0-1背包问题(分支限界法)_共5页
回溯法和分支限界法解决0-1背包题(精)[精品文档]
0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。
由此得一个解为[1,0.2,1,1],其相应价值为22。
分支限界法结局0~1背包问题
Bound( i ) cleft = c – cw; b = cp; while( i <= n && w[i] <= cleft ){ cleft -= w[i]; b += p[i]; i++; } if( i<=n) b += p[i]/w[i] * cleft; return b; }
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结 点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为 止。
与回溯法区别
求解目标不同: 一般而言,回溯法的求解目标是找出解空间树中满 足的约束条件的所有解,而分支限界法的求解目标 则是尽快的找出满足约束条件的一个解。
搜索方法不同 回溯法使用深度优先方法搜索,而分支限界一般用宽 度优先或最佳优先方法来搜索;
按照队列先进先出(FIFO)原则选取下一个节点为扩展节点;
数据结构:队列
(2)优先队列式分支限界法
按照优先队列中规定的优先级选取优先级最高的节点成为当前 扩展节点。 数据结构:堆 最大优先队列:使用最大堆,体现最大效益优先
最小优先队列:使用最小堆,体现最小费用优先
【0-1背包问题】
物品数量n=3,重量w=(20,15,15),价值v=(40,25,25) 背包容量c=30,试装入价值和最大的物品? 解空间:{(0,0,0),(0,0,1),…,(1,1,1)}
分支限界法解决0/1背包问题
分支限界法思想概述 与回溯法区别 求解步骤 常见的两种分支限界法 0-1背包问题
分支限界法的基本思想
分支限界法基本思想
分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜 索问题的解空间树。
分支界限法0-1背包问题(优先队列式分支限界法)
分⽀界限法0-1背包问题(优先队列式分⽀限界法)输⼊要求有多组数据。
每组数据包含2部分。
第⼀部分包含两个整数C (1 <= C <= 10000)和 n (1 <= n <= 10,分别表⽰背包的容量和物品的个数。
第⼆部分由n⾏数据,每⾏包括2个整数 wi(0< wi <= 100)和 vi(0 < vi <= 100),分别表⽰第i个物品的总量和价值输出要求对于每组输⼊数据,按出队次序输出每个结点的信息,包括所在层数,编号,背包中物品重量和价值。
每个结点的信息占⼀⾏,如果是叶⼦结点且其所代表的背包中物品价值⼤于当前最优值(初始为0),则输出当前最优值 bestv 和最优解bestx(另占⼀⾏)参见样例输出测试数据输⼊⽰例5 32 23 22 3输出⽰例1 1 0 02 2 2 23 5 2 24 10 4 5bestv=5, bestx=[ 1 0 1 ]4 11 2 23 4 5 42 3 0 0⼩贴⼠可采⽤如下的结构体存储结点:typedef struct{int no; // 结点在堆中的标号int sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // 优先值 sv/sw}Node;#include<stdio.h>#include<math.h>#include<string.h>typedef struct {int no; // 结点标号int id; // 节点idint sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // sv/sw}Node;int surplusValue(int *v,int n,int y) {int sum = 0;for(int i = y; i <= n; i++) {sum += v[i];}return sum;}void qsort(Node *que,int l,int r) {int len = r - l + 1;int flag;for(int i = 0; i < len; i ++) {flag = 0;for(int j = l; j < l + len - i; j++) {if(que[j].prior < que[j+1].prior) {Node t = que[j];que[j] = que[j+1];que[j+1] = t;flag = 1;}}//if(!flag ) return;}}void branchknap(int *w,int *v,int c,int n) {int bestv = 0;int f = 0;int r = 0;Node que[3000];memset(que,0,sizeof(que));int path[15];que[0].no = 1;que[0].id = que[0].sv = que[0].sw = que[0].prior = 0;while(f <= r) {Node node = que[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;printf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp % 2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++ ;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id + 1]) <= c && surplusValue(v,n,node.id+1) + node.sv > bestv) { r++;que[r].id = node.id + 1;que[r].no = node.no*2;int id = node.id + 1;que[r].sv = node.sv + v[id];que[r].sw = node.sw + w[id];que[r].prior = que[r].sv / (que[r].sw*1.0);}if(surplusValue(v,n,node.id+2) + node.sv > bestv) {r++;que[r].id = node.id + 1;que[r].no = node.no*2 + 1;que[r].sv = node.sv;que[r].sw = node.sw;que[r].prior = node.prior;}}f++;qsort(que,f,r);}}int main() {int c,n;int w[15],v[15];while(~scanf("%d %d",&c,&n)){for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap(w,v,c,n);}return 0;}#include<stdio.h>#include<math.h>#include<string.h>typedef int bool;#define true 1#define false 0struct Node{int no; // ?áµ?±êo?int id; //jie dian idint sw; // ±3°ü?D·µá?int sv; // ±3°ü?D·µ?µdouble prior;};struct Node queuee[2000];int w[15],v[15];int bestv = 0,c,n;int path[15]; //lu jingint surplusValue(int y) {int sum = 0;for(int i = y; i <= n; i++)sum += v[i];return sum;}void qsort(int l,int r) {// printf("------\n");int len = r - l + 1;//printf("----%d %d %d-----\n",l,r,len);bool flag;for(int i = 0; i < len ; i++) {flag = false;for(int j = l; j <l+ len -i ;j++) {if(queuee[j].prior < queuee[j+1].prior) {struct Node temp = queuee[j];queuee[j] = queuee[j+1];queuee[j+1] = temp;flag = true;}//if(!flag) return;}}// printf("---排序嘻嘻---\n");//for(int i = l; i <= r;i++ )// printf("***%d : %.2lf\n",queuee[i].no,queuee[i].prior);// printf("\n------\n");}void branchknap() {bestv = 0;int f = 0;int r = 0;queuee[0].no = 1;queuee[0].id = 0;queuee[0].sv = 0;queuee[0].sw = 0;queuee[0].prior = 0;// printf("f: %d r: %d\n",f,r);while(f <= r) {struct Node node = queuee[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;//TODOprintf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp%2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id+1]) <= c && surplusValue(node.id+1) + node.sv > bestv) { r++;//printf("%d\n",(node.sw + w[node.id+1]));queuee[r].id = node.id+1;queuee[r].no = node.no*2;int id = node.id+1;queuee[r].sv = node.sv + v[id];queuee[r].sw = node.sw + w[id];queuee[r].prior = queuee[r].sv/(queuee[r].sw*1.0);//printf("进队id: %d\n",queuee[r].no) ;//printf("%d %d %d\n",id,v[id], w[id]);}if(surplusValue(node.id+2) + node.sv > bestv) {r++;queuee[r].id = node.id+1;queuee[r].no = node.no*2 + 1;queuee[r].sv = node.sv ;queuee[r].sw = node.sw ;queuee[r].prior = node.prior;//printf("进队id: %d\n",queuee[r].no) ;}}f++;qsort(f,r);}}int main() {while(~scanf("%d %d",&c,&n)){memset(queuee,0,sizeof(queuee));for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap();}return 0;}。
分支界限方法01背包问题解题步骤
分支界限方法是一种用于解决优化问题的算法。
在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。
01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。
2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。
假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。
对于01背包问题,可以初始化dp数组的第一行和第一列为0。
4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。
分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。
5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。
分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。
分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。
在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。
掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。
分支界限方法在解决01背包问题的过程中,具有重要的作用。
0_1背包问题的多种解法
页脚内容1一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。
首先说明一下0-1背包问题拥有最优解。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。
因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。
由于程序过于简单,在这里就不再给出,用实例说明求解过程。
下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。
优先队列式分支限界法求解0-1背包问题
算法分析与设计实验报告第7 次实验}1、测试自己输入的小规模数据2、测试随机生成1003、随机生成1000数据4、随机生成1000数据附录:完整代码#include <iostream>#include<time.h>#include<algorithm>#include<fstream>using namespace std;ifstream in("input.txt");ofstream out("output.txt");typedef int Typew;typedef int Typep;//物品类class Object{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:int operator <= (Object a) const{return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};//树结点类class bbnode{friend class Knap;friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); private:bbnode *parent; //指向父节点的指针int LChild;};//堆结点类class HeapNode{friend class Knap;friend class MaxHeap;public:operator Typep()const{return uprofit;};private:Typep uprofit, //结点的价值上界profit; //结点所相应的价值Typew weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针};//最大堆类class MaxHeap{public:MaxHeap(int maxElem){HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:Typep MaxKnapsack();private:MaxHeap *H;Typep Bound(int i);void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);bbnode *E; //指向扩展结点的指针Typew c; //背包容量int n; //物品总数Typew *w; //物品重量数组(以单位重量价值降序)Typep *p; //物品价值数组(以单位重量价值降序)Typew cw; //当前装包重量Typep cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){int i = 1;for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i/2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){if(size >0 ){N = HeapElem[1];int i = 1;while(i < size){if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit){HeapElem[i] = HeapElem[i*2];i = i*2;}else{if(i*2 <= size){HeapElem[i] = HeapElem[i*2];i = i*2;}elsebreak;}}if(i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}Typep Knap::MaxKnapsack(){H = new MaxHeap(10000);bestx = new int [n+1];int i = 1;E = 0;cw = 0;cp = 0;Typep bestp = 0;Typep up = Bound(1);while (i != n+1){Typew wt = cw + w[i];if(wt <= c) {if(cp + p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], 1, i);}up = Bound(i + 1);if(up >= bestp)AddLiveNode(up, cp, cw, 0, i);HeapNode* N;H->DeleteMax(N);E = N->elemPtr;cw = N->weight;cp = N->profit;up = N->uprofit;i = N->level + 1;}for (int i = n; i > 0; i--){bestx[i] = E->LChild;E = E->parent;}return cp;}Typep Knap::Bound(int i){Typew cleft = c - cw;Typep b = cp;while (i<=n && w[i] <= cleft){cleft -= w[i];b += p[i];i++;}if(i<=n) b += p[i]/w[i] * cleft;return b;}void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level) {bbnode *b=new bbnode;b->parent=E;b->LChild=ch;HeapNode *N = new HeapNode;N->uprofit=up;N->profit=cp;N->weight=cw;N->level=level;N->elemPtr=b;H->InsertMax(N);}//Knapsack返回最大价值,最优值保存在bestxTypep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx){Typew W = 0;Typep P = 0;Object *Q = new Object[n];for(int i =1; i<=n; i++){Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if (W <= c){for(int i =1; i<=n; i++){bestx[i] = p[i];}return P;}for(int i = 1; i<n; i++)for(int j = 1; j<= n-i; j++){if(Q[j-1].d < Q[j].d){Object temp = Q[j-1];Q[j-1] = Q[j];Q[j] = temp;}}Knap K;K.p = new Typep [n+1];K.w = new Typew [n+1];for(int i = 1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;Typep bestp = K.MaxKnapsack();for(int i = 1; i<=n; i++){bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}int main(){cout<<"请在input.txt文件中输入物品数量、背包容量"<<endl;int N ;in>>N;Typew c; //背包容量in>>c;int bestx[N+1]; //最优解int bestp; //最优值Typep p[N+1];//物品价值Typew w[N+1];//物品重量cout<<"在input.txt文件中读取的物品总数N = "<< N<<",背包容量C = "<< c<<endl; cout<<"请选择生成数据的规模大小:200请输入1,2000请输入2,20000请输入3"<<endl; int x;cin>>x;if(x==1){ofstream in1("input1.txt");srand(time(NULL));int n=200;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==2){ofstream in1("input1.txt");srand(time(NULL));int n=2000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==3){ofstream in1("input1.txt");srand(time(NULL));int n=20000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}cout<<"添加完毕后请输入1"<<endl;int m;cin>>m;clock_t start,finish;start=clock();for (int i = 1; i <= N; i++){in>>w[i];}for (int i = 1; i <= N; i++){in>>p[i];}cout<<"已在input文件中读取物品重量和价值。
分支限界法解决01背包问题
分⽀限界法解决01背包问题1. 问题描述设有n个物体和⼀个背包,物体i的重量为wi价值为pi ,背包的载荷为M, 若将物体i(1<= i <=n)装⼊背包,则有价值为pi . ⽬标是找到⼀个⽅案, 使得能放⼊背包的物体总价值最⾼.设N=3, W=(16,15,15), P=(45,25,25), C=30(背包容量)2. 队列式分⽀限界法可以通过画分⽀限界法状态空间树的搜索图来理解具体思想和流程每⼀层按顺序对应⼀个物品放⼊背包(1)还是不放⼊背包(0)步骤:①⽤⼀个队列存储活结点表,初始为空② A为当前扩展结点,其⼉⼦结点B和C均为可⾏结点,将其按从左到右顺序加⼊活结点队列,并舍弃A。
③按FIFO原则,下⼀扩展结点为B,其⼉⼦结点D不可⾏,舍弃;E可⾏,加⼊。
舍弃B④ C为当前扩展结点,⼉⼦结点F、G均为可⾏结点,加⼊活结点表,舍弃C⑤扩展结点E的⼉⼦结点J不可⾏⽽舍弃;K为可⾏的叶结点,是问题的⼀个可⾏解,价值为45⑥当前活结点队列的队⾸为F, ⼉⼦结点L、M为可⾏叶结点,价值为50、25⑦ G为最后⼀个扩展结点,⼉⼦结点N、O均为可⾏叶结点,其价值为25和0⑧活结点队列为空,算法结束,其最优值为50注:活结点就是不可再进⾏扩展的节点,也就是两个⼉⼦还没有全部⽣成的节点3. 优先队列式分⽀限界法3.1 以活结点价值为优先级准则步骤:①⽤⼀个极⼤堆表⽰活结点表的优先队列,其优先级定义为活结点所获得的价值。
初始为空。
②由A开始搜索解空间树,其⼉⼦结点B、C为可⾏结点,加⼊堆中,舍弃A。
③B获得价值45,C为0. B为堆中价值最⼤元素,并成为下⼀扩展结点。
④ B的⼉⼦结点D是不可⾏结点,舍弃。
E是可⾏结点,加⼊到堆中。
舍弃B。
⑤ E的价值为45,是堆中最⼤元素,为当前扩展结点。
⑥ E的⼉⼦J是不可⾏叶结点,舍弃。
K是可⾏叶结点,为问题的⼀个可⾏解价值为45。
⑦继续扩展堆中唯⼀活结点C,直⾄存储活结点的堆为空,算法结束。
01背包分支限定法
0—1背包问题一、实验目的学习掌握分支限定法思想。
二、实验内容用分支限定法求解0—1背包问题,并输出问题的最优解。
0—1背包问题描述如下:给定n种物品和一背包。
物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
三、实验条件Jdk1.5以上四、需求分析对于给定n种物品和一背包。
在容量最大值固定的情况下,要求装入的物品价值最大化。
五、基本思想:对物品的选取与否构成一棵解树,左子树表示不装入,右表示装入,通过检索问题的解树得出最优解,并用结点上界杀死不符合要求的结点。
六、详细设计/** Bound_Branch.java** Created on 2007年6月2日, 下午6:07** To change this template, choose Tools | Template Manager* and open the template in the editor.*/package sunfa;public class Bound_Branch {static double c;static int n;static double[]w;static double[]p;static double cw;static double cp;static int []bestX;static MaxHeap heap;//上界函数bound计算节点所相应价值的上界private static double bound(int i){double cleft=c-cw;double b=cp;while(i<=n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}//装填剩余容量装满背包if(i<=n)b+=p[i]/w[i]*cleft;return b;}//addLiveNode将一个新的活节点插入到子集树和优先队列中private static void addLiveNode(double up,double pp,double ww,int lev,BBnode par,boolean ch){//将一个新的活节点插入到子集树和最大堆中BBnode b=new BBnode(par,ch);HeapNode node =new HeapNode(b,up,pp,ww,lev);heap.put(node);}private static double bbKnapsack(){// TODO 自动生成方法存根//优先队列式分支限界法,返回最大价值,bestx返回最优解//初始化BBnode enode=null;int i=1;double bestp=0;//当前最优值double up=bound(1);//当前上界while(i!=n+1){//非叶子节点//检查当前扩展节点的右儿子子节点double wt=cw+w[i];if(wt<=c){if(cp+p[i]>bestp)bestp=cp+p[i];addLiveNode(up,cp+p[i],cw+w[i],i+1,enode,true);}up=bound(i+1);if(up>=bestp)addLiveNode(up,cp,cw,i+1,enode,false);HeapNode node =(HeapNode)heap.removeMax();enode=node.liveNode;cw=node.weight;cp=node.profit;up=node.upperProfit;i=node.level;}for(int j=n;j>0;j--){bestX[j]=(enode.leftChild)?1:0;enode=enode.parent;}return cp;}public static double knapsack(double []pp,double []ww,double cc,int []xx){ //返回最大值,bestx返回最优解c=cc;n=pp.length-1;//定义以单位重量价值排序的物品数组Element[]q=new Element[n];double ws=0.0;double ps=0.0;for(int i=1;i<=n;i++){q[i-1]=new Element(i,pp[i]/ww[i]);ps+=pp[i];ws+=ww[i];}if(ws<=c){for(int i=1;i<=n;i++)xx[i]=1;return ps;}//以单位重量排序MergeSort.mergeSort(q);//初始化数据成员p=new double[n+1];w=new double[n+1];for(int i=1;i<=n;i++){p[i]=pp[q[n-i].id];w[i]=ww[q[n-i].id];}cw=0.0;cp=0.0;bestX = new int[n+1];heap = new MaxHeap(n);double maxp = bbKnapsack();for(int i=1;i<=n;i++)xx[q[n-i].id]=bestX[i];return maxp;}public static void main(String [] args){double w[]={2,2,6,5,4};double v[]={6,3,4,5,6};double c=10;int []x = new int[5];double m = knapsack(v,w,c,x);for(int i=0;i<5;i++)System.out.print(x[i]);}}//子空间中节点类型class BBnode{BBnode parent;//父节点boolean leftChild;//左儿子节点标志BBnode(BBnode par,boolean ch){parent=par;leftChild=ch;}}class HeapNode implements Comparable{BBnode liveNode; // 活节点double upperProfit; //节点的价值上界double profit; //节点所相应的价值double weight; //节点所相应的重量int level; // 活节点在子集树中所处的层次号//构造方法public HeapNode(BBnode node, double up, double pp , double ww,int lev){ liveNode = node;upperProfit = up;profit = pp;weight = ww;level = lev;}public int compareTo(Object o) {double xup = ((HeapNode)o).upperProfit;if(upperProfit < xup)return -1;if(upperProfit == xup)return 0;elsereturn 1;}}class Element implements Comparable{int id;double d;public Element(int idd,double dd){id=idd;d=dd;}public int compareTo(Object x){double xd=((Element)x).d;if(d<xd)return -1;if(d==xd)return 0;return 1;}public boolean equals(Object x){return d==((Element)x).d;}}class MaxHeap{static HeapNode [] nodes;static int nextPlace;static int maxNumber;public MaxHeap(int n){maxNumber = (int)Math.pow((double)2,(double)n);nextPlace = 1;//下一个存放位置nodes = new HeapNode[maxNumber];}public static void put(HeapNode node){nodes[nextPlace] = node;nextPlace++;heapSort(nodes);}public static HeapNode removeMax(){HeapNode tempNode = nodes[1];nextPlace--;nodes[1] = nodes[nextPlace];heapSort(nodes);return tempNode;}private static void heapAdjust(HeapNode [] nodes,int s,int m){ HeapNode rc = nodes[s];for(int j=2*s;j<=m;j*=2){if(j<m&&nodes[j].upperProfit<nodes[j+1].upperProfit)++j;if(!(rc.upperProfit<nodes[j].upperProfit))break;nodes[s] = nodes[j];s = j;}nodes[s] = rc;}private static void heapSort(HeapNode [] nodes){for(int i=(nextPlace-1)/2;i>0;--i){heapAdjust(nodes,i,nextPlace-1);}}}主程序运行结果:。
分支限界法解决01背包问题
分⽀限界法解决01背包问题 分⽀限界法和之前讲的回溯法有⼀点相似,两者都是在问题的解的空间上搜索问题的解。
但是两者还是有⼀些区别的,回溯法是求解在解的空间中的满⾜的所有解,分⽀限界法则是求解⼀个最⼤解或最⼩解。
这样,两者在解这⼀⽅⾯还是有⼀些不同的。
之前回溯法讲了N后问题,这个问题也是对于这有多个解,但是今天讲的01背包问题是只有⼀个解的。
下⾯就讲讲分⽀限界法的基本思想。
分⽀限界法常以⼴度优先或以最⼩消耗(最⼤效益)优先的⽅式搜索问题的解空间树。
问题的解空间树是表⽰问题解空间的⼀颗有序树,常见的有⼦集树和排列树。
分⽀限界法和回溯法的区别还有⼀点,它们对于当前扩展结点所采⽤的扩展⽅式也是不相同的。
分⽀限界法中,对于每⼀个活结点只有⼀次机会成为扩展结点。
活结点⼀旦成为了扩展结点,就⼀次性产⽣其所有的⼦结点,⼦结点中,不符合要求的和⾮最优解的⼦结点将会被舍弃,剩下的⼦结点将加⼊到活结点表中。
再重复上⾯的过程,直到没有活结点表中没有结点,⾄此完成解决问题的⽬的。
分⽀限界法⼤致的思想就是上⾯的叙述,现在就可以发现,对于结点的扩展将会成为分⽀限界法的主要核⼼。
所以,分⽀限界法常见的有两种扩展结点的⽅式,1.队列式(FIFO)分⽀限界法,2.优先队列式分⽀限界法。
两种⽅法的区别就是对于活结点表中的取出结点的⽅式不同,第⼀种⽅法是先进先出的⽅式,第⼆种是按优先级取出结点的⽅式。
两中⽅法的区别下⾯也会提到。
在背包问题中还会提到⼀个⼦树上界的概念,其实就是回溯法中的剪枝函数,只不过,分⽀限界法⾥的剪枝函数改进了⼀些,剪枝函数同样也是分⽀限界法⾥⽐较重要的东西。
下⾯就讲⼀讲01背包问题的实现。
01背包问题和前⾯讲的背包问题的区别不⼤,就是01背包问题的物品不可以只放⼊部分,01背包问题的物品只能放⼊和不放⼊两个选择,这也是名字中01的原因。
其他的和背包问题相差不⼤,这⾥也不再累述。
算法的主体是⽐较容易想的,⾸先,将数据进⾏处理,这也是上⾯讲到的第⼆种取结点的⽅式(优先队列式)。
分支限界法0-1背包问题-队列式
分⽀限界法0-1背包问题-队列式⼀.分⽀限界法概述(1)分⽀限界法就是采⽤⼴度优先的策略,依次搜索活结点所有的分枝,也就额是所有的相邻结点。
在求最优解时采⽤⼀个限界函数,计算限界函数值,选择⼀个最有利的⼦节点作为扩展结点,使搜索树朝着解空间树上有最优解的分⽀推进,以便尽快找出⼀个最优解。
(2)常见的两种分⽀限界法 先进先出(FIFO)队列式:在先进先出的分⽀限界法中,⽤队列作为组织活结点表的数据结构,并按照队列先进先出的原则选择结点作为扩展结点。
优先队列(PQ):⽤优先队列作为组织活结点表的数据结构。
⼆.0-1背包问题问题:给定n种物品和⼀背包。
物品i的重量是wi,其价值为pi,背包的容量为C。
问应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?#include<iostream>#include<queue>using namespace std;const int maxn=99;int n,c;int w[maxn];int v[maxn];int bestv=0;int bestx[maxn];int total=1; //解空间中的节点数累计,全局变量struct nodetype //队列中的结点类型{int no; //结点编号,从1开始int i; //当前结点在搜索空间中的层次int w; //当前结点的总重量int v; //当前结点的总价值int x[maxn]; //当前结点包含的解向量double ub; //上界};void input(){cout<<"请输⼊物品的个数:"<<endl;cin>>n;cout<<"请输⼊每个物品的重量及价值(如5 4):"<<endl;for(int i = 1; i <= n; i++){cin>>w[i]>>v[i];}cout<<"请输⼊背包的容量:"<<endl;cin>>c;}void bound(nodetype &e) //计算分⽀结点e的上界{int i=e.i+1; //考虑结点e的余下物品int sumw=e.w;double sumv=e.v;while((sumw+w[i]<=c)&&i<=n){sumw+=w[i];sumv+=v[i];i++;}if(i<=n) //余下物品只能部分装⼊e.ub=sumv+(c-sumw)*v[i]/w[i];else e.ub=sumv;}void enqueue(nodetype e,queue<nodetype> &qu)//结点e进队qu{if(e.i==n) //到达叶⼦节点,不在扩展对应⼀个解{if(e.v>bestv) //找到更⼤价值的解{bestv=e.v;for(int j=1;j<=n;j++)bestx[j]=e.x[j];}}else qu.push(e); //⾮叶⼦结点进队}void bfs(){int j;nodetype e,e1,e2;queue<nodetype> qu;e.i=0;e.w=0;e.v=0;e.no=total++;for(j=1;j<=n;j++)e.x[j]=0;bound(e);qu.push(e);while(!qu.empty()){e=qu.front();qu.pop(); //出队结点eif(e.w+w[e.i+1]<=c) //剪枝,检查左孩⼦结点{e1.no=total++; //建⽴左孩⼦结点e1.i=e.i+1;e1.w=e.w+w[e1.i];e1.v=e.v+v[e1.i];for(j=1;j<=n;j++)e1.x[j]=e.x[j];e1.x[e1.i]=1;bound(e1); //求左孩⼦的上界enqueue(e1,qu); //左孩⼦结点进队}e2.no=total++;e2.i=e.i+1;e2.w=e.w;e2.v=e.v;for(j=1;j<=n;j++)e2.x[j]=e.x[j];e2.x[e2.i]=0;bound(e2);if(e2.ub>bestv) //若右孩⼦结点可⾏,则进队,否则被剪枝 enqueue(e2,qu);}}void output(){cout<<"最优值是:"<<bestv<<endl;cout<<"(";for(int i=1;i<=n;i++)cout<<bestx[i]<<"";cout<<")";}int main(){input();bfs();output();return0;}。
01背包问题多种解法
一、问题描绘0/1 背包问题 :现有 n 种物件,对1<=i<=n,已知第i 种物件的重量为正整数W i,价值为正整数V i,背包能蒙受的最大载重量为正整数W ,现要求找出这n 种物件的一个子集,使得子集中物品的总重量不超出W 且总价值尽量大。
(注意:这里对每种物件或许全取或许一点都不取,不一样意只取一部分)二、算法剖析依据问题描绘,能够将其转变为以下的拘束条件和目标函数:nw i x i W(1)i1x i{ 0,1}( 1i n)nmax v i x i (2)i1于是,问题就归纳为找寻一个知足拘束条件( 1 ),并使目标函数式( 2 )达到最大的解向量 X(x1, x2 , x3 ,......, x n ) 。
第一说明一下0-1 背包问题拥有最优解。
假定 (x1, x2 , x3 ,......, x n ) 是所给的问题的一个最优解,则 (x2 , x3,......, x n ) 是下边问题的nw i x i W w1x1 maxn一个最优解:i 2v i x i。
假如不是的话,设( y2, y3 ,......, y n ) 是这x i{ 0,1}( 2i n)i 2n n n个问题的一个最优解,则v i y i v i x i,且 w1x1w i y i W 。
因此,i 2i 2i 2n n nv1x1v i y i v1 x1v i x i v i x i,这说明 (x1, y2 , y3 ,........, y n ) 是所给的0-1 背包问i 2i 2i 1题比 ( x1 , x2 , x3 ,........, x n ) 更优的解,进而与假定矛盾。
穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物件会合的所有子集,找出所有可能的子集(总重量不超出背包重量的子集),计算每个子集的总重量,而后在他们中找到价值最大的子集。
因为程序过于简单,在这里就不再给出,用实例说明求解过程。
背包问题
(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。
设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。
这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。
一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。
然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。
算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。
if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
动态规划算法0-1背包问题课件PPT
回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
实验报告-分支限界法01背包
《算法设计与分析》实验报告六学号: 1004091130 姓名:金玉琦日期: 2011-11-17 得分:一、实验内容:运用分支限界法解决0-1背包问题。
二、所用算法的基本思想及复杂度分析:分支限界法分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。
因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题。
0-1背包问题1)基本思想给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。
对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数:u b = v + ( W - w) × ( vi + 1/ wi + 1 )根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。
2)复杂度分析时间复杂度是O(2n);三、源程序及注释:#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>using namespace std;int *x;struct node{//结点表结点数据结构node *parent,//父结点指针*next; //后继结点指针int level,//结点的层bag,//节点的解cw,//当前背包装载量cp;//当前背包价值float ub; //结点的上界值};class Knap{private:struct node *front, //队列队首*bestp,*first; //解结点、根结点int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解public:void Sort();Knap(int *pp,int *ww,int cc,int nn);~Knap();float Bound(int i,int cw,int cp);//计算上界限node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点void addnode(node *nod);//将结点添加到队列中void deletenode(node *nod);//将结点队列中删除struct node *nextnode(); //取下一个void display(); //输出结果void solvebag(); //背包问题求解};Knap::Knap(int *pp,int *ww,int cc,int nn){int i;n=nn;c=cc;p=new int[n];w=new int[n];M=new int[n];for(i=0;i<n;i++){p[i]=pp[i];w[i]=ww[i];M[i]=i;}front=new node[1];front->next=NULL;lbestp=0;bestp=new node[1];bestp=NULL;Sort();}Knap::~Knap(){delete []first;delete []front;delete []bestp;delete []p;delete []w;}float Knap::Bound(int i,int cw,int cp){// 计算上界int cleft=c-cw;float b=(float)cp;while (i<n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}if (i<n) b+=1.0*p[i]/w[i]*cleft;return b;}node * Knap::nnoder(struct node *pa,int ba,float uub) {//生成一个新结点node * nodell=new(node);nodell->parent=pa;nodell->next=NULL;nodell->level=(pa->level)+1;nodell->bag=ba;nodell->ub=uub;if(ba==1){nodell->cw=pa->cw+w[pa->level];nodell->cp=pa->cp+p[pa->level] ;}else{nodell->cw=pa->cw;nodell->cp=pa->cp;}return(nodell);}void Knap::addnode(node *no){//将结点加入优先队列node *p=front->next,*next1=front;float ub=no->ub;while(p!=NULL){if(p->ub<ub){no->next=p;next1->next=no;break;}next1=p;p=p->next;}if(p==NULL){next1->next=no;}}node *Knap::nextnode(){//取上限最大结点node *p=front->next;front->next=p->next;return(p);}void Knap::Sort(){int i,j,k,kkl;float minl;for(i=1;i<n;i++){minl=1.0*p[i]/w[i];k=0;for(j=1;j<=n-i;j++){if(minl<1.0*p[j]/w[j]){minl=1.0*p[j]/w[j];swap(p[k],p[j]);swap(w[k],w[j]);swap(M[k],M[j]);k=j;}}}}void Knap::display(){int i;cout<<"最大价值是:"<<lbestp<<endl;for(i=n;i>=1;i--){x[M[i-1]]=bestp->bag;bestp=bestp->parent;}cout<<"变量值为:"<<endl;for(i=1;i<=n;i++)cout<<"x("<<setw(2)<<i<<")="<<x[i-1]<<endl;}void Knap::solvebag(){//背包问题求解int i;float ubb;node *aa;first=new node[1]; //根结点first->parent=NULL;first->next=NULL;first->level=0;first->cw=0;first->cp=0;first->bag=0;ubb=Bound(0,0,0);first->ub=ubb;front->next=first;while(front->next!=NULL){aa=nextnode();i=aa->level;if(i==n-1){if(aa->cw+w[i]<=c&&(long)(aa->cp+p[i])>lbestp){lbestp=aa->cp+p[i];bestp=nnoder(aa,1,(float)lbestp);}if((long)(aa->cp)>lbestp){lbestp=aa->cp;bestp=nnoder(aa,0,(float)lbestp);}}if(i<n-1){if(aa->cw+w[i]<=c&&Bound(i+1,aa->cw+w[i],aa->cp+p[i])>(float)lbestp){ubb=Bound(i,aa->cw+w[i],aa->cp+p[i]);addnode(nnoder(aa,1,ubb));}ubb=ubb=Bound(i,aa->cw,aa->cp);if(ubb>lbestp)addnode(nnoder(aa,0,ubb));}}display();}void main(){int c,n;int i=0;int *p;int *w;cout<<"请输入背包容量:"<<endl;cin>>c;cout<<"请输入物品数:"<<endl;cin>>n;x=new int[n];p=new int[n];w=new int[n];cout<<"请输入"<<n<<"个物品的重量:"<<endl;for(i=0;i<n;i++)cin>>w[i];cout<<"请输入"<<n<<"个物品价值:"<<endl;for(i=0;i<n;i++)cin>>p[i];x=new int[n];Knap knbag(p,w,c,n);knbag.solvebag();getch();return;}四、运行输出结果:五、调试和运行程序过程中产生的问题、采取的措施及获得的相关经验教训:解决该问题首先要确定一个合适的限界函数数, 并根据限界函数确定目标函数的界[down,up],然后按照广度优先策略遍历问题的解空间树,在分支结点上,依次搜索该结点的所有孩子结点,分别估算这些孩子结点的目标函数的可能取值,如果某孩子结点的目标函数可能取得的值超出目标函数的界, 则将其丢弃, 因为从这个结点生成的解不会比目前已经得到的解更好; 否则, 将其加入待处理结点表中。
《背包问题详解》课件
VS
约束条件
背包的容量有限,每个物品的数量和重量 、价值是已知的,目标是最大化背包中物 品的总价值。
多重背包问题的最优解法
贪心算法
按照物品单位重量的价值进行排序,优先选择单位重量价值最高的物品,直到背包满或者无法再放入更多物品。
动态规划
将问题分解为子问题,通过解决子问题的最优解来得到原问题的最优解。具体来说,对于多重背包问题,可以将 问题分解为多个一维背包问题,然后分别求解每个一维背包问题的最优解,最后取最优解中的最大值。
02
背包问题通常涉及到多个约束条 件,如物品的重量、价值、体积 等,以及一个目标函数,如背包 中物品的总价值或总重量。
背包问题的分类
根据物品能否分割,背包问题可以分为可分割问题和不可分 割问题。在可分割问题中,物品可以被切割成任意大小,而 在不可分割问题中,物品只能以完整的形式装入背包。
根据是否考虑时间因素,背包问题可以分为静态问题和动态 问题。在静态问题中,所有物品的属性和背包的容量都是固 定的,而在动态问题中,物品的属性和背包的容量可能会随 着时间变化。
完全背包问题的最优解法
最优解法通常采用贪心算法,即每次选择单位重量价值最高的物品,直到背包容量用完为止。这种方 法能够得到最优解,但并不是所有情况下都能找到最优解。
在某些情况下,贪心算法可能会错过最优解,因为它的选择是基于当前的最优选择,而不是全局的最 优选择。
完全背包问题的动态规划解法
动态规划是解决完全背包问题的另一 种方法,它通过将问题分解为更小的 子问题来求解。对于完全背包问题, 动态规划的思路是先解决子问题,再 根据子问题的解来解决原问题。
《背包问题详解》ppt 课件
目录
• 背包问题的定义与分类 • 0-1背包问题详解 • 多重背包问题详解 • 完全背包问题详解 • 变种背包问题详解
分支限界法 01背包问题c语言
分支限界法 01背包问题c语言分支限界法是一种解决组合优化问题的算法。
其中,01背包问题是一种经典的背包问题,它要求在给定的容量下,选择商品的组合,使得组合的总价值达到最大化,但组合中每种商品只能选择一次。
C语言是一种广泛使用的编程语言,适用于实现各种算法和数据结构。
下面我将用C语言实现分支限界法来解决01背包问题。
首先,我们定义一个结构体用来表示商品的信息,包括商品的重量和价值:```typedef struct {int weight;int value;} Item;```接下来,我们定义一个递归函数来实现分支限界法。
该函数通过深度优先搜索的方式,尝试不同的选择,并计算当前组合的总价值。
如果当前组合的总价值已经超过了已知的最优解,则剪枝,不再继续搜索。
```void branchAndBound(int index, int capacity, int currentWeight, int currentValue, int n, Item items[], int bestValue, int choice[]) {if (index >= n || currentWeight >= capacity) {if (currentValue > bestValue) {bestValue = currentValue;// 更新最优解for (int i = 0; i < n; i++) {choice[i] = tempChoice[i];}}return;}// 选择当前商品if (currentWeight + items[index].weight <= capacity) {currentWeight += items[index].weight;currentValue += items[index].value;tempChoice[index] = 1;branchAndBound(index + 1, capacity, currentWeight, currentValue, n, items, bestValue, choice);currentWeight -= items[index].weight;currentValue -= items[index].value;tempChoice[index] = 0;}// 不选择当前商品branchAndBound(index + 1, capacity, currentWeight, currentValue, n, items, bestValue, choice);}最后,我们可以在主函数中调用分支限界法来解决01背包问题。
0-1背包问题(分支限界法)
分支限界法——01背包问题12软工028 胡梦颖一、问题描述0-1背包问题:给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为C。
应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。
不能将物品i装入背包多次,也不能只装入部分的物品i。
二、问题分析分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。
一般情况下,分支限界法与回溯法的求解目标不同。
回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。
回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。
分支限界法的搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一扩展结点。
为了有效地选择下一扩展结点,加速搜索的进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。
这种方式称为分支限界法。
人们已经用分支限界法解决了大量离散最优化的问题。
三.源代码#include <stdio.h>#include<malloc.h>#define MaxSize 100 //结点数的最大值typedef struct QNode{float weight;float value;int ceng;struct QNode *parent;bool leftChild;}QNode,*qnode;typedef struct{qnode Q[MaxSize];int front,rear;}SqQueue; //存放结点的队列SqQueue sq;float bestv=0; //最优解int n=0; //实际物品数float w[MaxSize]; //物品的重量float v[MaxSize]; //物品的价值int bestx[MaxSize]; // 存放最优解qnode bestE;void InitQueue(SqQueue &sq ) //队列初始化{sq.front=1;sq.rear=1;}bool QueueEmpty(SqQueue sq) //队列是否为空{if(sq.front==sq.rear)return true;elsereturn false;}void EnQueue(SqQueue &sq,qnode b) //入队{if(sq.front==(sq.rear+1)%MaxSize){printf("队列已满!");return;}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;} qnode DeQueue(SqQueue &sq) //出队{qnode e;if(sq.front==sq.rear){printf("队列已空!");return 0;}e=sq.Q[sq.front];sq.front=(sq.front+1)%MaxSize;return e;}void EnQueue1(float wt,float vt, int i ,QNode *parent, bool leftchild) {qnode b;if (i==n) //可行叶子结点{ if (vt==bestv){ bestE=parent;bestx[n]=(leftchild)?1:0;}return;}b=(qnode)malloc(sizeof(QNode)); //非叶子结点b->weight=wt;b->value=vt;b->ceng=i;b->parent=parent;b->leftChild=leftchild;EnQueue(sq,b);}void maxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1; //当前的扩展结点所在的层float ew=0; //扩展节点所相应的当前载重量float ev=0; //扩展结点所相应的价值qnode e=NULL;qnode t=NULL;InitQueue(sq);EnQueue(sq,t); //空标志进队列while (!QueueEmpty(sq)){wt=ew+w[i];vt=ev+v[i];if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true); // 左儿子结点进队列} EnQueue1(ew,ev,i,e,false); //右儿子总是可行;e=DeQueue(sq); // 取下一扩展结点if (e == NULL){if (QueueEmpty(sq))break;EnQueue(sq,NULL); // 同层结点尾部标志e=DeQueue(sq); // 取下一扩展结点i++;}ew=e->weight; //更新当前扩展结点的值ev=e->value;}printf("最优取法为:\n");for( int j=n-1;j>0;j--) //构造最优解{bestx[j]=(bestE->leftChild?1:0);bestE=bestE->parent;}for(int k=1;k<=n;k++){if(bestx[k]==1)printf("物品%d:重量:%.1f,价值:%.1f\n",k,w[k],v[k]);}printf("最大价值为:%.1f\n",bestv);}void main(){int c;float ewv[MaxSize];printf("请输入背包的最大容量v:");scanf("%d",&c);printf("请输入物品总数n:");scanf("%d",&n);printf("请输入物品的重量和单位重量价值:\n");for(int i=1;i<=n;i++){printf("第%d件物品:",i);scanf("%f%f",&w[i],&ewv[i]);v[i]=w[i]*ewv[i];}maxLoading(w,v,c);}五.实验结果。
实验 4 用分支限界法实现0-1背包问题
实验四用分支限界法实现0-1背包问题一.实验目的1.熟悉分支限界法的基本原理。
2.通过本次实验加深对分支限界法的理解。
??二.实验内容及要求};double MaxBound(int i);double Knap();void AddLiveNode(double up,double cp,double cw,bool ch,int level);//up是价值上界,cp是相应的价值,cw是该结点所相应的重量,ch是tureorfalsestack<HeapNode>High;//最大队Highdouble w[N],p[N];//把物品重量和价值定义为双精度浮点数double cw,cp,c;//cw为当前重量,cp为当前价值,定义背包容量为cint n;//货物数量为int main(){cout<<"请输入背包容量:"<<endl;cin>>c;{double cleft=c-cw;//剩余容量double b=cp;//价值上界while(k<=n&&w[k]<=cleft)//以物品单位重量价值递减装填剩余容量{cleft-=w[k];b+=p[k];k++;}if(k<=n)b+=p[k]/w[k]*cleft;//装填剩余容量装满背包return b;cw=cp=0;double bestp=0;//best为当前最优值double up=MaxBound(1);//价值上界//搜索子集空间树while(1)//非叶子结点{double wt=cw+w[i];if(wt<=c)//左儿子结点为可行结点{if(cp+p[i]>bestp)bestp=cp+p[i];AddLiveNode(up,cp+p[i],cw+w[i],true,i+1);。
01背包问题
01背包问题一、问题描述一个正在抢劫商店的小偷发现了n个商品,第i个商品价值V i美元,重Wi磅,V i和Wi都是整数;这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳W磅的商品,W是一个整数。
我们称这个问题是01背包问题,因为对每个商品,小偷要么把它完整拿走,要么把它留下;他不能只拿走一个商品的一部分,或者把一个商品拿走多次。
二、解决方案背包问题作为NP完全问题,暂时不存在多项式时间算法1.动态规划2.回溯法3.分支界限法三、方案详解3.1动态规划动态规划(Dynamic programming,DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
动态规划常常适用于有重叠子问题和最优子结构性质的问题。
概述:动态规划在查找有很多重叠子问题的情况的最优解时有效。
它将问题重新组合成子问题。
为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个问题都被解决。
因此,动态规划保存递归时的结果,因而不会在解决同样的问题时花费时间。
动态规划只能应用于有最优子结构的问题。
最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似)。
简单地说,问题能够分解成子问题来解决。
特征:1、问题存在最优子结构2、问题的最优解需要在子问题中作出选择3、通过查表解决重叠子问题,避免重复计算动态规划的设计:1.刻画一个最优解的结构特征;2.递归地定义最优解的值;3.计算最优解的值,通常采用自底向上的方法;4.利用计算的信息构造一个最优解。
问题分析最优子结构:(1)问题分析:令f(i,j)表示在前i(0≤i<n)个物品中能够装入容量为j(0≤j≤W)的背包中的物品的最大价值,则可以得到如下的动态规划函数:(2)f[i,j]=0(i=0 OR j=0)f[i,j]=f[i-1,j] j<w i ①f[i,j]=max{f[i-1,j] ,f[i-1,j-wi] +vi } j>wi ②①式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;②式表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-wi的背包中的价值加上第i个物品的价值vi;(b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。
分支界线法01背包问题c语言
分支界线法01背包问题c语言一、问题描述01背包问题是常见的动态规划问题,其描述如下:有一个背包,最多能承载重量为W的物品。
现在有n个物品,其重量分别为w1, w2, ..., wn,价值分别为v1, v2, ..., vn。
要求选取若干物品放入背包,使得放入背包的物品总价值最大,且总重量不超过W。
二、分支界线法思想分支界线法是一种求解组合优化问题的常用方法。
在01背包问题中,分支界线法的思想是通过一个优先级队列,不断生成和扩展状态空间树,记录每个节点的上界评价函数值,并根据上界值进行搜索剪枝,直至获得最优解。
三、算法步骤1. 定义物品结构体```ctypedef struct {double value; // 物品价值double weight; // 物品重量double unitValue; // 物品单位价值} Item;```2. 比较函数定义(用于优先级队列)```cintpare(const void* a, const void* b) {Item* itemA = (Item*)a;Item* itemB = (Item*)b;double diff = itemB->unitValue - itemA->unitValue; return diff < 0 ? -1 : diff > 0 ? 1 : 0;}```3. 分支界线法求解01背包问题```cdouble knapsack(int n, double W, Item* items) {qsort(items, n, sizeof(Item),pare);double maxValue = 0;double currentWeight = 0;for (int i = 0; i < n; i++) {if (currentWeight + items[i].weight <= W) {currentWeight += items[i].weight;maxValue += items[i].value;} else {double rem本人nWeight = W - currentWeight;maxValue += items[i].unitValue * rem本人nWeight;break;}}return maxValue;}```四、代码实现解释1. 首先根据物品单位价值对物品进行排序,通过单位价值可以快速确定选择哪个物品放入背包;2. 依次选择单位价值最高的物品放入背包,若背包容量不足则按部分放入;3. 根据剩余容量,估算能够放入的最大价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
float v[MaxSize];
//物品的价值
int bestx[MaxSize];
// 存放最优解
qnode bestE; void InitQueue(SqQueue &sq ) //队列初始化
{
sq.front=1;
sq.rear=1;
} bool QueueEmpty(SqQueue sq) //队列是否为空
{ bestE=parent;
bestx[n]=(leftchild)?1:0;
}
return;
} b=(qnode)malloc(sizeof(QNode)); //非叶子结点
b->weight=wt;
b->value=vt;
b->ceng=i;
b->parent=parent;
b->leftChild=leftchild;
printf("第%d 件物品:",i); scanf("%f%f",&w[i],&ewv[i]); v[i]=w[i]*ewv[i]; } maxLoading(w,v,c); } 五.实验结果
}
sq.Q[sq.rear]=b;
sq.rear=(sq.rear+1)%MaxSize; } qnode DeQueue(SqQueue &sq) //出队
{
qnode e;
if(sq.front==sq.rear)
{ printf("队列已空!");
return 0;
}
e=sq.Q[sq.front];
EnQueue(sq,b);
}
void maxLoading(float w[],float v[],int c)
{
float wt=0;
float vt=0; int i=1;
//当前的扩展结点所在的层
float ew=0;
//扩展节点所相应的当前载重量
float ev=0;
//扩展结点所相应的价值
{
if(sq.front==sq.rear)
return true;
else
return false;
} void EnQueue(SqQueue &sq,qnode b) //入队
{
if(sq.front==(sq.rear+1)%MaxSize)
{ printf("队列已满!");
return;
}
for(int k=1;k<=n;k++)
{ if(bestx[k]==1) printf("物品%d:重量:%.1f,价值:%.1f\n",k,w[k],v[k]);
}
printf("最大价值为:%.1f\n",bestv); }
void main() {
int c; float ewv[MaxSize]; printf("请输入背包的最大容量 v:"); scanf("%d",&c); printf("请输入物品总数 n:"); scanf("%d",&n); printf("请输入物品的重量和单位重量价值:\n"); for(int i=1;i<=n;i++) {
// 取下一扩展结点
i++;
} ew=e->weight;
//更新当前扩展结点的值
ev=e->value;
} printf("最优取法为:\n");
for( int j=n-1;j>0;j--)
//构造最优解
{
bestx[j]=(bestE->leftChild?1:0);
bestE=bestE->parent;
三.源代码 #include <stdio.h> #include<malloc.h> #define MaxSize 100
//结点数的最大值
typedef struct QNode
{
float weight;
float value;
int ceng;
struct QNode *parent;
bool leftChild;
分支限界法——01 背包问题 12 软工 028 胡梦颖
一、 问题描述 0-1 背包问题:给定 n 种物品和一个背包。物品 i 的重量是 Wi,其价值为
Vi,背包的容量为 C。应如何选择装入背包的物品,使得装入背包中物品的总 价值最大?在选择装入背包的物品时,对每种物品 i 只有 2 种选择,即装入背包 或不装入背包。不能将物品 i 装入背包多次,也不能只装入部分的物品 i。
}QNode,*qnode;
typedef struct
{
qnode Q[MaxSize];
int front,rear; }SqQueue;
//存放结点的队列
SqQueue sq; float bestv=0;
//最优解
int n=0;
//实际物品数
float w[MaxSize];
//物品的重量
sq.front=(sq.front+1)%MaxSize;
return e;Fra bibliotek}void EnQueue1(float wt,float vt, int i ,QNode *parent, bool
leftchild)
{
qnode b; if (i==n)
//可行叶子结点
{ if (vt==bestv)
qnode e=NULL;
qnode t=NULL;
InitQueue(sq); EnQueue(sq,t);
//空标志进队列
while (!QueueEmpty(sq))
{
wt=ew+w[i];
vt=ev+v[i];
if (wt <= c)
{
if(vt>bestv)
bestv=vt;
EnQueue1(wt,vt,i,e,true);
二、 问题分析 分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。一
般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出解 空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条 件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极 小的解,即在某种意义下的最优解。由于求解目标不同,导致分支限界法与回 溯法对解空间的搜索方式也不相同。回溯法以深度优先的方式搜索解空间,而 分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。分支限界法的 搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前 的活结点表中选择下一扩展结点。为了有效地选择下一扩展结点,加速搜索的 进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活 结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解 的分支推进,以便尽快地找出一个最优解。这种方式称为分支限界法。人们已 经用分支限界法解决了大量离散最优化的问题。
// 左儿子结点进队
列
}
EnQueue1(ew,ev,i,e,false);
//右儿子总是可行;
e=DeQueue(sq);
// 取下一扩展结
点
if (e == NULL)
{
if (QueueEmpty(sq))
break; EnQueue(sq,NULL);
// 同层结点尾部标志
e=DeQueue(sq);