107(其中1≤n ≤4,n ∈N *), 又因为⎪⎪⎪⎪2-135>⎪⎪⎪⎪3-135, 所以当n =3时(此时m =9),h (x )的展开式中含x 2的项的系数取得最小值111.(3)在(1+5x )n (n ≤10,n ∈N *)的展开式中,倒数第2、3、4项的系数分别为C n -1n ·5n -1,C n -2n ·5n -2,C n -3n ·5n -3, 又因为倒数第2、3、4项的系数成等差数列,所以2C n -2n ·5n -2=C n -1n ·5n -1+C n -3n ·5n -3, 整理得n 2-33n +182=0, 解得n =7或n =26,又因为n ≤10,n ∈N *,所以n =7,n =26(舍去)..;. 设二项式(1+5x )7的展开式中系数最大的项为第k +1项(即T k +1=C k 7(5x )k ),则⎩⎪⎨⎪⎧C k -17·5k -1≤C k 7·5k ,C k +17·5k +1≤C k 7·5k , 整理并解得173≤k ≤203, 又因为n ≤10,n ∈N *,所以k =6,即(1+5x )n 的展开式中系数最大的项为T 7=C 67(5x )6=109 375x 6.。

(完整版)二项式定理测试题及答案

(完整版)二项式定理测试题及答案

二项式定理测试题及答案1.有多少个整数n 能使(n+i)4成为整数(B ) A.0 B.1 C.2 D.3 2. ()82x -展开式中不含..4x 项的系数的和为(B )A.-1B.0C.1D.23.若S=123100123100A A A A ++++L L ,则S 的个位数字是(C )A 0B 3C 5D 8 4.已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( C ) A.28B.38C.1或38D.1或285.在3100(25)+的展开式中,有理项的个数是( D ) A.15个B.33个C.17个 D.16个6.在2431⎪⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的幂指数是整数的项共有(C ) A .3项 B .4项C .5项D .6项7.在(1-x)5-(1-x)6的展开式中,含x 3的项的系数是( C )A 、-5B 、 5C 、10D 、-10 8.35)1()1(x x +⋅-的展开式中3x 的系数为( A )A .6B .-6C .9D .-9 9.若x=21,则(3+2x)10的展开式中最大的项为(B ) A.第一项 B.第三项 C.第六项 D.第八项 10.二项式431(2)3nx x-的展开式中含有非零常数项,则正整数n 的最小值为( A ) A .7B .12C .14D .511.设函数,)21()(10x x f -=则导函数)(x f '的展开式2x 项的系数为(C )A .1440B .-1440C .-2880D .2880 12.在51(1)x x+-的展开式中,常数项为( B ) (A )51 (B )-51 (C )-11 (D )1113.若32(1)1()n n x x ax bx n *+=+++++∈N L L ,且:3:1a b =,则n 的值为( C ) A.9B.10C.11D.1214.若多项式102x x +=10109910)1()1()1(++++⋅⋅⋅+++x a x a x a a ,则=9a ( )(A ) 9 (B )10 (C )9- (D )10- 解:根据左边x10的系数为1,易知110=a ,左边x 9的系数为0,右边x 9的系数为0109910109=+=+a C a a ,∴109-=a故选D 。

高三数学单元测试《排列、组合二项式定理》

高三数学单元测试《排列、组合二项式定理》

高三数学单元测试《排列、组合二项式定理》一、选择题(本题每小题5分,共60分)1.下列各式中,若1<k <n , 与C n k 不等的一个是 ( )A .11++n k C n+1k+1B .k n C n -1k -1 C .kn n -C n -1k D .1--n nk C n -1k+1 2.已知二项式(x -x2)7展开式的第4项与第5项之和为零,那么x 等于 ( )A .1B .2C .2D .463.设(1-2x)10=a 1+a 2x+a 3x 2+…+a 11x 10, 则a 3+a 5+…+a 7+a 9等于 ( )A .310-1B .1-310C .21(310-1) D .21(310+1) 4.从10名女学生中选2名,40名男生中选3名,担任五种不同的职务,规定女生不担任其中某种职务,不同的分配方案有 ( )A .P 102P 403B .C 102P 31P 44C 103 C .C 152C 403P 55D .C 102C 4035.用1,2,3,4,5,6,7七个数字排列组成七位数,使其中偶位数上必定是偶数,那么可得七位数的个数是 ( )A .P 44B .P 44P 33C .6P 33D .C 152C 403P 556.若1212221012)23(x a x a x a a x ++++=+ ,则-++++211531)(a a a a212420)(a a a a ++++ 的值是 ( )A .1B .-1C .2D .-27.在某次数学测验中,学号)4,3,2,1(=i i 的四位同学的考试成绩}98,96,93,92,90{)(∈i f ,且满足)4()3()2()1(f f f f <≤<,则这四位同学的考试成绩的所有可能情况的种数为 ( )A .9种B .5种C .23种D .15种8.如果一个三位正整数形如“321a a a ”满足2321a a a a <<且,则称这样的三位数为凸数(如120、363、374等),那么所有凸数个数为( )A .240B .204C .729D .9209.使得多项式1125410881234++++x x x x 能被5整除的最小自然数为 ( ) A .1 B .2C .3D .410.若n xx )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .12 11.在AOB ∠的OA 边上取m 个点,在OB 边上取n 个点(均除O 点外),连同O 点共1m n ++个点,现任取其中三个点为顶点作三角形,可作的三角形有( ) A .211211m n n m C C C C +++ B .2121m n n m C C C C + C .112121n m m n n m C C C C C C ++ D .121211n m n m C C C C +++12.已知若二项式:)()222(9R x x∈-的展开式的第7项为421,则)(lim 2nn x x x +++∞→ 的值为 ( )A .-41 B .41C .-43D .43 二、填空题(本题每小题4分,共16分)13.二项式(1-x21)10的展开式中含51x 的项的系数________(请用数字作答)14.某学校要从高三的6个班中派9名同学参加市中学生外语口语演讲,每班至少派1人,则这9个名额的分配方案共有 种.(用数字作答)15.在102)1)(1(x x x -++的展开式中,4x 项的系数是 . 16.有四个好友A, B, C, D 经常通电话交流信息, 已知在通了三 次电话后这四人都获悉某一条 高考信息, 那么第一个电话是 A 打的情形共有 种.甲、乙、丙、丁、戊5名学 生进行投篮比赛,决出了第 1至第5名的不同名次,甲、 乙两人向裁判询问成绩,根据右图所示裁判的回答,5人的名次排列共有 种不同的情况.三、解答题(本大题共6小题,共74分。

(完整word版)高二数学排列组合二项式定理单元测试题带答案

(完整word版)高二数学排列组合二项式定理单元测试题带答案

摆列、组合、二项式定理与概率测试题(理)一、选择题 (本大题共 12 小题,每题5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.)1、如 所示的是 2008 年北京奥运会的会徽,此中的 “中国印 ”的外 是由四个色 构成, 能够用 段在不穿越另两个色 的条件下将此中随意两个色 接起来 (好像架 ),假如用三条 段将 四个色 接起来, 不一样的 接方法共有 ()A. 8 种B. 12 种C. 16 种D. 20 种2、从 6 名志愿者中选出 4 个分别从事翻译、导游、导购、保洁四项不一样的工作,此中甲 乙两名志愿者不可以从事翻译工作,则不一样的选排方法共有( )A . 96 种B .180 种C .240 种D . 280 种3、五种不一样的商品在货架上排成一排,此中a 、b 两种一定排在一同,而c 、d 两种不可以排在一同,则 不一样的选排方法共有( )A . 12 种B . 20 种C . 24 种D . 48 种4、 号 1、 2、 3、4、 5 的五个人分 去坐 号1、 2、 3、 4、 5 的五个座位,此中有且只有两个的 号与座位号一致的坐法是()A . 10 种B. 20 种C. 30 种 D . 60 种 5、 a 、b 、m 整数( m>0),若 a 和 b 被 m 除得的余数同样, 称 a 和 b 模 m 同余 . a ≡b(modm)。

已知 a=1+C 120 +C 202 ·2+C 203 ·22+⋯ +C 2020·219, b ≡a(mod 10) , b 的 能够是()A.2015B.2011C.2008D.20066、在一次足球预选赛中,某小组共有 5 个球队进行双循环赛 (每两队之间赛两场 ),已知胜一场得 3 分,平一场得 1 分,负一场得 0 分.积分多的前两名可出线 (积分相等则要比净胜球数或进球总数 ).赛完后一个队的积分可出现的不一样状况种数为( )A . 22 种B . 23 种C .24 种D . 25 种7、 令 a n 为(1 x)n 1的睁开式中含 xn1的系数, 数列{ 1} 的前 n 和 ()a nn(n 3)n( n 1)n 2nA .B .C .D .22n 1n 18、 若 ( x 1)5 a 0 a 1( x 1) a 2 (x 1)2 ... a 5( x 1)5 , a 0 =()A . 32B . 1C . -1D .-32n9、 二项式 3x 22(n N * ) 睁开式中含有常数项,则n 的最小取值是 ()3xA 5B 6C 7D 810、四周体的 点和各棱中点共 10 个点,在此中取 4 个不共面的点, 不一样的取法共有( )A . 150 种B . 147 种C . 144 种D . 141 种11、两位到北京旅行的外国旅客要与2008 奥运会的祥瑞物福娃(5 个)合影纪念,要求排成一排,两位旅客相邻且不排在两头,则不一样的排法共有( )A . 1440B . 960C . 720D .48012、若 x ∈A 则1∈A ,就称 A 是伙伴关系会合,会合M={ - 1, 0, 1 , 1, 1, 2, 3,4}x32的全部非空子集中,拥有伙伴关系的会合的个数为()A . 15B . 16C . 28D . 25号 123456789101112答案二、填空 (每小 4 分,共 16 分,把答案填在 中横 上)13.四封信投入 3 个不一样的信箱,其不一样的投信方法有 _________种.14、在 ( x 21)( x 2) 7 的睁开式中 x 3 的系数是.15、已知数列 { a n } 的通项公式为 a n2 n 1 1,则 a 1C n 0 + a 2C n 1 + a 3C n3 + a n 1C n n =16、 于随意正整数,定 “n 的双 乘 n!! ”以下: 于 n 是偶数 ,n!!=n ·(n - 2) ·(n - 4) ⋯⋯ 6× 4×2; 于 n 是奇数 , n!!=n ·(n -2) ·(n - 4) ⋯⋯ 5× 3×1.有以下四个命 : ① (2005!!) (2006!!)=2006!· ;②2006!!=2 1003·1003! ;③ 2006!!的个位数是0;④ 2005!!的个位数是 5.正确的命 是 ________.三、解答 (本大 共 6 小 ,前 5 小 每小12 分,最后 1 小 14 分,共 74 分.解答写出必需的文字 明、 明 程或演算步 .)17、某学习小组有8 个同学,从男生中选 2 人,女生中选 1 人参加数学、物理、化学三种比赛,要求每科均有 1 人参加,共有 180 种不一样的选法.那么该小组中男、女同学各有多少人?18、设 m,n∈ Z+,m、n≥1, f(x)=(1 + x) m+ (1+x) n的睁开式中, x 的系数为 19.(1)求 f(x) 睁开式中 x2的系数的最值;(2)关于使 f(x) 中 x2的系数取最小值时的 m、n 的值,求 x7的系数.19、7 位同学站成一排.问:(1) 甲、乙两同学一定相邻的排法共有多少种?(2) 甲、乙和丙三个同学都相邻的排法共有多少种?(3) 甲、乙两同学一定相邻,并且丙不可以站在排头和排尾的排法有多少种?(4) 甲、乙、丙三个同学一定站在一同,此外四个人也一定站在一同的排法有多少种?20、已知(x1)n的睁开式中前三项的系数成等差数列.2 x(Ⅰ)求n 的值;(Ⅱ)求睁开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 .【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e 1⎰=nx x )(3-2x 66e111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( ) (A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dx π=-⎰8822108)1(x a x a x a a kx ++++=-K 1238a a a a +++⋅⋅⋅+=0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰,令得:,即 再令得:,即 所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r??54﹣r=1×6×25=150,19、设,则 . 【答案】【解析】, 所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则( )(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯K 01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =45672533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A1 B .或1 C .2或 D . 【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B . 24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-。

二项式定理十大典型例题纯WORD版

二项式定理十大典型例题纯WORD版

⼆项式定理⼗⼤典型例题纯WORD版1.⼆项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①⼆项式展开式:右边的多项式叫做()n a b +的⼆项展开式。

②⼆项式系数:展开式中各项的系数rn C (0,1,2,,)r n =.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做⼆项式展开式的通项。

⽤1r n r r r n T C a b -+=表⽰。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()n b a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分⼆项式系数与项的系数,⼆项式系数依次是012,,,,,,.r nn n n n n C C C C C 项的系数是a 与b 的系数(包括⼆项式系数)。

4.常⽤的结论:令1,,a b x == 0122(1)()n r rn nn n n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①⼆项式系数的对称性:与⾸末两端“对距离”的两个⼆项式系数相等,即0n n n C C =, (1)k k n nC C -= ②⼆项式系数和:令1a b ==,则⼆项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-。

完整版二项式定理的练习及答案

完整版二项式定理的练习及答案

项 式 定 理 的 练 习 及 答 案基础知识训练(一)选择题1(x 2x ) 6展开式中常数项是()A.第 4 项B. 24C :C. C :D.22. (x - 1)11展开式中x 的偶次项系数之和是( )A.-2048B.-1023C.-1024D.10243. (1 i2)7展开式中有理项的项数是()A.4B.5C.6D.74•若C 仃与C n 同时有最大值,则 m 等于( )A.4 或 5B.5 或 6C.3 或 4D.55•设(2x-3) 4=a o a 1X a ?x 2 a a x 3 a q X 4,贝y a o +a 1+a 2+a 3的值为(A.1B.16C.-15D.1531 116. (x 3 一)展开式中的中间两项为( )x(二)填空题17•在(2x y)7展开式中,x 5y 2的系数是310. (2x-1) 5展开式中各项系数绝对值之和是 ______________ .23 1011. ___________________________________________________ (1 3x 3x x )展开式中系数最大的项是 、512. ___________________________________ 0.991精确到0.01的近似值是 • (三)解答题13 .求 (1+x+x 2)(1-x) 10展开式中 x 4 的系数.14 .求 (1+x)+(1+x) 2+…+(1+x) 10展开式中 x 3 的系数 +15•已知(1-2x) 5展开式中第2项大于第1项而不小于第 3,求x 的取值范围•16•若f (x) (1 x)m (1 x)n (m n N)展开式中,x 的系数为21,问m n 为何值时, 17.自然数n 为偶数时,求证:A. CkXcb 12B. C 61X 9, C ;110x C.C^x 13D.C 1X 17138. C 03C n 2 2 3 C n 3n c n9. (3.520)的展开式中的有理项是展开式的第_________ 项*x 2的系数最小?18 •求8011被9除的余数+19•已知(..x-2r)n 的展开式中,第五项与第三项的二项式系数之比为x2520 •在(x +3X+2)的展开式中,求 x 的系数+ 21 •求(2x+1) 12展开式中系数最大的项 +参考解答: 11. (1+3x+3x 2+x 3) 10=(1+x) 30,此题中的系数就是二项式系数,系数最大的项是 T 16=C30X 15.12.0.991 5=(1-0.009) 5=C 0 C ;0.009 0.9613. (1 x x 2)(1x)10 (1 x 3)(1 x)9,要得到含x 4的项,必须第一个因式中的1与(1-x) 9展开式中的项C :( x)4作积,第一个因式中的一x 3与(1-x) 9展开式中的项C9( x)作积,故x 4的系数是C ;C ;135.10 1114. (1 x) (1 x)2 (1 x )10°—x)[1 ° ―1 -------- __°,原式中 x 3实为这分子中 1 (1 x) x的x 4,则所求系数为C 7V18. 8011(81 1)11 C 1018111 C ;811014; 3,求展开式的常数项.1 •通项T r 1C 6x 6r 《)r C 6x3 r22r , 由6 -r24,常数项是T s 4 4C 6 2,选(B )2.设 f(x)=(x-1)11,偶次项系数之和是f(1) f( 1)(22)11 /21024,选(C ).3.通项 T r 1rC 7( -2)r C ;22,当r=0 ,2, 4, 6 时, 均为有理项,故有理项的项数为 4个,选(A ) 4•要使 C :7最大,因为17为奇数,则m=8=4,2若n=9,要使C m 最大,则m17 1 或2 1——或m 2匕」 n 8或n=9,若n=8,要使C ;最大,则m 4或m=5综上知,m=4或m=5故选(A )5.C 10. 224 ;8.43(2x-1) 5展开式中各项系数系数绝对值之和实为(2x+1) 5展开式系数之和,故令x=1,则所求和为35+6.C7.9.3,9,15,2115•由C 5( 2x)1C 5( 2x)C ; c ;( 2x)21 x101 1 x41016•由条件得 m+n=21, x 2的项为 C ;x 2 C :x 2,则 C ; C : (n -21)22时上式有最小值,也就是 m=11和n=10,或m=10和n=11时,x 的系数最小.399 4.因n € N ,故当n=10或1117 •原式=(C 0 c l. C 2c n 1C:) (C : 35 CnCnC:1) 2n 2n1 3.2nC ;081 1 81k 1(k Z),••• k € Z,二9k-1 € Z,「. 8111被9 除余&19•依题意C:: C:14:3 3C:14C:••• 3n(n-1)( n-2)( n-3)/4!=4 n(n-1)/2! n=10*10 5r 设第叶1 项为常数项,又T r 1C;0(..x)10r( -22)r( 2)r C;0xhx10 5r令0 r 2, T2 1 C10( 2) 180.此所求常数项为180+22 5 5 520• (x 3x 2) (x 1) (x 2)在(x+1) 5展开式中,常数项为1,含x的项为C;5x,在(2+x) 5展开式中,常数项为25=32,含x的项为1 4C52 x 80x•••展开式中含x的项为1 (80x) 5x(32) 240x,此展开式中x的系数为240+21 •设T r+1的系数最大,则T r+1的系数不小于T r与T r+2的系数,即有•••展开式中系数最大项为第5项,T5=16C:2X4 7920X4三.拓展性例题分析- 1n例1在二项式,x ——的展开式中,前三项的系数成等差数列,求展开式中所有有理项.2如分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:前三项的r 0,1,2.得系数为: t11 1^1^2 C n n,t32 2C n;-n(n 1),8由已知:2t21t1t3n 1 n(n1 3 81),• n 8通项公式为/ 16 3rr 1 —T r 1C8〒x 4 r 0,1,2 8,T r 1为有理项,故16 3r是4的倍数, 2• r 0,4,8.1 35 依次得到有理项为「x4,T5 C;—— x,T92 8 c8*x 1 2---- x256说明:本题通过抓特定项满足的条件, 利用通项公式求岀了r的取值,得到了有理项. 100的展开式中有多少项是有理项?可以通过抓通项中r的取值,得到共有17页系数和为3n.例2 ( 1)求(1 x)3(1 X)10展开式中X5的系数;(2)求(X - 2)6展开式中的常数项.X分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1 )可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1) (1 x)3(1 x)10展开式中的X5可以看成下列几种方式得到,然后合并同类项:3 10 5 55 3用(1 X)展开式中的常数项乘以(1 X)展开式中的X项,可以得到C10X ;用(1 X)展开式中的一次项乘以(1 X)10展开式中的X4项可得到(3x)(G;x4) 3C:o X5;用(1 x)3中的X2乘以(1 X)10展开式3 5 3 Q 10 Q3C w x ;用(1 x)中的X3项乘以(1 X)展开式中的X2项可得到C 3 2 23x C10X C10X 5,合并同类项得X项为:(C10 C10 3C;。

(完整版)二项式定理练习题

(完整版)二项式定理练习题

二项式定理练习题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在()103x -的展开式中,6x 的系数为( )A .610C 27-B .410C 27 C .610C 9-D .410C 92. 已知a 4b ,0b a =>+, ()n b a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n 等于( )A .4B .9C .10D .113.已知(n a a )132+的展开式的第三项与第二项的系数的比为11∶2,则n 是 ( )A .10B .11C .12D .13 4.5310被8除的余数是 ( ) A .1 B .2 C .3D .7 5. (1。

05)6的计算结果精确到0.01的近似值是( ) A .1.23 B .1。

24C .1。

33D .1.346.二项式n4x 1x 2⎪⎭⎫ ⎝⎛+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是( ) A .1B .2C .3D .47.设(3x 31+x 21)n 展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2项的系数是( )A .21B .1C .2D .38.在62)1(x x -+的展开式中5x 的系数为( )A .4B .5C .6D .79.nx x)(5131+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是( ) A .330 B .462 C .680 D .790 10.54)1()1(-+x x 的展开式中,4x 的系数为( )A .-40B .10C .40D .4511.二项式(1+sinx)n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[0,2π]内的值为( )A .6π或3πB .6π或65πC .3π或32πD .3π或65π12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的 ( )A .第2项B .第11项C .第20项D .第24项二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果.13.92)21(xx -展开式中9x 的系数是 。

(完整版)二项式定理单元测试题

(完整版)二项式定理单元测试题

(完整版)二项式定理单元测试题二项式定理单元测试题(人教B 选修2-3)一、选择题1.设二项式?33x +1x n 的展开式的各项系数的和为P ,所有二项式系数的和为S ,若P+S =272,则n =( )A .4B .5C .6D .8解析: 4n +2n =272,∴2n =16,n =4. 答案: A2.?x 2+1x n 的展开式中,常数项为15,则n 等于( ) A .3 B .4 C .5D .6 解析:∵T r +1=C n r (x 2)n -r -1x r =(-1)r C n r x 2n -3r ,又常数项为15,∴2n -3r =0,即r =23n 时,(-1)r C n r =15,∴n =6.故选D. 答案: D3.(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2D .4 解析: (1+2x )3(1-3x )5=(1+6x 12+12x +8x 32)(1-5x 13+10x 23-10x +5x 43-x 53),x 的系数是-10+12=2.答案: C4.在?x 2-2x 6的二项展开式中,x 2的系数为( )A .-154B.154 C .-38D.38解析:该二项展开式的通项为T r +1=C 6r x 26-r ·-2x r=(-1)r C 6r ·126-2r ·x 3-r .令3-r =2,得r =1. ∴T 2=-6×124x 2=-38x 2.答案: C5.C 331+C 332+C 333+…+C 3333除以9的余数是( ) A .7 B .0 C .-1D .-2解析:原式=C 330+C 331+C 332+…+C 3333-C 330 =(1+1)33-1=233-1=811-1=(9-1)11-1=C 110×911-C 111×910+…+C 1110×9×(-1)10+C 1111×(-1)11-1 =C 110×911-C 111×910+…+C 1110×9-2 =9M +7(M 为正整数).答案: A6.已知C n 0+2C n 1+22C n 2+…+2n C n n =729,则C n 1+C n 3+C n 5的值等于( ) A .64 B .32 C .63D .31解析: C n 0+2C n 1+…+2n C n n =(1+2)n =3n =729. ∴n =6,∴C 61+C 63+C 65=32. 答案: B7.(1+2x )2(1-x )5=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1-a 2+a 3-a 4+a 5-a 6+a 7=( ) A .32 B .-32 C .-33D .-31解析:令x =0,得a 0=1;令x =-1,得a 0-a 1+a 2-…-a 7=32 ∴a 1-a 2+a 3-a 4+a 5-a 6+a 7=a 0-32 =1-32=-31. 答案: D8.(1+ax +by )n 展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则a,b,n的值可能为()A.a=2,b=-1,n=5 B.a=-2,b=-1,n=6C.a=-1,b=2,n=6 D.a=1,b=2,n=5解析:令x=0,y=1得(1+b)n=243,令y=0,x=1得(1+a)n=32,将选项A、B、C、D代入检验知D正确,其余均不正确.故选D.答案: D二、填空题(每小题5分,共10分)9.若(1-2x)2 004=a0+a1x+a2x2+…+a2 004x2 004(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2 004)=________.(用数字作答)解析:在(1-2x)2 004=a0+a1x+a2x2+…+a2 004x2 004中,令x=0,则a0=1,令x=1,则a0+a1+a2+a3+…+a2 004=(-1)2 004=1,故(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2 004)=2 003a0+a0+a1+a2+a3+…+a2 004=2 004.答案: 2 00410.若多项式x3+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,则a9=________.解析:x3+x10=(x+1-1)3+(x+1-1)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10∴(x+1)9项的系数为C101(x+1)9(-1)1=-10(x+1)9∴a9=-10.答案:-1011.(1-x)20的二项展开式中,x的系数与x9的系数之差为__________.解析:(1-x)20的二项展开式的通项公式T r+1=C20r(-x)r=C20r·(-1)r·x r2,令r2=1,∴x的系数为C202(-1)2=190.令r2=9,∴x9的系数为C2018(-1)18=C202=190,故x的系数与x9的系数之差为0.答案:012.若x -a x 26展开式的常数项为60,则常数a 的值为________.解析: T r +1=C 6r x 6-r (-a )r x -2r =C 6r (-a )r x 6-3r ,∴令r =2得x -a x 26的常数项为C 62a ,∴令C 62a =60,15a =60,∴a =4.答案: 4三、解答题(每小题10分,共20分)13.已知?x -124x n的展开式中,前三项系数的绝对值依次成等差数列,(1)证明展开式中没有常数项; (2)求展开式中所有的有理项.解析:由题意:2C n 1·12=1+C n 2·122,即n 2-9n +8=0,∴n =8(n =1舍去),∴T r +1=C 8r (x )8-r ·? ??-124x r =-12r ·C 8rx 8-r 2·x r 4=(-1)r C 8r 2r ·x 16-3r 4(0≤r ≤8,r ∈Z )(1)若T r +1是常数项,则16-3r 4=0,即16-3r =0,∵r ∈Z ,这不可能,∴展开式中没有常数项; (2)若T r +1是有理项,当且仅当16-3r4为整数,∵0≤r ≤8,r ∈Z ,∴r =0,4,8,即展开式中有三项有理项,分别是:T 1=x 4,T 5=358x ,T 9=1256x -2.14.求0.9986的近似值,使误差小于0.001.解析:0.9986=(1-0.002)6=1+6×(-0.002)+15× (-0.002)2+…+(-0.002)6,∵T 3=15×(-0.002)2=0.000 06<0.001. 即第3项以后的项的绝对值都小于0.001,∴从第3项起,以后的项可以忽略不计,即0.9986=(1-0.002)6≈1+6×(-0.002)=0.988.15.(10分)已知f (x )=(1+2x )m +(1+4x )n (m ,n ∈N *)的展开式中含x 项的系数为36,求展开式中含x 2项的系数最小值.解析: (1+2x )m +(1+4x )n 展开式中含x 的项为C m 1·2x +C n 1·4x =(2C m 1+4C n 1)x ,∴2C m 1+4C n 1=36,即m +2n =18,(1+2x )m +(1+4x )n 展开式中含x 2的项的系数为 t =C m 222+C n 242=2m 2-2m +8n 2-8n ,∵m +2n =18,∴m =18-2n ,∴t =2(18-2n )2-2(18-2n )+8n 2-8n =16n 2-148n +612 =16?n 2-374n +1534,∴当n =378时,t 取最小值,但n ∈N *,∴n =5时,t 即x 2项的系数最小,最小值为272,此时n =5,m =8.16.在(x -y )11的展开式中,求 (1)通项T r +1;(2)二项式系数最大的项;(3)项的系数绝对值最大的项;(4)项的系数最大的项; (5)项的系数最小的项; (6)二项式系数的和; (7)各项系数的和.解析: (1)T r +1=(-1)r C 11r x 11-r y r ;(2)二项式系数最大的项为中间两项:T 6=-C 115x 6y 5, T 7=C 116x 5y 6;(3)项的系数绝对值最大的项也是中间两项: T 6=-C 115x 6y 5,T 7=C 116x 5y 6;(4)因为中间两项系数的绝对值相等,一正一负,第7项为正,故T 7=C 116x 5y 6; (5)项的系数最小的项为T 6=-C 115x 6y 5;(6)二项式系数的和为C 110+C 111+C 112+…+C 1111=211;(7)各项系数的和为(1-1)11=0.17.已知(2x -3y )9=a 0x 9+a 1x 8y +a 2x 7y 2+…a 9y 9,求: (1)各项系数之和; (2)所有奇数项系数之和; (3)系数绝对值的和;(4)分别求出奇数项的二项式系数之和与偶数项的二项式系数之和.解析: (1)令x =1,y =1,得 a 0+a 1+a 2+…+a 9=(2-3)9=-1 (2)由(1)知,a 0+a 1+a 2+…+a 9=-1令x =1,y =-1,可得a 0-a 1+a 2-…-a 9=59 将两式相加,可得a 0+a 2+a 4+a 6+a 8=59-12,即为所有奇数项系数之和. (3)方法一:|a 0|+|a 1|+|a 2|+…+|a 9| =a 0-a 1+a 2-a 3+…-a 9,令x =1,y =-1,则|a 0|+|a 1|+|a 2|+…+|a 9|=a 0-a 1+a 2-a 3+…-a 9=59;方法二:|a 0|+|a 1|+|a 2|+…+|a 9|即为(2x +3y )9展开式中各项系数和,令x =1,y =1得, |a 0|+|a 1|+|a 2|+…+|a 9|=59. (4)奇数项二项式系数和为: C 90+C 92+…+C 98=28.偶数项二项式系数和为:C 91+C 93+…+C 99=28.18.已知(1+x )+(1+x )2+…+(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n -1=29-n ,求n .解析: a 0=1+1+…+1=n ,a n =1.令x =1,则2+22+23+…+2n =a 0+a 1+a 2…+a n ,∴a 1+a 2+…+a n -1=2(1-2n )1-2-a 0-a n=2(2n-1)-n-1=2n+1-n-3,∴2n+1-n-3=29-n,∴n=4.。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

二项式定理测试题及答案

二项式定理测试题及答案

二项式定理测试题及答案二项式定理测试题一、选择题1.(x-1)的10次方的展开式的第6项的系数是().A。

C10B。

-C10C。

C10D。

-C102.(2x+x)的展开式中x的3次方的系数是().A。

6B。

12C。

24D。

483.(1-x的3次方)(1+x)的10次方的展开式中x的5次方的系数是().A。

-297B。

-252C。

297D。

2074.(Ax+B)的展开式中,各项都含有x的奇次幂,则n().A。

必为偶数B。

必为奇数C。

奇偶数均可D。

不存在这样的正整数5.二项式的展开式中二项式系数最大的项为().A。

第6项B。

第5、6项C。

第7项D。

第6、7项6.设(2+x) = a + a1/x + a2/x的10次方 + a10/x的10次方,则(a+a2+a4+…+a10)2-(a1+a3+…+a9)2的值是()A。

1B。

-1C。

0D。

(2-1)7.把(x-1)的9次方按x降幂排列,系数最大的项是()A。

第四项和第五项B。

第五项C。

第五项和第六项D。

第六项8.若(3x-4)的展开式中各项系数之和为64,则展开式的常数项为()A。

-540B。

-162C。

162D。

540二、填空题9.9192被100除所得的余数为92.+3Cn+5Cn+n+(2n+1)Cn=2n+3Cn。

11.在(x2+x-1)的7次方(2x+1)的4次方的展开式中,奇数项的系数的和为0.12.(x+4)的展开式中系数最大的项为C4.三、解答题13.(3x+4)的展开式为:81x的4次方+108x的3次方+54x 的2次方+12x+1.14.已知二项式(3x-1/3):1) 展开式第四项的二项式系数为35.2) 展开式第四项的系数为-80/27.15.在(5x-2y)的20次方的展开式中,系数最大的项是C10*(5x)的10次方*(-2y)的10次方,系数最小的项是C20*(-2y)的20次方。

2.由题意可得,4-r+r=3,解得r=2.因此,223x的系数为C4-2=6,乘以2得到答案为12.3.展开(1-x)(1+x),得到1-x^2.展开式中含x项的系数为-1,因此,1-x^2中含x项的系数为0.而1-x^2=(1+x)-(x^2),因此,含x项的系数为1,含x^2项的系数为-1.因此,x项系数为-C10=-207.4.展开式中的一般项为Tr+1=C(Ax)^r+1,其中A=5,x=-1.要使展开式中含有x^10,必须使n为奇数。

(完整word版)高中数学二项式定理练习题.doc

(完整word版)高中数学二项式定理练习题.doc

选修 2-3 1.3.1 二项式定理一、选择题1.二项式 (a + b)2n 的展开式的项数是 ( )A .2nB .2n +1C .2n - 1D .2(n +1)2.(x -y)n 的二项展开式中,第 r 项的系数是 ()A .C rr +1nB .C nr -1D .(- 1) r -1 r -1C .C n C n.在 - 10 的展开式中, x 6的系数是 ( )3 (x 3)64A .- 27C 10B .27C 106 4C .- 9C 10D .9C 104.(2010 全·国Ⅰ理, 5)(1+2x)3(1- 3x)5 的展开式中 x 的系数是 ( )A .- 4B .- 2C .2D .45.在 2x 3+ 12 n ∈ * 的展开式中,若存在常数项,则n 的最小值是 ( )x (n N )A .3B .5C .8D .10.在 - 3 + x) 10的展开式中 x 5的系数是 ( )6 (1 x )(1 A .- 297 B .- 252C .297D .2077.(2009 北·京 )在 x 2-1 n的展开式中,常数项为 15,则 n 的一个值可以是x()A .3B .4C .5D .6a 53的系数为 10,则实数 a 等于8.(2010 陕·西理, 4)(x +x ) (x ∈R)展开式中 x ()19.若 (1+ 2x)6 的展开式中的第 2 项大于它的相邻两项,则 x 的取值范围是()11 1 1A.12< x < 5B.6<x <51 21 2C.12< x < 3D.6<x <5.在3120的展开式中,系数是有理数的项共有 ()102x - 2A .4 项B .5 项C .6 项D .7 项二、填空题. + + 2·- x) 10 的展开式中, x 5 的系数为 ____________. 11 (1 x x ) (1. + 2 - x) 5 的展开式中 x 3的系数为 ________. 12 (1 x) (12 + 1 63 5 .若 x 的二项展开式中 x 的系数为 ,则 a =________(用数字作答 ).13 ax 2. ·宁理,辽 + + 2-1 6 的展开式中的常数项为 ________. 14 (201013)(1x x )(xx)三、解答题15.求二项式 (a +2b)4的展开式.16. m 、 n ∈ N * ,f(x)= (1+x)m +(1+x)n 展开式中 x 的系数为 19,求 x 2 的系数的最小值及此时展开式中 x 7 的系数.17.已知在 (3x -1)n 的展开式中,第 6 项为常数项.3(1)求 n ;(2)求含 x 2 的项的系数; (3)求展开式中所有的有理项.118.若x +4n 展开式中前三项系数成等差数列.求:展开式中系数最 2 x大的项.1.[答案 ]B2[答案 ] D 3 [ 答案 ] D[ 解析 ]r 10- r(- 3) r.令 10-r = 6,∵ T r +1 =C 10x解得 r = 4.∴系数为 (-4443) C 10=9C 10. 4[答案 ] C[ 解析 ] (1+ 2 x)3(1- 3 x)5=(1 +6 x + 12x + 8x x)(1-3x)5,故(1+ 2 33 5 3 (- 3 3 0=- 10x + 12x = 2x ,所以 x 的系数为 x) (1- x) 的展开式中含 x 的项为 1×C 5 x) + 12xC 5 2.5[答案 ] Br3 n - r1 rn - rr 3n - 5r[ 解析 ] T r +1= C n (2x ) (x 2) = 2·C n x .令 3n -5r =0,∵ 0≤r ≤ n ,r 、 n ∈ Z .∴n 的最小值为 5.6[答案 ] D[ 解析 ] x 5 应是 (1+ x)10 中含 x 5 项与含 x 2 项. ∴其系数为 C 5 + C 2 (- 1)= 207.10107[答案 ] D[ 解析 ] r2 n - r1 rr r 2n -3rr通项 T r + 1=C 10( x ) (- x ) = (- 1) C n x,常数项是 15,则 2n = 3r ,且 C n = 15,验证 n =6时, r =4 合题意,故选 D.8[答案 ] D [ 解析 ]r r a 5- rr 5- r 2r - 5 ,令 2r -5=3, ∴r = 4,C 5·x ( x ) = C 5·a x4由 C 5·a = 10,得 a =2.9[答案 ]AT 2>T 11[ 解析 ] 由C 62x>1∴1< x <1.T 2>T 3 得 1 2 2C 62x>C 6(2x) 12510[ 答案 ]Ar320- r- 1 r 2 r320- r r20-r[ 解析 ] T r +1= C 20( 2x) 2 = - 2·( 2) C 20·x ,∵系数为有理数,20- r∴( 2)r与 2 3 均为有理数,∴ r 能被 2 整除,且 20- r 能被 3 整除,故 r 为偶数, 20-r 是 3 的倍数, 0≤r ≤ 20.∴ r = 2,8,14,20.11[答案 ] - 16212[ 答案 ] 5[ 解析 ] 解法一: 先 形 (1+x)2(1 -x)5=(1 -x)3·(1- x 2) 2= (1-x)3(1 +x 4- 2x 2) ,展开式中 x 3 的系数 -1+ (- 2) ·C 1( -1)= 5;3331222 1-1)= 5.解法二: C 5( -1) +C 2 ·C 5(- 1) +C 2C 5( 13[ 答案 ] 232 31 320 35 3[ 解析 ] C 6(x ) ·(ax) = a 3 x= 2x , ∴a =2.14[ 答案 ] -51[ 解析 ] (1+ x +x 2)(x - x )61 1 1 =(x -x)6+ x (x - x )6+x 2(x -x )6,1 6 1 1r 6 rr rr 6 2r∴要找出 (x - x )中的常数 ,x 的系数, x 2 的系数, T r + 1=C 6x- (- 1) x -r= C 6( -1) x-,令 6- 2r =0, ∴r = 3,令 6- 2r =- 1,无解.令 6- 2r =- 2,∴ r =4.∴常数 -34C6+ C 6=- 5. 15[ 解析 ] 根据二 式定理n0 n 1 n -1k n - k kn n(a +b) = C n a + C n a b + ⋯+ C n a b + ⋯+ C n b n 得40 41 32 22 3 3 4 4 4 3 2 2 3 4(a +2b) =C 4 a + C 4a (2b)+ C 4a (2b) + C 4a(2b) + C 4(2b) =a +8a b + 24a b +32ab +16b .16[ 解析 ] 由 m + n =19,∵m , n ∈ N *.m =1 m =2 m = 18∴ , , ⋯,n = 1 . n =18 n = 1722 2 = 1 2 1 2 2 - 19m +171. x 的系数 C m +C n 2(m -m)+ 2 (n -n)= m∴当 m =9 或 10 , x2的系数取最小7 的系数 7781,此 xC 9+C 10= 156. 17[ 解析 ] r 3 x) n - r ·(- 1 r(1)T r +1 =C n ·( )2 3xr1 n - r1 ·x - 1 ) r=C n ·(x )·(-332=( -1)r ·C r ·xn - 2r. n23∵第 6 常数 ,n -2r∴r = 5 时有 = 0, ∴n = 10.3n -2r1(2)令3 =2,得 r =2( n -6)= 2,∴所求的系数为 2 1 2 45 C 10(- ) =4 .210- 2r∈Z(3)根据通项公式,由题意得:30≤ r ≤ 10r ∈Z10-2r= k(k ∈ Z),则 10- 2r =3k , 令310-3k 3 即 r =2 =5-2k.∵r ∈ Z ,∴ k 应为偶数, ∴ k 可取 2,0,- 2,∴r = 2,5,8,∴ 第 3 项、第 6 项与第 9 项为有理项.21 22 51 5它们分别为 C 10·(-2)·x ,C 10(-2) ,C 8 ·(-1)8·x - 2. 102rn - r1 r[ 解析 ]x) · 4 . 通项为: T r +1= C n ·( x 22 11 1由已知条件知: C n +C n ·2n ·,解得: n = 8.2 = 2C 2 记第 r 项的系数为 t r ,设第 k 项系数最大,则有:t k ≥ t k + 1 且 t k ≥ t k - 1.又 t =C r - 1·2-r +1,于是有:r8k 1 ·2-k +1 k·2-k C 8-≥C 8k 1 ·2-k +1k 2 ·2- k + 2 C 8-≥C 8-8! × 2≥ 8!( k -1)! ·(9 -k) ! ,k ! (8-k)! 即8!8!≥( k -1)! ·(9 -k) ! × 2.(k - 2)!·(10- k) !2≥1,9- kk∴解得 3≤ k ≤4.12≥.37 ∴系数最大项为第 3 项 T3= 7·x5和第 4 项 T4=7·x4.。

高二数学排列组合二项式定理单元测试题(带答案).doc

高二数学排列组合二项式定理单元测试题(带答案).doc

排列、组合、二项式定理与概率测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( )A. 8种B. 12种C. 16种D. 20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )A .96种B .180种C .240种D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( )A .12种B .20种C .24种D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (modm )。

已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 的值可以是( ) A.2015 B.2011 C.2008 D.20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种7、令1)1(++n n x a 为的展开式中含1-n x项的系数,则数列}1{na 的前n 项和为 ( )A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-329、二项式23nx ⎛⎝*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )A 5B 6C 7D 810、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )A .150种B .147种C .144种D .141种 11、两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( ) A .1440 B .960 C .720 D .480 12、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25二、填空题(每小题4分,共16分,把答案填在题中横线上)13.四封信投入3个不同的信箱,其不同的投信方法有_________种. 14、在72)2)(1(-+x x 的展开式中x 3的系数是 .15、已知数列{n a }的通项公式为121+=-n n a ,则01n C a +12n C a +Λ+33n C a +nn n C a 1+=16、对于任意正整数,定义“n 的双阶乘n!!”如下:对于n 是偶数时,n!!=n·(n -2)·(n -4)……6×4×2;对于n 是奇数时,n!!=n·(n -2)·(n -4)……5×3×1. 现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?18、设m,n∈Z+,m、n≥1,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.(1)求f(x)展开式中x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、n的值,求x7的系数.19、7位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?20、已知()2nxx的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。

二项式定理知识点和各种题型归纳带答案(可编辑修改word版)

二项式定理知识点和各种题型归纳带答案(可编辑修改word版)

练:求 (x2 1 )9 展开式中 x9 的系数? 2x
解: Tr1
C9r
(
x
2
)9
r
(
1 2x
)r
C9r
x182r
(
1 2
)r
xr
C9r
(
1 2
)r
x183r
,令18
3r
9 ,则 r
3

x9
的系数为 C93 (
1 )3 2
21 2

题型三:利用通项公式求常数项;
例:求二项式 (x2 1 )10 的展开式中的常数项? 2x
令x则①1, a0 a1 a2 a3 an (a 1)n
令x则 1, a0 a1 a2 a3 an (a 1)n ②
①② 得奇,数a0项 的 a2 系 a数4 和
an
(a
1)n
2
(a
1) n
(
)
①② 得偶,数a1项 a的3 系a数5 和 an
(a
1)n
(a 2
1) n
(
)
n
⑤二项式系数的最大项:如果二项式的幂指数 n 是偶数时,则中间一项的二项式系数 Cn2 取得最大
值。
n1
n1
如果二项式的幂指数 n 是奇数时,则中间两项的二项式系数 Cn 2 , Cn 2 同时
取得最大值。
⑥系数的最大项:求 (a bx)n 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分
变形式 Cn1 Cn2 Cnr Cnn 2n 1 。
③奇数项的二项式系数和=偶数项的二项式系数和:
在二项式定理中,令 a 1, b 1 ,则 Cn0 Cn1 Cn2 Cn3 (1)n Cnn (11)n 0 ,

排列组合二项式定理综合测试(含详细解答)

排列组合二项式定理综合测试(含详细解答)

排列、组合和二项式定理单元综合测试一、选择题(每小题5分,共60分)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A .18B .24C .30D .362.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 ( )A .300B .216C .180D .1623.五个人排成一排,甲、乙不相邻,且甲、丙也不相邻的不同排法的种数为 ( )A .60B .48C .36D .244.某小组共有8名同学,其中男生6人,女生2人,现从中按性别分层随机抽取4人参加一项公益活动,则不同的抽取方法有 ( )A .40种B .70种C .80种D .240种5.若能被整除,则的值可能为(122n nn n n C x C x C x +++ 7,x n )A .B .4,3x n ==4,4x n ==C . D .5,4x n ==6,5x n ==6.圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多有( )A .AB .A ·A 412212212C .C ·CD .C 2122124127.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 ( )A .288个B .240个C .144个D .126个8.有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若取出的4个球的数字之和为10,则不同的排法种数是( )A .384B .396C .432D .4809.在一条南北方向的步行街同侧有8块广告牌,广告牌的底色可选用红、蓝两种颜色,若只要求相邻两块广告牌的底色不都为红色,则不同的配色方案共有 ( )A .55种B .56种C .46种D .45种10.有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是 ( )A .18B .26C .29D .5811.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.那么,小于1000的“可连数”的个数为 ( )A .27B .36C .39D .4812.为支持地震灾区的灾后重建工作,四川某公司决定分四天每天各运送一批物资到A 、B 、C 、D 、E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B 、C 两地相邻,安排在同一天上、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同运送顺序),且运往这两地的物资算作一批;D 、E 两地可随意安排在其余两天送达.则安排这四天送达五个受灾地点的不同运送顺序的种数为 ( )A .72B .18C .36D .24二、填空题(每小题4分,共16分)13.沿海某市区对口支援贫困山区教育,需从本区3所重点中学抽调5名教师分别到山区5所学校任教,每校1人;每所重点中学至少抽调1人,则共有__________种不同的支教方案.14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为__________.15.(4x 2-4x +1)5的展开式中,x 2的系数为__________.(用数字作答)16.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为__.三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)(1)求值:C +C ;5-n n 9-n n +1(2)解不等式:-<.18.(12分)有5张卡片的正反面分别写有0与1、2与3、4与5、6与7、8与9,将其中任三张并排组成三位数,可组成多少个数字不重复的三位数?19.(12分)若(1+2x )100=a 0+a 1(x -1)+a 2·(x -1)2+…+a 100(x -1)100,求a 1+a 3+a 5+…+a 99.20.(12分)已知(-)n 的展开式的各项系数之和等于(4-)5的展开式中的3a 3b 常数项,求:(1)(-)n 展开式的二项式系数和;3a (2)(-)n 的展开式中a -1项的二项式系数.3a 21.(12分)(1)求证:kC =nC ;k nk -1n (2)等比数列{a n }中,a n >0,化简:A =lg a 1-C lg a 2+C lg a 3-…+(-1)n C lg a n +1.1n 2n n详细解答:1.答案解析:用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序C 24C 有 种,而甲乙被分在同一个班的有种,所以种数是.33A 33A 23343330C A A -=2.答案 解析:分类讨论思想:第一类:从1,2,3,4,5中任取两个奇数和两个偶数,C 组成没有重复数字的四位数的个数为;第二类:取0,此时2和4只能取243472C A =一个,0还有可能排在首位,组成没有重复数字的四位数的个数为.共有180个数.21433243[]108C C A A -=3.解析:五个人排成一排,其中甲、乙不相邻且甲、丙也不相邻的排法可分为两类:一类是甲、乙、丙互不相邻,此类方法有A ·A =12种(先把除甲、乙、丙外的两个人排好,有A 种232方法,再把甲、乙、丙插入其中,有A 种方法,因此此类方法有A ·A =12种);另一类是乙、323丙相邻但不与甲相邻,此类方法有A ·A ·A =24种方法(先把除甲、乙、丙外的两人排好,2322有A 种方法,再从这两人所形成的三个空位中任选2个,作为甲和乙、丙的位置,此类方法2有A ·A ·A =24种).综上所述,满足题意的方法种数共有12+24=36,选C.2322答案:C4.解析:依题意得,所选出的4人必是3名男生、1名女生,因此满足题意的抽取方法共有C C =40种,选A.3612答案:A 5.答案解析:,当时,C 122(1)1nnnn n n C x C x C x x +++=+- 5,4x n ==能被7整除.4(1)1613537n x +-=-=⨯6答案:D解析:圆周上任意四个点连线的交点都在圆内,此四点的选法有C ,则由这四点确定412的圆内的交点个数为1,所以这12个点所确定的弦在圆内交点的个数最多为C .故选D.4127.解析:个位是0的有C ·A =96个;1434个位是2的有C ·A =72个;1334个位是4的有C ·A =72个;1334所以共有96+72+72=240个.答案:B 8答案:C解析:若取出的球的标号为1,2,3,4,则共有C C C C A =384种不同的排法;若取出121212124的球的标号为1,1,4,4,则共有A =24种不同的排法;若取出的球的标号为2,2,3,3,则共有A 4=24种不同的排法;由此可得取出的4个球数字之和为10的不同排法种数是4384+24+24=432,故应选C.9解析:C +C +C +C +C =55.0818273645答案:A10.解析:若把两人都安排在前排,则有A =6种方法,若把两人都安排在后排,则有23A =12种方法,若两人前排一个,后排一个,则有4×5×2=40种方法,因此共有58种方法,24故正确答案是D.答案:D11解析:根据题意,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时:有C =3个;13当“可连数”为两位数时:个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C C =9个;1313当“可连数”为三位数时:有C C C =36个;131413故共有:3+9+36=48个,故选D.答案:D12解析:可分三步完成:第一类是安排送达物资到受灾地点A ,有A 种方法;第二步是12在余下的3天中任选1天,安排送达物资到受灾地点B 、C ,有A A 种方法;第三步是在余132下的2天中安排送达物资到受灾地点D 、E ,有A 种方法.由分步计数原理得不同的运送顺2序共有A ·(A A )·A =24种,故选D.121322答案:D二、填空题(每小题4分,共16分)13.解析:5名重点中学教师到山区5所学校有A 种,而3所重点中学的抽调方法种5数可由列举法一一列出为6种.故共有6A =720种不同的支教方案.5答案:72014.解析:分两类:(1)万位取1,其余不同的四个数放在不同的四个位置上时有A 个:4(2)万位取2或3,在余下的四个不同的位置中选两个位置放数字0与3或2时有2A 个,故24总共有A +2A =48.424答案:4815.答案:18016.解析:令x =1,(1+m )6=a 0+a 1+…+a 6 ①,令x =0,1=a 0 ②,①-②,得:a 1+…+a 6=(1+m )6-1∴(1+m )6-1=63 ∴(1+m )6=64∴1+m =±2 ∴m =1或m =-3.答案:1或-3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.解:利用组合数定义与公式求解.(1)由组合数定义知:解得4≤n ≤5.∵n ∈N *,∴n =4或5.当n =4时,原式=C +C =5;145当n =5时,原式=C +C =16.0546(2)由组合数公式,原不等式可化为-<,3!(n -3)!n !4!(n -4)!n !2×5!(n -5)!n !不等式两边约去,得(n -3)(n -4)-4(n -4)<2×5×4,即n 2-11n -12<0,解3!(n -5)!n !得-1<n <12.又∵n ∈N *,且n ≥5,∴n =5,6,7,8,9,10,11.18.解:解法1:(直接法)由于三位数的百位数字不能为0,所以分两种情况:当百位数字为1时,不同的三位数有A ·A =48个;当百位数为2、3、4、5、6、7、8、9中的任意一个时,1816不同的三位数有A A A =8×8×6=384个.综上,共可组成不重复的三位数48+384=432181816个.解法2:(间接法)任取3张卡片共有C ·C ·C ·C ·A 种排法,其中0在百位不能构成三351212123位数,这样的排法有C ·C ·C ·A 种,故符合条件的三位数共有C ·C ·C ·C ·A -C ·C ·C 24121223512121232412·A =432个.12219.解:令x -1=t ,则x =t +1,于是已知恒等式可变为(2t +3)100=a 0+a 1t +a 2t 2+…+a 100t100,又令f (t )=(2t +3)100,则a 1+a 3+a 5+…+a 99=[f (1)-f (-1)]12=[(2+3)100-(-2+3)100]=(5100-1).121220.解:依题意,令a =1,得(-)n 展开式中各项系数和为(3-1)n =2n ,(4-3a 3b )5展开式中的通项为T r +1=C (4)5-r (-)r =(-1)r C 45-r 5-b .r 53b r 5r 210-5r6若T r +1为常数项,则=0,即r =2,10-5r6故常数项为T 3=(-1)2C ·43·5-1=27,25于是有2n =27,得n =7.(1)(-)n 展开式的二项式系数和为3a 2n =27=128.(2)(-)7的通项为3a T ′r +1=C ()7-r ·(-)r =C (-1)r ·37-r ·a ,r 73a r 75r -216令=-1,得r =3,5r -216∴所求a -1项的二项式系数为C =35.3721.解:(1)∵左式=k ·=n !k !(n -k )!n ·(n -1)!(k -1)!(n -k )!=n ·=nC =右式,(n -1)!(k -1)![(n -1)-(k -1)]!k -1n∴kC =nC .k nk -1n (2)由已知:a n =a 1q n -1,∴A =lg a 1-C (lg a 1+lg q )+C (lg a 1+2lg q )-C (lg a 1+3lg q )+…+(-1)n C (lg a 1+n lg q )1n 2n 3n n =lg a 1[1-C +C -…+(-1)n C ]-lg q [C -2C +3C -…+(-1)n -1C ·n ]1n 2n n 1n 2n 3n n =lg a 1·(1-1)n -lg q [nC -nC +nC -…+(-1)n -1·nC ]0n -11n -12n -1n -1=0-n lg q [C -C +C -…+(-1)n -1·C ]0n -11n -12n -1n -1=-n lg q (1-1)n -1=0.22.解:(1)如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植,因为a 2、a 3与a 1不同颜色,a 2、a 3也不同.所以S (3)=3×2=6(种)……………3分如图2,S (4)=3×2×2×2-S (3)=18(种) ……………………………6分 (2)如图3,圆环分为n 等份,对a 1有3种不同的种法,对a 2、a 3、…、a n 都有两种不同的种法,但这样的种法只能保证a 1与a i (i=2、3、……、n -1)不同颜色,但不能保证a 1与a n 不同颜色. ………………………………8分于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为种.另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分,这样)3)((≥n n S 的种法相当于对n -1部分符合要求的种法,记为.)1(-n S 共有3×2n -1种种法. ………………………………10分这样就有.即,123)1()(-⨯=-+n n S n S ]2)1([2)(1----=-n nn S n S 则数列是首项为公比为-1的等比数列.)3}(2)({≥-n n S n32)3(-S 则).3()1](2)3([2)(33≥--=--n S n S n n由⑴知:,∴.6)3(=S 3()2(68)(1)nn S n --=--∴.………………………………13分3()22(1)nn S n -=-⋅-答:符合要求的不同种法有…………………14分).3()1(223≥-⋅--n n n种。

二项式定理基础题精选全文

二项式定理基础题精选全文

精选全文完整版(可编辑修改)
二项式定理典型习题
【例4】已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:
(1)a 1+a 2+…+a 7;
(2)a 1+a 3+a 5+a 7;
(3)a 0+a 2+a 4+a 6;
(4)|a 0|+|a 1|+|a 2|+…+|a 7|.
()()()n n x 216123【例】已知在的展开式中,第项为常数项.求;求含的项的系数;
求展开式中所有的有理项.
n 若展开式中前三项系数成等
差数列.求:182【例】求
展开式中的常数项.)
21().()()()n n x
x n x x 22331992212【例】已知的展开式的二项式系数和比-的展开式的二项式系数和大求-的展开式中:二项式系数最大的项;
系数的绝对值最大的项.
1227272727()(*)()n n S ⋯∈⋯251511222N 312C C C 9-【例】求证:++++能被整除;求=+++除以的余数.
在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。

金无足赤,人无完人,在教学工作中难免有缺陷,例如,课堂语言平缓,语言不够生动,理论知识不够,教学经验不足,组织教学能力还有待提高。

在今后的工
作中,我将更严格要求自己,努力工作,发扬优点,改正缺点。

(完整word版)二项式定理典型例题

(完整word版)二项式定理典型例题

(完整word版)二项式定理典型例题二项式定理典型例题--典型例题一例1 在二项式nx x ??? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项.分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=??=前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t n n ,由已知:)1(8112312-+=+=n n n t t t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr r r T r x T Λ为有理项,故r 316-是4的倍数,∴.8,4,0=r依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-.说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有17页系数和为n 3.典型例题四例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项.分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =?;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=?-,合并同类项得5x 项为: 5521031041051063)C C 3C C (x x -=-+-.(2)2121???? ??+=++x x x x 1251)21(+=++x x x x .由121?+x x 展开式的通项公式rr rr r r x x T --+=??? ??=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开.解:方法一:[]6262)1()1(x x x x -+=-+Λ-+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -??. 1个因式中取x ,两个取2x -,三个取1得到2 22516)(C C x x -??.合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -?=+++n n n n n n n Λ;(2))12(11C 11C 31C 21C 1210-+=++++++n n n n n n n n Λ.分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++Λ.解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-?=k n kn n k n k n n k n k n k n k n k k Θ∴左边111101C C C ----+++=n n n n n n n Λ=?=+++=-----11111012)C C C (n n n n n n n Λ右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n--=-?+=+ 11C 11)!()!1()!1(11+++=-++?+=k n n k n k n n .∴左边112111C 11C 11C 11++++++++++=n n n n n n n Λ =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n Λ右边.说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++Λ的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(?+?++?+?+=+Λ 10101091092102C 2C 2C 21021++++?+=Λ )C 2C 2C 210(2110 1099108210+++++=Λ从而可以得到:)13(21C 2C 2C 21010101099108210-=++++Λ.典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n98)18(98911--+=--=++n n n n9818C 8C 8C 81211111--+?+?++?+=+-+++n nn n n n n n Λ 981)1(88C 8C 8211111--+++?++?+=-+++n n n n n n n Λ 2111118C 8C 8?++?+=-+++n n n n n Λ64)C 8C 8(112111?++?+=-+-++n n n n n Λ是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232??? ?-x x .分析1:用二项式定理展开式.解法1:52232??? ?-x x223252415025523)2(23)2(23)2(??-+??? ??-+??? ??-=x x C x x C x x C52554245322352323)2(23)2(??? ??-+??? ??-+??? ??-+x C x x C x x C10742532243840513518012032x x x x x x -+-+-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=??- 233254315530510)3()4()3()4()4([321-+-+=x C x C x C x])3()3()4()3()4(5554134532335-+-+-+C x C x C)243716204320576038401024(321369121510-+-+-=x x x x x x10742532243840513518012032x x x x x x -+-+-=.说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为(). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-?+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ?+-1010)((10,,1,0Λ=k )展开后,都不会出现同类项.下面,再分别考虑每一个乘积k kk z y x C ?+-1010)((10,,1,0Λ=k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++Λ,∴应选D .典型例题十例10 若nx x ??-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把三项式nx x ?-+21转化为nnx x x x 2121??? ??-=??? ??-+;当0<="">n nx x x x 21)1(21??? ?----= ??-+.然后写出通项,令含x 的幂指数为零,进而解出n .解:当0>x 时nnx x x x 2121??? ?-=??? ??-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =,∴展开式的常数项为nn n C 2)1(-;当0<="">n n x x x x 21)1(21??? ?----=??? ??-+,同理可得,展开式的常数项为nn n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-.令20)1(2-=-nn n C ,以Λ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031??? ?+x x 的展开式的第3项小于第4项,则x 的取值范围是______________.分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可.解:使1031??+x x 有意义,必须0>x ;依题意,有43T T <,即3373102382101)(1)(??31123891012910xx x ).解得5648980<<="" .=""><<5648980x x .∴应填:5648980<<="" .="">例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C ,即321!)1)(1(!!)()1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴=-+=+-=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=?n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xxC .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有 8226655=?=n C C n n .∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤≥??≥?++--r C C C C r r r r r r r r .∴5=r 或6=r (∵{}8,,2,1,0Λ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据已知条件得到2x 的系数关于n 的二次表达式,然后利用二次函数性质探讨最小值问题.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C nm499)211(55112211022+-=+-=-=n n n mn .∵+∈N n ,∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25.说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得.典型例题十五例15 若0166777)13(a x a x a x a x ++++=-Λ,求(1) 721a a a +++Λ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a Λ.①∴129721=+++a a a Λ.(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得: 6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=.说明:(1)本解法根据问题恒等式特点来用“特殊值”法.这是一种重要的方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+=Λ2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g .典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是________________.分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-= 3)17(10-+=37771010910911010010-++++=C C C C Λ 2]77[791081109010-+++?=C C C Λ又∵余数不能为负数,需转化为正数∴3230-除以7的余数为5 ∴应填:5分析(2):将5555写成55)156(-,然后利用二项式定理展开.解:155555+15)156(55+-=15565656555554555415555055+-++-=C C C C Λ容易看出该式只有14155555=+-C 不能被8整除,因此155555 +除以8的余数,即14除以8的余数,故余数为6.∴应填:6.典型例题十七例17 求证:对于+∈N n ,111111+?++证明:nn ??+11展开式的通项rr n r r nr nr p n C T !11=?=+r r r n n n n r )1()2)(1(!1+---=Λ)11()21)(11(!1nr n n r ----=Λ. 1111+??++n n 展开式的通项rr n r r n r n r A n CT)1(!)1(11'1+=+?=++ )111()121)(111(!1+--+-+-=n r n n r Λ.由二项式展开式的通项明显看出'11++<="">所以111111+?++说明:本题的两个二项式中的两项为正项,且有一项相同,证明时,根据题设特点,采用比较通项大小的方法完成本题证明.典型例题十八例18 在52)23(++x x 的展开式中x 的系数为().A .160B .240C .360D .800分析:本题考查二项式定理的通项公式的运用.应想办法将三项式转化为二项式求解.解法1:由5252]2)3[()23(++=++x x x x ,得k kk k x x C T 2)3(5251?+=-+ k k k x x C -+??=525)3(2.再一次使用通项公式得,rk r r k k k r x C C T ---+=21055132,这里50≤≤k ,k r -≤≤50.令1210=--r k ,即92=+r k .所以1=r ,4=k ,由此得到x 的系数为24032445=??C .解法2:由5552)2()1()23(++=++x x x x ,知5)1(+x 的展开式中x 的系数为45C ,常数项为1,5)2(+x 的展开式中x 的系数为4452?C ,常数项为52.因此原式中x 的系数为24022445545=?+?C C .解法3:将52)23(++x x 看作5个三项式相乘,展开式中x 的系数就是从其中一个三项式中取x 3的系数3,从另外4个三项式中取常数项相乘所得的积,即2402344415=C C .∴应选B .典型例题十九例19 已知92-x x a 的展开式中3x 的系数为49,常数a 的值为___________.分析:利用二项式的通项公式.解:在92-x x a 的展开式中,通项公式为=-??=-+rrr r x x a C T 299192329921)1(---r r r r r x a C .根据题设,3923=-r ,所以8=r .代入通项公式,得39169ax T =.根据题意,49169=a ,所以4=a .∴应填:4.典型例题二十例20 (1)求证:nn n n n n C C C )2(3)1(333133221-=-++?-?+-Λ(2)若443322104)32(x a x a x a x a a x ++++=+,求2312420)()(a a a a a +-++的值.分析:(1)注意观察nn n n n n x C x C x C x ++++=+Λ2211)1(的系数、指数特征,即可通过赋值法得到证明.(2)注意到)()()(432102312420a a a a a a a a a a ++++=+-++)(43210a a a a a +-+-?,再用赋值法求之.解:(1)在公式nn n n n n x C x C x C x ++++=+Λ2211)1(中令3-=x ,即有 n n n n n n C C C )3()3()3(1)31(2211-++-+-+=-Λn n n n C C 3)1(331221?-+-?+?-=Λ∴等式得证.(2)在展开式443322104)32(x a x a x a x a a x ++++=+中,令1=x ,得443210)32(+=++++x a a a a a ;令1-=x ,得443210)32(+-=+-+-a a a a a .∴原式)()(4321043210a a a a a a aa a a +-+-?++++=1)32()32(44=+-?+=.说明:注意“赋值法”在证明或求值中的应用.赋值法的模式是,在某二项展开式,如n n n x a x a x a a bx a ++++=+Λ2210)(或b a C a C b a n n n n n 110)(-+=+222b a C n n -+ n n n b C ++Λ中,对任意的A x ∈(A b a ∈,)该式恒成立,那么对A 中的特殊值,该工也一定成立.特殊值x 如何选取,没有一成不变的规律,需视具体情况而定,其灵活性较强.一般取1,1,0-=x 较多.一般地,多项式)(x f 的各项系数和为)1(f ,奇数项系数和为)]1()1([21--f f ,偶次项系数和为)]1()1([21-+f f .二项式系数的性质n nn n n n C C C C 2210=++++Λ及15314202-=+++=+++n n n n n n nC C C C C C ΛΛ的证明就是赋值法应用的范例.典型例题二十一例21 若+∈N n ,求证明:3724332+-+n n 能被64整除.分析:考虑先将323+n 拆成与8的倍数有关的和式,再用二项式定理展开.解:3724332+-+n n37243322+-?=+n n 3724931+-?=+n n 3724)18(31+-+?=+n n3724]8888[311112111101+-+?++?+?+??=+++-++++n C C C C C n n n n n n n n n n Λ 3724]18)1(888[3121111+-+?+++?+?+?=-+++n n C C n n n n n Λ 3724)]98(8888[3211121111+-++?++?+?+?=-+-+++n n C C C n n n n n n n Λ3724)98(3]888[831132121112+-+?+++?+?+?=-+-+-+-n n C C C n n n n n n n Λ 64]888[6433212111++?+?+?=-+-+-Λn n n n n C C ,∵18-n ,2118-+?n n C ,3218-+?n n C ,…均为自然数,∴上式各项均为64的整数倍.∴原式能被64整除.说明:用二项式定理证明整除问题,大体上就是这一模式,先将某项凑成与除数有关的和式,再展开证之.该类题也可用数学归纳法证明,但不如用二项式定理证明简捷.典型例题二十二例22 已知nx x )3(232+的展开式各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.分析:先由条件列方程求出n .(1)需考虑二项式系数的性质;(2)需列不等式确定r .解:令1=x 得展开式的各项系数之和为n n 22)31(=+,而展开式的二项式系数的和为n n n n n n C C C C 2210=++++Λ,∴有992222=-n n.∴5=n .(1)∵5=n ,故展开式共有6,其中二项式系数最大的项为第三、第四两项.∴62233225390)3()(x x x C T =?=,32232232354270)3()(x x x C T =?=.(2)设展开式中第1+r 项的系数最大.341052532513)3()(r rr rrr r xC x x C T +-+??=??=,故有≥??≥?++--115511553333r r r r r r r r C C C C即+≥--≥.1351,613r r r r解得2927≤≤r .∵N r ∈,∴4=r ,即展开式中第5项的系数最大.32642132455405)3()(x x x C T =??=说明:展开式中二项式系数最大的项与系数最大的项是两个不同的概念,因此其求法亦不同.前者用二项式系数的性质直接得出,后者要列不等式组;解不等式组时可能会求出几个r ,这时还必须算出相应项的系数后再比较大小.典型例题二十三例23 求证:(1) pn m m p n p m n p m n C C C C C C C +-=+++0110Λ;(2) 1144220242333--+?=++++n n n n n n n n C C C C Λ(K n 2=,*N n ∈)分析:(1)注意到两列二项式两乘后系数的特征,可构造一个函数;也可用构造一个组合问题的两种不同解法找到思路.(2)同上构造函数,赋值.证明:(1)(法1)∵n m nm x x x )1()1()1(+?+=++,∴)1()1()1(221221nn n n n m m m m m nm x C x C x C x C x C x C x ++++?++++=++ΛΛ.∴此式左右两边展开式中Px 的系数必相等.左边P x 的系数是p n m C +,右边Px 的系数是22110m p n p m n p m n p m n C C C C C C C C ?++?+?+?--Λ,∴pn m m p n p m n p m n p m n C C C C C C C C C +--=?++?+?+?022110Λ.等式成立.(法2)设想有下面一个问题:要从n m +个不同元素中取出P 个元素,共有多少种取法?该问题可有两种解法.一种解法是明显的,即直接由组合数公式可得出结论:有pn m C +种不同取法.第二种解法,可将n m +个元素分成两组,第一组有m 个元素,第二组有n 个元素,则从n m +个元素中取出P 个元素,可看成由这两组元素中分别取出的元素组成,取法可分成1+P 类:从第一组取P 个,第二组不取,有0n p m C C ?种取法;从第一组取1-P 个,从第二组取1个,有1 1n p m C C ?-种取法,…,第一组不取,从第二组取P 个.因此取法总数是p n m n p m n p m n p m C C C C C C C C ?++?+?+?--022110Λ.而该问题的这两种解法答案应是一致的,故有pn m m p n p m n p m n p m n C C C C C C C C C +--=?++?+?+?022110Λ.(2)∵n 为偶数,∴nn n n n n n C C C C 333)31(2210++++=+Λ;nn n n n n n C C C C 333)31(2210+-+-=-Λ.两式相加得)333(22444220nn n n n n n n C C C C ++++=+Λ,∴1144220242333--+?=++++n n n n n n n n C C C C Λ.说明:构造函数赋值法,构造问题双解法,拆项法、倒序相加法都是证明一些组合数恒等式(或求和)的常用方法.。

(完整word版)二项式定理练习题(含答案),推荐文档

(完整word版)二项式定理练习题(含答案),推荐文档

二项式定理单选题(x+1)4的展开式中x的系数为A.2B. 4C. 6D.8答案B解析分析:根据题意,(x+1)4的展开式为T r+1=C4r x r;分析可得,r=1时,有x的项,将r=1代入可得答案.解答:根据题意,(x+1)4的展开式为T r+1=C4r x r;当r=1时,有T2=C41( x)1=4x;故答案为:4.故选B.点评:本题考查二项式系数的性质,特别要注意对x系数的化简.2 (x+2)6的展开式中x3的系数是A.20B.40C.80D. 160答案D解析分析:利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中x3的系数.解答:设含x3的为第r+1,则Tr+1=C6rx6-r•2r,令6-r=3,得r=3,故展开式中x3的系数为C63•23=160.故选D.点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具3在(1+数学公式)4的展开式中,x的系数为A.4B.6C.8D.10答案B解析分析:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;分析可得,r=2时,有x的项,将x=2代入可得答案.解答:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;当r=2时,有T3=C42(数学公式)2=6x;故选B.点评:本题考查二项式系数的性质,特别要注意对x系数的化简.4(1+x)7的展开式中x2的系数是A.21B.28C.35D.42答案A解析分析:由题设,二项式(1+x)7,根据二项式定理知,x2项是展开式的第三项,由此得展开式中x2的系数是数学公式,计算出答案即可得出正确选项解答:由题意,二项式(1+x)7的展开式中x2的系数是数学公式=21故选A点评:本题考查二项式定理的通项,熟练掌握二项式的性质是解题的关键4 填空题二项式(2x-1)9的展开式中的第八项为________.答案-144x2解析分析:利用二项展开式的通项公式求出二项展开式的通项,令通项中的x取7,求出展开式中的第八项.解答:二项展开式的通项为Tr+1=(-1)r29-rC9rx9-r令r=7得T8=22C97x2=-144x2故答案为:-144x2点评:求二项展开式的特定项问题常用的工具是二项展开式的通项公式.5 (数学公式-数学公式)6的展开式中常数项是________.答案-160解析分析:据二项展开式的通项公式求得第r+1项,令x的指数为0得常数项.解答:展开式的通项为Tr+1=(-2)rC6rx3-r令3-r=0得r=3所以展开式的常数项为(-2)3C63=-160故答案为:-160.点评:二项展开式的通项公式是解决二项展开式特定项问题的工具.6 数学公式的展开式中x的系数为________.答案数学公式解析分析:由数学公式的展开式中的通项公式即可求得展开式中x的系数.解答:∵数学公式的展开式的通项公式Tr+1=数学公式数学公式,令r=1,得T2=数学公式•数学公式=数学公式x,∴数学公式的展开式中x的系数为数学公式.故答案为:数学公式.点评:本题考查二项式定理的应用,考查二项展开式中的通项公式的应用,属于中档题。

二项式定理习题精选全文

二项式定理习题精选全文

可编辑修改精选全文完整版§1.3 二项式定理1.3.1 二项式定理学习目标 1.能用计数原理证明二项式定理.2.掌握二项式定理及其展开式的通项公式.3.会用二项式定理解决与二项展开式有关的简单问题.知识点一 二项式定理(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C k n a n -k b k +…+C n n b n (n ∈N *). (1)这个公式所表示的规律叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n 的二项展开式,展开式中一共有n +1项.(3)二项式系数:各项的系数C k n (k ∈{0,1,2,…,n })叫做二项式系数.知识点二 二项展开式的通项(a +b )n 展开式的第k +1项叫做二项展开式的通项,记作T k +1=C k n a n -k b k .1.(a +b )n 展开式中共有n 项.( × )2.在公式中,交换a ,b 的顺序对各项没有影响.( × )3.C k n a n -k b k 是(a +b )n 展开式中的第k 项.( × ) 4.(a -b )n 与(a +b )n 的二项式展开式的二项式系数相同.( √ )5.二项式(a +b )n 与(b +a )n 展开式中第k +1项相同.( × )一、二项式定理的正用、逆用例1 (1)求⎝⎛⎭⎫3x +1x 4的展开式. 解 方法一 ⎝⎛⎭⎫3x +1x 4=C 04(3x )4+C 14(3x )3·1x+C 24(3x )2⎝⎛⎭⎫1x 2+C 34(3x )⎝⎛⎭⎫1x 3+C 44⎝⎛⎭⎫1x 4=81x 2+108x +54+12x +1x 2. 方法二 ⎝⎛⎭⎫3x +1x 4=⎝ ⎛⎭⎪⎫3x +1x 4=1x 2(1+3x )4=1x 2·[1+C 14·3x +C 24(3x )2+C 34(3x )3+C 44(3x )4]=1x 2(1+12x +54x 2+108x 3+81x 4)=1x 2+12x+54+108x +81x 2.(2)化简:C 0n (x +1)n -C 1n (x +1)n -1+C 2n (x +1)n -2-…+(-1)k C k n (x +1)n -k +…+(-1)n C n n .解 原式=C 0n (x +1)n +C 1n (x +1)n -1(-1)+C 2n (x +1)n -2(-1)2+…+C k n (x +1)n -k (-1)k +…+C n n (-1)n =[(x +1)+(-1)]n =x n .引申探究若(1+3)4=a +b 3(a ,b 为有理数),则a +b =________.答案 44解析 ∵(1+3)4=1+C 14×(3)1+C 24×(3)2+C 34×(3)3+C 44×(3)4=1+43+18+123+9=28+163,∴a =28,b =16,∴a +b =28+16=44.反思感悟 (1)(a +b )n 的二项展开式有n +1项,是和的形式,各项的幂指数规律是:①各项的次数和等于n ;②字母a 按降幂排列,从第一项起,次数由n 逐项减1直到0;字母b 按升幂排列,从第一项起,次数由0逐项加1直到n .(2)逆用二项式定理可以化简多项式,体现的是整体思想.注意分析已知多项式的特点,向二项展开式的形式靠拢.跟踪训练1 化简:(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1).解 原式=C 05(x -1)5+C 15(x -1)4+C 25(x -1)3+C 35(x -1)2+C 45(x -1)+C 55-1=[(x -1)+1]5-1=x 5-1.二、二项展开式通项的应用例2 若⎝ ⎛⎭⎪⎫x +124x n 展开式中前三项系数成等差数列,求: (1)展开式中含x 的一次项;(2)展开式中所有的有理项.解 (1)由已知可得C 0n +C 2n ·122=2C 1n ·12, 即n 2-9n +8=0,解得n =8或n =1(舍去). T k +1=C k 8(x )8-k ·⎝ ⎛⎭⎪⎫124x k =C k 8·2-k ·344k x - , 令4-34k =1,得k =4. 所以含x 的一次项为T 5=C 482-4x =358x . (2)令4-34k ∈Z ,且0≤k ≤8,则k =0,4,8,所以含x 的有理项分别为T 1=x 4,T 5=358x ,T 9=1256x 2. 反思感悟 (1)利用二项式的通项求二项展开式的特定项的常见题型①求第k 项,T k =C k -1n a n -k +1b k -1;②求含x k 的项(或x p y q 的项);③求常数项;④求有理项. (2)求二项展开式的特定项的常用方法①对于常数项,隐含条件是字母的指数为0(即0次项);②对于有理项,一般是先写出通项公式,其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数,再根据数的整除性来求解;③对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.跟踪训练2 (1)⎝⎛⎭⎫2x -1x 5的展开式中x 3项的系数为( ) A .80 B .-80 C .-40 D .48答案 B解析 ⎝⎛⎭⎫2x -1x 5的展开式的通项为T k +1=C k 5(2x )5-k ·⎝⎛⎭⎫-1x k =(-1)k ·25-k ·C k 5·x 5-2k ,令5-2k =3,得k =1.于是展开式中x 3项的系数为(-1)·25-1·C 15=-80,故选B. (2)已知n 为等差数列-4,-2,0,…的第六项,则⎝⎛⎭⎫x +2x n 的二项展开式的常数项是________. 答案 160解析 由题意得n =6,∴T k +1=2k C k 6x 6-2k ,令6-2k =0得k =3,∴常数项为C 3623=160.三、二项式定理的应用例3 (1)试求2 01910除以8的余数;(2)求证:32n +2-8n -9(n ∈N *)能被64整除.(1)解 2 01910=(8×252+3)10.∵其展开式中除末项为310外,其余的各项均含有8这个因数,∴2 01910除以8的余数与310除以8的余数相同.又∵310=95=(8+1)5,其展开式中除末项为1外,其余的各项均含有8这个因数, ∴310除以8的余数为1,即2 01910除以8的余数也为1.(2)证明 32n +2-8n -9=(8+1)n +1-8n -9=C 0n +18n +1+C 1n +18n +…+C n +1n +1-8n -9=C 0n +18n +1+C 1n +18n +…+C n -1n +182+(n +1)×8+1-8n -9=C 0n +18n +1+C 1n +18n +…+C n -1n +182.① ①式中的每一项都含有82这个因数,故原式能被64整除.反思感悟 (1)利用二项式定理可以解决求余数和整除的问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系.(2)把余数及整除问题转化为二项式定理问题,体现了数学建模的核心素养.跟踪训练3 已知n ∈N *,求证:1+2+22+ (25)-1能被31整除. 证明 1+2+22+23+…+25n -1=1-25n1-2=25n -1=32n -1=(31+1)n -1=31n +C 1n ×31n -1+…+C n -1n ×31+1-1=31×(31n -1+C 1n ×31n -2+…+C n -1n ), 显然括号内的数为正整数,故原式能被31整除.1.注意区分项的二项式系数与系数的概念.2.要牢记C k n a n -k b k 是展开式的第k +1项,不要误认为是第k 项. 3.求解特定项时必须合并通项公式中同一字母的指数,根据具体要求,令其为特定值.1.⎝⎛⎭⎫x -1x 5的展开式中含x 3项的二项式系数为( ) A .-10B .10C .-5D .52.⎝⎛⎭⎫x 2-2x 35展开式中的常数项为( ) A .80B .-80C .40D .-403.设S =(x -1)3+3(x -1)2+3(x -1)+1,则S =______.4.(x +2)n 的展开式共有12项,则n =________.5.C 0n ·2n +C 1n ·2n -1+…+C k n ·2n -k +…+C n n =________.一、选择题1.(1-i)10(i 为虚数单位)的二项展开式中第七项为( )A .-210B .210C .-120iD .-210i2.⎝⎛⎭⎫x -2x 6展开式中常数项为( )A .60B .-60C .250D .-250 3.⎝⎛⎭⎫x +1x 9展开式中的第四项是( ) A .56x 3B .84x 3C .56x 4D .84x 44.(x -2y )10的展开式中x 6y 4的系数是( )A .840B .-840C .210D .-2105.在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是( )A .-5B .5C .-10D .106.使⎝⎛⎭⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为( ) A .4 B .5 C .6 D .7二、填空题7.(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)8.在(x +43y )20的展开式中,系数为有理数的项共有________项.9.若(x +a )10的展开式中,x 7的系数为15,则a =______.(用数字填写答案)10.(x 2-x -2)4的展开式中,x 3的系数为________.(用数字填写答案)11.对于二项式⎝⎛⎭⎫1x +x 3n (n ∈N *),有以下四种判断:①存在n ∈N *,展开式中有常数项;②对任意n ∈N *,展开式中没有常数项;③对任意n ∈N *,展开式中没有x 的一次项;④存在n ∈N *,展开式中有x 的一次项.其中正确的是________.(填序号)12.若⎝⎛⎭⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________. 答案 2三、解答题 13.求⎝⎛⎭⎫1+1x (1+x )4的展开式中含x 2的项的系数. 14.已知⎝⎛⎭⎫x -2x n 展开式中第三项的系数比第二项的系数大162. (1)求n 的值;(2)求展开式中含x 3的项,并指出该项的二项式系数.15.已知在⎝⎛⎭⎫12x 2-1x n 的展开式中,第9项为常数项,求:(1)n的值;(2)展开式中x5的系数;(3)含x的整数次幂的项的个数.。

(五十三) 二项式定理 Word版含解析

(五十三) 二项式定理 Word版含解析

课时达标检测(五十三) 二项式定理[小题对点练——点点落实]对点练(一) 二项式的通项公式及应用1.二项式⎝⎛⎭⎫x +2x 210的展开式中的常数项是( ) A .180B .90C .45D .3602.已知⎝⎛⎭⎫x -a x 5的展开式中含x 32的项的系数为30,则a =( ) A. 3B .- 3C .6D .-63.在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .104.(x 2-x +1)10展开式中x 3项的系数为( )A .-210B .210C .30D .-305.(2017·山东高考)已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________. 6.⎝⎛⎭⎫ax +366的展开式的第二项的系数为-3,则⎠⎛a -2 x 2d x 的值为________. 7.在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x 3的项的系数是________.8.(x -y)(x +y)8的展开式中x 2y 7的系数为________.(用数字填写答案)对点练(二) 二项式系数的性质及应用1.若(1+mx)6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( )A .1或3B .-3C .1D .1或-32.若(1+x)(1-2x)7=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+…+a 7=( )A .-2B .-3C .125D .-1313.(2018·河北省“五校联盟”质量检测)在二项式(1-2x)n 的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为( )A .-960B .960C .1 120D .1 6804.若⎝⎛⎭⎫x 2-1x n 的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( )A .-10B .10C .-45D .455.在二项式⎝ ⎛⎭⎪⎫9x -133x n 的展开式中,偶数项的二项式系数之和为256,则展开式中x 的系数为________.6.在二项式⎝⎛⎭⎫x -1x n 的展开式中恰好第5项的二项式系数最大,则展开式中含x 2项的系数是________.7.在(x +y)n 的展开式中,若第7项系数最大,则n 的值可能等于____________.[大题综合练——迁移贯通]1.已知(1-2x)7=a 0+a 1x +a 2x 2+…+a 7x 7,求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.2.已知(1+m x)n (m 是正实数)的展开式的二项式系数之和为256,展开式中含x 项的系数为112.(1)求m ,n 的值; (2)求展开式中奇数项的二项式系数之和;(3)求(1+m x)n (1-x)的展开式中含x 2项的系数.3.已知f(x)=(1+x)m +(1+2x)n (m ,n ∈N *)的展开式中x 的系数为11.(1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2+ 2. x n 的展开式中,常数项为 15,.5
( )1
- 解析: ∵Tr+1=Cnr(x2)n-r x r =(-1)rCnrx2n-3r, 又常数项为 15,∴2n-3r=0,
D.6
2 即 r=3n 时,(-1)rCnr=15, ∴n=6.故选 D.
解析: x3+x10=(x+1-1)3+(x+1-1)10
=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10 ∴(x+1)9 项的系数为 C101(x+1)9(-1)1=-10(x+1)9
∴a9=-10.
答案: -10
11.(1- x)20 的二项展开式中,x 的系数与 x9 的系数之差为__________.
A.32
B.-32
C.-33
D.-31
解析: 令 x=0,得 a0=1; 令 x=-1,得 a0-a1+a2-…-a7=32 ∴a1-a2+a3-a4+a5-a6+a7=a0-32 =1-32=-31.
答案: D
8.(1+ax+by)n 展开式中不含 x 的项的系数绝对值的和为 243,不含 y 的项的系数绝
二项式定理单元测试题(人教 B 选修 2-3)
一、选择题
( )1
33 x+
1.设二项式
x n 的展开式的各项系数的和为 P,所有二项式系数的和为 S,若
P+S=272,则 n=( )
A.4
B.5
C.6
D.8
解析: 4n+2n=272,∴2n=16,n=4.
答案: A
( )1
r
解析: (1- x)20 的二项展开式的通项公式 Tr+1=C20r(- x)r=C20r·(-1)r·x2,令
r
r
2=1,∴x 的系数为 C202(-1)2=190.令2=9,∴x9 的系数为 C2018(-1)18=C202=190,故 x 的系
数与 x9 的系数之差为 0.
答案: 0
( )a
对值的和为 32,则 a,b,n 的值可能为( )
A.a=2,b=-1,n=5
B.a=-2,b=-1,n=6
C.a=-1,b=2,n=6
D.a=1,b=2,n=5
解析: 令 x=0,y=1 得(1+b)n=243,
令 y=0,x=1 得(1+a)n=32,将选项 A、B、C、D 代入检验知 D 正确,其余均不正确.故
选 D.
答案: D
二、填空题(每小题 5 分,共 10 分) 9.若(1-2x)2 004=a0+a1x+a2x2+…+a2 004x2 004(x∈R),则(a0+a1)+(a0+a2)+(a0+a3) +…+(a0+a2 004)=________.(用数字作答) 解析: 在(1-2x)2 004=a0+a1x+a2x2+…+a2 004x2 004 中,令 x=0,则 a0=1, 令 x=1,则 a0+a1+a2+a3+…+a2 004=(-1)2 004=1,
C8r 16-3r
=(-1)r 2r ·x 4 (0≤r≤8,r∈Z)
16-3r
(1)若 Tr+1 是常数项,则 4 =0,即 16-3r=0,
∵r∈Z,这不可能,∴展开式中没有常数项;
x- 12.若 x2 6 展开式的常数项为 60,则常数 a 的值为________.
( )a
x- 解析: Tr+1=C6rx6-r(- a)rx-2r=C6r(- a)rx6-3r,∴令 r=2 得 x2 6 的常数项为 C62a,∴令 C62a=60,15a=60,∴a=4. 答案: 4
三、解答题(每小题 10 分,共 20 分)
( )1
x-
13.已知
24 x n 的展开式中,前三项系数的绝对值依次成等差数列,
(1)证明展开式中没有常数项;
(2)求展开式中所有的有理项.
( ) 1
1
解析: 由题意:2Cn1·2=1+Cn2· 2 2,即 n2-9n+8=0,∴n=8(n=1 舍去),
( ) ( ) 1
1 8-r r


∴Tr+1=C8r( x)8-r· 24 x r= 2 r·C8rx 2 ·x4
答案: D 3.(1+2 x)3(1-3 x)5 的展开式中 x 的系数是( )
A.-4
B.-2
C.2
D.4
1
3
12
45
解析: (1+2 x)3(1-3 x)5=(1+6x2+12x+8x2)(1-5x3+10x3-10x+5x3-x3),x 的
系数是-10+12=2.
答案: C
故(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2 004) =2 003a0+a0+a1+a2+a3+…+a2 004 =2 004.
答案: 2 004
10.若多项式 x3+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,则 a9=________.
( ) x 2 - 4.在 2 x 6 的二项展开式中,x2 的系数为( )
15
15
A.- 4
B. 4
3
3
C.- 8
D.8
( ) ( ) x
2
1

解析: 该二项展开式的通项为 Tr+1=C6r 2 6-r· x r=(-1)rC6r·26-2r·x3-r.
令 3-r=2,得 r=1.
1
3
∴T2=-6×24x2=-8x2.
答案: C
5.C331+C332+C333+…+C3333 除以 9 的余数是( )
A.7
B.0
C.-1
D.-2
解析: 原式=C330+C331+C332+…+C3333-C330 =(1+1)33-1=233-1=811-1=(9-1)11-1
=C110×911-C111×910+…+C1110×9×(-1)10+C1111×(-1)11-1 =C110×911-C111×910+…+C1110×9-2 =9M+7(M 为正整数).
答案: A
6.已知 Cn0+2Cn1+22Cn2+…+2nCnn=729,则 Cn1+Cn3+Cn5 的值等于( )
A.64
B.32
C.63
D.31
解析: Cn0+2Cn1+…+2nCnn=(1+2)n=3n=729. ∴n=6,∴C61+C63+C65=32. 答案: B
7.(1+2x)2(1-x)5=a0+a1x+a2x2+…+a7x7,则 a1-a2+a3-a4+a5-a6+a7=( )
相关文档
最新文档