第十三章热力学基础

合集下载

工程热力学课件第十三章湿空气

工程热力学课件第十三章湿空气
工程热力学课件第十三章 湿空气
湿空气的定义
湿空气是指在常温常压下,空气中同时存在有水蒸气和其他气体组分的混合 物。
湿空气中的气体成分
湿空气除了包含水蒸气外,还含有氮、氧、和其他微量气体,其中氮和氧源自主要成分。湿空气的状态参数
湿空气的状态可以通过温度、压力、相对湿度、绝对湿度和混合比等参数来描述。
相对湿度的概念及计算公式
相对湿度是指单位体积内的水蒸气含量与该温度下饱和水蒸气含量之比。
绝对湿度的概念及计算公式
绝对湿度是指单位体积内包含的水蒸气的质量。
混合比的概念及计算公式
混合比是指单位质量空气中所含有的水蒸气的质量。
湿空气的三种状态
湿空气可以处于干燥状态、湿度适中的状态或是饱和状态,这取决于相对湿度的不同。
饱和状态下的湿空气
饱和状态下的湿空气中,空气中的水分已经达到最大溶解量。

大学物理第十三章(热力学基础)部分习题及答案

大学物理第十三章(热力学基础)部分习题及答案

第十三章热力学基础一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。

2、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。

3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。

比如加热固体,吸收的热量全部转换为内能升高温度;4、简述热力学第二定律的两种表述。

答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。

克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。

5、什么是熵增加原理?答:一切不可逆绝热过程中的熵总是增加的,可逆绝热过程中的熵是不变的。

把这两种情况合并在一起就得到一个利用熵来判别过程是可逆还是不可逆的判据——熵增加原理。

6、什么是卡诺循环? 简述卡诺定理?答案:卡诺循环有4个准静态过程组成,其中两个是等温线,两个是绝热线。

卡诺提出在稳度为T1的热源和稳度为T2的热源之间工作的机器,遵守两条一下结论:(1)在相同的高温热源和低温热源之间工作的任意工作物质的可逆机,都具有相同的效率。

(2)工作在相同的高温热源和低温热源之间的一切不可逆机的效率都不可能大于可逆机的效率。

7、可逆过程必须同时满足哪些条件?答:系统的状态变化是无限缓慢进行的准静态过程,而且在过程进行中没有能量耗散效应。

二、选择题1、对于理想气体的内能,下列说法中正确的是( B ):( A ) 理想气体的内能可以直接测量的。

(B) 理想气体处于一定的状态,就有一定的内能。

循环过程-卡诺循环

循环过程-卡诺循环

QT
RT
ln V2 V1
RT
ln
p1 p2
(P223页13 14式)
p p1
A
T1 T2 Qab
p2
T1 B
p4
W
D
p3
C
Qcd T2 V
o V1 V4
V2 V3
13-5 循环过程 卡诺循环
A — B 等温膨胀吸热
Q1

Qab
RT1 ln
V2 V1
C — D 等温压缩放热
Q2

Qcd
从上式可知, 在低温处放出的热量越小, 则热机的效率越高.
如果在低温热源处不放热量, 即Q放=0, 则热机的效率等于 100% !!
即系统在高温热源处吸收的热量全部用于对外做功 ! (不违反 热力学第一定律 )
这种情况能实现吗 ?
根据实际经验这种现象是不能实现的 !!
第十三章 热力学基础
/19
13-5 循环过程 卡诺循环
T1 B
W
D Q2 T2
C
V
/19
13-5 循环过程 卡诺循环
Q2 Q1 Q1 T1
T2 T1
Q2 T2
将上式代入致冷系数定义式 e Q2 Q1 Q2
得到卡诺致冷机的致冷系数为:
e Q2
1
1
Q1 Q2 Q1 / Q2 1 T1 / T2 1
T2 T1 T2
(iii) C B,绝热压缩;外界对气体做功, 气体温度T2 T1(升高),.
(iv) 最后, B A,等温压缩;此过程中外界对气体做功使气体将气 量Q1传 递给高温热源, 从而完成一个逆循环.
第十三章 热力学基础

第13章 热力学基础习题及答案

第13章 热力学基础习题及答案

第十三章习题热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是。

2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。

3、一定量的理想气体,分别经历如图(1) 所示的abc过程,(图中虚线ac为等温线),和图(2) 所示的def过程(图中虚线df为绝热线).判断这两种过程是吸热还是放热.abc过程热,def过程热.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是。

(=γC p/C V)5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.VV答案1、(1)(4)是正确的。

2、是A-B 吸热最多。

3、abc 过程吸热,def 过程放热。

4、P 0/2。

5、等压, 等压, 等压理想气体的功、内能、热量1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。

2、 一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为 。

3、一气缸内贮有10 mol 的单原子分子理想气体,在压缩过程中外界作功209J ,气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K)4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J.p (×105 Pa)3 m 3)5、 1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量. (2) 气体对外界所作的功. (3) 气体吸收的热量. (4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)答案1、3J2、-700J3、124.7 J ,-84.3 J4、500J ;700J5、解:)(25)(112212V p V p T T C E V -=-=∆ (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ).(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R .p p p 12循环过程1、 如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η的关系及这两个循环所作的净功W 1和W 2的关系是 η1 η2 ,W 1 W 22、 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:3、一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为_______ K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加________ K .4、如图,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为η1_________,η2__________,η 3 __________.5、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.6、 1 mol 单原子分子理想气体的循环过程如T -V 图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各个过程系统吸收的热量; (2) 经一循环系统所作的净功; (3) 循环的效率. BAC DC 'D 'p p-3m 3)p O 3T 0 2T 0 T 0fad b c e(注:循环效率η=W /Q 1,W 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量ln2=0.693)答案 1、=;<2、S 1 = S 2.3、500 ; 1004、33.3% ; 50%; 66.7%5、解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T W Q -= 且 1212T TQ Q =∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') =''='1/Q W η29.4% (2) ='-='η121T T 425 K6、解:单原子分子的自由度i =3.从图可知,ab 是等压过程,V a /T a = V b /T b ,T a =T c =600 KT b = (V b /V a )T a =300 K (1) )()12()(c b c b p ab T T R i T T C Q -+=-= =-6.23×103 J (放热) )(2)(b c b c V bc T T R iT T C Q -=-= =3.74×103 J (吸热) Q ca =RT c ln(V a /V c ) =3.46×103 J (吸热) (2) W =( Q bc +Q ca )-|Q ab |=0.97×103 J (3) Q 1=Q bc +Q ca , η=W / Q 1=13.4%热力学第二定律1、根据热力学第二定律判断下列说法的正误: (A) 功可以全部转换为热,但热不能全部转换为功. ( ) (B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 ( )(C) 不可逆过程就是不能向相反方向进行的过程.()(D) 一切自发过程都是不可逆的.()2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了___________________________的过程是不可逆的,而克劳修斯表述指出了________________的过程是不可逆的.3、所谓第二类永动机是指________________________________________,它不可能制成是因为违背了________________________________________.答案1、⨯,⨯,⨯,√2、功变热;热传导3、从单一热源吸热,在循环中不断对外作功的热机;热力学第二定律。

循环过程卡诺循环PPT课件

循环过程卡诺循环PPT课件
第一节13-5 循环过程 卡诺循环
第十三章 热力学基础
一 循环过程
13-5 循环过程 卡诺循环
系统经过一系列变化状态过程后,又回到原来 的状态的过程叫热力学循环过程 .
特征: E 0 由热力学第一定律
pA
Q W
净功 W Q1 Q2 Q
总吸热
Q1
o VA
总放热
Q2 (取绝对值)
净吸热
D — A 绝热过程
V1 1T1 V4 1T2
V2 V3 V1 V4
第十三章 热力学基础
13-5 循环过程 卡诺循环
W 1 Q2 1 RT2 ln(V2 /V1) 1 T2
Q1
Q1
RT1 ln(V3 /V4 )
T1
卡诺热机效率
1 T2
T1
卡诺热机效率与工 作物质无关,只与两个 热源的温度有关,两热 源的温差越大,则卡诺 循环的效率越高 .
第十三章 热力学基础
卡诺逆循环
13-5 循环过程 卡诺循环
由两个绝热过程和两个等温过程组成的逆循环称为卡诺逆循环. 如图所示. 卡诺逆循环过程: 设工作物质为理想气体.
p
A Q1
T1 T2
T1 B
W
D Q2 T2
C
V
o
(i) A D,绝热膨胀;系统对外做功,气体 温度T1 T2(降低).
(ii) D C,等温膨胀;此过程中气体从低 温做热功.源中吸收热量Q2; 系统对外界
(iii) C B,绝热压缩;外界对气体做功, 气体温度T2 T1(升高),.
(iv) 最后, B A,等温压缩;此过程中外界对气体做功使气体将气 量Q1传 递给高温热源, 从而完成一个逆循环.

2022物理第13章热学第3节热力学定律与能量守恒定律教案

2022物理第13章热学第3节热力学定律与能量守恒定律教案

第3节热力学定律与能量守恒定律一、热力学第一定律1.改变物体内能的两种方式(1)做功;(2)热传递。

2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W。

(3)正、负号法则:物理量W QΔU+外界对物体做功物体吸收热量内能增加-物体对外界做功物体放出热量内能减少二、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.条件性能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的。

3.第一类永动机是不可能制成的,它违背了能量守恒定律。

三、热力学第二定律1.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.或表述为“第二类永动机是不可能制成的”。

2.用熵的概念表示热力学第二定律:在任何自然过程中,一个孤立系统的总熵不会减小。

3.热力学第二定律的微观意义一切自发过程总是沿着分子热运动的无序性增大的方向进行。

4.第二类永动机不可能制成的原因是违背了热力学第二定律。

一、思考辨析(正确的画“√",错误的画“×”)1.外界压缩气体做功20 J,气体的内能可能不变.2.给自行车打气时,发现打气筒的温度升高,这是因为打气筒从外界吸热。

(×) 3.可以从单一热源吸收热量,使之完全变成功.4.热机中,燃气的内能可以全部变为机械能而不引起其他变化. (×)5.自由摆动的秋千摆动幅度越来越小,能量正在消失.6.利用河水的能量使船逆水航行的设想,符合能量守恒定律.(√)二、走进教材1.(人教版选修3-3P61T2)(多选)下列现象中能够发生的是()A.一杯热茶在打开杯盖后,茶会自动变得更热B.蒸汽机把蒸汽的内能全部转化成机械能C.桶中混浊的泥水在静置一段时间后,泥沙下沉,上面的水变清,泥、水自动分离D.电冰箱通电后把箱内低温物体的热量传到箱外高温物体CD[由热力学第二定律可知,一切自发进行与热现象有关的宏观过程,都具有方向性,A错误;热机的工作效率不可能达到100%,B错误;泥沙下沉,系统的重力势能减少,没有违背热力学第二定律,C正确;冰箱通过压缩机的工作,把热量从低温物体传到高温物体,该过程消耗了电能,没有违背热力学第二定律,D正确。

chp13-热力学基础kePPT精品文档148页

chp13-热力学基础kePPT精品文档148页

15
Q ( E 2 E 1 ) A E AdQdEdA
第一定律的符号规定
Q
E
(不消+耗任系何统能吸量热而不内断能增加
对外作系功统的放机热器) 内能减少
A
系统对外界做功
外界对系统做功
说明
(1) 热力学第一定律实际上就是包含热现象在内的能量守恒 与转换定律;
(2) 第一类永动机是不可能实现的。这是热力学第一定律的 另一种表述形式;
动量等。
3
研究对象 物理量 出发点
方法
优点
宏观理论
(热力学)
热现象
宏观量
观察和实验 总结归纳 逻辑推理
普遍,可靠
微观理论
(统计物理学)
热现象
微观量
微观粒子
统计平均方法 力学规律 揭露本质
缺点
不深刻
无法自我验证
二者关系 热力学验证统计物理学,统计物理学
揭示热力学本质
4
一. 系统和外界
• 热力学系统 由大量粒子组成的宏观物体或物体系。
• 外界 系统以外的物体
• 系统与外界可以有相互作用
系统
例如:热传递、质量交换等
• 系统的分类
开放系统: 系统与外界之间,既有物质交换,又有能量交换。 封闭系统: 系统与外界之间,没有物质交换,只有能量交换。
孤立系统: 系统与外界之间,既无物质交换,又无能量交换。
5
二.气体的状态参量
体积(V) 气体分子可能到达的整个空间的体积 压强(p) 大量分子与器壁及分子之间不断碰撞而产生的
(2) 此式给出过程量与状态量的关系。
(3) 作功和传热效果一样,本质不同。
六. 热力学第一定律
外而界且与传系递统热之量间,不则仅有作功,Q ( E 2 E 1 ) A

13-3理想气体的等体、等压和等温过程

13-3理想气体的等体、等压和等温过程
第十三章 热力学基础
19
物理学
第五版
13- 理想气体的等体、 13-3 理想气体的等体、等压和等温过程 热容 摩尔热容比
γ = Cp,m CV,m
等压过程的三个量
W = p (V2 − V1 ) = ν R (T2 − T1 )
Q p = νC p,m (T2 − T1 )
E2 − E1 =νCV ,m (T2 − T1 )
由热力学第一定律
p2
2
V1
o
dQT = dWT = pdV
dV
V2 V
QT = W T =

V2
V1
pdV
10
第十三章 热力学基础
物理学
第五版
13- 理想气体的等体、 13-3 理想气体的等体、等压和等温过程 热容
QT = WT = ∫ pdV
V1
V2
RT p =ν V
V2
p1V1 = p 2V2
RT V2 QT = W = ∫ ν dV = ν RT ln V1 V V1
p1 = νRT ln p2
第十三章 热力学基础
11
物理学
第五版
13- 理想气体的等体、 13-3 理想气体的等体、等压和等温过程 热容 等温过程热量与功的转换情况 等温膨胀 等温膨胀 等温压缩 等温压缩
p p1
1 ( p1 , V1 , T )
14
第十三章 热力学基础
物理学
第五版
13- 理想气体的等体、 13-3 理想气体的等体、等压和等温过程 热容
(一)摩尔定体热容
d 理想气体,等体过程, 1mol 理想气体,等体过程, QV ,dT 。
CV ,m

大学物理热学第十三章 热力学基础 PPT

大学物理热学第十三章 热力学基础 PPT

Mayer公式
•摩尔热容比
CP,m i 2
CV ,m i
泊松比
CV ,m
i 2
R
Cp,m
CV ,m
R
i
2 2
R
单原子分子理想气体 i 3 1.67
双原子分子理想气体 i 5 1.40
多原子分子理想气体 i 6 1.33
pV m RT RT
M
Q CV ,m (T2 T1)
•过程曲线: p b T2
0
a T1 V
吸收得热量全部用来内能增加;或向外界放热以内能减小为代 价;系统对外不作功。
3、理想气体定体摩尔热容 CV ,m
•定义:1mol、等体过程升高1度所需得热量
•等体过程吸热 QV CV ,m (T2 T1)
•等体过程内能得增量
E
QV
i 2
R
T2
T1 CV ,m T2
13-1 准静态过程 功 热量
一、准静态过程
可用P-V 图上得一条有
方向得曲线表示。
二、功
准静态过程系统对外界做功:
元功: dW Fdl pSdl pdV
dl
系统体积由V1变 为V2,系统对外 界作总功为:
V2
W= pdV
V1
p F S pe
光滑
注意:
V2
W= pdV
V1
1、V ,W>0 ;V ,W<0或外界对系统作功 ,V不变时W=0
V2 PdV
V1
i CV ,m 2 R
CP,m
CV ,m
CP,m CV ,m R
等容 等压
WV 0
QV CV ,m (T2 T1) E
QP Cp,m (T2 T1) CV ,m (T2 T1) P(V2 V1) WP P(V2 V1) R(T2 T1)

工学工程热力学化学热力学基础

工学工程热力学化学热力学基础

定容反应中,系统和外界没有功的交换。其能量转换关系为
QV=UP-UR
可见,当化学反应过程中反应系统不作有用功时,在定容和 定压反应这两种特定的过程中,反应热仅决定于生成物和反应物 的状态,而与反应过程经过的步骤无关。这个规律称为盖斯定律。 如碳定压燃烧反应C+O2=CO2,分两步实施即为:C+0.5O2=CO 及CO+0.5O2=CO2。按能量关系式,碳燃烧生成二氧化碳时有
应,就可确定各种物质在标准状态下的焓的数值,称为标准生成
焓。每1mol物质的标准生成焓用符号表示 H
0பைடு நூலகம்m,
f。例如,根据碳的
定压燃烧过程C+O2=CO2,按其能量转换关系有
Q p H P H R H m,CO2 (H m,C H m,O2 )
燃烧在标准状态下进行,通过实验测定得到1mol碳燃烧时放出的
故在在空气中燃烧时,化学反应方程式中应加上氮的有关量。设甲 烷在空气中完全燃烧,则有
CH4 2O2 2 3.76N2 CO2 2H2O 7.52N2
空气量大于其理论值的百分率称为过量空气量。当过量空气量 为50%时,甲烷燃烧的化学反应方程式为
CH4 1.5 2O2 1.5 2 3.76N2 CO2 2H2O O2 11.28N2
由于理想气体的焓值仅与温度有关,并利用热容与焓的关系有
H m(T )

H
0 mf

H m(298KT )

H
0 mf

T
C
298K
p
0,mdT
定温-定压反应—反应过程中系统温度和压力保持不变;
定温-定容反应—反应过程中系统温度及容积保持不变。

05133_大学物理《热力学基础》课件

05133_大学物理《热力学基础》课件
大学物理《热力学基 础》课件
2024/1/26
1
目 录
2024/1/26
• 热力学基本概念与定律 • 热量传递与热机效率 • 熵增原理与热力学第二定律 • 理想气体状态方程及应用 • 相变与临界点现象 • 实际气体性质及近似方法
2
01
热力学基本概念与定律
2024/1/26
3
热力学系统及其分类
与外界既有能量交换又有 物质交换的系统。
范德华方程是描述实际气体状态的一个方程,它考虑了分子间的相互作用力和分子本身
的体积,能够更准确地描述实际气体的性质。
范德华方程的应用范围
范德华方程适用于中低压、中低温的实际气体,对于高压、高温或极低温的情况,需要 使用更精确的方程来描述。
2024/1/26
范德华方程的局限性
范德华方程虽然比理想气体方程更精确,但仍然是一种近似方法,对于某些特殊情况可 能不够准确。
2024/1/26
热力学第零定律
如果两个系统分别与第三个系统达到 热平衡,那么这两个系统之间也将达 到热平衡。
温度概念
表征物体冷热程度的物理量,是物体 分子热运动的平均动能的标志。
6
热力学第一定律与能量守恒
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值 保持不变。
2 3
沸腾
物质在液体内部和表面同时发生的剧烈的汽化现 象,需要吸收大量热量,使液体内部形成气泡并 上升至液面破裂。
凝结
物质从气态转变为液态的过程,需要释放热量, 气相中的分子聚集成团,最终形成液滴。
2024/1/26
27
06
实际气体性质及近似方法

大学物理B2_第13章_1

大学物理B2_第13章_1
2014年10月15日星期三
7
第十三章 热力学基础1
第十三章 热力学基础
教学基本要求
1. 掌握内能、功和热量等概念,理解准静态过程; 2. 掌握定体摩尔热容量和定压摩尔热容量; 3. 掌握热力学第一定律,能分析、计算理想气体在等体、等压、 等温和绝热过程中的功、热量和内能的改变量; 4. 理解循环的意义和循环过程的能量转换关系;能熟练计算卡 诺循环或其它的简单循环的效率;
第十三章 热力学基础1
第十三章 热力学基础
13-1 准静态过程 功 热量 内能 摩尔热容 13-2 热力学第一定律
13-3 理想气体的等体和等压过程 13-4 理想气体的等温和绝热过程 13-5 循环过程 卡诺循环
13-6 热力学第二定律表述 卡诺定理 13-7 熵 熵增加原理 13-8 热力学第二定律的统计意义
很大,但前进中要与其他分子作频繁 的碰撞,每碰一次,分子运动方向就 发生改变,所走的路程非常曲折。 分子自由程: 气体分子两次相邻碰撞之间自由通过的路程。
2014年10月15日星期三
2
第十三章 热力学基础1
分子碰撞频率:
在单位时间内一个分子与其他分子碰撞的次数。
一、平均碰撞频率 假定: 1 . 分子为刚性小球 ; 2 . 分子有效直径为d; 3 . 其它分子皆静止, 某 一分子以平均速率
默认:理想气体的各过程为准静态过程 一、摩尔热容 1.热容: 一定量的物质升高(或降低)1K温度所吸收(或放热)的热量 数学表达式:C Q
T
或 C
dQ dT
C 2.比热容:单位质量的热容, c m 3.摩尔热容:
1mol的物质升高(或降低)1K温度所吸收(或放热)的热量 数学表达式: Cmol

大学物理B2_第13章_4

大学物理B2_第13章_4
T2 1 T1
2014年10月15日星期三
T1
D
W
B
p3
o V1 V4
T2
V2
C
V
V3
卡诺热机效率与工作物质无关,只与两个热源的温
度有关,两热源温差越大,则卡诺循环的效率越高。 只要提高T1或降低T2, 就可以要提高热机效率。
3
第十三章 热力学基础4
例1. 图中两卡诺循环 1
2 吗 ?
b
2014年10月15日星期三
第十三章 热力学基础4
五、熵增加原理 热二律指出,自然界所发生的物理过程是有一定方向的,那
判断过程进行方向的公共准则是什么呢? 孤立系统可逆过程 S 0 孤立系统中所发生的一切不可逆过程的熵总是增加,可逆过程 熵不变,这就是熵增加原理。 熵增加原理成立的条件: 孤立系统或绝热过程。 熵增加原理的应用:给出实际过程进行方向的判椐。 孤立系统不可逆过程 S 0
1954年国际计量大会决定:规定水的三相点定义为热力学温 度的273.16K,这样热力学温标的1个刻度值就等于水的三相点 1 的热力学温度的 273.16 12 2014年10月15日星期三
第十三章 热力学基础4
13-7 熵 熵增加原理
一、问题的引出 热力学第二定律表明,一切与热现象有关的实际过程都是不 可逆的。能否找到一个状态函数,并用这个状态函数在初、终两 态的差异或单向变化的性质来判断实际过程进行的方向呢? 这个状态函数就是熵! 二、状态函数熵的引入 Q T Q Q 1 2 1 2 1 2 可逆卡诺热机的效率为: Q1 T1 T1 T2 Q1 Q2 0 其中Q1是吸热,Q2是放热。 上式称克劳修斯等式 T1 T2 Q1 Q2 0 Q >0 吸热,Q 0 放热。 统一用热一律的符号规定: T1 T2 Q 称热温比 上式表明可逆卡诺循环热温比之和为零。 T

第十三章 热力学基础 习题解答

第十三章 热力学基础 习题解答

§13.1~13. 213.1 如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程【C 】(A) 是准静态过程,它能用p ─V 图上的一条曲线表示(B) 不是准静态过程,但它能用p ─V 图上的一条曲线表示(C) 不是准静态过程,它不能用p ─V 图上的一条曲线表示(D) 是准静态过程,但它不能用p ─V 图上的一条曲线表示分析:从一个平衡态到另一平衡态所经过的每一中间状态均可近似当作平衡态(无限缓慢)的过程叫做准静态过程,此过程在p-V 图上表示一条曲线。

题目中活塞迅速移动,变换时间非常短,系统来不及恢复平衡,因此不是准静态过程,自然不能用p -V 图上的一条曲线表示。

13.2 设单原子理想气体由平衡状态A ,经一平衡过程变化到状态B ,如果变化过程不知道,但A 、B 两状态的压强,体积和温度都已知,那么就可以求出:【B 】(A ) 体膨胀所做的功; (B ) 气体内能的变化;(C ) 气体传递的热量; (D ) 气体的总质量。

分析:功、热量都是过程量,除了与系统的始末状态有关外,还跟做功或热传递的方式有关;而内能是状态量,只与始末状态有关,且是温度的单值函数。

因此在只知道始末两个状态的情况下,只能求出内能的变化。

对于答案D 而言,由物态方程RT PV ν=可以计算气体的物质的量,但是由于不知道气体的种类,所以无法计算气体总质量。

13.3 一定量的理想气体P 1、V 1、T 1,后为P 2、V 2、T 2, 已知V 2>V 1, T 2<T 1,以下说法哪种正确?【D 】(A ) 不论经历什么过程,气体对外净作功一定为正值;(B ) 不论经历什么过程,气体对外界净吸热一定为正值;(C ) 若是等压过程,气体吸的热量最少;(D ) 若不知什么过程,则W 、Q 的正负无法判断。

分析:功和热量都是过程量,他们除了与系统的始末状态有关外,还跟经历的过程方式有关,所以A 、B 选项不正确。

第13章 热力学基础 第1、2节

第13章 热力学基础 第1、2节

13–1 准静态过程功热量教学基本要求一掌握内能、功和热量等概念. 理解准静态过程.二掌握热力学第一定律,能分析、计算理想气体在等体、等压、等温和绝热过程中的功、热量和内能的改变量.三理解循环的意义和循环过程中的能量转换关系,会计算卡诺循环和其他简单循环的效率.四了解可逆过程和不可逆过程,了解热力学第二定律和熵增加原理.准静态过程是一个理想化的过程,没有哪一个过程是严格意义上的准静态过程。

一. 准静态过程(理想化的过程)如果从一个平衡态到另一平衡态所经过的每一个中间状态均可以近似看作平衡态,则该过程就称作准静态过程。

想一想:为什么这样说?13–1 准静态过程功热量TV p ,,TV p ,,''真空膨胀一定量的气体,在不受外界的影响下, 经过一定的时间, 系统达到一个稳定的, 宏观性质不随时间变化的状态称为平衡态.(理想状态)pVo),,(T V p ),,(''T V p A B一. 准静态过程(理想化的过程)想一想:满足什么条件的过程可以近似看作准静态过程?气体活塞砂子),,(111T V p ),,(222T V p 1V 2V 1p 2p pVo1213–1 准静态过程功热量一. 准静态过程(理想化的过程)想一想:对于非准静态过程,能否用一条p-V 图上的曲线来表示?),,(111T V p ),,(222T V p 1V 2V 1p 2p pVo12功是能量传递和转换的量度,它引起系统热运动状态的变化.准静态过程功的计算pdVpdSdl Fdl dW ===∫=21d V VVp W 注意:作功的大小不仅与系统的始末状态有关,而且与过程有关.13–1 准静态过程功热量二. 功(过程量)∫=21d V VVp W 想一想:1、对非静态过程系统对外所作的功能否按上式计算?为什么?2、上述计算的结果何时出现正值?负值?零?它们对应的物理意义是什么?∫=21d V VVp W 1mol理想气体从状态A足够缓慢地变化到状态B,且一直保持温度T不变,若已知状态A、B时气体体积分别为VA和VB,求该过程中气体对外所作的功。

第十三章课后习题答案

第十三章课后习题答案

第十三章 热力学基础13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( )(A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功(D) b1a 过程放热,作正功;b2a 过程吸热,作正功分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B).13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功 (B) 内能增加(C) 从外界吸热 (D) 向外界放热分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )(A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2Δ=,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为( )分析与解由绝热过程方程pVγ=常量,以及等温过程方程pV=常量,可知绝热线比等温线要陡,所以(A)过程不对,(B)、(C)过程中都有两条绝热线相交于一点,这是不可能的.而且(B)过程的循环表明系统从单一热源吸热且不引起外界变化,使之全部变成有用功,违反了热力学第二定律.因此只有(D)正确.13 -5一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功()(A) 2 000J(B) 1 000J(C) 4 000J(D) 500J分析与解热机循环效率η=W/Q吸,对卡诺机,其循环效率又可表为:η=1-T2 /T1,则由W /Q吸=1 -T2 /T1可求答案.正确答案为(B).13 -6根据热力学第二定律()(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D) 任何过程总是沿着熵增加的方向进行分析与解 对选项(B):不可逆过程应是指在不引起其他变化的条件下,不能使逆过程重复正过程的每一状态,或者虽然重复但必然会引起其他变化的过程.对选项(C):应是热量不可能从低温物体自动传到高温物体而不引起外界的变化.对选项(D):缺少了在孤立系统中这一前提条件.只有选项(A)正确. 13 -7 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg -1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15K13 -8 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.分析 理想气体作功的表达式为()⎰=V V p W d .功的数值就等于p -V 图中过程曲线下所对应的面积.解 S ABCD =1/2(BC +AD)×CD故 W =150 J13 -9 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3s 倍,求空气膨胀时所作的功.分析 本题是等压膨胀过程,气体作功()1221d V V p V p W V V -==⎰,其中压强p 可通过物态方程求得.解 根据物态方程11RT pV v =,汽缸内气体的压强11/V RT p v = ,则作功为 ()()J 1097.92/31112112⨯==-=-=RT V V V RT V V p W v v 13 -10 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功? 它的内能改变了多少?分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102J其内能的改变为Q =ΔE +W =1.21 ×103J13 -11 0.1kg 的水蒸气自120 ℃加热升温到140℃,问(1) 在等体过程中;(2) 在等压过程中,各吸收了多少热量? 根据实验测定,已知水蒸气的摩尔定压热容C p,m =36.21J·mol -1·K -1,摩尔定容热容C V,m =27.82J·mol -1·K -1. 分析 由量热学知热量的计算公式为T C Q m Δv =.按热力学第一定律,在等体过程中,T C E Q ΔΔm V ,V v ==;在等压过程中, T C E V p Q ΔΔd m p,p v =+=⎰.解 (1) 在等体过程中吸收的热量为J 101.3ΔΔ3m V,V ⨯===T C Mm E Q (2) 在等压过程中吸收的热量为 ()J 100.4Δd 312m p,p ⨯=-=+=⎰T T C M m E V p Q 13 -12 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02m 2 .从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J·mol -1·K -1,摩尔定容热容C V,m =20.80J·mol -1·K -1 )分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q Δm p,p v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2 -p 1 V 1 )/R =p(V 2 -V 1 )/R =p· S· Δl /R则 J 105.293m p,p ⨯==pS ΔSΔl C Q13 -13 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?分析 (1) 求Q p 和Q V 的方法与题13-11相同.(2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V ,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.4/2111-⨯===RT V p Mm v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=. (1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V ,V =-==T T C E Q v(2) 按分析中的两种方法求作功值解1 ① 利用公式()V V p W d ⎰=求解.在等压过程中,T R Mm V p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R Mm W W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C Mm E Q 由于在(1) 中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W0ΔV V =-=E Q W13 -14 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE AC ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE AC ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326J , W ABC =126J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200J由此可得从C 到A ,系统内能的增量为ΔE CA =-200J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热.13 -15 如图所示,一定量的理想气体经历ACB 过程时吸热700J ,则经历ACBDA 过程时吸热又为多少?分析 从图中可见ACBDA 过程是一个循环过程.由于理想气体系统经历一个循环的内能变化为零,故根据热力学第一定律,循环系统净吸热即为外界对系统所作的净功.为了求得该循环过程中所作的功,可将ACBDA 循环过程分成ACB 、BD 及DA 三个过程讨论.其中BD 及DA 分别为等体和等压过程,过程中所作的功按定义很容易求得;而ACB 过程中所作的功可根据上题同样的方法利用热力学第一定律去求.解 由图中数据有p A V A =p B V B ,则A 、B 两状态温度相同,故ACB 过程内能的变化ΔE CAB =0,由热力学第一定律可得系统对外界作功W CAB =Q CAB -ΔE CAB =Q CAB =700J在等体过程BD 及等压过程DA 中气体作功分别为()⎰==0d BD V V p W()⎰-=-==J 1200d 12A DA V V P V p W则在循环过程ACBDA 中系统所作的总功为J 500D A BD A CB -=++=W W W W负号表示外界对系统作功.由热力学第一定律可得,系统在循环中吸收的总热量为J 500-==W Q负号表示在此过程中,热量传递的总效果为放热.13 -16 在温度不是很低的情况下,许多物质的摩尔定压热容都可以用下式表示2m p,2--+=cT bT a C式中a 、b 和c 是常量,T 是热力学温度.求:(1) 在恒定压强下,1 mol 物质的温度从T 1升高到T 2时需要的热量;(2) 在温度T 1 和T 2 之间的平均摩尔热容;(3) 对镁这种物质来说,若C p ,m 的单位为J·mol -1·K -1,则a =25.7J·mol -1·K-1 ,b =3.13 ×10-3J·mol -1·K-2,c =3.27 ×105J·mol -1·K.计算镁在300K时的摩尔定压热容C p,m ,以及在200K和400K之间C p,m 的平均值. 分析 由题目知摩尔定压热容C p,m 随温度变化的函数关系,则根据积分式⎰=21d m p,p T T T C Q 即可求得在恒定压强下,1mol 物质从T 1 升高到T 2所吸收的热量Qp .故温度在T 1 至T 2之间的平均摩尔热容()12p m p,/T T Q C -=. 解 (1) 11 mol 物质从T 1 升高到T 2时吸热为()()()()11122122122m p,p d 2d 21----+-+-=-+==⎰⎰T T c T T b T T a T cT bT a T C Q T T (2) 在T 1 和T 2 间的平均摩尔热容为()()21212p m p,//T T c T T a T T Q C -+=-=(3) 镁在T =300 K 时的摩尔定压热容为-1-12m p,K mol J 9.232⋅⋅=-+=-cT bT a C镁在200 K 和400 K 之间C p ,m 的平均值为()-1-12112m p,K mol J 5.23/⋅⋅=-+=T T c T T a C13 -17 空气由压强为1.52×105 Pa ,体积为5.0×10-3m 3 ,等温膨胀到压强为1.01×105 Pa ,然后再经等压压缩到原来的体积.试计算空气所作的功. 解 空气在等温膨胀过程中所作的功为()()2111121T /ln /ln p p V p V V RT Mm W == 空气在等压压缩过程中所作的功为()⎰-==12d V V p V p W 利用等温过程关系p 1 V 1 =p 2 V 2 ,则空气在整个过程中所作的功为()J 7.55/ln 11122111=-+=+=V p V p p p V p W W W T p13 -18 如图所示,使1mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT Mm W 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J (2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =p C (V B -V C )=2.0×103JQ ACB =W A CB =2.0×103 J13 -19 将体积为1.0 ×10-4m 3 、压强为1.01×105Pa 的氢气绝热压缩,使其体积变为2.0 ×10-5 m 3 ,求压缩过程中气体所作的功.(氢气的摩尔定压热容与摩尔定容热容比值γ=1.41)分析 可采用题13-13 中气体作功的两种计算方法.(1) 气体作功可由积分V p W d ⎰=求解,其中函数p (V )可通过绝热过程方程pV C γ= 得出.(2)因为过程是绝热的,故Q =0,因此,有W =-ΔE ;而系统内能的变化可由系统的始末状态求出.解 根据上述分析,这里采用方法(1)求解,方法(2)留给读者试解.设p 、V 分别为绝热过程中任一状态的压强和体积,则由γγpV V p =11得 γγV V p p -=11氢气绝热压缩作功为J 0.231d d 121211121-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-===⎰⎰-V V V V γp V V V p V p W V V γγ 13 -20 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=.(2) 炮弹的出口速度(忽略摩擦).分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m,D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2.(1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p 气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W (2) 根据分析2122121v v m m W -=,则 -121s m 563⋅=+=v 2W/m v13 -21 1mol 氢气在温度为300K,体积为0.025m 3 的状态下,经过(1)等压膨胀,(2)等温膨胀,(3)绝热膨胀.气体的体积都变为原来的两倍.试分别计算这三种过程中氢气对外作的功以及吸收的热量.分析 这三个过程是教材中重点讨论的过程.在p -V 图上,它们的过程曲线如图所示.由图可知过程(1 ) 作功最多, 过程( 3 ) 作功最少.温度T B >T C >T D ,而过程(3) 是绝热过程,因此过程(1)和(2)均吸热,且过程(1)吸热多.具体计算时只需直接代有关公式即可.解 (1) 等压膨胀()()J 1049.23⨯==-=-=A A B AA AB A p RT V V V RT V V p W v()J 1073.8273,,⨯===-=+=A A m p A B m p p p T R T C T T C E ΔW Q v v (2) 等温膨胀 J 1073.12ln /3⨯===A A RT V W C T vRTlnV对等温过程ΔE =0,所以J 1073.13⨯==T T W Q(3) 绝热膨胀T D =T A (V A /V D )γ-1=300 ×(0.5)0.4=227.4K对绝热过程a 0Q =,则有 ()()J 1051.125Δ3,⨯=-=-=-=D A D A m V a T T R T T C E W v 13 -22 绝热汽缸被一不导热的隔板均分成体积相等的A 、B 两室,隔板可无摩擦地平移,如图所示.A 、B 中各有1mol 氮气,它们的温度都是T0 ,体积都是V0 .现用A 室中的电热丝对气体加热,平衡后A 室体积为B 室的两倍,试求(1) 此时A 、B 两室气体的温度;(2) A 中气体吸收的热量.分析 (1) B 室中气体经历的是一个绝热压缩过程,遵循绝热方程TVγ-1 =常数,由此可求出B 中气体的末态温度TB .又由于A 、B 两室中隔板可无摩擦平移,故A 、B 两室等压.则由物态方程pV A =νRT A 和pV B =νRT B 可知T A =2T B .(2) 欲求A 室中气体吸收的热量,我们可以有两种方法.方法一:视A 、B 为整体,那么系统(汽缸)对外不作功,吸收的热量等于系统内能的增量.即QA =ΔE A +ΔE B .方法二:A 室吸热一方面提高其内能ΔE A ,另外对“外界”B 室作功WA.而对B 室而言,由于是绝热的,“外界” 对它作的功就全部用于提高系统的内能ΔEB .因而在数值上W A =ΔE B .同样得到Q A =ΔE A +ΔE B . 解 设平衡后A 、B 中气体的温度、体积分别为T A ,T B 和V A ,V B .而由分析知压强p A =p B =p .由题已知⎩⎨⎧=+=022V V V V V B A B A ,得⎩⎨⎧==3/23/400V V V V BA (1) 根据分析,对B 室有B γB γT V T V 1010--=得 ()0010176.1/T T V V T γB B ==-;0353.2T T T B A == (2) ()()0007.312525ΔΔT T T R T T R E E Q B A A A A =-+-=+= 13-23 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量. 解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln 32121211⨯=-==+=V V T T R M m V V RT Mm W W W CD AB由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J 1081.325/ln /ln Δ42112121,121⨯=-+=-+=+=+=T T R M m V V RT Mm T T C M m V V RT Mm E W Q Q Q m V DAAB DA AB 由此得到该循环的效率为 %15/==Q W η13 -24 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =CT ,C 为常数.将其与理想气体物态方程pV =m/MRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题13-23的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C M m Q -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-= CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R/2,摩尔定容热容C V ,m =3R/2.故循环效率为()()3/125/2ln 2312/5/2ln 321/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η 13 -25 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫ ⎝⎛'--''-='-''=T ηηT T T 13 -26 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知 ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=---=---=-=B A C D B C A B D CA B m p C D m p AB CD T T T T T T T T T T T T C MT T C M m Q Q η1/11111,, (1) 与求证的结果比较,只需证得BA C D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2)V C /T C =V D /T D (3) C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.13 -27 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q pt Q W η//==,可得此条件下的最大功率.解 根据分析,热机获得的最大功率为()-1712s J 100.2//1/⋅⨯=-==t Q T T t Q ηp13 -28 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη 分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q η/1/112-=-=出发,利用热力学第一定律和等体、等压方程以及γ=C p,m 桙C V,m 的关系来证明.证 该热机循环的效率为CA BC Q Q Q Q η/1/112-=-=其中Q BC =m /M C p,m (T C -T B ),Q CA =m/M C V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1 =T C /V 2,T A /P 1 =T C /P 2,代入上式得()()1/1/12121---=p p V V γη 13 -29 如图所示为理想的狄赛尔(Diesel)内燃机循环过程,它由两绝热线AB 、CD 和等压线BC 及等体线DA 组成.试证此内燃机的效率为()()()1//1/12312123---=-V V V V γV V ηγγ证 求证方法与题13-28相似.由于该循环仅在DA 过程中放热、BC 过程中吸热,则热机效率为 ()()B C AD B C m p A D m V BCDA T T T T γT T C M T T C M m Q Q η---=---=-=111/1,, (1) 在绝热过程AB 中,有1211--=γB γA V T V T ,即()121//-=γA B V V T T (2)在等压过程BC 中,有23//V T V T B C =,即23//V V T T B C = (3)再利用绝热过程CD,得1311--=γC γD V T V T (4)解上述各式,可证得()()()1//1/12312123---=-V V V V γV V ηγγ 13 -30 如图所示,将两部卡诺热机连接起来,使从一个热机输出的热量,输入到另一个热机中去.设第一个热机工作在温度为T 1和T 2的两热源之间,其效率为η1 ,而第二个热机工作在温度为T 2 和T 3 的两热源之间,其效率为η2.如组合热机的总效率以η=(W 1 +W 2 )/Q 1 表示.试证总效率表达式为η=(1 -η1 )η2 +η1 或 η=1 -T 3/T 1分析 按效率定义,两热机单独的效率分别为η1=W 1 /Q 1和η2=W 2 /Q 2,其中W 1 =Q 1-Q 2 ,W 2 =Q 2-Q 3 .第一个等式的证明可采用两种方法:(1) 从等式右侧出发,将η1 、η2 的上述表达式代入,即可得证.读者可以一试.(2) 从等式左侧的组合热机效率η=(W 1 +W 2 )/Q 1出发,利用η1、η2的表达式,即可证明.由于卡诺热机的效率只取决于两热源的温度,故只需分别将两个卡诺热机的效率表达式η1=1-T 2 /T 1 和η2=1-T 3 /T 2 代入第一个等式,即可得到第二个等式.证 按分析中所述方法(2) 求证.因η1=W 1 /Q 1 、η2=W 2 /Q 2 ,则组合热机效率12211211121Q Q ηηQ W Q W Q W W η+=+=+= (1) 以Q 2 =Q 1-W 1 代入式(1) ,可证得η=η1 +η2 (1-η1 ) (2) 将η1=1-T 2 /T 1 和η2=1-T 3 /T 2代入式(2),亦可证得η=1-T 2 /T 1 +(1-T 3 /T 2 )T 2 /T 1 =1-T 3 /T 113 -31 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 .解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107=8.0 kW·h13 -32 一定量的理想气体进行如图所示的逆向斯特林循环(回热式制冷机中的工作循环),其中1→2为等温(T 1 )压缩过程,3→4为等温(T 2 )膨胀过程,其他两过程为等体过程.求证此循环的制冷系数和逆向卡诺循环制冷系数相等.(这一循环是回热式制冷机中的工作循环,具有较好的制冷效果.4→1过程从热库吸收的热量在2→3过程中又放回给了热库,故均不计入循环系数计算.)证明 1→2 过程气体放热2111lnV V RT Q v = 3→4 过程气体吸热 2122lnV V RT Q v = 则制冷系数 e =Q 2 /(Q 1-Q 2 )= T 2/( T 1-T 2 ).与逆向卡诺循环的制冷系数相同.13 -33 物质的量为ν的理想气体,其摩尔定容热容C V,m =3R/2,从状态A(p A ,V A ,T A )分别经如图所示的ADB 过程和ACB 过程,到达状态B(p B ,V B ,T B ).试问在这两个过程中气体的熵变各为多少? 图中AD 为等温线.分析 熵是热力学的状态函数,状态A 与B 之间的熵变ΔSAB 不会因路径的不同而改变.此外,ADB 与ACB 过程均由两个子过程组成.总的熵变应等于各子过程熵变之和,即DB AD AB S S S ΔΔΔ+=或CB AC AB S S S ΔΔΔ+=. 解 (1) ADB 过程的熵变为()()D B p,m A D B D D A T BD P D A T DBAD AB T T C V V T T C T W T Q T Q S S S /ln /ln /d /d /d /d ΔΔΔm p,v vR v +=+=+=+=⎰⎰⎰⎰ (1)在等温过程AD 中,有T D =T A ;等压过程DB 中,有V B /T B =V D /T D ;而C p ,m =C V ,m +R ,故式(1)可改写为()()()()A B A B A B p,m A B B D ADB V T V V V T C V T V T S /ln 23/ln /ln /ln ΔvR vR v vR +=+=(2) ACB 过程的熵变为()()C B V,m A C p,m CB AC BA ACB T TC V T C S S Q/T S /ln /ln ΔΔd Δv v +=+==⎰ (2)利用V C =V B 、p C =p A 、T C /V C =T A /V A 及T B /p B =T C /p C ,则式(2)可写为()()()()()()()A B A B A A B B V,m A B A B A B V,m ACB V T V V V p V p C V V p p V V R C S /ln 23/ln /ln /ln /ln /ln ΔvR vR v vR v v +=+=++=通过上述计算可看出,虽然ADB 及ACB 两过程不同,但熵变相同.因此,在计算熵变时,可选取比较容易计算的途径进行.13 -34 有一体积为2.0 ×10-2m 3的绝热容器,用一隔板将其分为两部分,如图所示.开始时在左边(体积V 1 =5.0 ×10-3m 3)一侧充有1mol 理想气体,右边一侧为真空.现打开隔板让气体自由膨胀而充满整个容器,求熵变.分析 在求解本题时,要注意⎰=BA T Q S d Δ 的适用条件.在绝热自由膨胀过程中,d Q =0,若仍运用上式计算熵变,必然有ΔS =0.显然,这是错误的结果.由于熵是状态的单值函数,当初态与末态不同时,熵变不应为零.出现上述错误的原因就是忽视了公式的适用条件. ⎰=BA T Q S d Δ 只适用于可逆过程,而自由膨胀过程是不可逆的.因此,在求解不可逆过程的熵变时,通常需要在初态与末态之间设计一个可逆过程,然后再按可逆过程熵变的积分式进行计算.在选取可逆过程时,尽量使其积分便于计算.解 根据上述分析,在本题中因初末态时气体的体积V 1 、V 2 均已知,且温度相同,故可选一可逆等温过程.在等温过程中,d Q =d W =p d V ,而VRT M m p =,则熵变为 ()1-12K J 52.11/ln d 1d d Δ12⋅=====⎰⎰⎰V V R M m V V R M m T V p T Q S V V。

第十三章 热力学基础

第十三章 热力学基础

249 J
Q C T T ) 873 J p pm , ( 2 1
§13-4
理想气体的等温过程和 绝热过程 *多方过程
p p1
V T) 1 (p 1, 1,
一、等温过程
特征 T 常量 过程方程 pV常量 d E C d T 0 V,m 由热力学第一定律 RT p d Q d W p d V V T V2 V RT 2 Q W p d V dV T V V1 1 V
p

p
(p , V T 2, 2)
(p , V T 1, 1)
2
1
W
E1
Qp 0
o
W 0
E2
T ,V
E1
Qp 0
V2
V1
V
W 0
E2
T ,V
系统在等压膨胀过程中,从外界吸收的热量一部分 用来对外做功,一部分增加系统的内能.
三、理想气体的定容、定压摩尔热容量
由能均分定理知,自由度为 i 的 m理想气体 ol 温度改变 d T时,其内能相应改变为 i E RT i 2 d E C d T 又 dE RdT V , m
p
1*
*2
V2 V
系统从外界吸收的热量,一部分增 加系统的内能,另一部分对外界做功 . o V 1 微变过程 准静态过程 说明
d Ep d V d Q d E d W
Q E d V p
V 1 V 2
(1) 第一定律实质是能量转换和守恒定律.
——第一类永动机不可能制成.
(2)实验经验总结,自然界的普遍规律.
d Q C d T M
T2 T 1
2 Q CM dT 2 ( 0 . 0 7 6 T 0 . 0 0 0 2 6 T 0 . 1 5 ) d T 5 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 功(过程量) 1.功是能量传递和转换的量度,它引起系统热运 动状态的变化.功用W表示。 2.准静态过程功的计算 带有活塞的气缸内盛有一定量的气体;设活塞 的面积为S,气体的压强为p,则作用在活塞上的 作用力为
F pS
S
当系统经历一微小的准静态过 程而使活塞移动一微小距离时, 气体所作的元功为
§ 13-1 准静态过程 功 热量
一 准静态过程 一般将宏观物体(如气体、液体、固体介质等 统称为热力学系统,简称系统,又称为工作 物质将与热力学系统相互作用的环境称为外界。 主要以理想气体作为热力学系统。 气体的体积V、压强p和温度T称为气体的物 态参量;气体的物态参量不随时间变化的状态 称为平衡态。 如,容器中的气体与外界没有能量和物质的 传递,气体的能量也没有转化为其他形式的能量, 气体的组成及质量都不随时间变化,这种 状态就是平衡态。
准静态过程是从一个平衡态到另一平衡态 所经过的每一中间状态均可近似当作平衡态的 过程 .是一理想过程。 砂子 本章所讨论的均为准静态过程 活塞
p, V , T P-V图上的一个点表示气体 气 的一个平衡态,如1点和2点。 体 准静态过程 当经历一准静态过程时,可用 p 一相应的曲线表示其准静态过 p 1( p1 ,V1 , T1 ) 1 程,这样的曲线称为两状态间 2 ( p2 ,V2 , T2 ) 的准静态过程曲线,简称过程 p2 曲线。 o V1 V2 V
功与热量的异同 (1)都是过程量:与过程有关;
T1 T2
T1 Q T2
(2)等效性:都会改变系统热运动状态; (3)功与热量的物理本质不同 . 功和热量的单位相同:J 1 cal = 4.18 J , 1 J = 0.24 cal
§13-1 内能 热力学第一定律
一 内能(状态量) 系统从状态A变化到状态B,可以通过外界向 系统传递热量Q的方法实现,也可以通过外界对 ex 系统作功 W 的方法实现。一般的,外界向系统 传递热量的同时,又对系统作了功。因此系统 的能量变化与这两者都有关系。 通过实验可以证明,只要始末状态确定,不 管经过什么过程,做功和传热之和保持不变. 内能—在热力学中,将系统处于某一状态所具有 的能量,称为系统的内能,用E表示。 对理想气体,其内能只是温度的函数,即 E E (T )
1 3 2 m v kT 2 2
上式为气动论的基本公式之一,表明了理想 气体分子平均平动动能与温度的关系;
1 3 2 m v kT 2 2
上式表明,处于平衡态时的理想气体,其分 子平均平动动能与气体的温度成正比。气体的 温度越高,分子平均平动动能越大,表示分子 热运动的程度越激烈;因此可以说,温度是表 征大量气体分子热运动激烈程度的宏观物理量, 是大量分子热运动的集体表现。温度是统计量, 对一个分子说它的温度是多少没有意义。
关于理想气体的基本知识 一 气体的物态参量(宏观量) 1.压强 p—对气体的力学描述 5 单位: Pa. 1标准大气压 (atm) 1.01310 Pa
m 2.体积V—对气体的几何描述.单位:
3
3.温度T —对气体的热学描述. 单位:K. T 273 t 二 平衡态 一定量的气体,在不受外界的影响下,经过 一定的时间,系统达到一个稳定的宏观性质不 随时间变化的状态称为平衡态.

2 p n k 3
上式称为理想气体的压强公式
五 理想气体分子平均平动动能与温度的关系
由理想气体的物态方程及理想气体的压强公式, 可以得到气体的温度与分子平均平动动能间的关 系。这一关系说明了宏观量—温度的微观本质。
2 1 p n( m v 2 ) 式比较,可得 式 p nkT 与 3 2
Q E W 的导出:
设系统在初始时刻的内能为E0,当外界对系统 传递热量和作功后,系统在末状态的内能为E. 根据能量守恒定律,有
E E0 Q W ex ex 或 E Q W 式中E=EE0,为系统内能的增量.
W
ex
用W表示系统对外界所作的功,则有 上式可写为
W
式中
m pV RT RT M
N mN m 物质的量; N A mN A M N A 6.02 1023 mol1 称为阿伏伽德罗常数,即1mol 物质中的分子数; m 为气体的质量;
NAk=R, R 8.31 J mol1 K 1 称为摩尔气体常数;
三 理想气体物态方程 理想气体的定义: 遵守三个实验定律的气体 物态方程: 理想气体平衡态宏观参量间的函数关 系 pV NkT 1.理想气体的物态方程 式中 k 1.38 1023 J K 1称为波兹曼常数,N为体 积V中的气体分子数。 2.理想气体的物态方程的其他形式 理想气体物态方程1 m pV RT RT M NA N [ pV NkT ( ,则 ,N A k R)] NA NA
Q E W 显然,热力学第一定律是包括热现象在内的 能量守恒定律。
Q E W
规定: 1)Q>0表示系统从外界吸收热量,Q<0表示系 统向外界放出热量; 2)W>0表示系统对外界作正功,W<0表示系统 对外界作负功或外界对系统作功; 3)E>0表示系统内能增加,E<0表示系统内 能减少。 若系统的状态有一微小变化过程,则热力学 第一定律可写为
因此,气体的内能是状态量。当气体的状态一 定时,其内能是一定的。而系统内能的增量只与 系统的初态和末态有关,与系统所经历的过程无 关. 二 热力学第一定律 热力学第一定律: 系统内能的增量等于外界向系统传递 E W
式中, E E E0 为系统内能的增量 ;W为系统 对外界所作的功
dWV pdV 0
根据热力学第一定律,可有
dQV dE
则对等体过程(即在这一过程中对上式的积分) 有 Q E E
V 2 1
上式表明,在等体过程中,气体吸收的热量 全部用于增加气体的内能 2.摩尔定体热容 1mol理想气体在等体过程中吸收热量dQV,使 温度升高dT,则气体的摩尔定体热容为
第 十三 章
热力学基础
一 掌握内能、功和热量等概念.理解准静态过 程 . 二 掌握热力学第一定律,理解理想气体的摩尔 定体热容、摩尔定压热容,能分析计算理想气 体在等体、等压、等温和绝热过程中的功、热 量和内能的改变量 .
三 理解循环的意义和循环过程中的能量转换关 系,会计算卡诺循环和其它简单循环的效率 .
B
( p2 ,V2 , T2 )
dV
V2
o V1
V
p
p
A( p1 ,V1 , T1 )
B
( p2 ,V2 , T2 )
dV
V2
o V1
V
注意:
系统所作的功不仅与系 统的始末状态有关,还与 路径有关,功不是状态的函 数,是一过程量,作功与过 程有关 .
三 热 量(过程量) 热量—系统与外界之间由于存在温度差而传递的 能量,称为热量,用Q表示. 热量是通过传热方式传递能量的量度。
当一热力学系统的状态随时间变化时,则称系 统经历了一个热力学过程(简称过程)。由于过 程中的中间状态不同,因此又将热力学过程分为 非静态过程和准静态过程。
非静态过程—中间状态为非平衡态的过程,称为 非静态过程。 准静态过程—若系统在始末两个平衡态之间所经 历的过程无限缓慢,以致使系统所经历的每 一中间态都可近似视为平衡态,则系统的状 态变化过程称为准静态过程。
§13-3 理想气体的等体和等压过程 摩尔热容
热力学第一定律的应用,即讨论理想气体的 等体和等压过程中的功、热量、内能和摩尔热容。 p 一 等体过程 摩尔定体热容 ( p2 , , 2 ) V T p2 1.等体过程 理想气体的体积不变的过程称 为等体过程,即V=常量。其过 ( p1, , 1 ) V T p1 程曲线为一条平行于p轴的直线 o 称为等体线 V V 等体过程中,V=常量,气体对外不作功,即
M为气体摩尔质量,m为气体分子的质量
理想气体物态方程2 由 pV NkT 可有
N p kT V
N 令 n V ,表示单位体积内气体分子的数目,称
为气体的分子数密度,则有
p nkT
四 理想气体的压强 气体作用于容器器壁的压强是由于气体对器 壁具有压力;气体对器壁的压力是气体中大量分 子对器壁的碰撞结果。碰撞时气体中大量分子作 用以冲量,从而使器壁受到不变的气体压强作用。 理想气体的压强是一统计量,说一个分子的压强 没有意义,压强是大量分子的宏观体现。 经统计计算可得理想气体的压强为
dQ dE dW
热力学第一定律的物理意义: 是能量转换和守恒定律.若系统对外作功,则 系统必然要消耗内能或由外界吸收热量,或两者 皆有。因此,不存在既不消耗任何能量又能不断 对外作功的所谓第一类永动机,即第一类永动机 不可能制成.
(第一类永动机:不需要外界提供能量,但可以 连续不断地对外做功的机器。)
1 2 p nm v 3 式中,n为气体分子数密度;m为气体分子的质
量; 2为气体分子速度平方的平均值。 v
1 mv 2的形式为气体分子平均平动动能,用 k表 2
示,即理想气体分子平均平动动能为
1 2 k mv 2
则上式可以写为
2 1 2 2 p n( m v ) n k 3 2 3
F pS
dl
dW Fdl pSdl pdV
dW pdV 气体的体积由V1变到V2时,气体所作的总功为
W dW pdV
V1 V1
V2
V2
p
p
A( p1 ,V1 , T1 )
气体所作的总功等于 图 p V上过程曲线下的面 积。当气体膨胀时,气体 对外界作正功;当气体被 压缩时,气体对外作负功
CV ,m
单位:J mol 1 K 1
dQV dT
相关文档
最新文档