中考试题分类汇编(不等式与不等式组)

合集下载

中考数学试题不等式与不等式组试卷及参考答案与试题解析

中考数学试题不等式与不等式组试卷及参考答案与试题解析

中考数学试题不等式与不等式组试卷及参考答案与试题解析(共6小题)【命题方向】本部分知识是初中阶段的重点知识,也是各地中考的必考内容之一。

考查的题型以解答题为主,也有少量的选择题及填空题。

【备考攻略】解这部分题的关键是掌握不等式基本性质三,同时解应用问题卓越要分析题中的数量关系,正确列出不等式求解。

﹣,并把它的解集在数轴上表示出≤x46.解不等式x﹣1来.(47.解不等式:4(x﹣1)>5x﹣6..解不等式组:. 48,并写出它的所有非负整数解..解不等式组49..解不等式组:50.51.解不等式组:小题)6不等式与不等式组(共.【命题方向】本部分知识是初中阶段的重点知识,也是各地中考的必考内容之一。

考查的题型以解答题为主,也有少量的选择题及填空题。

【备考攻略】解这部分题的关键是掌握不等式基本性质三,同时解应用问题卓越要分析题中的数量关系,正确列出不等式求解。

﹣,并把它的解集≤(2014?北京)解不等式x﹣146.x 在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.菁优网版权所有【分析】去分母、去括号,移项、合并同类项,系数化成1即可求解.【解答】解:去分母,得:3x﹣6≤4x﹣3,移项,得:3x﹣4x≤6﹣3,合并同类项,得:﹣x≤3,系数化成1得:x≥﹣3.则解集在数轴上表示出来为:.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:)不等式的两边同时加上或减去同一个数或整式不等号1(.的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.47.(2011?北京)解不等式:4(x﹣1)>5x﹣6.【考点】解一元一次不等式.菁优网版权所有【分析】根据不等式的解法,去括号,移项,合并同类项,把x的系数化为1解不等式,注意不等式的两边同时除以同一个负数时,要改变不等号的方向.【解答】解:去括号得:4x﹣4>5x﹣6,移项得:4x﹣5x>4﹣6,合并同类项得:﹣x>﹣2,把x的系数化为1得:x<2,∴不等式的解集为:x<2.【点评】此题主要考查了不等式的解法,一定要注意符号的变化,和不等号的变化情况.(2016?北京)解不等式组:.48.【考点】解一元一次不等式组.菁优网版权所有根据不等式性质分别求出每一个不等式的解集,再【分析】.根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,>,得:x>1解不等式4x,∴不等式组的解集为:1<x<8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(2015?北京)解不等式组.,并写出它的所49 有非负整数解.解一元一次不等式组;一元一次不等式组的整数【考点】解.菁优网版权所有计算题.【专题】分别求出不等式组中两不等式的解集,找出解集的【分析】公共部分确定出不等式组的解集,即可确定出所有非负整数解.,解:【解答】﹣x≥2;①由得:<,由②得:x 2≤x <,∴不等式组的解集为﹣.3,2,1,0则不等式组的所有非负整数解为:【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.(2013?北京)解不等式组:.. 50【考点】解一元一次不等式组.菁优网版权所有【专题】计算题.【分析】先求出两个不等式的解集,再求其公共解.解:,【解答】解不等式①得,x>﹣1,<,x ②解不等式得,<. 1所以,不等式组的解集是﹣<x【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).(2012?北京)解不等式组:..51【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.菁优网版权所有【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解:,【解答】∵解不等式①得:x>1,解不等式②得:x>5,∴不等式组的解集为:x>5.【点评】本题考查了不等式的性质,解一元一次不等式(组)的应用,解此题的关键是根据找不等式组解集的规律找出不等式组的解集.。

2022年中考数学真题分类汇编:不等式与不等式组

2022年中考数学真题分类汇编:不等式与不等式组

2022年中考数学真题分类汇编:不等式与不等式组一、单选题(共14题;共42分)1.(3分)(2022·北部湾)不等式 2x −4<10 的解集是( )A .x <3B .x <7C .x >3D .x >7【答案】B【解析】【解答】解: ∵2x −4<10 ,∴2x <14 , ∴x <7 . 故答案为:B.【分析】根据移项、合并同类项、系数化为1的步骤进行求解. 2.(3分)(2022·山西)不等式组{2x +1≥34x −1<7的解集是( )A .x ≥1B .x <2C .1≤x <2D .x <12【答案】C【解析】【解答】解:2x +1≥3,解得:x ≥1;4x −1<7,解得:x <2; ∴不等式组的解集为:1≤x <2; 故答案为:C .【分析】利用不等式的性质及不等式组的解法求出解集即可。

3.(3分)(2022·娄底)不等式组{3−x ≥12x >−2的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【解答】解:∵ 不等式组{3−x ≥1①2x >−2②中,解①得,x≤2, 解②得,x >-1,∴不等式组的解集为-1<x≤2, 数轴表示如下:故答案为:C.【分析】分别求出两个不等式的解集,根据同大取大,同小取小,大小小大中间找,大大小小无解了,取其公共部分可得不等式组的解集,然后根据解集的在数轴上的表示方法:大向右,小向左,实心等于,空心不等,进行判断.4.(3分)(2022·株洲)不等式4x −1<0的解集是( ).A .x >4B .x <4C .x >14D .x <14【答案】D【解析】【解答】解:4x−1<0移项得:4x<1不等号两边同时除以4,得:x<14故答案为:D.【分析】根据移项、系数化为1的步骤可得不等式的解集.5.(3分)(2022·邵阳)关于x 的不等式组{−13x >23−x12x −1<12(a −2)有且只有三个整数解,则a 的最大值是( ) A .3B .4C .5D .6【答案】C【解析】【解答】解:解不等式−13x >23−x ,−13x +x >23, ∴23x >23, ∴x >1,解不等式12x −1<12(a −2),得12x <12(a −2)+1,∴x <a ,∴不等于组的解集为1<x <a , ∵不等式组有且只有三个整数解, ∴不等式组的整数解应为:2,3,4, ∴4<a≤5, ∴a 的最大值应为5 故答案为:C.【分析】分别求出两个不等式的解集,结合不等式组有且只有三个整数解可得a 的范围,据此可得a 的最大值.6.(3分)(2022·嘉兴)不等式3x +1<2x 的解在数轴上表示正确的是( )A .B .C .D .【答案】B【解析】【解答】解:∵3x +1<2x ,∴x <-1,∴不等式解集表示在数轴如下,.故答案为:B.【分析】先解一元一次不等式,求得解集,再根据“小于朝左拐,无等号画空心点”,将不等式的解集表示在数轴上即可.7.(3分)(2022·衡阳)不等式组{x+2≥12x<x+3的解集在数轴上表示正确的是()A.B.C.D.【答案】A【解析】【解答】解:{x+2≥1①2x<x+3②由①得x≥-1由②得x<3∴不等式组的解集为-1≤x<3,故答案为:A.【分析】分别求出不等式组中的每一个不等式的解集,再确定出不等式组的解集,再观察各选项,可得答案.8.(3分)(2022·武威)不等式3x−2>4的解集是()A.x>−2B.x<−2C.x>2D.x<2【答案】C【解析】【解答】解:3x-2>4,移项得:3x>4+2,合并同类项得:3x>6,系数化为1得:x>2.故答案为:C.【分析】根据移项、合并同类项、系数化为1的步骤进行求解.9.(3分)(2022·滨州)把不等式组{x−3<2xx+1 3≥x−12中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【答案】C【解析】【解答】解:{x−3<2x①x+13≥x−12②解①得x>−3,解②得x≤5,∴不等式组的解集为−3<x≤5,在数轴上表示为:,故答案为:C.【分析】利用不等式的性质及不等式组的解法求解并在数轴上画出解集即可。

2022年全国中考数学真题分类汇编专题20:不等式与不等式组(附答案解析)

2022年全国中考数学真题分类汇编专题20:不等式与不等式组(附答案解析)

B. m> n
C.n﹣m>0
D.1﹣2m<1﹣2n
【解答】解:A、m﹣2>n﹣2,∴不符合题意;
B、 m< n,∴不符合题意;
C、m﹣n>0,∴不符合题意; D、∵m>n, ∴﹣2m<﹣2n, ∴1﹣2m<1﹣2n,∴符合题意; 故选:D. 9.关于 x 的一元一次不等式 x﹣3≥0 的解集在数轴上表示为( )
故答案为:0.
21.满足不等式组
> 的整数解是 2 .
【解答】解:


解不等式①得:x≤2.5,
解不等式②得:x>1,
∴原不等式组的解集为:1<x≤2.5,
∴该不等式组的整数解为:2,
故答案为:2.
22.不等式组
< 的解集是 x> .
【解答】解:解不等式 3x+4≥0,得:x ,
解不等式 4﹣2x<﹣1,得:x> ,

A.
B.
C.
D.
> 【解答】解:

所以不等式组的解集为﹣1<x<2, 在数轴上表示为:
, 故选:C. 12.把不等式 x﹣1<2 的解集在数轴上表示出来,正确的是( )
A.
B.
第 11 页 共 24 页
C.
D. 【解答】解:移项得,x<1+2, 得,x<3. 在数轴上表示为:
故选:D.
13.不等式 2x﹣4<10 的解集是( )


27.不等式组
的解集为


28.某品牌护眼灯的进价为 240 元,商店以 320 元的价格出售.“五一节”期间,商店为让
利于顾客,计划以利润率不低于 20%的价格降价出售,则该护眼灯最多可降价
元.
第 4 页 共 24 页

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(试题部分)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1B .2C .3D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+B .22a b −>−C .a b −<−D .22a b <4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x <B .2x >C .<2x −D .2x >−5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m <B .1m <C .12m <<D .513m <<8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+B .55x y −<−C .55x y >D .55x y −>−9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥−B .2x ≤−C .2x >−D .2x <−10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .20.(2024·广西·中考真题)不等式7551x x +<+的解集为 .21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .22.(2024·吉林·中考真题)不等式组2030x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.24.(2024·福建·21x −<的解集是 .25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ; 27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可). 三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解. 29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解.30.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来. 31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①② 请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本; (2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.38.(2024·江苏扬州·中考真题)解不等式组260412xxx−≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离()AB a b a b=−≥.特别的,当0a≥时,表示数a的点与原点的距离等于0a−.当a<0时,表示数a的点与原点的距离等于0a−.应用如图,在数轴上,动点A从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(答案详解)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1 B .2 C .3 D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .【答案】A【分析】本题考查了一元一次不等式的解法及在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案. 【详解】解:12x +≥,1x ∴≥.∴在数轴上表示如图所示:故选:A .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+ B .22a b −>− C .a b −<− D .22a b <【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x < B .2x > C .<2x − D .2x >−【答案】A【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键. 移项可得一元一次不等式的解集. 【详解】解:20x −<, 解得,2x <, 故选:A .5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可. 【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <, 解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m −<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <, ∴13m +≥, ∴2m ≥; 故选B .7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m < B .1m < C .12m <<D .513m <<【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m −<<−, 解得:1m <; 故选B .8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+ B .55x y −<− C .55x y > D .55x y −>−【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C .9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥− B .2x ≤− C .2x >− D .2x <−【答案】A【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键. 【详解】解:移项得,34x x −≥−, 合并同类项得,24x ≥−, 系数化为1得,2x ≥−, 故选:A .10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变. 直接利用不等式的性质逐一判断即可. 【详解】解:1a b >−,A 、1a b +>,故错误,该选项不合题意;B 、12a b −>−,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意; 故选:D .12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤【答案】D【分析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:212321x x x x +>+⎧⎨+≥−⎩①②,解不等式①,得1x >, 解不等式②,得4x ≤, 故不等式组的解集为14x <≤. 故选:D .13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .【答案】C【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键. 【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−【答案】A【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可. 【详解】根据题意1x −>,可得1x <−, A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意; 故选:A15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .【答案】A【分析】本题考查解一元一次不等式组和在数轴上表示不等式的解集,先分别求出每一个不等式的解集,再根据不等式的解集在数轴上表示方法画出图示是解题的关键.【详解】解:()211326x x −≥⎧⎪⎨−>−⎪⎩①②,解不等式①,得:1x ≥, 解不等式②,得:4x <, ∴不等式组的解集为14x ≤<. 在数轴上表示如下: .故选:A .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】C【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b , 根据1班班长的对话,得180x ≤,350x a +=, ∴350x a =− ∴350180a −≤, 解得170a ≥, 故①错误,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =−, ∴290140y −>, ∴150y <, 故②正确, 故选:C .18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .【答案】1−(答案不唯一)【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨−<⎩①②,由①得:1x ≥−, 由②得:3x <,∴不等式组的解集为:13x −≤<, ∴不等式组的一个整数解为:1−; 故答案为:1−(答案不唯一).20.(2024·广西·中考真题)不等式7551x x +<+的解集为 . 【答案】<2x −【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x −<−, 合并同类项得,24x <−, 系数化为1得,<2x −, 故答案为:<2x −.21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .不等式组22.(2024·吉林·中考真题)不等式组230x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.∴0x >,且x 为正整数, ∴x 的最小值为1,∴绿球的个数的最小值为3, ∴袋子中至少有3个绿球, 故答案为:3.24.(2024·福建·中考真题)不等式321x −<的解集是 . 【答案】1x <【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解. 【详解】解:321x −<,33x <, 1x <,故答案为:1x <.25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .【答案】3x ≥/3x ≤【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >, ∴不等式组的解集为3x ≥, 故答案为:3x ≥.26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ;27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可).三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键. 【详解】解:去分母得,()131x x +≥−, 去括号得,133x x +≥−, 移项得,331x x −≥−−, 合并同类项得,24x −≥−, 系数化为1得,2x ≤, ∴不等式的正整数解为1,2.29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解. 【答案】2,3,4【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将3479x −<−≤变形为347479x x −<−⎧⎨−≤⎩,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.【详解】解:由题意得347479x x −<−⎧⎨−≤⎩①②,解①得:1x >, 解②得:4x ≤,∴该不等式组的解集为:14x <≤, ∴整数解为:2,3,430.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来.这个不等式的解集在数轴上表示如下:31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______. 【答案】(1)1x ≤ (2)3x ≥− (3)见解析 (4)31x −≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (3)根据前两问的结果,在数轴上表示不等式的解集; (4)根据数轴上的解集取公共部分即可. 【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥−, 故答案为:3x ≥−;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x −≤≤, 故答案为:31x −≤≤.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩ 【答案】17x −<<【分析】先求出每一个不等式的解集,再根据不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解”确定不等式组的解集.本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键.35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 【答案】整数解为:1,0,1−【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >−解不等式②得:1x ≤∴不等式组的解集为:21x −<≤,∴整数解为:1,0,1−36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x −本,根据题意可得等量关系:x 本数学书的厚度(90)x +−本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +−=,解得:60x =,9030x −=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a (a 为正整数)折售出,最终获利1577元,请直接写出商店的进货方案. 【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元(2)有3种方案,详见解析(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x 元和y 元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可; (2)设商店计划购进特级鲜品猴头菇m 箱,则购进特级干品猴头菇()80m −箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;(3)根据(2)中三种方案分别求解即可;元和38.(2024·江苏扬州·中考真题)解不等式组260412x x x −≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =−≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a −.当a<0时,表示数a 的点与原点的距离等于0a −.应用如图,在数轴上,动点A 从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x 秒,则A 表示的数为3x −+,B 表示的数为122x −,根据“点A ,B 之间的距离等于3个单位长度”列方程求解即可;≤40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩, 解得5030x y =⎧⎨=⎩, 答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;(2)解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a −棵,根据题意,得()5030100038000a a +−≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩? 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩, 解得56x y =⎧⎨=⎩, 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;(2)解:设种植甲作物a 亩,则种植乙作物()10a −亩,。

中考数学专题测试5:不等式(组)(含答案)

中考数学专题测试5:不等式(组)(含答案)

中考数学分类汇编专题测试——不等式(组)一、选择题1.(08山东省日照市)在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( )A .-1<m <3B .m >3C .m <-1D .m >-12.(2008浙江义乌)不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )3.(2008山东烟台) 关于不等式22x a -+≥的解集如图所示,a 的值是( )A 、0B 、2C 、-2D 、-44.(2008年山东省临沂市)若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A . a >0B . a =0C . a >4D . a =45.(2008年辽宁省十二市)不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是( )6.(2008年天津市)若440-=m ,则估计m 的值所在的范围是( ) A .21<<m B .32<<mC .43<<mD .54<<m7.(2008年四川巴中市)点(213)P m -,在第二象限,则m 的取值范围是( ) A .12m > B .12m ≥C .12m <D .12m ≤-31 0 A .-31 0 B .-31 0 C .-31 0 D .1 02 A . 1 0 2 B . 1 0 2 C . 1 0 2 D .8.(2008年成都市)在函数中,自变量x 的取值范围是( );(A )x ≥ - 3(B )x ≤ - 3(C )x ≥ 3(D )x ≤ 39.(2008年乐山市)函数12y x =-的自变量x 的取值范围为( ) A 、x ≥-2 B 、x >-2且x ≠2 C 、x ≥0且≠2 D 、x ≥-2且≠210.(2008年大庆市)使分式21xx -有意义...的x 的取值范围是( ) A .12x ≥ B .12x ≤C .12x >D .12x ≠11.(2008年大庆市)已知关于x 的一元二次方程220x x m --=有两个不相等的实数根,则实数m 的取值范围是( ) A .0m < B .2m <- C .0m ≥D .1m >-12.(2008广州市)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>13.(2008广东肇庆市)下列式子正确的是( )A .2a >0 B .2a ≥0 C .a+1>1 D .a ―1>114.(2008云南省)不等式组233x x +⎧⎨-⎩≤≤ 的解集是( )A .3x -≥B .3x ≥图3C .1x ≤D .31x -≤≤15.(08厦门市)在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( ) A .66厘米 B .76厘米 C .86厘米 D .96厘米16.(08绵阳市)以下所给的数值中,为不等式-2x + 3<0的解的是( ).A .-2B .-1C .23D .2 17.(2008年陕西省)把不等式组3156x x -<-⎧⎨-<⎩,的解集表示在数轴上正确的是( )18.(2008年江苏省无锡市)不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <-D.12x <-19.(2008年云南省双柏县)不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <320.(2008湖北黄石)若不等式组5300x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .B .C .D .A .53m ≤B .53m <C .53m >D .53m ≥21.(2008湖北黄石)若23132a b a b +->+,则a b ,的大小关系为( ) A .a b < B .a b > C .a b = D .不能确定22. (2008 河南)不等式—x —5≤0的解集在数轴上表示正确的是 ( )23.(2008 四川 泸州)不等式组310x x >⎧⎨+>⎩的解集是( )A .1x >-B .3x >C .1x <-D .13x -<<24.(2008 湖南 怀化)不等式53-x <x +3的正整数解有( ) (A )1个 (B )2个 (C )3个 (D )4个25.(2008 重庆)不等式042≥-x 的解集在数轴上表示正确的是( )A B C D26.(2008 湖北 恩施)如果a<b<0,下列不等式中错误..的是( ) A. ab >0 B. a+b<0 C.ba<1 D. a-b<027.(2008 河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示, 则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,28.(2008 江西南昌)不等式组2131x x -<⎧⎨>-⎩,的解集是( )A .2x <B .1x >-C .12x -<<D .无解0-202-220 429.不等式组23124x x -->-⎧⎨-+⎩≤的解集在数轴上可表示为( )A B C D30.(2008湖北武汉)不等式3x <的解集在数轴上表示为( ). A. B.C. D.31.(2008江苏盐城)实数a 在数轴上对应的点如图所示,则a ,a -,1的大小 关系正确的是( ) A .1a a -<< B .1a a <-< C .1a a <-< D .1a a <<-32.(2008永州市) 如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b33. (2008永州市)下列判断正确的是( )A .23<3<2 B . 2<2+3<3 C . 1<5-3<2D . 4<3·5<534.(2008 台湾)解不等式32x +1≤92x +31,得其解的范围为何?( ) (A) x ≥ 23 (B) x ≥32 (C) x ≤ -23 (D) x ≤ -32.35.(2008 台湾)某段隧道全长9公里,有一辆汽车以每小时60公里到80公里之间的速率通过该隧道.下列何者可能是该车通过隧道所用的时间?( ) (A) 6分钟 (B) 8分钟 (C) 10分钟 (D) 12分钟二、填空题1.(2008年山东省潍坊市)已知3x+4≤6+2(x-2),则1x + 的最小值等于________.32 1 03 2 1 0 3 2 1 0 a 第2题图2(2008年浙江省绍兴市)如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +>+的解集为 .3.(2008年天津市)不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .4.(2008年沈阳市)不等式26x x -<-的解集为 .5.(2008年大庆市)不等式组253(2)123x x x x ++⎧⎪-⎨<⎪⎩≤的整数解的个数为 .6.(2008山东聊城)已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,则a 的取值范围是 .7.(2008湖北孝感)不等式组84113422x x x x +-⎧⎪⎨≥-⎪⎩的解集是 .8.(2008山东泰安)不等式组210353x x x x >-⎧⎨+⎩,≥的解集为9.(2008年江苏省连云港市)不等式组2494x xx x-<⎧⎨+>⎩的解集是 .10.(2008湖北咸宁)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 .Oxy 1 P y=x+by=ax+311.(08厦门市)不等式组2430x x >-⎧⎨-<⎩的解集是 .12.(2008泰安)不等式组210353x x x x>-⎧⎨+⎩,≥的解集为 .13.(2008年上海市)不等式30x -<的解集是 .三、简答题1.(2008年四川省宜宾市)某学校准备添置一些“中国结”挂在教室.若到商店去批量购买,每个“中国结”需要10元;若组织一些同学自己制作,每个“中国结”的成本是4元,无论制作多少,另外还需共付场地租金200元.亲爱的同学,请你帮该学校出个主意,用哪种方式添置“中国结”的费用较节省?2.(2008年浙江省衢州市)1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/吨.经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元(库存处理费销售总收入总毛利润-=)?(2)设椪柑销售价格定为x )2x 0(≤<元/千克时,平均每天能售出y 千克,求y 关于x 的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?3.(08浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:(第12题图)(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?4、(2008淅江金华)解不等式:5x- 3 < 1- 3x5、(2008浙江宁波) 解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,6.(2008湖南益阳)乘坐益阳市某种出租汽车.当行驶 路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x ≥2时乘车费用y (元)与行驶路程x (千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x 的范围.7.(2008年山东省潍坊市)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1) 种植草皮的最小面积是多少?(2) 种植草皮的面积为多少时绿化总费用最低?最低费用为多少?8.(2008年成都市)解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整数解. 9.(2008年乐山市)若不等式组 231x +<1(3)2x x >- 的整数解是关于x 的方程24x ax -=的根,求a 的值10. 解方程|1||2|5x x -++=.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图(17)可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x=2或x=-3参考阅读材料,解答下列问题:(1)方程|3|4x +=的解为 (2)解不等式|3||4|x x -++≥9;(3)若|3||4|x x --+≤a 对任意的x 都成立,求a 的取值范围11.(2008浙江金华))解不等式:5x- 3 < 1- 3x12.(2008湖北黄冈)解不等式组255432x x x x -<⎧⎨-+⎩≥,.13.(2008湖南株洲)22.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(3) 若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?比赛项目 票价(元/场)男 篮 1000 足 球 800 乒乓球50014. (2008黑龙江哈尔滨)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公4 0 2 -2 1 1司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.15.(2008年山东省青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?16.(2008年江苏省苏州市)解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥并判断32x =是否满足该不等式组.17.(2008年云南省双柏县)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x 之间的函数关系式并写出自变量的取值范围.水果品种 A B C 每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元)685(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.18.(2008湖南郴州)解不等式组:718532x x x +<⎧⎨>-⎩①②19.(2008江苏南京)(6分)解不等式组. 并把解集在数轴上表示出来.0x -2>54-5-4-3-2-132120.(2008山东济南)解不等式组⎩⎨⎧<+>+6342xx,并把解集在数轴上表示出来.21.(2008湖北黄石)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?22.(2008 河南)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的32,但又不少于B种笔记本数量的31,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?23.(2008 湖南长沙)解不等式组:⎪⎩⎪⎨⎧-<-≤-xxx1434121,并将其解集在数轴上表示出来.0 1 2 3-1-2-3-4-5-624.(2008 湖南怀化)5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.25.(2008北京)解不等式5122(43)x x--≤,并把它的解集在数轴上表示出来.26.(2008安徽)解不等式组31422xx x->-⎧⎨<+⎩①②,并将解集在数轴上表示出来.27.(2008湖北鄂州)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A B,两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a b,的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.28.(2008湖北咸宁)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;总计 240吨260吨 500吨设A、B 两个蔬菜基地的总运费为元,写出与之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调运方案.29. (2008永州市)某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?30.(2008 广东)解不等式x x <-64,并将不等式的解集表示在数轴上.31.(2008 河南实验区)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来.32.(2008广东)解不等式x x <-64,并将不等式的解集表示在数轴上.33.(2008山西太原)解不等式组:()2532213x x x x +≤+⎧⎪⎨-⎪⎩34.(2008湖北襄樊)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的西欧啊朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?35.(2008浙江湖州)解不等式组:⎩⎨⎧>++>-1013112x x x36.(2008湖南常德市)解不等式组 ()⎪⎩⎪⎨⎧->+≤-.214,121x x x① ②37.(2008湖北宜昌市)解不等式:2(x +21)-1≤-x +938.(2008桂林市)某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)如果该单位要印刷2400份,那么甲印刷厂的费用是 ,乙印刷厂费的用是 .(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?39.(2008广东肇庆市) 解不等式:)20(310x x --≥70.40.(2008江苏淮安)解不等式3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.41. (2008浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题.(1(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?42. (2008新疆乌鲁木齐市)解不等式组2392593x x x x ++⎧⎨+>-⎩≥43.(2008黑龙江黑河)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m .(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.不等式(组)答案一.选择题1. A2. A3.A4. B5.A6.B7. C8. C9. D 10.D 11.D 12. D 13. B 14. D 15.D 16.C 17.C 18.C19.D 20.A 21.A 22.B 23.B 24.C 25.C 26.C 27.B 28.C 29.D 30.B 31.D 32.C 33.A 34.C 35.B二.填空题1. 12. 1x >3. 34<<-x4. 4x >5. 46.32a -<-≤7. 3x8.52x 2≤9. 3x < 10. x <-1 11. 23x -<< 12. 2<x ≤52 13. 3x < 三.解答题1. 解:设需要中国结x 个,则直接购买需4x+200元,自制需10x 元分两种情况: (1)若10x<4x+200,得2333x <,即少于33个时,到商店购买更便宜 (2)若10x>4x+200,得2333x >即少于33个时,自已制作更便宜. 2. 解:(1))(600060100千克=⨯,所以不能在60天内售完这些椪柑,5000600011000=-(千克)即60天后还有库存5000千克,总毛利润为W=元1175005.0500026000=⨯-⨯;(2))2x 0(1100x 500501.0x 2100y ≤<+-=⨯-+= 要在2月份售完这些椪柑,售价x 必须满足不等式11000)1100x 500(28≥+-解得414.17099x ≈≤ 所以要在2月份售完这些椪柑,销售价最高可定为1.4元/千克.3. 解:(1)25x -;5(25)x --(2)根据题意,得105(25)100x x -->解得15x >x ∴的最小正整数解是16x =答:小明同学至少答对16道题4. 5x+3x<1+38x<4 x<21 5. 解:解不等式(1),得1x -≥. ···················· 2分 解不等式(2),得3x <. ························· 4分 ∴原不等式组的解是13x -<≤. ······················ 6分 6..解:(1) 根据题意可知:y =4+1.5(x -2) ,∴ y =1.5x +1(x ≥2) ················ 4分(2)依题意得:7.5≤1.5x +1<8.5 ··················· 6分∴ 313≤x <5 ····················· 8分7. (1)解设种植草皮的面积为x 亩,则种植树木面积为(30-x )亩,则:1030103(30)2x x x x ⎧⎪≥⎪-≥⎨⎪⎪≥-⎩解得1820x ≤≤答:种植草皮的最小面积是18亩.(2)由题意得:y=8000x+12000(30-x)=360000-4000x ,当x=20时y 有最小值280000元8. 解:解不等式x+1>0,得x >-1 ……2分解不等式x ≤223x -+,得x ≤2 ……2分 ∴不等式得解集为-1<x ≤2 ……1分∴该不等式组的最大整数解是2 ……1分9. 解不等式得31x --,则整数解x=-2代入方程得a=410. 解:(1)1或7-. ·························· 3分(2)3和4-的距离为7,因此,满足不等式的解对应的点3与4-的两侧.当x 在3的右边时,如图(2), 易知4x ≥. ··············· 5分 当x 在4-的左边时,如图(2),易知5x -≤. ·············· 7分∴原不等式的解为4x ≥或5x -≤ ····················· 8分(3)原问题转化为: a 大于或等于|3||4|x x --+最大值. ·········· 9分 当1x -≥时,|3||4|0x x --+≤,当41x -<<-,|3||4|21x x x --+=--随x 的增大而减小,当4x -≤时,|3||4|7x x --+=,即|3||4|x x --+的最大值为7. ······················ 11分 故7a ≥. 12分11. 解:(2)5x+3x<1+38x<4 x<21 12. 解:25,543 2.x x x x -<⎧⎨-+⎩≥ 12()()由不等式(1)得:x <5由不等式(2)得:x ≥3所以:5>x ≥313. 解:(1)设预定男篮门票x 张,则乒乓球门票(15x -)张.得:1000x +500(15-x )=12000,解得:x = 9 ∴151596x -=-=(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为(15-2y )张,得:8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩, 解得:2545714y ≤≤.由y 为正整数可得y =5. 15-2y =5答:(1)略 (2)略14. 解:(1)设租用一辆甲型汽车的费用是x 元,租用一辆乙型汽车的费用是y 元.由题意得2250022450x y x y +=⎧⎨+=⎩·························· 2分 -4 图(2)7解得800850x y =⎧⎨=⎩ ······························· 1分答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z 辆,则租用乙型汽车(6)z -辆.由题意得1618(6)100800850(6)5000z z z z +-⎧⎨+-⎩≥≤ ····················· 2分 解得24z ≤≤ ······························ 1分 由题意知,z 为整数,2z ∴=或3z =或4z =∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆. ··············· 1分 方案一的费用是800285045000⨯+⨯=(元);方案二的费用是800385034950⨯+⨯=(元);方案三的费用是800485024900⨯+⨯=(元)500049504900>>,所以最低运费是4900元. ··············· 1分 答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.15. 解:(1)解:由题意: 600120(15)50001(15)2x x x x +-≤⎧⎪⎨≥-⎪⎩,………………2分 解得:5≤x ≤203………………3分 ∵x 为整数,∴x =5,6 ………………4分∴共两种购票方案:方案一:A 种船票5张,B 种船票10张方案二:A 种船票6张,B 种船票9张 ………………5分(2)因为B 种船票价格便宜,因此B 种船票越多,总购票费用少.∴第一种方案省钱,为5×600+120×10=4200(元)………………8分前两年第20题知识点分布:2006年考查内容不等式组设计方案,2007年考查内容不等式组设计方案16. 解:原不等式组的解集是:31x -<≤,x =满足该不等式组. 17. 解:(1)由题得到:2.2x +2.1y+2(30-x -y )=64 所以 y = -2x +40又x ≥4,y ≥4,30-x -y ≥4,得到14≤x ≤18-120(2)Q=6x +8y+5(30-x -y )= -5x +170Q 随着x 的减小而增大,又14≤x ≤18,所以当x =14时,Q 取得最大值,即Q= -5x +170=100(百元)=1万元.因此,当x =14时,y = -2x +40=12, 30-x -y=4所以,应这样安排:A 种水果用14辆车,B 种水果用12辆车,C 种水果用4辆车18. 解不等式① 得x < 1 ··············· 2分 解不等式② 得x > -1 ················ 4分 所以这个不等式组的解集为:-1<x <1 ··············· 6分19. 解:解不等式①,得x<2, …………………………………………………2分解不等式②,得x ≥-1. ………………………………………………4分所以,不等式组的解集是-1≤x<2. ……………………………………5分不等式组的解集在数轴上表示如下:………………………………………………………………………………6分20. 解:解①得x>-2……4分解②得x<3……5分所以,这个不等式组的解集是-2<x<3……6分解集在数轴上表示正确.……7分21. 解 依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则(1)200170(70)160(40)150(10)W x x x x =+-+-+-2016800x =+.由0700400100x x x x ⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x ≤≤. ···················· (2分) (2)由201680017560W x =+≥,38x ∴≥.3840x ∴≤≤,38x =,39,40.∴有三种不同的分配方案.①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件.②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件.③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件.(3)依题意:(200)170(70)160(40)150(10)W a x x x x =-+-+-+-(20)16800a x =-+.①当020a <<时,40x =,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大.②当20a =时,1040x ≤≤,符合题意的各种方案,使总利润都一样.③当2030a <<时,10x =,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大. ························· (8分)22. 解:(1)设能买A 种笔记本x 本,则能买B 种笔记本(30-x )本依题意得:12x+8(30-x)=300,解得x=15.因此,能购买A ,B 两种笔记本各15本 …………………………3分(2)①依题意得:w=12n+8(30-n),即w=4n+240,且n <32(30-n )和n ≥)30(31n - 解得215≤n <12 所以,w (元)关于n (本)的函数关系式为:w=4n+240,自变量n 的取值范围是215≤n <12,n 为整数. ………………7分 ②对于一次函数w=4n+240,∵w 随n 的增大而增大,且215≤n <12,n 为整数, 故当n 为8 时,w 的值最小此时,30-n =30-8=22,w =4×8+240=272(元).因此,当买A 种笔记本8本、B 种笔记本22本时,所花费用最少,为272元23. 解:由11024314x x x ⎧-⎪⎨⎪-<-⎩≤得⎩⎨⎧->≤52x x , 不等式组的解集为-5<x≤2.解集在数轴上表示略.24. 解: (1)因为租用甲种汽车为x 辆,则租用乙种汽车()x -8辆.由题意,得()()42830,38820.x x x x +-⎧⎪⎨+-⎪⎩≥≥ 解之,得.5447≤≤x 即共有两种租车方案:第一种是租用甲种汽车7辆,乙种汽车1辆; 第二种是全部租用甲种汽车8辆(2)第一种租车方案的费用为780001600062000⨯+⨯=元 第二种租车方案的费用为8800064000⨯=元 所以第一种租车方案最省钱25. 解:去括号,得51286x x --≤.移项,得58612x x --+≤.合并,得36x -≤. 系数化为1,得2x -≥.不等式的解集在数轴上表示: 26. [解] 由①得1x >-, 由②得2x <,∴原不等式组的解集是12x -<<.在数轴上表示为:27. 解:(1)2326a b b a -=⎧⎨-=⎩,1210a b =⎧∴⎨=⎩.(2)设购买污水处理设备A 型设备X 台,B 型设备(10)X -台,则:1210(10)105X X +-≤2.5X ∴≤,X 取非负整数,012X ∴=,,,∴有三种购买方案:①A 型设备0台,B 型设备10台;②A 型设备1台,B 型设备9台;③A 型设备2台,B 型设备8台. (3)由题意:240200(10)2040X X +-≥,1X ∴≥,又2.5X ≤,X ∴为1,2.当1X =时,购买资金为:121109102⨯+⨯=(万元) 当2X =时,购买资金为:122108104⨯+⨯=(万元)∴为了节约资金,应选购A 型设备1台,B 型设备9台28. 解:(1)填表依题意得:. 解得:200x = . (2) w 与x 之间的函数关系为:29200w x =+.C DA 200吨 0吨 B40吨260吨依题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩,,,.,∴40≤x ≤240在29200w x =+中,∵2>0, ∴w 随x 的增大而增大, 表一: 故当x =40时,总运费最小,此时调运方案为如右表一. (3)由题意知(2)9200w m x =-+C D A0吨200吨B 240吨 60吨∴0<m <2时,( 表二:m =2时,在40≤x ≤240的前提下调运方案的总运费不变; 2<m <15时,x =240总运费最小,其调运方案如右表二 . 29. 解:设还需要B 型车x 辆,根据题意,得:20515300x ⨯+≥ ···························· 3分解得:1133x ≥ ······························ 5分 由于x 是车的数量,应为整数,所以x 的最小值为14. ············· 7分 答:至少需要14台B 型车. ························· 8分 30. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:31. 解:()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 解不等式1,得x ≤3 解不等式2,得x >1- 把解集在数轴上表示为:∴原不等式组的解集是—1<x ≤3· 32. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:33. 解:解()2532x x +≤+,得1x ≥-,解213x x -,得3x .所以,原不等式组的解集是13x -≤.34. 解;设该小学有x 个班,则奥运福娃共有(10x+5)套. 由题意,得 解之,得146.3x << ∵x 只能整数,∴x=5,此时10x+5=55 答:该小学有5个班,共有奥运福娃55套35.解:由(1)得x>2(2)得x>3所以不等式组的解集为x>336. 解:解不等式①,得 3≤x .………………………………………2分 解不等式②,得 244->+x x , 即 2->x . …4分 ∴原不等式组的解集为32≤<-x . …………………………6分 37. 解:2x +1-1≤-x +92x +x ≤9 3x ≤9 x ≤338. 解:(1)1308,1320;(2)设该单位需要印刷资料x 份,当2000x ≤时,甲印刷厂的费用是600+0.3x ,乙印刷厂的费用是600+0.3x ,两厂的费用相同;当2000<3000x ≤时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,乙印刷厂的费用是600+0.3x ,甲厂的费用较低;当>3000x 时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,。

中考数学试题分类汇编考点12不等式与不等式组含解析

中考数学试题分类汇编考点12不等式与不等式组含解析

xx中考数学试题分类汇编:考点12不等式与不等式组一.选择题(共22小题)1.(xx•衢州)不等式3x+2≥5的解集是()A.x≥1 B.x≥C.x≤1 D.x≤﹣1【分析】根据一元一次不等式的解法即可求出答案.【解答】解:3x≥3x≥1故选:A.2.(xx•岳阳)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式组进而在数轴上表示出来即可.【解答】解:,解①得:x<2,解②得:x≥﹣1,故不等式组的解集为:﹣1≤x<2,故解集在数轴上表示为:.故选:D.3.(xx•广安)已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.4.(xx•襄阳)不等式组的解集为()A.x>B.x>1 C.<x<1 D.空集【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式2x>1﹣x,得:x>,解不等式x+2<4x﹣1,得:x>1,则不等式组的解集为x>1,故选:B.5.(xx•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.【分析】根据不等式解集的表示方法,可得答案.【解答】解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.6.(xx•衡阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解两个不等式得到x>﹣1和x≤3,从而得到不等式组的解集为﹣1<x≤3,然后利用此解集对各选项进行判断.【解答】解:,解①得x>﹣1,解②得x≤3,所以不等式组的解集为﹣1<x≤3.故选:C.7.(xx•聊城)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.【解答】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.8.(xx•滨州)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.9.(xx•荆门)已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【解答】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.10.(xx•临沂)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的正整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选:C.11.(xx•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1【分析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.【解答】解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.12.(xx•广西)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2 B.C.6m<6n D.﹣8m>﹣8n【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【解答】解:A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误;故选:B.13.(xx•贵港)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.【解答】解:∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.14.(xx•娄底)已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k)C.f(k+1)≥f(k)D.f(k)=0或1【分析】根据题意可以判断各个选项是否正确,从而可以解答本题.【解答】解:f(1)=[]﹣[]=0﹣0=0,故选项A正确;f(k+4)=[]﹣[]=[+1]﹣[+1]=[]﹣[]=f(k),故选项B正确;C、当k=3时,f(3+1)=[]﹣[]=1﹣1=0,而f(3)=1,故选项C错误;D、当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,所以D 选项的结论正确;故选:C.15.(xx•嘉兴)不等式1﹣x≥2的解在数轴上表示正确的是()A.B.C.D.【分析】先求出已知不等式的解集,然后表示在数轴上即可.【解答】解:不等式1﹣x≥2,解得:x≤﹣1,表示在数轴上,如图所示:故选:A.16.(xx•湘西州)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先定界点,再定方向即可得.【解答】解:不等式组的解集在数轴上表示如下:故选:C.17.(xx•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.18.(xx•宿迁)若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1 B.2a<2b C.﹣>﹣D.a2<b2【分析】由不等式的性质进行计算并作出正确的判断.【解答】解:A、在不等式a<b的两边同时减去1,不等式仍成立,即a﹣1<b﹣1,故本选项错误;B、在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C、在不等式a<b的两边同时乘以﹣,不等号的方向改变,即﹣>﹣,故本选项错误;D、当a=﹣5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.19.(xx•株洲)下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>0【分析】首先计算出不等式5x>8+2x的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.【解答】解:5x>8+2x,解得:x>,根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.20.(xx•娄底)不等式组的最小整数解是()A.﹣1 B.0 C.1 D.2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣x≥x﹣2,得:x≤2,解不等式3x﹣1>﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的最小整数解为0,故选:B.21.(xx•长春)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.22.(xx•台湾)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A.112 B.121 C.134 D.143【分析】设妮娜需印x张卡片,根据利润=收入﹣成本结合利润超过成本的2成,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内最小的整数即可得出结论.【解答】解:设妮娜需印x张卡片,根据题意得:15x﹣1000﹣5x>0.2(1000+5x),解得:x>133,∵x为整数,∴x≥134.答:妮娜至少需印134张卡片,才可使得卡片全数售出后的利润超过成本的2成.故选:C.二.填空题(共7小题)23.(xx•黔南州)不等式组的解集是x<3 .【分析】首先把两条不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,把不等式的解集用一条式子表示出来.【解答】解:由(1)x<4,由(2)x<3,所以x<3.24.(xx•安顺)不等式组的所有整数解的积为0 .【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.【解答】解:,解不等式①得:x,解不等式②得:x≤50,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.25.(xx•扬州)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.26.(xx•包头)不等式组的非负整数解有 4 个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.27.(xx•温州)不等式组的解是x>4 .【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,解①得x>2,解②得x>4.故不等式组的解集是x>4.故答案为:x>4.28.(xx•山西)xx年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:5529.(xx•聊城)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1 .【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.三.解答题(共13小题)30.(xx•威海)解不等式组,并将解集在数轴上表示出来.【分析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.31.(xx•常德)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.32.(xx•南京)如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在 B .A.点A的左边B.线段AB上C.点B的右边【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.【解答】解:(1)由数轴上的点表示的数右边的总比左边的大,得﹣2x+3>1,解得x<1;(2)由x<1,得﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.数轴上表示数﹣x+2的点在A点的右边;作差,得﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,数轴上表示数﹣x+2的点在B点的左边.故选:B.33.(xx•自贡)解不等式组:,并在数轴上表示其解集.【分析】分别解不等式①、②求出x的取值范围,取其公共部分即可得出不等式组的解集,再将其表示在数轴上,此题得解.【解答】解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.34.(xx•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.35.(xx•黄石)解不等式组,并求出不等式组的整数解之和.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可.【解答】解:解不等式(x+1)≤2,得:x≤3,解不等式≥,得:x≥0,则不等式组的解集为0≤x≤3,所以不等式组的整数解之和为0+1+2+3=6.36.(xx•南通模拟)解不等式组,并写出x的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣,解不等式②,得:x<3,则不等式组的解集为﹣≤x<3,∴不等式组的整数解为:﹣1、0、1、2.37.(xx•哈尔滨)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.38.(xx•济宁)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A15957000B101668000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【解答】解:(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得:,解得:,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.39.(xx•苏州)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【分析】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据“(a﹣1)台A型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.【解答】解:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据题意,得:,解得:,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a﹣1)台,根据题意,得:3500(a﹣1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.40.(xx•郴州)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y 的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【解答】解:(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.41.(xx•)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.【分析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:设购买A型号笔记本电脑x台时的费用为w元,(1)当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8﹣5)a×80%=7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,则0.9ax>a+0.8ax,x>10,∴x的取值范围是x>10.42.(xx•湘潭)湘潭市继xx年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【分析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【解答】解:(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,意,,∴50≤y≤52,∵y为正整数,∴y为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,费用为50y+150(100﹣y)=﹣100y+15000,当y=52时,所需资金最少,最少是9800元.【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。

2023年中考数学真题分项汇编(全国通用):不等式(组)及其应用(解析版)

2023年中考数学真题分项汇编(全国通用):不等式(组)及其应用(解析版)

专题08不等式(组)及其应用一、单选题1.(2023·内蒙古·统考中考真题)关于x 的一元一次不等式1x m 的解集在数轴上的表示如图所示,则m 的值为()A .3B .2C .1D .0【答案】B 【分析】先求出不等式的解集,然后对比数轴求解即可.【详解】解:1x m 解得1x m ,由数轴得:13m ,解得:2m ,故选:B .【点睛】题目主要考查求不等式的解集及参数,熟练掌握求不等式解集的方法是解题关键.2.(2023·湖南常德·统考中考真题)不等式组32312x x x的解集是()A .5x B .15x C .15x D .1x 【答案】C【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】32312x x x ①②解不等式①,移项,合并同类项得,5x ;解不等式②,移项,合并同类项得,1x 故不等式组的解集为:15x .故选:C .【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2023·湖北·统考中考真题)不等式组311442x x x x 的解集是()【答案】D【分析】按去分母、去括号、移项、合并同类项,未知数系数化为1的步骤求出解集,再把解集在数轴上表示出来,注意包含端点值用实心圆点,不包含端点值用空心圆点,即可求解.【详解】解:1433x x 4331x x 4x ,解集在数轴上表示为故选:D .【点睛】本题考查了一元一次不等式的解法及解集在数轴上的表示方法,掌握解法及表示方法是解题的关键.6.(2023·浙江宁波·统考中考真题)不等式组1010x x的解在数轴上表示正确的是()A .B .C .D .【答案】C【分析】根据一元一次不等式组的解法先求出不等式组的解集,再在数轴上表示即可得到答案.【详解】解:1010x x①②,由①得1x ;由②得1x ;原不等式组的解集为11x ,在数轴上表示该不等式组的解集如图所示:,故选:C .【点睛】本题考查一元一次不等式组解集的求法及在数轴上的表示,熟练掌握不等式组解集的求解原则“同大取大、同小取小、大小小大中间找、大大小小无解了”是解决问题的关键.7.(2023·四川眉山·统考中考真题)关于x 的不等式组35241x m x x 的整数解仅有4个,则m 的取值范围是()A .54m B .54m C .43m D .43m 【答案】A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:35241x m x x①②,由②得:3x ,解集为33m x ,由不等式组的整数解只有4个,得到整数解为2,1,0,1 ,∴231m ,∴54m ;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到231m 是解此题的关键.8.(2023·四川遂宁·统考中考真题)若关于x 的不等式组 4131532x x x x a的解集为3x ,则a 的取值范围是()A .3a B .3a C .3a D .3a 【答案】D【分析】分别求出各不等式的解集,再根据不等式组的解集是3x 求出a 的取值范围即可.【详解】解: 4131532x x x x a ①②解不等式①得:3x ,解不等式②得:x a ,∵关于x 的不等式组 4131532x x x x a的解集为3x ,∴3a ,故选:D .【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题9.(2023·全国·统考中考真题)不等式480x 的解集为__________.【答案】2x 【分析】根据移项、化系数为1,的步骤解一元一次不等式即可求解.【详解】解:480x 48x 解得:2x ,故答案为:2x .【点睛】本题考查了求一元一次不等式的解集,熟练掌握不等式的性质是解题的关键.10.(2023·辽宁大连·统考中考真题)93x 的解集为_______________.【答案】3x 【分析】根据不等式的性质解不等式即可求解.【详解】解:93x ,解得:3x ,故答案为:3x .【点睛】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.11.(2023·四川乐山·统考中考真题)不等式10x 的解集是__________.【答案】1x 【分析】直接移项即可得解.【详解】解:∵10x ,∴1x ,故答案为:1x .【点睛】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解答本题的关键.12.(2023·黑龙江·统考中考真题)关于x 的不等式组501x x m有3个整数解,则实数m 的取值范围是__________.【答案】32m /23m故答案为:2或1 .【点睛】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.【答案】不等式组的解集为:22.画图见解析x【分析】先解不等式组中的两个不等式,再在数轴上表示两个不等式的解集,从而可得答案.∴不等式组的解集为:22.x【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握不等式组的解法与步骤是解本题的关键.23.(2023·山东·统考中考真题)解不等式组:(4)原不等式组的解集是________.x【答案】(1)326x 3x .故答案为:3x .(2)解:32x x ,22x 1x .故答案为:1x .(3)解:把不等式①和②的解集在数轴上表示出来:(4)解:由图可知原不等式组的解集是13x .故答案为:13x .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集和在数轴上表示不等式的解集是解答本题的关键.26.(2023·浙江·统考中考真题)解一元一次不等式组:23215x x.【答案】13x 【分析】根据不等式的性质,解一元一次不等式,然后求出两个解集的公共部分即可.【详解】解:23215x x ①②解不等式①,得1x ,解不等式②,得3x ,∴原不等式组的解是13x .【点睛】本题主要考查解一元一次不等式组,掌握不等式的性质,解一元一次不等式的方法是解题的关键.27.(2023·湖南永州·统考中考真题)解关于x 的不等式组 2203172x x x【答案】12x 【分析】分别解不等式组的两个不等式,再取两个不等式的解集的公共部分,即为不等式组的解集.【详解】解: 2203172x x x①②,则不等式组的解集为:答:A 、B 玩具的单价分别为50元、75元;(2)设A 玩具购置y 个,则B 玩具购置2y 个,由题意可得:5075220000y y ,解得:100y ,∴最多购置100个A 玩具.【点睛】本题考查一元一次方程和一元一次不等式的应用,属于中考常规考题,解题的关键在于读懂题目,找准题目中的等量关系或不等关系.37.(2023·河南·统考中考真题)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算;(2)400元;(3)当300400a 或600800a 时,活动二更合算【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a 元,活动二当0300a 时,所需付款为a 元,当300600a 时,所需付款为 80a 元,当600900a 时,所需付款为 160a 元,然后根据题意列出不等式即可求解.【详解】(1)解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360 元,活动二需付款:45080370 元,∴活动一更合算;(2)设这种健身器材的原价是x 元,则0.880x x ,解得400x ,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a 元,(2)一个人数不足50人的旅游团,当游客人数最低为多少人时,购买B种门票比购买A种门票节省?【答案】(1)甲团人数有58人,乙团人数有44人;(2)当游客人数最低为46人时,购买B种门票比购买A 种门票节省【分析】(1)设甲团人数有x人,乙团人数有y人,根据“甲、乙两个旅游团共102人,把两团联合作为一个团体购票会比两团分别各自购票节省730元”列方程组求解即可;(2)设游客人数为a人时,购买B种门票比购买A种门票节省,根据“人数不足50人,购买B种门票比购买A种门票节省”列不等式求解即可.【详解】(1)解:设甲团人数有x人,乙团人数有y人,由题意得:102 455010240730 x yx y,解得:5844 xy,答:甲团人数有58人,乙团人数有44人;(2)解:设游客人数为a人时,购买B种门票比购买A种门票节省,由题意得:4551a,解得:45.9a ,∵a为整数,∴当游客人数最低为46人时,购买B种门票比购买A种门票节省.【点睛】本题考查了二元一次方程组的应用和一元一次不等式的应用,找出合适的等量关系和不等关系列出方程组和不等式是解题的关键.40.(2023·湖南·统考中考真题)低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?【答案】(1)该公司销售一台甲型、一台乙型自行车的利润分别为150,100元;(2)最少需要购买甲型自行车10台【分析】(1)该公司销售一台甲型、一台乙型自行车的利润分别为,x y 元,根据题意列出二元一次方程组,解方程组即可求解;(2)设需要购买甲型自行车a 台,则购买乙型自行车 20a 台,依题意列出不等式,解不等式求最小整数解,即可求解.【详解】(1)解:该公司销售一台甲型、一台乙型自行车的利润分别为,x y 元,根据题意得,326502350x y x y,解得:150100x y,答:该公司销售一台甲型、一台乙型自行车的利润分别为150,100元;(2)设需要购买甲型自行车a 台,则购买乙型自行车 20a 台,依题意得,5008002013000a a ,解得:10a ,∵a 为正整数,∴a 的最小值为10,答:最少需要购买甲型自行车10台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,根据题意列出方程组以及不等式是解题的关键.41.(2023·山西·统考中考真题)风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A 部件和3个B 部件组成,这种设备必须成套运输.已知1个A 部件和2个B 部件的总质量为2.8吨,2个A 部件和3个B 部件的质量相等.(1)求1个A 部件和1个B 部件的质量各是多少;(2)卡车一次最多可运输多少套这种设备通过此大桥?【答案】(1)一个A 部件的质量为1.2吨,一个B 部件的质量为【分析】(1)设一个A 部件的质量为x 吨,一个B 部件的质量为个B 部件的总质量为2.8吨”和“2个A 部件和3个B (2)设该卡车一次可运输m 套这种设备通过此大桥.根据等式再结合m 为整数求解即可.【详解】(1)解:设一个A 部件的质量为x 吨,一个根据题意,得2 2.823x y x y,解得 1.20.8x y .答:一个A 部件的质量为1.2吨,一个B 部件的质量为(2)解:设该卡车一次可运输m 套这种设备通过此大桥.根据题意,得 1.20.83830m .解得559m .因为m 为整数,m 取最大值,所以6m .答:该卡车一次最多可运输6套这种设备通过此大桥.【点睛】本题主要考查了二元一次方程组的应用、一元一次不等式的应用等知识点,正确列出二元一次方程组和不等式是解答本题的关键.42.(2023·天津·统考中考真题)解不等式组211412x x x x ①②请结合题意填空,完成本题的解答.(1)解不等式①,得________________;(2)解不等式②,得________________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________________.【答案】(1)2x (2)1x (3)见解析(4)21x 【分析】分别解两个不等式,然后根据公共部分确定不等式组的解集,再利用数轴表示解集即可.【详解】(1)解:解不等式①,得2x ,故答案为:2x ;(2)解:解不等式②,得1x ,故答案为:1x ;(3)解:把不等式①和②的解集在数轴上表示出来:(4)解:原不等式组的解集为21x ,故答案为:21x .【点睛】本题考查了解一元一次不等式组并把解集在数轴上表示,熟练掌握一元一次不等式的解法是解决本题的关键.43.(2023·湖南怀化·统考中考真题)某中学组织学生研学,原计划租用可坐乘客45人的A 种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B 种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A 种客车多少辆?这次研学去了多少人?(2)若该校计划租用A 、B 两种客车共25辆,要求B 种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A 种客车租金为每辆220元,B 种客车租金每辆300元,应该怎样租车才最合算?【答案】(1)原计划租用A 种客车26辆,这次研学去了1200人(2)共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆;方案二:租用A 种客车19辆,则租用B 种客车6辆;方案三:租用A 种客车20辆,则租用B 种客车5辆,(3)租用A 种客车20辆,则租用B 种客车5辆才最合算【分析】(1)设原计划租用A 种客车x 辆,根据题意列出一元一次方程,解方程即可求解;(2)设租用A 种客车a 辆,则租用B 种客车 25a 辆,根据题意列出一元一次不等式组,解不等式组即可求解;(3)分别求得三种方案的费用,进而即可求解.【详解】(1)解:设原计划租用A 种客车x 辆,根据题意得,4530606x x ,解得:26x 所以 602661200 (人)答:原计划租用A 种客车26辆,这次研学去了1200人;(2)解:设租用A 种客车a 辆,则租用B 种客车 25a 辆,根据题意,得2574560251200a a a 解得:1820a ,∵a 为正整数,则18,19,20a ,∴共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆,方案二:租用A 种客车19辆,则租用B 种客车6辆,方案三:租用A 种客车20辆,则租用B 种客车5辆,(3)∵A 种客车租金为每辆220元,B 种客车租金每辆300元,∴B 种客车越少,费用越低,方案一:租用A 种客车18辆,则租用B 种客车7辆,费用为1822073006060 元,方案二:租用A 种客车19辆,则租用B 种客车6辆,费用为1922063005980 元,方案三:租用A 种客车20辆,则租用B 种客车5辆,费用为2022053005900 元,∴租用A 种客车20辆,则租用B 种客车5辆才最合算.【点睛】本题考查了一元一次方程的应用,一元一次不等式组的应用,根据题意列出一元一次方程与不等式组是解题的关键.44.(2023·江西·统考中考真题)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人;(2)至少购买了甲树苗80棵【分析】(1)设该班的学生人数为x 人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m 棵,则购买了乙树苗 155m 棵树苗,再根据总费用不超过5400元列出不等式求解即可.【详解】(1)解:设该班的学生人数为x 人,由题意得,320425x x ,解得45x ,∴该班的学生人数为45人;(2)解:由(1)得一共购买了34520155 棵树苗,设购买了甲树苗m 棵,则购买了乙树苗 155m 棵树苗,由题意得, 30401555400m m ,解得80m ,∴m 得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.45.(2023·云南·统考中考真题)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?【答案】(1)甲种书的单价为35元,乙种书的单价为30元;(2)该校最多可以购买甲种书40本【分析】(1)设甲种书的单价为x 元,乙种书的单价为y 元,利用2本甲种书的价格 1本乙种书的价格100 ;3本甲种书的价格 2本乙种书的价格165 ,列方程解答即可;(2)设购买甲种书a 本,则购买乙种书 100a 本,根据购买甲种书的总价 购买乙种书的总价3200 ,列不等式解答即可.【详解】(1)解:设甲种书的单价为x 元,乙种书的单价为y 元,可得方程210032165x y x y,解得3530x y, 原方程的解为3530x y,答:甲种书的单价为35元,乙种书的单价为30元.(2)解:设购买甲种书a 本,则购买乙种书 100a 本,根据题意可得 35301003200a a ,解得40a ,故该校最多可以购买甲种书40本,答:该校最多可以购买甲种书40本.【点睛】本题考查了二元一次方程的实际应用,一元一次不等式的实际应用,列出正确的等量关系和不等关系是解题的关键.47.(2023·四川凉山·统考中考真题)凉山州雷波县是全国少有的优质脐橙最适生态区.经过近20年的发展,雷波脐橙多次在中国西部农业博览会上获得金奖,雷波县也被誉名为“中国优质脐橙第一县”,某水果商为了解雷波脐橙的市场销售情况,购进了雷波脐橙和资中血橙进行试销.在试销中,水果商将两种水果搭配销售,若购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币.(1)求雷波脐橙和资中血橙每千克各多少元?(2)一顾客用不超过1440元购买这两种水果共100千克,要求雷波脐橙尽量多,他最多能购买雷波脐橙多少千克?【答案】(1)雷波脐橙和资中血橙每千克分别为18元,12元;(2)最多能购买雷波脐橙40千克.【分析】(1)设雷波脐橙和资中血橙每千克分别为x 元,y 元,购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币,再建立方程组即可;(2)设最多能购买雷波脐橙m 千克,根据顾客用不超过1440元购买这两种水果共100千克,再建立不等式即可.【详解】(1)解:设雷波脐橙和资中血橙每千克分别为x 元,y 元,则32782372x y x y①②,①+②得;55150x y ,则30x y ③把③代入①得:18x ,把③代入②得:12y ,∴方程组的解为:1812x y,答:雷波脐橙和资中血橙每千克分别为18元,12元.(2)设最多能购买雷波脐橙m 千克,则181********m m ,∴6240m ,解得:40m ,答:最多能购买雷波脐橙40千克.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,确定相等关系是解本题的关键.48.(2023·四川广安·统考中考真题)“广安盐皮蛋”是小平故里的名优特产,某超市销售A B 、两种品牌的盐皮蛋,若购买9箱A 种盐皮蛋和6箱B 种盐皮蛋共需390元;若购买5箱A 种盐皮蛋和8箱B 种盐皮蛋共需310元.(1)A 种盐皮蛋、B 种盐皮蛋每箱价格分别是多少元?(2)若某公司购买A B 、两种盐皮蛋共30箱,且A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,怎样购买才能使总费用最少?并求出最少费用.【答案】(1)A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元;(2)购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元。

中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案

中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案

中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案(测试时间60分钟 满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.解不等式x−32<2x+13−1,下列去分母正确的是 ( )A . 3(x −3)<2(2x +1)−1B . 2(x −3)<3(2x +1)−6C . 3(x −3)<2(2x +1)−2D . 3(x −3)<2(2x +1)−62.关于 x 的不等式组 {x −1≤3,a −x <2有 5 个整数解,则 a 的取值范围是 ( )A . 1<a ≤2B . 1<a <2C . 1≤a <2D . −1≤a <03.如果 a >b ,那么下列不等式不一定成立的是 ( )A . a −3>b −3B . −2a <−2bC . a 2<b 2D . a 2>b 24.不等式组 {x −1>0,5−2x ≥1的解集在数轴上表示正确的是 ( ) A . B . C .D . 5.不等式x+12>2x+13−1 的正整数解的个数是 ( )A . 0 个B . 4 个C . 6 个D . 7 个 6.已知关于 x 的不等式组 {x −1<0,x −a ≥0有以下说法: ①如果 a =−2,那么不等式组的解集是 −2≤x <1;②如果不等式组的解集是 −3≤x <1那么 a =−3;③如果不等式组的整数解只有 −2,−1,0那么 a =−2;④如果不等式组无解,那么 a ≥1.其中所有正确说法的序号是 ( )A .①②③B .①②④C .①③④D .②③④7.a,b为实数,且a>b,则下列不等式的变形正确的是( )A.a+b<b+x B.−a+2>−b+2C.3a>3b D.a2<b28.某种品牌自行车的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于5%,则至多可打的折数是( )A.八折B.八四折C.八五折D.八八折二、填空题(共5题,共15分)9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了 5.5万元,这批电话手表至少有块.10若关于x的不等式x−m2≥−1的解集如图所示,则m的值为.11.将不等式“−2x>−2”中未知数的系数化为“1”可得到“x<1”,该步的依据是.12.“b与15的和小于27”,用不等式表示为.13.在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分者得奖.得奖者至少应答对道题.三、解答题(共3题,共45分)14.某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.经调查,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多 2 万元.(1) 求甲、乙两种机器每台各多少万元?(2) 如果工厂购买机器的预算资金不超过 34 万元,那么你认为该工厂有哪几种购买方案?15.关于 x 的不等式组 {x <3a +2,x >a −4无解,求 a 的取值范围.16.若点 P 的坐标为 (x−13,2x −9),其中 x 满足不等式组 {5x −10≥2(x +1),12x −1≤7−32x, 求点 P 所在的象限.参考答案1. 【答案】D2. 【答案】C3. 【答案】D4. 【答案】C5. 【答案】C6. 【答案】D7. 【答案】A8. 【答案】B9. 【答案】10510. 【答案】0<a<211. 【答案】不等式两边都乘以(或除以)同一个负数,不等号的方向改变12. 【答案】b+15<2713. 【答案】2014. 【答案】(1) 甲型机器每台7万元,乙型机器每台5万元.(2)方案1:购买乙型机器6台;方案2:购买甲型机器1台,乙型机器5台;方案3;购买甲型机器2台,乙型机器4台.15. 【答案】a≤−3.16. 【答案】点P在第四象限。

2023年中考数学真题分项汇编(全国通用):专题08 不等式(组)及其应用(共30道)(原卷版)

2023年中考数学真题分项汇编(全国通用):专题08 不等式(组)及其应用(共30道)(原卷版)

专题08不等式(组)及其应用(30道)1.(2023·湖南益阳·统考中考真题)将不等式组0,20x x 的解集在数轴上表示,正确的是()A .B .C .D .2.(2023·山东济南·统考中考真题)实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是()A .0ab B .0a b C .33a b D .33a b3.(2023·浙江·统考中考真题)实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论正确的是()A .a c b B .c a b a C .0a b D .22ac bc 4.(2023·湖南娄底·统考中考真题)不等式组35220x x 的解集在数轴上表示正确的是()A .B .C .D .5.(江苏省扬州市江都区邵樊片2020-2021学年下学期七年级第二次月考数学试题)不等式1x 的解集在数轴上表示正确的是()A .B .C .D .6.(2023·四川德阳·统考中考真题)不等式组 3241213x x x x ,的解集是()2023·辽宁营口·统考中考真题)不等式组20的解集在数轴上表示正确的是(....2023·北京·统考中考真题)已知,则下列结论正确的是()....2023·湖北鄂州·统考中考真题)已知不等式组2 x a二、解答题14.(2023·陕西·统考中考真题)解不等式:3522x x .15.(2023·山东济南·统考中考真题)解不等式组: 223235x x x x ①②,并写出它的所有整数解.16.(2023·山东潍坊·统考中考真题)(1)化简:22214412x x x x x x(2)利用数轴,确定不等式组 342112323x x x x 的解集.17.(2023·浙江·统考中考真题)(1)分解因式:22a a .(2)解不等式: 211x x .18.(2023·湖南娄底·统考中考真题)为落实“五育并举”,绿化美化环境,学校在劳动周组织学生到校园周边种植甲、乙两种树苗.已知购买甲种树苗3棵,乙种树苗2棵共需12元,;购买甲种树苗1棵,乙种树苗3棵共需11元.(1)求每棵甲、乙树苗的价格.(2)本次活动共种植了200棵甲、乙树苗,假设所种的树苗若干年后全部长成了参天大树,并且平均每棵树的价值(含生态价值,经济价值)均为原来树苗价的100倍,要想获得不低于5万元的价值,请问乙种树苗种植数量不得少于多少棵?21.(2023·山东泰安·统考中考真题)(1)化简:2211025 224x x xx x;(2)解不等式组:27311 32xx x.22.(2023·湖北恩施·统考中考真题)为积极响应州政府“悦享成长·书香恩施”的号召,学校组织150名学生参加朗诵比赛,因活动需要,计划给每个学生购买一套服装.经市场调查得知,购买1套男装和1套女装共需220元;购买6套男装与购买5套女装的费用相同.(1)男装、女装的单价各是多少?(2)如果参加活动的男生人数不超过女生人数的23,购买服装的总费用不超过17000元,那么学校有几种购买方案?怎样购买才能使费用最低,最低费用是多少?23.(2023·北京·统考中考真题)解不等式组:23535xxx x.24.(2023·江苏无锡·统考中考真题)(1)解方程:2220x x(2)解不等式组:32 251 x xx。

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(一)不等式过关训练➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20202.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<22.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<53.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<125.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是.(二)不等式组过关训练➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=22.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<196.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.219.(2022•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.3610.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤32.若关于x的不等式组的解集是x≤a,则a的取值范围是()二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣364.若关于x的不等式组无解,则a的取值范围是.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.16.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤17.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.18.(2022秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.109.(2022秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()A.7B.8C.9D.1010.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.(三)方程与不等式组综合过关训练➢典例精讲1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.62.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()A.﹣22B.﹣18C.11D.123.(2021秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.304.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10➢课后训练1.(2022秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.102.(2022秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.103.(2021春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为.参考答案与试题解析➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<2020【解答】解:∵不等式(a+2020)x﹣a>2020的解集为x<1,∴a+2020<0,解得,a<﹣2020,故选:B.2.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为x<﹣.【解答】解:∵不等式(a+3b)x>a﹣b的解集是x<﹣,∴a+3b<0,即a<﹣3b,∵,即8a=﹣12b,,∵a+3b<0,2a+3b=0,则a>0,b<0,∴bx﹣a>0的解集为x<﹣.故答案为:x<﹣.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是x >﹣1.【解答】解:ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax>2bx+b变为﹣bx>b,∴x>﹣1,故答案为x>﹣1.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个【解答】解:解不等式3x﹣2a<4﹣5x得:x<,∵关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,是1,2,3,∴3<≤4,解得:10<a≤14,∴整数a可以是11,12,13,14,共4个,故选:B.5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是﹣6≤a<﹣1.【解答】解:解不等式得:x>,∵负整数解是﹣1,﹣2,∴﹣3≤<﹣2.∴﹣6≤a<﹣1.故答案为:﹣6≤a<﹣1.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<2【解答】解:根据题意得:2﹣a<0,解得:a>2.故选:C.2.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<5【解答】解:不等式(2m﹣n)x﹣m>5n,变形得:(2m﹣n)x>5n+m,根据已知解集为x<,得到=,且2m﹣n<0,即2m<n,整理得:4m+20n=26m﹣13n,即33n=22m,整理得:3n=2m,即m=1.5n,n<0,代入所求不等式得:0.5nx>2.5n,解得:x<5.故选:D.3.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为x≤2.【解答】解:不等式移项得:3(a﹣b)x>5b﹣a,由不等式的解集为x<1,得到a﹣b<0,且=1,整理得:a<b,且4a=8b,即a=2b,∴a<0,则不等式ax≥4b变形得:x≤=2,故答案为:x≤2.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【解答】解:移项,得:3x≤m,系数化为1,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.5.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是﹣8<m≤﹣6.【解答】解:∵2x﹣m≥0,∴2x≥m,∴x≥,∵不等式组的负整数解为﹣1,﹣2.﹣3,∴﹣4<≤﹣3,则﹣8<m≤﹣6,故答案为:﹣8<m≤﹣6.➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=2【解答】解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.2.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2【解答】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥【解答】解:,解不等式①得:x≥1,解不等式②得:x≤4a,又∵不等式组有解,∴4a≥1,解得:a≥,故选:D.4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8【解答】解:解不等式<﹣1得:x>8,又∵不等式组无解,∴m≤8,故选:A.三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19【解答】解:不等式组整理得:,解得:a﹣2<x<21,由不等式组恰有4个整数解,得到整数解为17,18,19,20,∴16≤a﹣2<17,解得:18≤a<19,故选:B.6.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<m+5,∴原不等式组的解集为﹣1≤x<m+5,由不等式组的整数解只有4个,得到整数解为﹣1,0,1,2,∴2<m+5≤3,∴﹣2<m≤﹣故答案为﹣2<m≤﹣.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.21【解答】解:解不等式组,得﹣1<x≤,∵至多有4个整数解,<4,解得m<7;∴故满足条件的所有非负整数m的值之和为0+1+2+3+4+5+6=21,故选:D.9.(2019•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.36【解答】解:解不等式组,得:﹣<x<,∵不等式组有且仅有2个奇数解,∴-1<≤1,解得:0<m≤8,所以所有满足条件的整数m的值为1,2,3,4,5,6,7,8,和为36.故选:D.10.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是7≤a<9或﹣3≤a<﹣1.【解答】解:,∵解不等式①得:x,解不等式②得:x≤4,∴不等式组的解集为<x≤4,∵关于x的不等式组的所有整数解的和为7,∴当时,这两个整数解一定是3和4,∴,∴7≤a<9,当时,整数解是﹣2,﹣1,0,1,3和4,∴﹣3,∴﹣3≤a<﹣1,∴a的取值范围是7≤a<9或﹣3≤a<﹣1.故答案为:7≤a<9或﹣3≤a<﹣1.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3【解答】解:解不等式3(x+1)>12,得:x>3,∵不等式组的解集为x>3,∴m≤3,故选:D.2.若关于x的不等式组的解集是x≤a,则a的取值范围是()A.a≤2B.a>﹣2C.a<﹣2D.a≤﹣2【解答】解:解不等式﹣2x﹣1>3,得:x<﹣2,解不等式a﹣x≥0,得:x≤a,∵不等式组的解集为x≤a,∴a<﹣2,故选:C.二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣36【解答】解:不等式组整理得:,由不等式组有解,得到a﹣1>﹣37,解得:a>﹣36.故选:D.4.(2020春•陇西县期末)若关于x的不等式组无解,则a的取值范围是a≥﹣2.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.1【解答】解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.6.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤1【解答】解:,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有三个整数解,∴整数解为1,2,3,∴0≤m<1.故选:C.7.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.1【解答】解:,解①得x≤2a,解②得x>﹣a.则不等式组的解集是﹣a<x≤2a.∵不等式至少有7个整数解,则2a+a>7,解得a>2.整数a的最小值是3.故选:B.8.(2019秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.10【解答】解:不等式组的解为,∵至多5个整数解,∴<5,∴m<,故选:B.9.(2020秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()【解答】解:不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个奇数解,得到奇数解为3,1,∴﹣1≤<1,∴﹣3≤a<5,则满足题意a的值有﹣3,﹣2,﹣1,0,1,2,3,4,5四个,则符合条件的所有整数a的和是9.故选:C.10.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是﹣3<m≤﹣2或2<m≤3.【解答】解:解不等式+3>﹣1,得:x>﹣4.5,∵不等式组的整数解的和为﹣7,∴不等式组的整数解为﹣4、﹣3或﹣4、﹣3、﹣2、﹣1、0、1、2,则﹣3<m≤﹣2或2<m≤3,故答案为:﹣3<m≤﹣2或2<m≤3.➢典例精讲方程与不等式综合含参问题1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.6【解答】解:解方程3﹣2x=3(k﹣2)得x=,∵方程的解为非负整数,∴≥0,即k≤3,即非负整数k=1,3,不等式组整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,当k=0时,x=4.5,不是整数;当x=2时,k=1.5,不是整数,两个k的值不符合题意,舍去;综上,k=1,3,则符合条件的整数k的值的和为4.故选:C.2.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()【解答】解:去分母得:3ax+3=﹣14x﹣6,解得:x=﹣,∵关于x的方程=﹣﹣1有非负数解,∴3a+14<0,∴a<﹣,不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个偶数解,得到偶数解为2,0,∴﹣2≤<﹣1,∴﹣7≤a<﹣3,则满足题意a的值有﹣7,﹣6,﹣5,则符合条件的所有整数a的和是﹣18.故选:B.3.(2019秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.30【解答】解:解方程组得:,∵方程组的解为正整数,∴a﹣3=1或a﹣3=2或a﹣3=5或a﹣3=10,解得a=4或a=5或a=8或a=13;解不等式(2x+8)≥7,得:x≥10,解不等式x﹣a<2,得:x<a+2,∵不等式组无解,∴a+2≤10,即a≤8,综上,符合条件的a的值为4、5、8,则所有满足条件的a的和为17,故选:C.4.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10【解答】解:解不等式>0,得:x>m,解不等式﹣x<﹣4,得:x>4,∵不等式组的解集为x>4,∴m≤4,解方程组得,∵x,y均为整数,∴m=4或m=10或m=2或m=﹣4,又m≤4,∴m=﹣4或m=4或m=2,则符合条件的所有整数m的和是2,故选:B.➢课后训练1.(2019秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.10【解答】解:解方程x+2a=1得:x=1﹣2a,∵方程的解为负数,∴1﹣2a<0,解得:a>0.5,∵解不等式①得:x<a,解不等式②得:x≥4,又∵不等式组无解,∴a≤4,∴a的取值范围是0.5<a≤4,∴整数和为1+2+3+4=10,故选:D.2.(2020秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.10【解答】解:解不等式≤2x,得:x≥,解不等式2x+7≤4(x+1),得:x≥,∵不等式组的解集为x≥,∴≤,解得m≤5,解方程3y﹣2=,得:y=,∵方程的解为非负整数,∴符合m≤5的m的值为2和5,则符合条件的所有整数m的积为10,故选:D.3.(2019春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为5.【解答】解:,①﹣②得:3y=7﹣m,解得:y=,把y=代入①得:x=,由方程组的解为正整数,得到7﹣m与8+m都为3的倍数,∴m=1,4,不等式组整理得:,即﹣1≤t≤m,由不等式组有解,得到m=1,4,综上,符合条件的整数m的值的和为1+4=5.故答案为:5.。

专题21不等式与不等式组(1) 中考数学真题分项汇编系列2(学生版)

专题21不等式与不等式组(1)  中考数学真题分项汇编系列2(学生版)

专题21不等式与不等式组(1)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·广东中考真题)不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( )A .无解B .1x ≤C .1x ≥-D .11x -≤≤2.(2020·广西河池中考真题)不等式组1224x x x +>⎧⎨-⎩的解集在数轴上表示正确的是( )A .B .C .D .3.(2020·辽宁朝阳中考真题)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( ) A .8B .6C .7D .94.(2020·辽宁铁岭中考真题)不等式组31231x x +>⎧⎨-≤⎩的整数解的个数是( )A .2B . 3C .4D .55.(2020·黑龙江鹤岗中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <-6.(2020·内蒙古呼伦贝尔中考真题)满足不等式组()5231131722x x x x⎧+-⎪⎨-≤-⎪⎩>的非负整数解的个数为( )A .4B .5C .6D .77.(2020·内蒙古赤峰中考真题)不等式组20240x x +>⎧⎨-+≥⎩的解集在数轴上表示正确的是 ( )A .B .C .D .8.(2020·内蒙古鄂尔多斯中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)9.(2020·云南中考真题)若整数a 使关于x 的不等式组1112341x xx a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y+++=++的解为非正数,则a 的值为( )A .61-或58-B .61-或59-C .60-或59-D .61-或60-或59-10.(2020·江苏宿迁中考真题)若a >b ,则下列等式一定成立的是( ) A .a >b +2B .a +1>b +1C .﹣a >﹣bD .|a |>|b |11.(2020·辽宁沈阳中考真题)不等式26x ≤的解集是( ) A .3x ≤B .3x ≥C .3x <D .3x >12.(2020·云南昆明中考真题)不等式组1031212x x x +>⎧⎪⎨+-⎪⎩,的解集在以下数轴表示中正确的是( )A .B .C .D .13.(2020·四川眉山中考真题)不等式组121452(1)x x x x +≥-⎧⎨+>+⎩的整数解有( )A .1个B .2个C .3个D .4个14.(2020·四川雅安中考真题)不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( )A .B .C .D .15.(2020·重庆中考真题)若关于x 的一元一次不等式组()21321? 2x x x a ⎧-≤-⎪⎨->⎪⎩的解集为x ≥5,且关于y的分式方程122+=---y a y y有非负整数解,则符合条件的所有整数a 的和为( ) A .-1B .-2C .-3D .016.(2020·重庆中考真题)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元.小明买了7支签字笔,他最多还可以买的作业本个数为( ) A .5 B .4C .3D .217.(2020·吉林长春中考真题)不等式23x +≥的解集在数轴上表示正确的是( ) A .B .C .D .18.(2020·湖南益阳中考真题)将不等式组201x x +≥⎧⎨<⎩的解集在数轴上表示,正确的是( )A .B .C .D .19.(2020·海南中考真题)不等式21x -<的解集是( ) A .3x <B .1x <-C .3x >D .2x >20.(2020·广西玉林中考真题)把二次函数2(0)y ax bx c a =++>的图象作关于x 轴的对称变换 ,所得图象的解析式为2(1)4y a x a =--+,若()10m a b c -++≤,则m 的最大值为( )A .4-B .0C .2D .621.(2020·内蒙古中考真题)下列命题正确的是( )A .若分式242x x --的值为0,则x 的值为±2. B .一个正数的算术平方根一定比这个数小. C .若0b a >>,则11a ab b ++>. D .若2c ≥,则一元二次方程223x x c ++=有实数根.22.(2020·湖北黄石中考真题)不等式组13293x x -<-⎧⎨+≥⎩的解集是( )A .33x -≤<B .2x >-C .32x -≤<-D .3x ≤-23.(2020·四川宜宾中考真题)不等式组20211x x -<⎧⎨--≤⎩的解集在数轴上表示正确的是( )A .B .C .D .24.(2020·四川宜宾中考真题)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( ) A .2种B .3种C .4种D .5种25.(2020·山西中考真题)不等式组26041x x ->⎧⎨-<-⎩的解集是( )A .5x >B .35x <<C .5x <D .5x >-二、解答题26.(2020·西藏中考真题)解不等式组:122(1)6x x +<⎧⎨-⎩并把解集在数轴上表示出来.27.(2020·甘肃金昌中考真题)解不等式组:3512(21)34x x x x -<+⎧⎨--⎩,并把它的解集在数轴上表示出来.28.(2020·江苏淮安中考真题)解不等式31212x x -->. 解:去分母,得2(21)31x x ->-. ……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”) A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.29.(2020·辽宁抚顺中考真题)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元. (1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?30.(2020·江苏苏州中考真题)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ≤≤,求b 的取值范围.31.(2020·广西河池中考真题)某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg ;乙店的香蕉价格为5元/kg ,若一次购买6kg 以上,超过6kg 部分的价格打7折.(1)设购买香蕉xkg ,付款金额y 元,分别就两店的付款金额写出y 关于x 的函数解析式; (2)到哪家店购买香蕉更省钱?请说明理由.32.(2020·辽宁铁岭中考真题)某中学为了创设“书香校园”,准备购买,A B 两种书架,用于放置图书.在购买时发现,A 种书架的单价比B 种书架的单价多20元,用600元购买A 种书架的个数与用480元购买B 种书架的个数相同.(1)求,A B 两种书架的单价各是多少元?(2)学校准备购买,A B 两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A 种书架?33.(2020·江苏泰州中考真题)(1)计算:11()602π-⎛⎫-+︒ ⎪⎝⎭(2)解不等式组:311442x x x x -≥+⎧⎨+<-⎩34.(2020·黑龙江鹤岗中考真题)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m ,n 的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x 千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的利润率不低于20%,求a 的最大值.35.(2020·内蒙古赤峰中考真题)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米(2)我市计划修建长度为3600 m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天36.(2020·江苏镇江中考真题)(1)解方程:23xx+=13x++1;(2)解不等式组:427 3(2)4x xx x+>-⎧⎨-<+⎩37.(2020·内蒙古鄂尔多斯中考真题)(1)解不等式组3(1)52(1)237(2)22x xxx-<+⎧⎪⎨--⎪⎩,并求出该不等式组的最小整数解.(2)先化简,再求值:(2211-211aa a a--+-)÷22a a-,其中a满足a2+2a﹣15=0.38.(2020·云南中考真题)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.39.(2020·四川绵阳中考真题)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?40.(2020·江苏南通中考真题)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.41.(2020·辽宁营口中考真题)先化简,再求值:(41xx--﹣x)÷21xx--,请在0≤x≤2的范围内选一个合适的整数代入求值.42.(2020·山东烟台中考真题)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?43.(2020·黑龙江大庆中考真题)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%?至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.44.(2020·四川雅安中考真题)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)45.(2020·山东威海中考真题)解不等式组,并把解集在数轴上表示出来423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩46.(2020·湖南永州中考真题)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元. (1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?47.(2020·湖北荆州中考真题)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A 地240吨,B 地260吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m元,(0m15<≤且m为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m的最小值.48.(2020·湖北荆州中考真题)先化简,再求值2211121aa a a-⎛⎫-÷⎪++⎝⎭:其中a是不等式组22213a aa a-≥-⎧⎨-<+⎩①②的最小整数解;49.(2020·宁夏中考真题)解不等式组:53(1)?21511?32x xx x--⎧⎪⎨-+-<⎪⎩①②50.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据n b定义为[]n b如表2:定义:对于任意正整数m 、n ,其中2m >.若[]n b m =,则22n m b m -+. 如:[]4175b =表示417521752b -+,即4173177b .(1)通过观察表2,猜想出n a 与序号n 之间的关系式,[]n b 与序号n 之间的关系式; (2)用含n a 的代数式表示[]n b ;计算鞋号为42的鞋适合的脚长范围; (3)若脚长为271毫米,那么应购鞋的鞋号为多大?51.(2020·宁夏中考真题)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A 、B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1140元;如果购买A 种物品45件,B 种物品30件,共需840元. (1)求A 、B 两种防疫物品每件各多少元;(2)现要购买A 、B 两种防疫物品共600件,总费用不超过7000元,那么A 种防疫物品最多购买多少件?52.(2020·贵州毕节中考真题)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个.(1)每个甲种书柜的进价是多少元?(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?53.(2020·内蒙古呼和浩特中考真题)(1)计算:22|1|3-⎛⎫- ⎪⎝⎭;(2)已知m是小于0的常数,解关于x的不等式组:41713142x xx m->-⎧⎪⎨-<-⎪⎩.54.(2020·湖南郴州中考真题)为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨(2)现在计划安排,A B两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车.按此要求安排,A B两型卡车的数量,请问有哪几种运输方案55.(2020·广东广州中考真题)解不等式组:212541 x xx x-+⎧⎨+<-⎩.56.(2020·广东深圳中考真题)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?57.(2020·内蒙古通辽中考真题)某服装专卖店计划购进,A B 两种型号的精品服装.已知2件A 型服装和3件B 型服装共需4600元;1件A 型服装和2件B 型服装共需2800元. (1)求,A B 型服装的单价;(2)专卖店要购进,A B 两种型号服装60件,其中A 型件数不少于B 型件数的2倍,如果B 型打七五折,那么该专卖店至少需要准备多少货款?58.(2020·内蒙古通辽中考真题)用※定义一种新运算:对于任意实数m 和n ,规定23m n m n mn n =--※,如:2121212326=⨯-⨯-⨯=-※.(1)求()2-(2)若36m ≥-※,求m 的取值范围,并在所给的数轴上表示出解集.59.(2020·黑龙江穆棱朝鲜族学校中考真题)某商场准备购进A 、B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40 000元购进A 型号电脑的数量与用30 000元购进B 型号电脑的数量相同,请解答下列问题:(1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2 500元,每台B 型号电脑售价为1 800元,商场决定同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式,若商场用不超过36 000元购进A ,B 两种型号电脑,A 型号电脑至少购进10台,则有几种购买方案? (3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,请直接写出捐赠A ,B 型号电脑总数最多是多少台.60.(2020·湖南娄底中考真题)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元瓶,84消毒液的价格是15元瓶. 求:(1)该校购进洗手液和84消毒液各多少瓶?(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?61.(2020·陕西中考真题)解不等式组:362(5)4x x >⎧⎨->⎩62.(2020·江苏盐城中考真题)解不等式组:21134532x x x -⎧≥⎪⎨⎪-<+⎩.63.(2020·湖北省直辖县级单位中考真题)(1)先化简,再求值:22244422a a a a a a-+-÷-,其中1a =-. (2)解不等式组32235733x x x x +>-⎧⎪-⎨≤-⎪⎩,并把它的解集在数轴上表示出来.三、填空题64.(2020·四川攀枝花中考真题)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算.65.(2020·湖南湘西中考真题)不等式组13121xx ⎧-⎪⎨⎪+≥-⎩的解集为______________.66.(2020·辽宁大连中考真题)不等式5131x x +>-的解集是______.67.(2020·辽宁鞍山中考真题)不等式组21321x x -≤⎧⎨-<⎩的解集为________.68.(2020·黑龙江鹤岗中考真题)若关于x 的一元一次不等式组1020x x a ->⎧⎨->⎩的解是1x >,则a 的取值范围是_______.69.(2020·山东滨州中考真题)若关于x 的不等式组12420x a x ⎧->⎪⎨⎪-≥⎩无解,则a 的取值范围为________.70.(2020·四川绵阳中考真题)若不等式52x +>﹣x ﹣72的解都能使不等式(m ﹣6)x <2m +1成立,则实数m 的取值范围是_______.71.(2020·四川绵阳中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本) 72.(2020·江苏宿迁中考真题)不等式组120x x >⎧⎨+>⎩的解集是_____.73.(2020·四川凉山中考真题)关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是________________.74.(2020·广西中考真题)如图,数轴上所表示的x 的取值范围为_____.75.(2020·吉林中考真题)不等式317x +>的解集为_______.76.(2020·宁夏中考真题)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件: (1)阅读过《西游记》的人数多于阅读过《水浒传》的人数; (2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数; (3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____.77.(2020·宁夏中考真题)若二次函数22y x x k =-++的图象与x 轴有两个交点,则k 的取值范围是_____.78.(2020·贵州毕节中考真题)不等式362x x -<-的解集是_______.79.(2020·青海中考真题)分解因式:2222ax ay-+=________;不等式组24030xx-⎧⎨-+>⎩的整数解为________.。

湖南省2021年中考数学真题分项汇编—专题06 不等式与不等式组(含答案解析)

湖南省2021年中考数学真题分项汇编—专题06 不等式与不等式组(含答案解析)

专题06 不等式与不等式组一、单选题1.(2021·湖南常德市·中考真题)若a b >,下列不等式不一定成立的是( )A .55a b ->-B .55a b -<-C .a b c c >D .a c b c +>+ 【答案】C【分析】根据不等式的性质逐项进行判断即可得到答案.【详解】解:A .在不等式a b >两边同时减去5,不等式仍然成立,即55a b ->-,故选项A 不符合题意;B . 在不等式a b >两边同时除以-5,不等号方向改变,即55a b -<-,故选项B 不符合题意;C .当c ≤0时,不等得到a b c c>,故选项C 符合题意; D . 在不等式a b >两边同时加上c ,不等式仍然成立,即a c b c +>+,故选项D 不符合题意; 故选:C .【点睛】此题主要考查了不等式的性质运用的,熟练掌握不等式的性质是解答此题的关键.2.(2021·湖南株洲市·中考真题)不等式组2010x x -≤⎧⎨-+>⎩的解集为( ) A .1x <B .2x ≤C .12x <≤D .无解 【答案】A【分析】先解不等式组中的每一个不等式,再利用不等式组解集的口诀“同小取小”得出解集.【详解】解:2010x x -≤⎧⎨-+>⎩①②由①,得:x ≤2,由②,得:x <1,则不等式组的解集为:x <1,故选:A .【点睛】本题主要考查了一元一次不等式组解集的求法,关键在于根据解集的特点确定解集:同大取大、同小取小、大小小大中间找、大大小小无解得到.3.(2021·湖南岳阳市·中考真题)已知不等式组1024x x -<⎧⎨≥-⎩,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【分析】解不等式组要先求出两个不等式的解集,然后依据解集口诀:同大取大,同小取小,大小小大中间找,大大小小无处找,确定不等式组解集,在数轴上表示;注意带有等号的数在数轴上用实心表示,没有等号用空心圈表示,即可得出选项.【详解】解:1024x x -<⎧⎨≥-⎩①②, 解不等式①得:1x <,解不等式②得:2x ≥-,∴不等式组的解集为:21x -≤<,在数轴上表示为:故选:D .【点睛】题目主要考察求解不等式解集、不等式组解集以及解集在数轴上的表示,难点是对在数轴上表示实心点和空心圈的区分.4.(2021·湖南怀化市·中考真题)不等式组211112x x x +-⎧⎪⎨->-⎪⎩的解集表示在数轴上正确的是( ) A . B .C .D .【答案】C【分析】 分别解两个不等式,将它们的解集表示在同一数轴上即可求解;带等于号的用实心点,不带等于号的用空心点.【详解】解不等式211x x +-得:2x ≥-, 解不等式112x ->- 得:2x <,故不等式组的解集为:-2≤x <2,在数轴上表示为:故选C .【点睛】本题考查了一元一次不等式组的解法,一元一次不等式的解集在数轴上的表示方法;依次解不等式,注意空心点和实心点的区别是解题关键.5.(2021·湖南衡阳市·中考真题)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( ) A .B .C .D .【答案】A【分析】 根据一元一次不等式组的解题要求对两个不等式进行求解得到解集即可对照数轴进行选择.【详解】解不等式x +1<0,得x <-1,解不等式-26x ≤,得3x ≥-,所以这个不等式组的解集为-3-x ≤<1,在数轴上表示如选项A 所示,故选:A .【点睛】本题主要考查了一元一次不等式组的解,正确求解不等式组的解集并在数轴上表示是解决本题的关键.6.(2021·湖南邵阳市·中考真题)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1B .0C .-1D .-2【答案】A【分析】先求出不等式组的解集,再从中找出整数求和即可.【详解】51341233x x x x ->-⎧⎪⎨-≤-⎪⎩①②, 解①得32x >-, 解②得x≤1, ∴213x -<≤, ∴整数解有:0,1,∴0+1=1.故选A.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.7.(2021·湖南永州市·中考真题)一元一次不等式组21050x x +>⎧⎨-≤⎩的解集中,整数解的个数是( ) A .4B .5C .6D .7 【答案】C【详解】∵解不等式210x +>得:12x >-, 解不等式50x -≤,得:x≤5, ∴不等式组的解集是152x -<≤, 整数解为0,1,2,3,4,5,共6个,故选C .考点:一元一次不等式组的整数解.二、填空题8.(2021·湖南常德市·中考真题)求不等式23x x ->的解集_________.【答案】3x >【分析】直接移项合并同类项即可得出.【详解】解:23x x ->,移项解得:3x >,故答案是:3x >.【点睛】本题考查了解一元一次不等式,解题的关键是:熟练掌握移项合并同类项等步骤.9.(2021·湖南中考真题)已知x 满足不等式组120x x >-⎧⎨-≤⎩,写出一个符合条件的x 的值________. 【答案】1(答案不唯一)【分析】求出不等式组的解集即可得.【详解】解:120x x >-⎧⎨-≤⎩①②, 解不等式②得:2x ≤,则不等式组的解集为12x -<≤,因此,一个符合条件的x 值是1,故答案为:1(答案不唯一).【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.10.(2021·湖南张家界市·中考真题)不等式2217x x >⎧⎨+≤⎩的正整数解为______. 【答案】3【分析】直接解出各个不等式的解集,再取公共部分,再找正整数解即可.【详解】解:由217x +≤,解得:3x ≤,由2x >,∴原不等式的解集是:23x <≤.故不等式2217x x >⎧⎨+≤⎩的正整数解为:3, 故答案是:3.【点睛】本题考查了解一元一次不等式组的解集和求不等式组的正整数解,解题的关键是:掌握解不等式组的基本运算法则,求出解集后,找出满足条件的正整数解即可.11.(2021·湖南常德市·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个. 【答案】21【分析】设弹珠的总数为x 个, 蓝珠有y 个,根据总数不超过50个列出不等式求解即可.【详解】解:设弹珠的总数为x 个, 蓝珠有y 个,根据题意得,1186450x x y x x ⎧+++=⎪⎨⎪≤⎩①②, 由①得,96127y x +=, 结合②得,9612507y +≤ 解得,1216y ≤ 所以,刘凯的蓝珠最多有21个.故答案为:21.【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键.三、解答题12.(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的1330.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)0.85千米.【分析】(1)设开通后的长益高铁的平均速度为x 千米/分钟,从而可得某次长益城际列车的平均速度为1330x 千米/分钟,再根据“路程=速度⨯时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工y 千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得.【详解】解:(1)设开通后的长益高铁的平均速度为x 千米/分钟,则某次长益城际列车的平均速度为1330x 千米/分钟, 由题意得:1360164030x x ⨯-=, 解得4x =,则16464⨯=(千米),1313606041043030x ⨯=⨯⨯=(千米), 答:长益段高铁全长为64千米,长益城际铁路全长为104千米; (2)由题意得:甲工程队每天对其施工的长度为7647794010⨯=+(千米), 乙工程队每天对其施工的长度9649794010⨯=+(千米), 设甲工程队后期每天施工y 千米, 则979(4053)()64()5101010y --+≥-+⨯, 解得1720y ≥, 即0.85y ≥,答:甲工程队后期每天至少施工0.85千米.【点睛】本题考查了一元一次方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键. 13.(2021·湖南娄底市·中考真题)为了庆祝中国共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生.已知购买1个甲种纪念品和2个乙种纪念品共需20元,购买2个甲种纪念品和5个乙种纪念品共需45元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元;(2)若要购买这两种纪念品共100个,投入资金不少于766元又不多于800元,问有多少种购买方案?并求出所花资金的最小值.【答案】(1)购进甲种纪念品每个需要10元,乙种纪念品每个需要5元;(2)共有7种进货方案;所花资金的最小值为770元.【分析】(1)设购进甲种纪念品每个需要x 元,乙种纪念品每个需要y 元,根据“购买1个甲种纪念品和2个乙种纪念品共需20元;购买2个甲种纪念品和5个乙种纪念品共需45元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进甲种纪念品m 个,则购进乙种纪念品(100-m )个,所花资金为w 元,根据总价=单价×数量得到w 关于m 的函数解析式,结合进货资金不少于766元且不超过800元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再由m 为整数即可找出各进货方案,利用一次函数的性质从而得出答案.【详解】解:(1)设购进甲种纪念品每个需要x 元,乙种纪念品每个需要y 元,根据题意得:2202545x y x y +=⎧⎨+=⎩, 解得:105x y =⎧⎨=⎩; 答:购进甲种纪念品每个需要10元,乙种纪念品每个需要5元;(2)设购进甲种纪念品m 个,则购进乙种纪念品(100-m )个,所花资金为w 元,∴()1051005500w m m m =+-=+,根据题意得:55007665500800m m +≥⎧⎨+≤⎩, 解得:53.2≤m ≤60.∵m 为整数,∴m =54、55、56、57、58、59或60.∴共有7种进货方案;∵5>0,∴w 随m 的增大而增大,∴m =54时,w 有最小值,最小值为770元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数量间的关系,正确列出w 关于m 的函数解析式和一元一次不等式组. 14.(2021·湖南常德市·中考真题)某汽车贸易公司销售A 、B 两种型号的新能源汽车,A 型车进货价格为每台12万元,B 型车进货价格为每台15万元,该公司销售2台A 型车和5台B 型车,可获利3.1万元,销售1台A 型车和2台B 型车,可获利1.3万元.(1)求销售一台A 型、一台B 型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A 、B 两种新能源汽车共22台,问最少需要采购A 型新能源汽车多少台?【答案】(1)销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)最少需要采购A 型新能源汽车10台.【分析】(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意中的数量关系列出二元一次方程组,解方程组即可;(2)先求出每台A 型车和每台B 型车的采购价,根据“用不超过300万元资金,采购A 、B 两种新能源汽车共22台”列出不等式求解即可.【详解】解:(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意得,25 3.12 1.3x y x y +=⎧⎨+=⎩ 解得,0.30.5x y =⎧⎨=⎩答:销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)因为每台A 型车的采购价为:12万元,每台B 型车的采购价为:15万元,设最少需要采购A 型新能源汽车m 台,则需要采购B 型新能源汽车(22-m )台,根据题意得,1215(22)300m m +⨯-≤330,m ∴-≤-解得,10m ≥∵m 是整数,∴m 的最小整数值为10,即,最少需要采购A 型新能源汽车10台.【点睛】本题主要考查了一元一次不等式的应用和二元一次方程组的应用,解答此题的关键是找出题中的数量关系.15.(2021·湖南中考真题)“七一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元预算资金为1700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折..销售,学校调整了购买方案:不超过...预算资金且购买A 奖品的资金不少于...720元,A ,B 两种奖品共100件.求购买A ,B 两种奖品的数量,有哪几种方案?【答案】(1)A ,B 奖品的单价分别是40元,15元;(2)购买A 奖品23件,B 奖品77件;购买A 奖品24件,B 奖品76件;购买A 奖品25件,B 奖品75件.【分析】(1)设B 奖品的单价为x 元,则A 奖品的单价为(x +25)元,根据“购买B 奖品的数量是A 奖品的3倍”,列出分式方程,即可求解;(2)设购买A 奖品a 件,则购买B 奖品(100-a )件,列出一元一次不等式组,即可求解.【详解】(1)解:设B 奖品的单价为x 元,则A 奖品的单价为(x +25)元, 由题意得:8001700800325x x-⨯=+,解得:x =15, 经检验:x =15是方程的解,且符合题意,15+25=40,答:A ,B 奖品的单价分别是40元,15元;(2)设购买A 奖品a 件,则购买B 奖品(100-a )件,由题意得:400.8150.8(100)1700400.8720a a a ⨯+⨯-≤⎧⎨⨯≥⎩,解得:22.5≤a ≤25, ∵a 取正整数,∴a =23,24,25,答:购买A 奖品23件,B 奖品77件;购买A 奖品24件,B 奖品76件;购买A 奖品25件,B 奖品75件.【点睛】本题主要考查分式方程以及一元一次不等式组的实际应用,找准数量关系,列出方程和不等式组,是解题的关键.16.(2021·湖南长沙市·中考真题)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题? (2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)一共答对了22道题;(2)至少需答对23道题.【分析】(1)设该参赛同学一共答对了x 道题,从而可得该参赛同学一共答错了(251)x --道题,再根据“每一题答对得4分,答错扣1分,不答得0分”、“他的总得分为86分”建立方程,解方程即可得;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,从而可得参赛者答错了(25)y -道题,再根据“总得分大于或等于90分”建立不等式,解不等式即可得.【详解】解:(1)设该参赛同学一共答对了x 道题,则该参赛同学一共答错了(251)x --道题,由题意得:4(251)86x x ---=,解得22x =,答:该参赛同学一共答对了22道题;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,则参赛者答错了(25)y -道题,由题意得:4(25)90y y --≥,y ,解得23答:参赛者至少需答对23道题才能被评为“学党史小达人”.【点睛】本题考查了一元一次方程和一元一次不等式的实际应用,正确列出方程和不等式是解题关键.。

中考数学《不等式与不等式组》真题汇编1

中考数学《不等式与不等式组》真题汇编1

专题8 不等式与不等式组100 :题型单选题填空题简答题综合题题量4434总分202018421(5 分)(2017 株洲中考)已知实数a,b满足a+1>b+1,则下列选项可能错误的是()A. a>bB. a+2>b+2C. -a<-bD. 2a>3bA. m>2B. m>-3C. m≥-3D. -3<m<23(5 分)(2017 湘潭中考)不等式组4(5 分)(2017 益阳中考)如图表示下列四个不等式组中其中一个的解集,这个不等式组是2(5 分)2017 娄底中考)已知(a,b 为常数,且ab≠0)表示焦点在x 轴上的表示焦点在x 轴上的双曲线,则m的取值范围是双曲线,的解集在数轴上表示为5(5 分) (2017益阳中考)代数式 有意义,则 x 的取值范围是 _____________ 1 ___ . 6(5分)(2017株洲中考) x 的3倍大于 5,且x 的一半与 1的差小于或等于 2,则x 的取值 范围是 ___ 1 ___ .整数解中选一个适当的数代入求值12(8 分)(2017邵阳中考)某校计划组织师生共 300 人参加一次大型公益活动,如果租用67(5 分) (2017 岳阳中考)不等式组 8(5 分) (2016 衡阳)点 P (x-2 ,x+3)在第一象限,则 9(5 分) (2017 张家界中考)先化简的解集是___ 1 x 的取值范围是 ___ 1 ___ 2x-1<6 的正10(6 分 ) 2017 衡阳中考) 解不等式组: 并把解集在数轴上表示出来 11(7 分 ) 2017 常德中考) 求不等式组的整数解 .,再从不等式辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17 个.(1)(4 分)求每辆大客车和每辆小客车的乘客座位数;(2)(4 分)由于最后参加活动的人数增加了30人,学校决定调整租车方案. 在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.13(10 分)(2017郴州中考)某工厂有甲种原料130 kg,乙种原料144 k. 现用这两种原料生产出A徊两种产品共30件.已知生产每件A产品需甲种原料 5 kg ,乙种原料 4 kg ,且每件A 产品可获利700元;生产每件B产品需甲种原料 3 kg ,乙种原料 6 kg ,且每件B产品可获利900元.设生产A产品x 件(产品件数为整数件),根据以上信息解答下列问题:(1)(5 分)生产A,B两种产品的方案有哪几种;(2)(5 分)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.14(10 分)(2017 怀化中考)为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍. 购买2副乒乓球拍和1 副羽毛球拍共需116 元;购买 3 副乒乓球拍和 2 副羽毛球拍共需204 元.(1)(5 分)求购买 1 副乒乓球拍和 1 副羽毛球拍各需多少元:(2)(5 分)若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480 元,则最多能够购买多少副羽毛球拍?15(14 分)(2017 郴州中考)设a,b是任意两个实数,用max{a,b}表示a,b 两数中较大者. 例如:max{-1 ,-1}=-1 ,max{1 ,2}=2 ,max{4,3}=4. 参照上面的材料,解答下列问题:(1)(4 分)max{5 ,2}= ____ 1 ______________ ,max{0,3}= 2 ;(2)(5 分)若max{3x+1,-x+1}=-x+1 ,求x 的取值范围;(3)(5 分)求函数与y=-x+2 的图象的交点坐标. 函数的图象如图所示,请你在图中作出函数y=-x+2 的图象,并根据图象直接写出max{-x+2 ,} 的最小值.专题 8 不等式与不等式组参考答案与试题解析1(5 分)(2017 株洲中考)已知实数 a ,b 满足 a+1>b+1,则下列选项可能错误的是 ( )A. a>bB. a+2>b+2C. -a<-bD. 2a>3b【解析】略【答案】 DA. m>2B. m>-3C. m ≥ -3D. -3<m<2【解析】本题考查双曲线的取值范围 .根据题意,可得不等式组解得 -3<m<2,故选 D.理解双曲线解析式的特征是解答本题的关键 .【答案】 D 3(5 分) (2017 湘潭中考)不等式组 的解集在数轴上表示为( )2(5 分 ) 2017 娄底中考)已知 (a ,b 为常数,且 ab ≠0)表示焦点在 x 轴上的 表示焦点在 x 轴上的双曲线,则 m 的取值范围是双曲线,C.D.【解析】本题考查不等式组的解集在数轴上的表示. 不等式组在数轴上表示位于-1 右侧,点 2 左侧的点,且不包含点-1 和点2,故选 B.【知识拓展】用数轴表示不等式组的解集时,要时刻牢记;大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈.【答案】B4(5 分)(2017 益阳中考)如图表示下列四个不等式组中其中一个的解集,这个不等式组是()解析】本题考查不等式组的解集的表示方法. 观察数轴确定数所代表两个不等式为x>-3和x≤2,故选 D.【知识拓展】在数轴上表示不等式的解集,包括原数时用实心圆点来表示,不包括原数时用空心圆圈来表示,在数轴上按“大大取大,小小取小,大小小大中间找,大大小小找不着” 的原则确定不等式组的解集.答案】D5(5 分)(2017益阳中考)代数式有意义,则x 的取值范围是 ___ 1_【解析】本题考查代数式有意义的条件.由题意知3- 2x≥0,x- 2≠0,解得【答案】6(5 分)(2017株洲中考)x的3倍大于5,且x的一半与1的差小于或等于2,则x的取值范围是___ 1解析】本题考查不等式的应用,根据题意得解得答案】7(5 分)2017 岳阳中考)不等式组的解集是 ___ 1 ___解析】本题考查不等式组的解法. 由第一个不等式组的解集x≤3,由第二个不等式解得x<-3 ,所以不等式组的解集为x<-3.答案】x<-38(5 分)(2016 衡阳)点P(x-2,x+3)在第一象限,则x 的取值范围是__ 1【解析】解:∵点P(x-2 ,x+3)在第一象限,∴,解得:x> 2.故答案为:x> 2.【答案】x> 29(5 分)(2017张家界中考)先化简,再从不等式2x-1<6 的正整数解中选一个适当的数代入求值解析】【名师指导】本题考查分式化简求值、不等式正整数解的确定【答案】解:原式=解不等式2x-1<6 得x<3.5 ,其正整数解为1,2,3,又x≠± 1,x 且≠ 2,当x=3 时,原式= .10(6 分)(2017 衡阳中考)解不等式组:【解析】【名师指导】本题考查解一元一次不等式组. 先分别解出每个不等式的解集,解集表示在数轴上即可.【答案】解:解不等式①得x≤2解不等式②得x>1. ∴原不等式组的解集为1<x≤2. 在数轴上表示解集为解析】【名师指导】本题考查不等式组特殊解的确定答案】先确定不等式组的解集,再确定特殊解.解:解,得解,得∴不等式组的整数解为并把解集在数轴上表示出来然后把11(7 分)(2017 常德中考)求不等式组∴不等式组的整数解为0,1, 2.12(8 分)(2017邵阳中考)某校计划组织师生共300 人参加一次大型公益活动,如果租用 6 辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17 个.(1) (4 分) 求每辆大客车和每辆小客车的乘客座位数;(2) (4 分)由于最后参加活动的人数增加了30人,学校决定调整租车方案. 在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【解析】(1) 【名师指导】本题考查利用二元一次方程组及一元一次不等式解决实际问题. 列方程组求解;(2) 列一元一次不等式求解.【答案】(1) 解:设每辆小客车的乘客座位数是x 个,大客车的乘客座位是y 个,解得∴每辆大客车的乘客座位数为35个,每辆小客车的乘客座位数为18 个.(2) 设租用 a 辆小客车才能将所有参加活动的师生装载完成,则18a+35(11- a) ≥300+30,解得,∴符合条件的 a 的最大整数为3,即租用小客车数量的最大值为 3.13(10 分)(2017郴州中考)某工厂有甲种原料130 kg,乙种原料144 k. 现用这两种原料生产出A徊两种产品共30件.已知生产每件A产品需甲种原料 5 kg ,乙种原料 4 kg ,且每件A 产品可获利700元;生产每件B产品需甲种原料 3 kg ,乙种原料 6 kg ,且每件B产品可获利900元.设生产A产品x 件(产品件数为整数件),根据以上信息解答下列问题:(1)(5 分)生产A,B两种产品的方案有哪几种;(2)(5 分)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.【解析】(1)【名师指导】本题考查一元一次不等式组及一次函数的综合应用. 根据题目中的不等式关系列出不等式组,求得正整数解,再根据正整数解进行讨论;(2)根据利润公式列出y 与x 的函数关系式,根据函数的性质确定最大利润.答案】∴18≤x≤20.∵x取整数解,∴ x=18 或x=19 或x=20,∴生产A,B 两种产品的方案有如下三种:方案一:A产品18 件,B产品12件;方案二:A产品19 件,B产品11件;方案三:A产品20件,b 产品10件.(2)由题意可得y=700x+900(30-x)=-200x+27000 ,∵-200<0 ,∴y随x 的增大而减小,又∵18≤x≤20,∴ x=18 时有最大利润,最大利润y=- 200×18+27000=2340 0(元)答:利润最大的方案是(1)中的方案一,即A产品生产18件,B产品生产12件,最大利润为23400 元.14(10 分)(2017 怀化中考)为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍. 购买2副乒乓球拍和 1 副羽毛球拍共需116 元;购买 3 副乒乓球拍和 2 副羽毛球拍共需204 元.(1)(5 分)求购买 1 副乒乓球拍和 1 副羽毛球拍各需多少元:(2)(5 分)若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480 元,则最多能够购买多少副羽毛球拍?【解析】(1) 解:(1) 【名师指导】本题考查二元一次方程组的应用和一元一次不等式的应用. 解题的关键是准确地从题目文字信息中提炼出所需的方程和不等式.根据题意列二元次方程组求解;(2) 根据支出不超过1480 元列不等式求解.【答案】(1) 解:设购买1副乒乓球拍需x元,1副羽毛球拍需y 元,根据题意,解这个方程组,得答:购买1副乒乓球拍需28元,1 副羽毛球拍需60元. (2) 设购买 a 副羽毛球拍,由题意,得60a+28(30- a) ≤1480,解这个不等式,得a≤20. 答:最多能够购买20 副羽毛球拍.15(14 分)(2017 郴州中考)设a,b是任意两个实数,用max{a,b}表示a,b 两数中较大者. 例如:max{-1 ,-1}=-1 ,max{1 ,2}=2 ,max{4,3}=4. 参照上面的材料,解答下列问题:(1)(4 分)max{5 ,2}= ____ 1__ ,max{0,3}= ___ 2 ____ ;(2)(5 分)若max{3x+1,-x+1}=-x+1 ,求x 的取值范围;(3) (5 分)求函数与y=-x+2 的图象的交点坐标. 函数的图象如图所示,请你在图中作出函数y=-x+2 的图象,并根据图象直接写出max{-x+2 ,} 的最小值.【解析】(1) 【名师指导】本题考查新定义与二次函数图象和综合应用.由新定义比较两数的大小直接写出结果;(2) 由新定义得到不等式,解不等式确定x 的取值范围;(3) 确定两函数的交点坐标,由两点法作出一次函数的图像,根据图像确定最小值【答案】(1)53(2) 由题意可得3x+1≤-x+1 ,∴x≤0.(3) 由题意可得∴交点坐标为(-2 ,4),(3 ,-1). 作出y=-x+2 的图象如图所示.。

历年中考试题不等式与不等式组分类汇编及答案推荐文档

历年中考试题不等式与不等式组分类汇编及答案推荐文档

历年中考试题分类汇编——不等式与不等式组、选择题1、(2007浙江金华)不等式H > :的解集在数轴上表示正确的是()A4、(2007山东枣庄)不等式2x-7<5-2 x的正整数解有()B一3 0A.-3 0B.■J III-30C.QD.2、(2007四川内江)不等式1 ' '■的解集在数轴上表示出来应为3、(2007湖南岳阳)在下图中不等式一1v x< 2在数轴上表示正确的是((A)1 个(B)2 个(C)3 个(D)4 个-2-10123-2-10123A.0 12 3 4 5C.B.r1 0 25、(2007 福建福州)解集在数轴上表示为如图1 所示的不等式组是()DA、0 B 、-3 C、-2 D、-1A.B. C .D .6、(2007湖北天门)关于」x的不等式2x—a<- -1的解集如图2所示,则a的取值是()。

B解:x< ,又不等式解为:x<- 1所以二—1解得:a= —37、(2007 云南双柏)不等式的解集是()CA.B.C.D.8、(2007山东东营)不等式2x—7<5—2x 的正整数解有()B(A) 1 个( B) 2个( C) 3 个( D) 4 个9、(2007浙江台州)不等式的解集为()A 组x <2D.无解12A.B. C.10、 (2007四川德阳)把一个不等式组的解集表示在数轴上,如图 3所示,则该不等式组的解集为( 0 图3 A. B.C.11、 D.A 4-8(2007湖北黄冈)将不等式 的是()C L2的解集在数轴上表示出来,正确II12、( 2007江苏南京)不等式组日)D的解集疋A. B.C.D.(2007湖北武汉)如图4,在数轴上表示某不等式组中的两个不等式的解集则该不等式组的解集为()。

Bz+l>0(2007浙江宁波)把不等式组°的解集表示在数轴上,正确的是)C(2007山东临沂)直线11: y= k1X+ b与直线I 2:y = k?x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+ b>k2X的解为()。

历年中考试题不等式与不等式组分类汇编及答案

历年中考试题不等式与不等式组分类汇编及答案

历年中考试题分类汇编——不等式与不等式组一、选择题1、(2007浙江金华)不等式S 的解集在数轴上表示正确的是()A1丨丨I L i-2 -1 0 1 2 3A.-2 -I 0 1 2 3B・2、(2007四川内江)不等式-门」「二的解集在数轴上表示出来应为()0 12 3 4 5D.1 v x<2在数轴上表示正确的是()3、(2007湖南岳阳)在下图中不等式一A4、(2007山东枣庄)不等式2x-7<5-2 x的正整数解有()B(A) 1 个(B) 2个(C) 3个(D) 4 个学习好资料 欢迎下载<15、(2007福建福州)解集在数轴上表示为如图 1所示的不等式组是( )Dx>-3xC 2a 4-1 解:x < j ,又不等式解为:x <— 1,所以]二—1,解得:a = — 37、( 2007云南双柏)不等式.[的解集是( )CC.1D.:[8、 ( 2007山东东营)不等式2x — 7<5— 2x 的正整数解有()B(A ) 1 个(B ) 2个(C ) 3个(D ) 4个-30 2 图1\>-3z<-3\<-3B .2C .A.(2007湖北天门)关于6、 )。

BB 、一 3x 的不等式2x — a <- 1的解集如图2所示,则a 的C 、一 2D 、一 1a 4-1学习好资料欢迎下载,2 <0,9、(2007浙江台州)不等式组的解集为()A学习好资料欢迎下载<1C.D.无解 10、 (2007四川德阳)把一个不等式组的解集表示在数轴上,如图 3所示,则该不等式组的解集为( 0 1 2 A. B.C.z+8 <4x-l11、 (2007湖北黄冈)将不等式L2的解集在数轴上表示出来,正确的是()C 2 兀 > —1亠ZL1 ,・[)r0 30 312、 (2007江苏南京)不等式组的解集是集是A.1x <一一B.11--<xD. 1学习好资料 欢迎下载13、(2007湖北武汉)如图4,在数轴上表示某不等式组中的两个不等式的解集 则该不等式组的解集为()。

中考数学全国各地试题分类汇编 不等式(组)

中考数学全国各地试题分类汇编 不等式(组)

中考数学全国各地试题分类汇编不等式(组)一、选择题1. (2011湖南永州,15,3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A.6.0元 B.7.0元 C.8.0元 D.9.0元【答案】B.二、填空题1. (2011山东临沂,17,3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料中20kg,电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载捆材料.【答案】422. (2011湖北襄阳,15,3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5 分.小明参加本次竞赛得分要超过100分,他至少要答对道题.【答案】143.三、解答题1. (2011广东广州市,21,12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?【答案】(1)120×0.95=114(元)所以实际应支付114元.(2)设购买商品的价格为x元,由题意得:0.8x+168<0.95x解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算.2. (2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.⑴设从A水库调往甲地的水量为x万吨,完成下表甲乙总计水量/万吨调入地调出地A x 14B 14总计 15 13 28⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x 15-x x -1⑵y=50x+(14-x )30+60(15-x )+(x -1)45=5x+1275解不等式1≤x ≤14所以x=1时y 取得最小值ymin=12803. (2011 浙江湖州,23,10)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元? (收益=销售额-成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg ,桂鱼每亩需要饲料700kg .根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?【答案】解:(1)2011年王大爷的收益为:20.+.⨯⨯(3-24)10(25-2)=17(万元)(2)设养殖甲鱼x 亩,则养殖桂鱼(30-x )亩.由题意得2.42(30)70,x x +-≤解得25x ≤,又设王大爷可获得收益为y 万元,则0.60.5(30)y x x =+-,即11510y x =+.∵函数值y 随x 的增大而增大,∴当x =25,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料akg ,由(2)得,共需饲料为50025+700516000⨯⨯=(kg ),根据题意,得160001600022a a -=,解得4000()a kg =.答:王大爷原定的运输车辆每次可装载饲料4000kg.4. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担任课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.【答案】7206=120÷,∴光明厂平均每天要生产120套单人课桌椅.(2)设x人生产桌子,则(84)x-人生产椅子,则125720,584245720, 4xx⨯⨯≥-⨯⨯≥⎧⎨⎩解得6060,60,8424 x x x≤≤∴=-=,∴生产桌子60人,生产椅子24人。

中考数学试题分类汇编不等式与不等式组试题(共10页)

中考数学试题分类汇编不等式与不等式组试题(共10页)

2021年中考(zh ōn ɡ k ǎo)数学试题分类汇编 不等式与不等式组一、选择题 1、〔2021〕不等式的解集在数轴上表示正确的选项是〔 〕A2、〔2021〕不等式的解集在数轴上表示出来应为〔 〕D3、〔2021〕在下列图中不等式-1<x ≤2在数轴上表示正确的选项是〔 〕A4、〔2021〕不等式2x -7<5-2x 的正整数解有〔 〕 B (A)1个 (B)2个 (C)3个 (D)4个5、〔2021〕解集在数轴上表示为如图1所示的不等式组是〔 〕D A .B .C .D . 6、〔2021〕关于x 的不等式2x -a ≤-1的解集如图2所示, 那么a 的取值是〔 〕。

B1 2 30 --B3 4 52 1 0 C1 2 30 --A 3 4 52 1 0 DA 3- 0 3 B3- 0 3 C3- 0 3D3-图10 0 1-1 -2 (图2)A 、0B 、-3C 、-2D 、-1 解:x ≤,又不等式解为:x ≤-1,所以(su ǒy ǐ)12a =-1,解得:a =-3。

7、〔2021双柏〕不等式的解集是〔 〕C A . B .C .D .8、〔2021〕不等式2x -7<5-2x 的正整数解有〔 〕B〔A 〕1个〔B 〕2个 〔C 〕3个〔D 〕4个9、〔2021〕不等式组的解集为〔 〕A A.B.C.D.无解10、〔2021〕把一个不等式组的解集表示在数轴上,如图3所示,那么该不等式组的解集为〔 〕A A. B.C.D.11、〔2021〕将不等式的解集在数轴上表示出来,正确的选项是〔 〕C12、〔2021〕不等式组的解集是〔 〕D图3A. B. C.D.13、〔2021〕如图4,在数轴上表示(bi ǎosh ì)某不等式组中的两个不等式的解集,那么该不等式组的解集为〔 〕。

BA 、x <4B 、x <2C 、2<x <4D 、x >2 14、〔2021〕把不等式组的解集表示在数轴上,正确的选项是( )C15、〔2021〕直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如下图,那么关于x 的不等式k 1x +b >k 2x 的解为〔 〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年中考试题分类汇编(不等式与不等式组)一、选择题1、(2007浙江金华)不等式260x ->的解集在数轴上表示正确的是( )A2、(2007四川内江)不等式2(1)3x x +<的解集在数轴上表示出来应为( )D3、(2007湖南岳阳)在下图中不等式-1<x ≤2在数轴上表示正确的是( )ADCBA4、(2007山东枣庄)不等式2x -7<5-2x 的正整数解有( )B (A)1个 (B)2个 (C)3个 (D)4个5、(2007福建福州)解集在数轴上表示为如图1所示的不等式组是( )D A .32x x >-⎧⎨⎩≥ B .32x x <-⎧⎨⎩≤ C .32x x <-⎧⎨⎩≥ D .32x x >-⎧⎨⎩≤ 6、(2007湖北天门)关于x 的不等式2x -a ≤-1的解集如图2所示,则a 的取值是( )。

BA 、0B 、-3C 、-2D 、-1 解:x ≤12a +,又不等式解为:x ≤-1,所以12a +=-1,解得:a =-3。

7、(2007云南双柏)不等式x x ->32的解集是( )CA .2<xB .2>xC .1>xD .1<x 8、(2007山东东营)不等式2x -7<5-2x 的正整数解有( )B(A )1个(B )2个 (C )3个 (D )4个B .C .A .D .A .B .C .D .图1(图2)9、(2007浙江台州)不等式组201x x -<⎧⎨⎩,≥的解集为( )AA.12x <≤B.1x ≥C.2x <D.无解10、(2007四川德阳)把一个不等式组的解集表示在数轴上,如图3所示,则该不等式组的解集为( )AA.102x <≤B.12x ≤C.102x <≤D.0x >11、(2007湖北黄冈)将不等式84113822x x x x +<-⎧⎪⎨≤-⎪⎩的解集在数轴上表示出来,正确的是()C12、(2007江苏南京)不等式组2110x x >-⎧⎨-⎩,≤的解集是( )DA.12x >-B.12x <-C.1x ≤ D.11x -<≤ 13、(2007湖北武汉)如图4,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( )。

B A 、x <4 B 、x <2 C 、2<x <4 D 、x >2 14、(2007浙江宁波)把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是( )C15、(2007山东临沂)直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )。

BA 、x >-1B 、x <-1C 、x <-2D 、无法确定二、填空题1、(2007山东济南)不等式210x +>的解集是 .x >-122、(2007浙江湖州)不等式x -2>0的解集是 。

x >2y k 2x (第15题图)2图3(图4)3、(2007湖北宜昌)不等式组⎩⎨⎧x –2<22x –1>0的解是 .12<x <44、(2007湖北咸宁)不等式组3610x x ≤⎧⎨+⎩>的整数解是_________________。

解:不等式组的解为:-1<x ≤2,整数解为:0,1,25、(2007山东德州)不等式组2752312x x x x -<-⎧⎪⎨++>⎪⎩的整数解是.26、(2007湖北天门)已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。

解:不等组解为:a <x <32,不等式x <32的6个整数解为:1,0,-1,-2,-3,-4,故-5≤a <-47、(2007广东梅州)不等式组110210x x ⎧+>⎪⎨⎪->⎩,.的解为 .21x -<<8、(2007贵州遵义)不等式组3010x x -<⎧⎨+⎩≥的解集是 .-1≤x <39、(2007湖北孝感)如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 . x<2三、解答题1、(2007浙江台州)解不等式:112x x >+ 解:(1)112x x ->,112x >,所以2x >. 2、(2007重庆)解不等式组:⎪⎩⎪⎨⎧≥+->+x x x 12102解:12≤<-x3、(2007浙江义鸟)解不等式:573(1),1311.22x x x x +>+⎧⎪⎨-≤-⎪⎩解:不等式(1)的解集为x>-2不等式(2)的解集为x≤1 ∴不等式组的解为-2<x ≤1(第15题图)4、(2007四川乐山)解不等式组3(1)5412123x x x x +>+⎧⎪⎨--⎪⎩ ①≤ ②,并将解集在数轴上表示出来. 解:解不等式①得12x <-解不等式②得1x -≥ ∴不等式组的解集为112x -<-≤ 其解集在数轴上表示为:5、(2007山东威海)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x xx --⎧⎪⎨--<⎪⎩≤,① ② 解:解不等式①,得2x -≥; 解不等式②,得12x <-. 在同一条数轴上表示不等式①②的解集,如图:所以,原不等式组的解集是122x -<-≤ 6、(2007江苏苏州)解不等式组:22(1)43x x x x -<-⎧⎪⎨≤-⎪⎩.解:由22(1)x x -<-,得x >0;由43≤4一x ,得x ≤3. ∴原不等式组的解集为0<x ≤3.7、(2007四川成都)解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解解:解不等式3312x x -++≥,得1x ≤. 解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤.∴原不等式组的整数解是101-,,.8、(2007江苏盐城)解不等式组⎪⎩⎪⎨⎧+-+≤-x x x x 1225623,并把其解集在数轴上表示出来。

9、(2007上海)解不等式组:30433x x x ->⎧⎪⎨+>-⎪⎩,,并把解集在数轴上表示出来.解:由30x ->,解得3x <. 由43326x x+>-,解得1x >-. ∴不等式组的解集是13x -<<.解集在数轴上表示正确.10、(2007南充)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用) (2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)解:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得1(100),218001500(100)161800.x x x x ⎧≥-⎪⎨⎪+-≤⎩,解不等式组,得 1333≤x ≤1393.即购进电视机最少34台,最多39台,商店有6种进货方案.(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000. ∵ 100>0,∴ 当x 最大时,y 的值最大. 即 当x =39时,商店获利最多为13900元11、(2007四川绵阳)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12, 解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数, ∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元.12、(2007湖南怀化)2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ,解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x 是整数,x ∴可取313233,,,∴可设计三种搭配方案: ①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元 ∴应选择方案③,成本最低,最低成本为42720元13、(2007河北省)一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A 型手机x 部,B 型手机y(1)用含x ,y 的式子表示购进C 型手机的部数; (2)求出y 与x 之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (部)的函数关系式; (注:预估利润P =预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部. 解:(1)60-x -y ;(2)由题意,得 900x +1200y +1100(60-x -y )= 61000,整理得 y =2x -50. (3)①由题意,得 P = 1200x +1600y +1300(60-x -y )- 61000-1500, 整理得 P =500x +500.②购进C 型手机部数为:60-x -y =110-3x .根据题意列不等式组,得8,2508,11038.x x x ≥⎧⎪-≥⎨⎪-≥⎩解得 29≤x ≤34. ∴ x 范围为29≤x ≤34,且x 为整数.(注:不指出x 为整数不扣分) ∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大. ∴当x 取最大值34时,P 有最大值,最大值为17500元. 此时购进A 型手机34部,B 型手机18部,C 型手机8部.。

相关文档
最新文档