用待定系数法求一次函数解析式
用待定系数法求一次函数的解析式
用待定系数法求一次函数的解析式
用待定系数法求一次函数的解析式
一次函数的解析式可以用待定系数法来求。
待定系数法是指,在未知系数的函数中假定各个未知系数都为一个常数,然后用它们来求解该函数,最后得出最终的解析式。
例如,一次函数为 y=2ax+b,那么可以用待定系数法求解解析式: (1) 先将未知系数 a 和 b 分别假定为常数 K1 和 K2。
即y=K1x + K2
(2) 用实验数据求出 K1 和 K2 的值。
例如,实验数据如下表:
x t1 t2 t3
y t3 t7 t11
由上表可知,当 x=1 时, y=K1*1 + K2=3;
当 x=2 时,y=K1*2 + K2=7;
当 x=3 时,y=K1*3 + K2=11.
设K1=2,代入上式可得K2=1,即K1=2,K2=1。
即K1+K2=2+1=3
(3) 将 K1 和 K2 带入原函数中,得出最终的解析式。
- 1 -。
待定系数法求一次函数解析式题目和解析过程
题目:用待定系数法求一次函数解析式的题目和解析过程在代数学中,待定系数法是一种常用的方法,用来求解未知系数的值。
当我们需要求一次函数的解析式时,待定系数法可以帮助我们找到正确的表达式。
下面,我将和你一起探讨待定系数法在求一次函数解析式中的应用。
1. 确定一次函数的一般形式我们知道一次函数的一般形式是 y = ax + b,其中a和b分别代表斜率和截距。
在使用待定系数法时,我们需要先确定这个一般形式,以便后续进行系数的求解。
2. 根据已知条件列出方程接下来,我们需要根据题目提供的已知条件来列出方程。
如果已知函数过点(1, 2)和斜率为3,我们可以写出方程 y = 3x + b,并代入点(1, 2)来求解b的值。
3. 求解待定系数使用待定系数法,我们将已知的条件代入一般形式中,得到一个包含未知系数a和b的方程。
根据已知条件进行求解,逐步确定待定系数的值。
在已知函数过点(1, 2)和斜率为3的情况下,我们可以设定方程y = 3x + b,代入点(1, 2),得到 2 = 3*1 + b,从而求解出b的值为-1。
4. 得出一次函数的解析式根据求解得到的待定系数,我们可以得出一次函数的解析式。
在本例中,我们已知斜率为3,截距为-1,因此得出的一次函数解析式为 y = 3x - 1。
总结回顾:待定系数法作为一种常用的代数方法,可以帮助我们求解一次函数的解析式。
在使用待定系数法时,我们需要先确定一次函数的一般形式,然后根据已知条件列出方程,逐步求解待定系数的值,最终得出一次函数的解析式。
个人观点与理解:通过使用待定系数法,我们可以更快速、更准确地求解一次函数的解析式,尤其在已知条件复杂或需要精确求解时,待定系数法可以发挥其优势。
掌握待定系数法也有助于我们在代数方程的求解过程中提高效率和准确性。
希望以上内容可以帮助你更全面、深刻地理解待定系数法在求一次函数解析式中的应用。
如果有任何问题或需要进一步探讨,欢迎随时与我联系。
知识卡片-待定系数法求一次函数解析式
待定系数法求一次函数解析式能量储备●确定一次函数的表达式y=k x+b(k≠0),只需要求出k,b的值即可,它需要两个独立的条件:这两个条件通常是两个点,或两对x,y的值.●用待定系数法确定一次函数的表达式:先设出一次函数的表达式,如y=k x+b(k≠0),再将两个已知点(通常情况下,其中一个点是与y轴的交点)的横、纵坐标或两对x,y的值分别代入y=kx+b中,建立关于k,b的两个方程,通过解这两个方程求出k和b的值,从而确定其表达式,这种方法即为待定系数法.通关宝典★基础方法点方法点1:用待定系数法确定一次函数的表达式例1在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.一根弹簧不挂物体时长9 cm;当所挂物体的质量为3 kg时,弹簧长12 cm.写出y与x之间的关系式,并求出所挂物体的质量为6 kg时弹簧的长度.分析:因为弹簧的长度y是所挂物体质量x的一次函数,所以可设函数关系式为y=k x+b(k≠0).解:设y=k x+b(k≠0),根据题意,得9=b,①12=3k+b.②所以k=1.所以y=x+9.当x=6时,y=6+9=15,即所挂物体的质量为6 kg时,弹簧的长度为15cm.★★易混易误点易混易误点1: 将正比例函数与一次函数表达式混淆例2已知y是x的一次函数,并且当x=0时,y=1;当x=2时,y=3,求它的表达式.解:设它的表达式为y=k x+b(k≠0),因为当x=0时,y=1,所以b=1.又因为当x=2时,y=3,所以2k+b=3.所以k=1.所以y=x+1.,分析:在利用待定系数法求一次函数表达式时,首先应设一次函数表达式为y=k x+b(k≠0).本题易把一次函数表达式设为y=k x,导致错误.蓄势待发考前攻略考查根据实际问题中的条件或图象确定一次函数(或正比例函数)的表达式.多以选择题或填空题的形式出现,难度较小.完胜关卡。
待定系数法求一次函数解析式步骤一元一次方程中的待定系数
一、用待定系数法确定函数解析式的一般步骤
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。
二、一元一次方程中的待定系数的定义
二元一次方程组还可以用来求一个公式中的系数,这种方法叫作待定系数法。
这类问题主要是已知方程的解的情况,求方程的未知系数。
例如:二次函数经过某一点,还知道它的对称轴,和最高点,要我们求这个函数的解析式,我们在求这个解析式时设为y=ax2+bx+c,然后把点坐标和对称轴方程,最高点的表达式代入设的方程,进行求解,这就叫待定系数法。
待定系数法求一次函数解析式题目和解析过程
待定系数法求一次函数解析式题目和解析过程摘要:1.待定系数法简介2.一次函数的概念和形式3.如何使用待定系数法求一次函数解析式4.解析过程示例5.总结正文:1.待定系数法简介待定系数法是一种数学方法,通过给定一些未知数的系数,然后根据已知条件建立方程组,求解这些系数,从而得到未知数的值。
这种方法在求解函数解析式时被广泛应用。
2.一次函数的概念和形式一次函数是指形如y=ax+b 的函数,其中a 和b 是常数,x 是自变量,y 是因变量。
在这个函数中,a 被称为斜率,它表示函数图像的倾斜程度;b 被称为截距,它表示函数图像与y 轴的交点。
3.如何使用待定系数法求一次函数解析式求解一次函数解析式的一般步骤如下:(1)确定函数的形式。
根据已知条件,先假设函数的形式为y=ax+b。
(2)列出方程组。
根据题目所给的条件,列出关于a 和b 的方程组。
(3)解方程组。
通过求解方程组,得到a 和b 的值。
(4)写出解析式。
将求得的a 和b 代入原假设的函数形式中,得到待求函数的解析式。
4.解析过程示例例如,如果已知函数经过点(1,2) 和(2,4),求该函数的解析式。
(1)假设函数形式为y=ax+b。
(2)列出方程组:a +b = 22a + b = 4(3)解方程组:将第一个方程变形为b = 2 - a,代入第二个方程得到2a + (2 - a) = 4,解得a = 2,再代入第一个方程得到b = 0。
(4)写出解析式:y = 2x。
5.总结待定系数法是求解一次函数解析式的有效方法,通过给定系数,建立方程组,求解系数,从而得到函数解析式。
(新人教版八年级数学下册)《 用待定系数法求一次函数解析式》
练一练
1. 已知一次函数的图象过点 (3,5) 与 (-4,-9),
求这个一次函数的解析式.
解:设这个一次函数的解析式为 y = kx + b. 把点 (3,5) 与 (-4,-9) 分别代入,得:
3k b 5
4k b 9
解方程组得
k 2 b 1
∴这个一次函数的解析式为 y = 2x - 1.
{5x (0≤x≤2)
y= 4x + 2 (x > 2)
叫做分段函数. 注意:1.它是一个函数; 2.要写明自变量取值范围
{5x (0≤x≤2)
y=
的函数图象为:
4x + 2 (x > 2)
y
14
y = 4x + 2 (x > 2)
10
y = 5x (0≤x≤2)
O 123
x
思考:你能由上面的函数解析式或函数图
象解决以下问题吗?
(1) 7.5 元.
(1) 一次购买 1.5 kg 种子,需付款多少元?
(2) 30 元最多能购买多少种子?(2) 6 kg.
解析:由函数图象也能解决这些问题. (1) 过 x 轴上表示数 1.5 的点作 x 轴的垂线与函数图象 交于一点,这点的纵坐标就是需付款的钱数. (2) 过 y 轴上表示数 30 的点作 y 轴的垂线与函数图象 交于一点,这点的横坐标就是需购买种子的重量.
∴ b = 2.
∵ 一次函数的图象与 x 轴的交点是( 2 ,0),
则 1 2 2 2, 解得 k = 1 或 -1. k
2
k
故此一次函数的解析式为 y = x + 2 或 y = - x + 2.
知识点 2:一次函数与实际问题
用待定系数法求一次函数解析式
四、画龙点晴
规律1:确定一个待定系数需要一个条件, 规律 :确定一个待定系数需要一个条件, 确定两个待定系数需要2个条件 个条件. 确定两个待定系数需要 个条件. 规律2:确定正比例函数的表达式需要一个条件, 规律 :确定正比例函数的表达式需要一个条件,
确定一次函数的表达式需要2个条件. 确定一次函数的表达式需要 个条件. 个条件
四、画龙点晴
1、列方程解应用题的基本步骤有哪些? 、列方程解应用题的基本步骤有哪些? 2、用待定系数法求一次函数解析式的基本步骤: 、用待定系数法求一次函数解析式的基本步骤 找两点坐标 设 列 解 答
思路: 思路:求一次函数的解析式 求k、b的值 列二元一次方程组 解方程组
五、融会贯通——分类与分层 融会贯通 分类与分层
{
设 列 解 答
{
一次函数的解析式为
y=2x-1
三
1、已知一次函数y=kx+b ,当x=2时y的值为 ,当x=- 、已知一次函数 = + 的值为4, =-2 = 时 的值为 =- 时, y的值为 ,求k、b的值 (P120/6) 的值为-2, 、 的值.( ) 的值为 的值 2、已知直线 y=kx+b经过点(9,0)和点(24,20),求k、 、 经过点( , )和点( , ), ),求 、 = + 经过点 b的值 ( P118/2) 的值. 的值 ) 3、已知一次函数的图象经过点(-4,9)与(6,3),求这个函数 、已知一次函数的图象经过点 , 与 , 的解析式。( 的解析式。( P120/7) ) 4、 已知直线 y=kx+b经过点(3,6)和点 、 经过点( , ) = + 经过点 这条直线的函数解析式。 这条直线的函数解析式。 ( P137/4) )
5 = 3k + b − 9 = −4k + b 解得 k =2 b = −1
用待定系数法求一次函数解析式
y=3x-30
60 元上网费用; (2)若小李 4 月份上网 20 小时,他应付________
(3)若小李 5 月份上网费用为 75 元,则他在该月份的上网时间 是__________.
35
点拨:(1)当 x≥30 时,设函数解析式为 y=kx+b,
30k b 60 k 3 则 ,解得 .所以 y=3x-30. b 30 40k b 90
k=2 ∴ y=2 x +2 ∴ x=-1 时 y=度y(厘米)在一定限度内 所挂重物质量x(千克)的一次函数,现已测得 不挂重物时弹簧的长度是6厘米,挂4千克质量 的重物时,弹簧的长度是7.2厘米,求这个一次 函数的解析式。
解:设这个一次函数的解析式为:y=kx+b 根据题意,把x=0,y=6和x=4,y=7.2代入,得: b=6 k=0.3 4k+b=7.2 解得 b=6
Page 2
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解: ∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b
解得
b=-5
∴这个一次函数的解析式为y=2x-5
Page
3
变式4:已知一次函数y=kx+b 的图象 与y=2x平行且过点(2,-1).求这个一 次函数的解析式. ∵ y=kx+b 的图象与y=2x平行. 解:
当B点的坐标为(0,4)时,则 y=kx+4
4 ∴ 0=3k+4, ∴k= - ∴ 3 4 ∴ 0=3k+4, ∴k= 3
y= -
4 x+4 3
当B点的坐标为(0,-4)时,则 y=kx-4
用待定系数法求一次函数解析式(超赞)名师公开课获奖课件百校联赛一等奖课件
1
5 2 x
3k 6k b 4
b解得k b
1 3 4
一次函数因 k旳为解正此析负题式,中且为没一有次明函确
数y=kx+b(k≠0)只有 在k>0时,y随x旳
当k30时, 把(3,2),(6,5)分别代入y
得:
2 5
3k 6k b
b解得k b
1 3
3
增 0时k大x,而y增随b中大x旳,,增在大k<而
b=6 4k+b=7.2 解得
k=0.3 b=6
所以一次函数旳解析式为:y=0.3x+6
Page 20
一次函数y=kx+b(k≠0)旳自变量旳取值范围是-
3≤x≤6,相应函数值旳范围是-5≤y≤-2,求这个函数旳解 析式.
解: 当k0时, 把(3,5),(6,2)分别代入y kx b中,
得:
y
解:设过A,B两点旳直线旳体现式为y=kx+b.
由题意可知, 1 3k b,
2 0 b,
∴
k 1, b 2.
∴过A,B两点旳直线旳体现式为y=x-2.
∵当x=4时,y=4-2=2.
∴点C(4,2)在直线y=x-2上.
∴三点A(3,1), B(0,-2),C(4,2)在同一条直线上.
Page 22
请写出 y 与x之间旳关系式,并求当所挂物
体旳质量为4公斤时弹簧旳长度。
Page 18
在某个范围内,某产品旳购置量y(单位:kg)与单价x(单 位:元)之间满足一次函数,若购置1000kg,单价为800元;若 购置2023kg,单价为700元.若一客户购置400kg,单价是多 少?
解:设购置量y与单价x旳函数解析式为y=kx+b
201.待定系数法求一次函数解析式(谢)
待定系数法求一次函数解析式【要点梳理】确定一次函数解析式的方法主要有两种: 一种是根据公式、基本数量关系确定函数解析式;一种是运用待定系数法来求解. 待定系数法求解析式的步骤:(1)设出一次函数的解析式y =kx +b ; (2)根据条件列出关于k 、b 的二元一次方程组;(3)解二元一次方程组;(4)把k 、b 的值代入y =kx +b 中即得一次函数的解析式.【典型例题】例1 已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式. 答案:设这个一次函数的解析式是 y=kx +b ,则5=3k+b94+b k ⎧⎨-=-⎩,解得k 21b =⎧⎨=-⎩ 所以解析式是y=2x -1.例2 如图所示,直线l 是一次函数的图象. (1) 求这个函数的解析式; (2) 当x =4时,y 的值为多少?答案:设这个函数的解析式是y=kx +b ,则2=2k+02b k b ⎧⎨=-+⎩,解得12b 1k ⎧=⎪⎨⎪=⎩, 所以解析式是y=12x +1; (2)当x =4时,y=3.例3 如果一次函数y =kx +b (k≠0)的自变量的取值范围是-3≤x ≤6,相应的函数值的取值范围是-5≤y ≤-2,求一次函数的解析式.答案:设这个一次函数的解析式是 y=kx +b ,则-2=-3k 56b k b +⎧⎨-=+⎩或-5=-3k+b26k b⎧⎨-=+⎩, 解得1k 31b ⎧=-⎪⎨⎪=-⎩或1k 34b ⎧=⎪⎨⎪=-⎩, 所以解析式是y=-13x -1或y=13x -4.例4 已知直线1l 经过点A (2,3)和B (-1,-3),直线2l 与1l 相交于点C (-2,m ),与y 轴交点的纵坐标为1. (1)试求直线1l 和2l 的解析式;(2)求出1l 、2l 与x 轴围成的三角形面积; (3)x 取什么值时,1l 的函数值大于2l 的函数值.答案:(1)设直线1l 和2l 的解析式分别是 y=k 1x +b 1,y=k 2x +b 2,则由于直线1l 经过点A (2,3)和B (-1,-3),有3=2k 3bk b+⎧⎨-=-+⎩,解得k 21b =⎧⎨=-⎩,直线1l 的解析式是y=2x-1,由于点C (-2,m )在直线1l 上,有m=2×(-2)-1=-5, 于是-5=-2k 1bb+⎧⎨=⎩,解得k 31b =-⎧⎨=⎩,所以直线2l 的解析式是y=-3x +1; (2)2512;例5 直线y =k x +b 经过点(23-,0)且与坐标轴所围成的直角三角形的面积为415,求直线的解析式. 答案:由已知得 0=-32k +b , 12×32×|b |=154, 解得103b 5k ⎧=⎪⎨⎪=⎩,或103b 5k ⎧=-⎪⎨⎪=-⎩, 直线的解析式为y=103x +5,或y=-103x -5【课堂操练】1.如果一次函数y =k x -3k +6的图象经过原点,那么k 的值为_________. 答案:22.一次函数y =-2x +b 图象过点(1,-2),则b 的值为_________. 答案:03.一次函数y =k x +b 的图象过点(1,-2),且与x 轴的交点的横坐标为35,那么k= ,b = .答案:3,-54.一次函数y =k x +b 在x =1时y =-2,且其图象与y 轴交点的纵坐标为-5,其解析式为 . 答案:y=3x -55.直线y =k x +b 经过点A (-2,0)和y 轴正半轴上的一点B ,如果△ABO 的面积为2,则则b 的值为_________. 答案:16.直线y =2x +m 与直线y =3x -4的交点在x 轴上,则m 的值为_________. 答案:-837.已知一次函数的图象与y =-3x 平行,且与y=x+5的图象交于y 轴的同一个点,•则此函数的解析式是 . 答案:y =-3x +58.求下图中直线的函数解析式答案:y=2x9.已知一次函数y =k x +b (k≠0)在x =1时y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式.答案:设这个一次函数的解析式是y=kx +b , 则5=k+b06k b ⎧⎨=+⎩,解得k=-1,b=6,有y=-x +6.10.已知:函数y = (m +1) x +2 m -6 (1)若函数图象过(-1 ,2),求此函数的解析式.(2)若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y = -3 x +1 的交点,并求这两条直线 与y 轴所围成的三角形面积 答案:(1)由已知有2=(m +1)×(-1)+2 m -6,解得m=9,此函数的解析式为y=10x +12; (2)由已知有m +1=2,即m=1, 函数的解析式y=2x -4; (3)由方程组y 2431x y x =-⎧⎨=-+⎩解得x 12y =⎧⎨=-⎩,即交点是(1,-2), 三角形面积是12(4+1)×1=52【课后练习】 1.一次函数y =k x +b 的图象过点(1,-1),且与直线y =—2x +5平行,则此一次函数的解析式为 . 答案:y =—2x +12.若直线y =3x +a 与两坐标轴围成的三角形的面积为6,则a = . 答案:±63.若点A (6,-1)、B (1,4)、C (2,m )在一条直线上,则m 的值为 . 答案:34.若直线y =-x +a 和直线y = x +b 的交点坐标为(m ,8),则a +b = . 答案:165.已知直线过点(9,10)和(24,20),求直线的解析式.答案:设解析式是y=kx +b ,则10=9k 2024b k b +⎧⎨=+⎩,解得2k 34b ⎧=⎪⎨⎪=⎩, 直线的解析式为y=23x +4.6.如图,在平面直角坐标系中,已知长方形OABC 的两个顶点坐标为A (3,0),B (3,2),对角线AC 所在的直线为l ,求直线l 的解析式.答案:设直线l 的解析式是y=kx +b ,则有 2=k ×0+b 且0=3k +b , 解得b=2,k=-23直线l 的解析式是y=-23x +2.7.如果一次函数y =kx +b 的自变量x 的取值范围是-2≤x ≤6,相应函数的取值范围是-11≤y ≤9,求函数解析式.答案:由已知有-2k 1169b k b +=-⎧⎨+=⎩,或-2k 9611b k b +=⎧⎨+=-⎩,解得5k 26b ⎧=⎪⎨⎪=-⎩,或5k 24b ⎧=-⎪⎨⎪=⎩,故函数解析式为y=52x -6或y=-52x +4.8.已知一次函数y =kx +b 的图象过点(-2,5),并且与y 轴交于P 点,直线y =-12x +3与y 轴交于Q 点,Q 点恰与P 点关于x 轴对称,求这个一次函数解析式.答案:由直线y =-12x +3与y 轴交于Q 点, 知:点Q (0,3),由Q 点恰与P 点关于x 轴对称, 知:点P (0,-3), 故有-2k 53b b +=⎧⎨=-⎩,解得k 43b =-⎧⎨=-⎩,这个一次函数解析式是y=-4x -39.柴油机在工作时油箱中的余油量Q(千克)与工作时间t (小时)成一次函数关系,当工 作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克(1)写出余油量Q 与时间t 的函数关系式; (2)画出这个函数的图象. 答案:(1)Q=40-5t (其中0≤t ≤8); (2)(图象略). 10.有两条直线1l :b ax y +=和2l :5+=cx y .学生甲解出它们的交点为(3,-2);学生乙因把c 抄错而解出它们的交点为(4143,),试写出这两条直线的解析式.答案:对于直线1l :3a+b=-23144a b ⎧⎪⎨+=⎪⎩,解得a 11b =-⎧⎨=⎩; 对于直线2l :3c +5=-2,解得c=-73,这两条直线的解析式分别为y=-x +1, y=-73x +5. 11.(2011黑龙江绥化,25,8分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1) 请你直接写出甲厂的近制版费y 甲与x的函数解析式,并求出其证书印刷单价.(2) 当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3) 如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的情况下,每个证书最少降低多少元?答案:(1)制版费1千元,y 甲=112x +,证书单价0.5元.(2)把x=6代入y 甲=112x +中得y=4,当x ≥2时,由图象可设y 乙与x 的函数关系式为y=kx+b, 由已知得2364k b k b +=⎧⎨+=⎩,解得5214b k ⎧=⎪⎪⎨⎪=⎪⎩,所以y 乙=1542x +,当x=8时,y甲18152⨯+=,y 乙=1598422⨯+=,950.52-=(千元),即,当印制8千张证书时,选择乙厂,节省费用500元;(3)设甲厂每个证书的印刷费用应降低a 元,8000a=500,所以a=0.0625.34【拓展延伸】12.(2011浙江丽水,11,10分)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程S 与时间t 之间的图象,请回答下列问题: (1) 求师生何时回到学校?(2) 如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程S 与时间t 之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3) 如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10km 、8km ,现有A 、B 、C 、D 四个植树点与学校的路程分别是13km 、15km 、17km 、19km ,试通过计算说明哪几个植树点符合要求。
一次函数待定系数法求解析式
一次函数待定系数法求解析式一次函数待定系数法是一种计算机科学的数值解法,它可以用于求解不可微分的不等式函数中出现的多变量函数未知参数,但不进行拟合和模拟操作。
这一方法能够找到合适的参数使得一次函数结果最小化,以最小代价求解多项式函数参数。
一、原理:一次函数待定系数法的基本原理是求解输入输出函数中出现的未知参数。
该方法最先使用一组特定的输入和输出的误差平方和,然后解出未知参数,最终求得满足条件的参数,使误差平方和最小化。
一次函数待定参数法只能处理一维问题,通常需要多次迭代求解,每次迭代优化。
二、求解准备:1、确定一次函数形式:通常,采用一次函数形式,即y=ax + b,其中a和b分别是一次函数的两个未知参数。
2、准备有效数据:要求拟合的点的坐标,数据要足够精确,能够满足一次函数形式。
3、将输入输出数据记录下来:根据有效的输入数据,将输出结果每组输入记录在表中,让系数法可以有足够的数据做计算,方便求解迭代。
三、求解方法:1、根据有效数据计算误差平方和:首先,根据每组有效的输入数据采用一次函数形式估计一次函数的输出结果,并计算每组估计的误差的平方和E。
2、采用梯度下降法解二元一次方程组:对误差平方和采用梯度下降法求得一次函数的参数a和b,梯度下降法可以使误差平方和迅速降低,实现更小的误差值。
3、迭代进行参数优化:采用梯度下降法求得参数后,实施一次函数进行迭代优化,来找到使误差最小的参数。
四、结果及分析:实施一次函数待定系数法后,可以迅速得到满足一次函数形式的未知参数,使得函数的输出更加精确。
同时,一次函数待定系数法可以节省类似拟合和模拟操作较大的计算量,提高求解效率。
19.2.2 一次函数 第3课时 用待定系数法求一次函数解析式
第3课时用待定系数法求一次函数解析式1.用待定系数法求一次函数的解析式;(重点)2.从题目中获取待定系数法所需要的两个点的条件.(难点)一、情境导入已知弹簧的长度y(厘米)在一定的限度内是所挂重物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式.一次函数解析式怎样确定?需要几个条件?二、合作探究探究点:用待定系数法求一次函数解析式【类型一】已知两点确定一次函数解析式已知一次函数图象经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数图象上一点,求C点坐标.解析:(1)将点A(3,5)和点B(-4,-9)分别代入一次函数y=kx+b(k≠0),列出关于k、b的二元一次方程组,通过解方程组求得k、b的值;(2)将点C的坐标代入(1)中的一次函数解析式,即可求得m的值.解:(1)设一次函数的解析式为y=kx+b(k、b是常数,且k≠0),则⎩⎪⎨⎪⎧5=3k+b,-9=-4k+b,∴⎩⎪⎨⎪⎧k=2,b=-1,∴一次函数的解析式为y=2x -1;(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).方法总结:解答此题时,要注意一次函数的一次项系数k≠0这一条件,所以求出结果要注意检验一下.【类型二】由函数图象确定一次函数解析式如图,一次函数的图象与x轴、y 轴分别相交于A,B两点,如果A点的坐标为(2,0),且OA=OB,试求一次函数的解析式.解析:先求出点B的坐标,再根据待定系数法即可求得函数解析式.解:∵OA=OB,A点的坐标为(2,0),∴点B的坐标为(0,-2).设直线AB的解析式为y=kx+b(k≠0),则⎩⎪⎨⎪⎧2k+b=0,b=-2,解得⎩⎪⎨⎪⎧k=1,b=-2,∴一次函数的解析式为y=x-2.方法总结:本题考查用待定系数法求函数解析式,解题关键是利用所给条件得到关键点的坐标,进而求得函数解析式. 【类型三】 由三角形的面积确定一次函数解析式如图,点B 的坐标为(-2,0),AB 垂直x 轴于点B ,交直线l 于点A ,如果△ABO 的面积为3,求直线l 的解析式.解析:△AOB 面积等于OB 与AB 乘积的一半.根据OB 与已知面积求出AB 的长,确定出A 点坐标.设直线l 解析式为y =kx ,将A 点坐标代入求出k 的值,即可确定出直线l 的解析式.解:∵点B 的坐标为(-2,0),∴OB =2.∵S △AOB =12OB ·AB =3,∴12×2×AB =3,∴AB =3,即A (-2,-3).设直线l 的解析式为y =kx ,将A 点坐标代入得-3=-2k ,即k =32,则直线l 的解析式为y =32x .方法总结:解决本题的关键是根据直线与坐标轴围成三角形的面积确定另一个点的坐标.【类型四】 利用图形变换确定一次函数解析式已知一次函数y =kx +b 的图象过点(1,2),且其图象可由正比例函数y =kx 向下平移4个单位得到,求一次函数的解析式.解析:根据题设得到关于k ,b 的方程组,然后求出k 的值即可.解:把(1,2)代入y =kx +b 得k +b =2.∵y =kx 向下平移4个单位得到y =kx +b ,∴b =-4,∴k -4=2,解得k =6.∴一次函数的解析式为y =6x -4.方法总结:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当直线平移时k 不变,当向上平移m 个单位,则平移后直线的解析式为y =kx +b +m .【类型五】 由实际问题确定一次函数解析式已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm)4.2…8.29.8体温计的读数y (℃) 35.0 … 40.0 42.0 出函数自变量的取值范围); (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数. 解析:(1)设y 关于x 的函数关系式为y=kx +b ,由统计表的数据建立方程组求出k ,b 即可;(2)当x =6.2时,代入(1)的解析式就可以求出y 的值.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35.0=4.2k +b ,40.0=8.2k +b ,解得⎩⎪⎨⎪⎧k =1.25,b =29.75,∴y =1.25x +29.75.∴y 关于x 的函数关系式为y =1.25x +29.75;(2)当x =6.2时,y =1.25×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.方法总结:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.【类型六】 与确定函数解析式有关的综合性问题如图,A 、B 是分别在x 轴上位于原点左右侧的点,点P (2,m )在第一象限内,直线P A 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S △AOP =12.(1)求点A 的坐标及m 的值; (2)求直线AP 的解析式;(3)若S △BOP =S △DOP ,求直线BD 的解析式.解析:(1)S △POA =S △AOC +S △COP ,根据三角形面积公式得到12×OA ×2+12×2×2=12,可计算出OA =10,则A 点坐标为(-10,0),然后再利用S △AOP =12×10×m =12求出m ;(2)已知A 点和C 点坐标,可利用待定系数法确定直线AP 的解析式;(3)利用三角形面积公式由S △BOP =S △DOP 得PB =PD ,即点P 为BD 的中点,则可确定B 点坐标为(4,0),D 点坐标为(0,245),然后利用待定系数法确定直线BD 的解析式.解:(1)∵S △POA =S △AOC +S △COP ,∴12×OA ×2+12×2×2=12,∴OA =10,∴A点坐标为(-10,0).∵S △AOP =12×10×m =12,∴m =125;(2)设直线AP 的解析式为y =kx +b ,把A (-10,0),C (0,2)代入得⎩⎪⎨⎪⎧-10k +b =0,b =2,解得⎩⎪⎨⎪⎧k =15,b =2,∴直线AP 的解析式为y =15x +2;(3)∵S △BOP =S △DOP ,∴PB =PD ,即点P为BD 的中点,∴B 点坐标为(4,0),D 点坐标为⎝⎛⎭⎫0,245.设直线BD 的解析式为y =k ′x +b ′,把B (4,0),D ⎝⎛⎭⎫0,245代入得⎩⎪⎨⎪⎧4k ′+b ′=0,b ′=245,解得⎩⎨⎧k ′=-65,b ′=245,∴直线BD 的解析式为y =-65x +245.三、板书设计1.待定系数法的定义2.用待定系数法求一次函数解析式教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长.。
待定系数法求一次函数解析式题目和解析过程
一次函数是指一个函数的最高幂次为1的多项式函数,也可以称为线性函数。
它的解析式的一般形式为 y = ax + b,其中 a 和 b 是常数。
本文将介绍通过待定系数法求解一次函数的解析式的方法。
待定系数法的基本原理待定系数法是通过给定的数据点来确定一次函数的解析式。
假设已知两个点(x₁, y₁) 和(x₂, y₂),我们可以通过待定系数法求解一次函数的解析式。
假设一次函数的解析式为 y = ax + b,那么我们可以得到以下两个等式:y₁ = ax₁ + b ...(1) y₂ = ax₂ + b (2)通过解这个方程组,我们可以得到一次函数的解析式。
解析过程假设我们已经知道两个点的坐标为 (3, 5) 和 (7, 9),并且要求解出一次函数的解析式。
我们可以将这两个点的坐标代入方程组 (1) 和 (2):5 = 3a + b ...(3) 9 = 7a + b (4)为了解方程组,我们可以使用消元法或代入法。
在这个例子中,我们将使用消元法。
首先,我们将方程 (3) 乘以 7,方程 (4) 乘以 3,以使得系数 a 的系数相等:35 = 21a + 7b ...(5) 27 = 21a + 3b (6)然后,我们将方程 (6) 从方程 (5) 中减去,消除系数 a:8 = 4b解得 b = 2。
将 b 的解代入方程 (3) 或 (4) 中,我们可以求解 a:5 = 3a + 2 3a = 5 - 2 3a = 3 a = 1所以,我们得到了 a = 1 和 b = 2,代入一次函数的解析式 y = ax + b:y = x + 2因此,通过待定系数法,我们求解出了一次函数的解析式 y = x + 2。
总结待定系数法是一种通过给定的数据点来求解一次函数的解析式的方法。
它的基本原理是通过将数据点代入方程组,然后通过消元法或代入法解方程组,得到一次函数的解析式。
这种方法在实际应用中非常常见,可以用于拟合数据以及预测未知数据点的值。
待定系数法求一次函数解析式题目和解析过程
待定系数法求一次函数解析式题目和解析过程
(原创实用版)
目录
1.待定系数法的概念
2.一次函数的概念
3.如何用待定系数法求一次函数的解析式
4.解析过程的步骤
正文
待定系数法是数学中一种求解问题的方法,它的主要思想是先设定一个函数的形式,然后通过已知条件来确定函数中的待定系数。
一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,x 是自变量。
求一次函数的解析式,就是找到函数中的 a 和 b 的值。
而待定系数法正是用来解决这个问题的。
首先,我们需要设定一次函数的形式,即 y=ax+b。
然后,根据题目给出的条件,我们可以列出方程组。
例如,如果已知函数在点 (1,2) 和点 (2,4) 处的函数值,我们可以列出如下方程组:
2 = a * 1 + b
4 = a * 2 + b
解这个方程组,我们就可以得到 a 和 b 的值,从而得到一次函数的解析式。
这就是待定系数法求一次函数解析式的基本过程。
在具体的解析过程中,我们需要注意以下几点:
1.首先,要正确设定函数的形式,即 y=ax+b。
如果已知函数的形式,那么这一步就很简单。
如果未知,就需要根据题目的条件进行推导。
2.其次,要正确列出方程组。
这需要根据题目的条件,将函数中的 a
和 b 表示成 x 的函数,然后与已知条件进行比较,列出方程组。
3.最后,要正确解方程组。
这需要使用代数方法,如消元、代入等,解出 a 和 b 的值。
以上就是待定系数法求一次函数解析式的基本步骤和注意事项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、温故知新
1、已知正比例函数y=kx的图象经过点 (-1,1),求k . 2、在等式 y=kx+b中,当x=1时,y=-2; 当x=-1时,y=-4.求k、b的值.
待定系数法:是将某个解析式的一些常数看作未知数, 利用已知条件确定这些未知数,使问题得到解决的方法。 象这样先设出函数解析式,再根据条件确定解析式中未 知的系数,从而具体写出这个式子的方法,叫做待定系数 法.
二、举一反三
例4、已知一次函数的图象经过点(3,5)与(-4,-9),
求这个一次函数的表达式。
解:设这个一次函数的解析式为 y=kx+b
因为y=kx+b的图象过点(3,5)与(-4,-9), 所以
设
3k+b=5 -4k+b=-9 k=2 解得 b=-1
列 解 答
一次函数的解析式为
y=2x-1
(三)求函数解析式的综合应用
1. (2011 浙江湖州) 已知:一次函数 y=kx+b的图象经过M(0, 2),(1,3)两点. (l) 求k、b的值; (2) 若一次函数的图象与x轴的交点为A(a,0),求a的值.
2.已知一次函数的图像经过点A(2,2)和点B(-2,-4) . (1)求AB的函数解析式; (2)求图像与x轴、y轴的交点坐标C、D,并求出直线AB与 坐标轴所围成的面积; 1 (3)如果点M(a, )和N(-4,b)在直线AB上,求a,b 2 的值。
当b>0时,该函数与y轴交于正半轴;图像过一.二.四象限; 当b<0时,该函数与y轴交于负半轴;图像过二.三.四象限 3.当x=0时,b为函数在y轴上的截距。
图像性质
• 1.所有符合解析式的点构成一条直线
• 2.在一次函数上的任意一点P(x,y),都满足等式: y=kx+b(k≠0)。
• 3.一次函数与y轴交点的坐标总是(0,b),与x轴总是交 于(-b/k,0)
思路:求一次函数的表达式 求k、b的值 列二元一次方程组
解方程组
五、融会贯通——分类与分层
(一)根据已知条件,求函数解析式
1、已知一次函数y=kx+2,当x=5时,y的值为4,求k的值 2、已知一次函数y=kx+b的图象经过点A(-3,-2)及点B(1,6), 求此函数解析式
五、融会贯通——分类与分层
(二)根据函数图象,求函数解析式
1、已知一次函数的图象如图1-2所示, 求出它的ቤተ መጻሕፍቲ ባይዱ数关系式
y
-1
y
2
o -3
o1
2
x
x
-4
图1
图2
图3
图4
2、[07广东]如图3,在直角坐标系中,已知矩形OABC的两 个顶点坐标A(3,0),B(3,2),对角线AC所在直线为L,求 直线l对应的函数解析式。
五、融会贯通——分类与分层
想一下为什么可以这样做? • 两点确定了该一次函数解析式的图像 • 纯粹性:图像上的点都满足解析式 • 完备性:满足解析式的点都在图像上
三、趁热打铁
(一)模仿:
1、已知一次函数y=kx+b,当x=2时y的值为4,当x=-2 时, y的值为-2,求k、b的值.
2、已知直线 y=kx+b经过点(9,0)和点(24,20),求k、 b的值. 。 3、已知一次函数的图象经过点(-4,9)与(6,3),求这个函数 的表达式。 4、 已知直线 y=kx+b经过点(3,6)和 点 ( 2, 3 ) ,求 这条直线的函数解析式。
三、趁热打铁
(三)灵活:
四、画龙点晴
规律1:确定一个待定系数需要一个条件, 确定两个待定系数需要2个条件. 规律2:确定正比例函数的表达式需要一个条件,
确定一次函数的表达式需要2个条件.
四、画龙点晴
1、列方程解应用题的基本步骤有哪些?
2、用待定系数法求一次函数解析式的基本步骤
找两点坐标 设 列 解 答
三、趁热打铁
(二)变式:
1:若A(0,2),B(-2,1),C(6,a)三点在同一条 直线上,则a的值为( ) A.-2 B.-5 C.2 D.5 2、一个一次函数的图象是经过原点的直线,并且这条直 线过第四象限及点(2,-3a)与点(a,-6),求这个函数的解析式。
3.已知点M(4,3)和N(1,-2),点P在y轴上,且 PM+PN最短,则点P的坐标是( ) A.(0,0) B.(0,1) C.(0,-1) D.(-1,0)
求一次函数解析式方法
待定系数法
知识回顾
• 一次函数的定义 形如y=kx+b(k≠0)的函数,叫做一次函数。 • 一次函数的性质特点 1.当k>0时,y随x的增大而增大; 当b>0时,该函数与y轴交于正半轴;图像过一.二.三象限; 当b<0时,该函数与y轴交于负半轴,图像过一.三.四象限
2.当k<0时,y随x的增大而减小;
(四)与求函数解析式有关的实际应用题
小明将父母给的零用钱按每月相等的数额存放在储 蓄盒内,准备捐给希望工程,盒内钱数y(元)与存钱月数 x(月)之间的关系如图所示,根据下图回答下列问题: (1)求出y关于x的函数解析式。 (2)根据关系式计算,小明经过几个月才能存够200元?
五、融会贯通——分类与分层
(三)求函数解析式的综合应用
3.如图,正比例函数 y=2x 的图像与一次函数y=kx+b的图像 交于点A(m,2), 一次函数图像经过点B (-2,-1), 与y轴的交点 为C与轴的交点为D. (1)求一次函数解析式; (2)求C点的坐标; (3)求△AOD的面积。
五、融会贯通——分类与分层