初中数学因式分解难题汇编及解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】B
【解析】
【分析】
将各选项进行因式分解即可得以选择出正确答案.
【详解】
A. x2﹣1=(x+1)(x-1);
B. x2+2x+1=(x+1)2;
C. x2﹣2x+1 =(x-1)2;
D. x(x﹣2)﹣(x﹣2)=(x-2)(x-1);
结果中不含因式x-1的是B;
故选B.
13.下列由左到右边的变形中,是因式分解的是( )
【解析】
【分析】
先题提公因式xy,再用公式法因式分解,最后代入计算即可.
【详解】
解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,
故答案为B.
【点睛】
本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.
7.下列各式从左到右的变形中,属于因式分解的是()
A.m(a+b)=ma+mbB.a2+4a﹣21=a(a+4)﹣21
D、x2+y2=(x-y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;
故选C.
【点睛】
此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.
12.将下列多项式因式分解,结果中不含因式x-1的是( )
A.x2-1B.x2+2x+1C.x2-2x+1D.x(x-2)+(2-x)
初中数学因式分解难题汇编及解析
一、选择题
1.多项式 分解因式的结果是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据提取公因式和平方差公式进行因式分解即可解答.
【详解】
解: ;
故选:A.
【点睛】
本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.
2.已知 可以被在60~70之间的两个整数整除,则这两个数是()
∴a+b=5,
∵矩形的面积为6,
∴ab=6,
∴a2b+ab2=ab(a+b)=30.
故选:C.
【点睛】
本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.
6.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()
A.2B.﹣6C.5D.﹣3
【答案】B
C.x2+2xy+y2+1=(x+y)2+1D.x2﹣y2=(x+y)(x﹣y)
【答案】D
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
A、不是因式分解,故本选项不符合题意;
B、不是因式分解,故本选项不符合题意;
C、不是因式分解,故本选项不符合题意;
D、是因式分解,故本选项符合题意;
故选D.
C.xy-x=x(y-1),故该选项正确,符合题意,
D.x2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,
故选:C.
【点睛】
本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.
20.下列因式分解正确的是()
A. B.
当a+b=5时,a2b+ab2=ab(a+b)=5ab=-10,解得:ab=-2.
考点:因式分解的应用.
9.下列各因式分解正确的是( )
A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2
C.4x2﹣4x+1=(2x﹣1)2D.x3﹣4x=2(x﹣2)(x+2)
【答案】C
【解析】
A.(x+2)(x﹣2)=x2﹣4
B.x2﹣1=
C.x2﹣4+3x=(x+2)(x﹣2)+3x
D.x2﹣4=(x+2)(x﹣2)
【答案】D
【解析】
【分析】
直接利用因式分解的意义分别判断得出答案.
【详解】
A、(x+2)(x-2)=x2-4,是多项式乘法,故此选项错误;
B、x2-1=(x+1)(x-1),故此选项错误;
∵a+b-c≠0,
∴a-b=0,即a=b,
则△ABC为等腰三角形.
故选C.
【点睛】
此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.
11.下列各式中,从左到右的变形是因式分解的是( )
A.2பைடு நூலகம்2﹣2a+1=2a(a﹣1)+1B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x
【详解】
解:A、把一个多项式转化成几个整式积的形式,符合题意;
B、右边不是整式积的形式,不符合题意;
C、是整式的乘法,不是因式分解,不符合题意;
D、是整式的乘法,不是因式分解,不符合题意;
故选:A.
【点睛】
本题考查了因式分解的意义,掌握因式分解的意义是解题关键.
15.把多项式3(x-y)-2(y-x)2分解因式结果正确的是()
C、右边不是整式积的形式,分母中含有字母,故本选项错误;
D、x2-5x+6=(x-2)(x-3)符合因式分解的定义,故本选项正确.
故选:D.
【点睛】
本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.
18.下列等式从左到右的变形,属于因式分解的是()
A. B.
C. D.
【答案】B
A. B.
C. D.
【答案】B
【解析】
【分析】
提取公因式 ,即可进行因式分解.
【详解】
故答案为:B.
【点睛】
本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.
16.把x2-y2-2y-1分解因式结果正确的是().
A.(x+y+1)(x-y-1)B.(x+y-1)(x-y-1)
C.(x+y-1)(x+y+1)D.(x-y+1)(x+y+1)
本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.
5.如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为( )
A.60B.16C.30D.11
【答案】C
【解析】
【分析】
先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.
【详解】
∵矩形的周长为10,
【分析】
分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.
【详解】
A.﹣x2+(﹣2)2=(2+x)(2﹣x),故A错误;
B.x2+2x﹣1无法因式分解,故B错误;
C.4x2﹣4x+1=(2x﹣1)2,故C正确;
D、x3﹣4x= x(x﹣2)(x+2),故D错误.
故选:C.
【点睛】
此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.
A.61、63B.61、65C.61、67D.63、65
【答案】D
【解析】
【分析】
由 ,多次利用平方差公式化简,可解得.
【详解】
解:原式 ,
∴这两个数是 .
选D.
【点睛】
本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.
3.下列等式从左到右的变形是因式分解的是( )
A.2x(x+3)=2x2+6xB.24xy2=3x•8y2
【答案】A
【解析】
【分析】
由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.
【详解】
解:原式=x2-(y2+2y+1),
=x2-(y+1)2,
=(x+y+1)(x-y-1).
故选A.
17.下列从左到右的变形属于因式分解的是()
A.(x+1)(x-1)=x2-1B.m2-2m-3=m(m-2)-3
D、没把一个多项式转化成几个整式积的形式,故D不符合题意;
故选C.
【点睛】
本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.
8.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是()
A.-2 B.2 C.-50 D.50
【答案】A
【解析】
试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.
C、x2-4+3x=(x+4)(x-1),故此选项错误;
D、x2-4=(x+2)(x-2),正确.
故选D.
【点睛】
此题主要考查了因式分解的意义,正确把握定义是解题关键.
14.下列等式从左到右的变形,属于因式分解的是()
A. B.
C. D.
【答案】A
【解析】
【分析】
根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.
C. D.
【答案】C
【解析】
【分析】
根据提公因式法和公式法进行判断求解即可.
【详解】
A.公因式是x,应为 ,故此选项错误;
B. 不能分解因式,故此选项错误;
C. ,正确;
D. ,故此选项错误.
故选:C
【点睛】
此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.
【答案】C
【解析】
【分析】
根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.
【详解】
A、2a2-2a+1=2a(a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;
B、(x+y)(x-y)=x2-y2,这是整式的乘法,故此选项不符合题意;
C、x2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;
C.x2﹣1=(x+1)(x﹣1)D.x2+16﹣y2=(x+y)(x﹣y)+16
【答案】C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
A、是整式的乘法,故A不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
C、把一个多项式转化成几个整式积的形式,故C符合题意;
10.已知a、b、c是 的三条边,且满足 ,则 是( )
A.锐角三角形B.钝角三角形
C.等腰三角形D.等边三角形
【答案】C
【解析】
【分析】
已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.
【详解】
已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,
C.2x2+1=x(2x+ )D.x2-5x+6=(x-2)(x-3)
【答案】D
【解析】
【分析】
根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.
【详解】
解:A、(x+1)(x-1)=x2-1不是因式分解,是多项式的乘法,故本选项错误;
B、右边不全是整式积的形式,还有减法,故本选项错误;
【答案】C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
A、是整式的乘法,故A错误;
B、没有把一个多项式转化成几个整式积的形式,故B错误;
C、把一个多项式转化成了几个整式积的形式,故C正确;
D、没有把一个多项式转化成几个整式积的形式,故D错误;
故选:C.
【点睛】
19.下列因式分解正确的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.
【详解】
A.x2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,
B.x2-y2=(x+y)(x-y),故该选项因式分解错误,不符合题意,
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.是整式乘法,故A错误;
B.是因式分解,故B正确;
C.左边不是多项式,不是因式分解,故C错误;
D.右边不是整式积的形式,故D错误.
故选B.
【点睛】
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
4.下列各式中,由等式的左边到右边的变形是因式分解的是()
A.(x+3)(x-3)=x2-9B.x2+x-5=(x-2)(x+3)+1
C.a2b+ab2=ab(a+b)D.x2+1=x
【解析】
【分析】
将各选项进行因式分解即可得以选择出正确答案.
【详解】
A. x2﹣1=(x+1)(x-1);
B. x2+2x+1=(x+1)2;
C. x2﹣2x+1 =(x-1)2;
D. x(x﹣2)﹣(x﹣2)=(x-2)(x-1);
结果中不含因式x-1的是B;
故选B.
13.下列由左到右边的变形中,是因式分解的是( )
【解析】
【分析】
先题提公因式xy,再用公式法因式分解,最后代入计算即可.
【详解】
解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,
故答案为B.
【点睛】
本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.
7.下列各式从左到右的变形中,属于因式分解的是()
A.m(a+b)=ma+mbB.a2+4a﹣21=a(a+4)﹣21
D、x2+y2=(x-y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;
故选C.
【点睛】
此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.
12.将下列多项式因式分解,结果中不含因式x-1的是( )
A.x2-1B.x2+2x+1C.x2-2x+1D.x(x-2)+(2-x)
初中数学因式分解难题汇编及解析
一、选择题
1.多项式 分解因式的结果是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据提取公因式和平方差公式进行因式分解即可解答.
【详解】
解: ;
故选:A.
【点睛】
本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.
2.已知 可以被在60~70之间的两个整数整除,则这两个数是()
∴a+b=5,
∵矩形的面积为6,
∴ab=6,
∴a2b+ab2=ab(a+b)=30.
故选:C.
【点睛】
本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.
6.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()
A.2B.﹣6C.5D.﹣3
【答案】B
C.x2+2xy+y2+1=(x+y)2+1D.x2﹣y2=(x+y)(x﹣y)
【答案】D
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
A、不是因式分解,故本选项不符合题意;
B、不是因式分解,故本选项不符合题意;
C、不是因式分解,故本选项不符合题意;
D、是因式分解,故本选项符合题意;
故选D.
C.xy-x=x(y-1),故该选项正确,符合题意,
D.x2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,
故选:C.
【点睛】
本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.
20.下列因式分解正确的是()
A. B.
当a+b=5时,a2b+ab2=ab(a+b)=5ab=-10,解得:ab=-2.
考点:因式分解的应用.
9.下列各因式分解正确的是( )
A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2
C.4x2﹣4x+1=(2x﹣1)2D.x3﹣4x=2(x﹣2)(x+2)
【答案】C
【解析】
A.(x+2)(x﹣2)=x2﹣4
B.x2﹣1=
C.x2﹣4+3x=(x+2)(x﹣2)+3x
D.x2﹣4=(x+2)(x﹣2)
【答案】D
【解析】
【分析】
直接利用因式分解的意义分别判断得出答案.
【详解】
A、(x+2)(x-2)=x2-4,是多项式乘法,故此选项错误;
B、x2-1=(x+1)(x-1),故此选项错误;
∵a+b-c≠0,
∴a-b=0,即a=b,
则△ABC为等腰三角形.
故选C.
【点睛】
此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.
11.下列各式中,从左到右的变形是因式分解的是( )
A.2பைடு நூலகம்2﹣2a+1=2a(a﹣1)+1B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x
【详解】
解:A、把一个多项式转化成几个整式积的形式,符合题意;
B、右边不是整式积的形式,不符合题意;
C、是整式的乘法,不是因式分解,不符合题意;
D、是整式的乘法,不是因式分解,不符合题意;
故选:A.
【点睛】
本题考查了因式分解的意义,掌握因式分解的意义是解题关键.
15.把多项式3(x-y)-2(y-x)2分解因式结果正确的是()
C、右边不是整式积的形式,分母中含有字母,故本选项错误;
D、x2-5x+6=(x-2)(x-3)符合因式分解的定义,故本选项正确.
故选:D.
【点睛】
本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.
18.下列等式从左到右的变形,属于因式分解的是()
A. B.
C. D.
【答案】B
A. B.
C. D.
【答案】B
【解析】
【分析】
提取公因式 ,即可进行因式分解.
【详解】
故答案为:B.
【点睛】
本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.
16.把x2-y2-2y-1分解因式结果正确的是().
A.(x+y+1)(x-y-1)B.(x+y-1)(x-y-1)
C.(x+y-1)(x+y+1)D.(x-y+1)(x+y+1)
本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.
5.如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为( )
A.60B.16C.30D.11
【答案】C
【解析】
【分析】
先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.
【详解】
∵矩形的周长为10,
【分析】
分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.
【详解】
A.﹣x2+(﹣2)2=(2+x)(2﹣x),故A错误;
B.x2+2x﹣1无法因式分解,故B错误;
C.4x2﹣4x+1=(2x﹣1)2,故C正确;
D、x3﹣4x= x(x﹣2)(x+2),故D错误.
故选:C.
【点睛】
此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.
A.61、63B.61、65C.61、67D.63、65
【答案】D
【解析】
【分析】
由 ,多次利用平方差公式化简,可解得.
【详解】
解:原式 ,
∴这两个数是 .
选D.
【点睛】
本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.
3.下列等式从左到右的变形是因式分解的是( )
A.2x(x+3)=2x2+6xB.24xy2=3x•8y2
【答案】A
【解析】
【分析】
由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.
【详解】
解:原式=x2-(y2+2y+1),
=x2-(y+1)2,
=(x+y+1)(x-y-1).
故选A.
17.下列从左到右的变形属于因式分解的是()
A.(x+1)(x-1)=x2-1B.m2-2m-3=m(m-2)-3
D、没把一个多项式转化成几个整式积的形式,故D不符合题意;
故选C.
【点睛】
本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.
8.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是()
A.-2 B.2 C.-50 D.50
【答案】A
【解析】
试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.
C、x2-4+3x=(x+4)(x-1),故此选项错误;
D、x2-4=(x+2)(x-2),正确.
故选D.
【点睛】
此题主要考查了因式分解的意义,正确把握定义是解题关键.
14.下列等式从左到右的变形,属于因式分解的是()
A. B.
C. D.
【答案】A
【解析】
【分析】
根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.
C. D.
【答案】C
【解析】
【分析】
根据提公因式法和公式法进行判断求解即可.
【详解】
A.公因式是x,应为 ,故此选项错误;
B. 不能分解因式,故此选项错误;
C. ,正确;
D. ,故此选项错误.
故选:C
【点睛】
此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.
【答案】C
【解析】
【分析】
根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.
【详解】
A、2a2-2a+1=2a(a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;
B、(x+y)(x-y)=x2-y2,这是整式的乘法,故此选项不符合题意;
C、x2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;
C.x2﹣1=(x+1)(x﹣1)D.x2+16﹣y2=(x+y)(x﹣y)+16
【答案】C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
A、是整式的乘法,故A不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
C、把一个多项式转化成几个整式积的形式,故C符合题意;
10.已知a、b、c是 的三条边,且满足 ,则 是( )
A.锐角三角形B.钝角三角形
C.等腰三角形D.等边三角形
【答案】C
【解析】
【分析】
已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.
【详解】
已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,
C.2x2+1=x(2x+ )D.x2-5x+6=(x-2)(x-3)
【答案】D
【解析】
【分析】
根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.
【详解】
解:A、(x+1)(x-1)=x2-1不是因式分解,是多项式的乘法,故本选项错误;
B、右边不全是整式积的形式,还有减法,故本选项错误;
【答案】C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
A、是整式的乘法,故A错误;
B、没有把一个多项式转化成几个整式积的形式,故B错误;
C、把一个多项式转化成了几个整式积的形式,故C正确;
D、没有把一个多项式转化成几个整式积的形式,故D错误;
故选:C.
【点睛】
19.下列因式分解正确的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.
【详解】
A.x2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,
B.x2-y2=(x+y)(x-y),故该选项因式分解错误,不符合题意,
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.是整式乘法,故A错误;
B.是因式分解,故B正确;
C.左边不是多项式,不是因式分解,故C错误;
D.右边不是整式积的形式,故D错误.
故选B.
【点睛】
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
4.下列各式中,由等式的左边到右边的变形是因式分解的是()
A.(x+3)(x-3)=x2-9B.x2+x-5=(x-2)(x+3)+1
C.a2b+ab2=ab(a+b)D.x2+1=x