同步发电机的基本方程

合集下载

《电力系统分析理论》课件第6章 同步发电机的基本方程

《电力系统分析理论》课件第6章 同步发电机的基本方程
由于两个绕组的空间位置相 差120度,a相绕组的证磁通 交链到b相绕组就成了负磁 通,因此互感系数为负。
第六章 同步发电机的基本方程
用傅里叶系数表示,取基波:
LabLba[m0 m2co2s(a300)] LbcLcb[m0 m2co2s(a900)] LcaLac[m0 m2co2s(a1500)]
d q
i 0
32cso1iansa
coas(120)
sina(120)
1
coas(120)
sina(120)
1
ia ib ic
2
2
2
或缩记为:
id0 qPaibc
(61)7
第六章 同步发电机的基本方程
利用逆变换,可以得到:
coas coas(120)
sina sina(120)
电流的正方向与磁链的正方向符
a
dy
+
a
+
D
Q
D
ω
fQ
c +D +x
合右手螺旋定则,定子各绕组中 b
D
c
电流的正方向与磁链的正方向符
+z
b
合右手螺旋定则
q
第六章 同步发电机的基本方程
➢ 感应电势:与电流正方向 一致
➢ 定子电流:中性点流向机 v f 端
➢ 定子电压:电流流出端为 正
➢ 转子电压:提供正向电流 的励磁电压是正的
vf
f
Rf
0
0
if
00
D Q
0
0 0
RD 0
0 RQ
iD iQ
v为各绕组端电i为 压各 ;绕组电流;
(61)

电力系统分析第七章 同步发电机的基本方程

电力系统分析第七章 同步发电机的基本方程

maD 0 0
0 maQ 0
3 2maf LRS P 1 3 2maD 0
0 0 3 2maQ
0 0 0
16
郑州航空工业管理学院
• Park方程:磁链方程
L0 m0 3 l2 2 d 0 q 0 0 f 3 maf 2 D 3 m 2 aD Q 0
2017/4/16 郑州航空工业管理学院 12
一. 派克变换 4. 物理意义: 将观察者的立场由静止的定子转移 至旋转的转子,原来定子三个静绕组 abc由两个与转子同步旋转的dq绕组代 替,实现交直流变换。 结论:经派克变换后的同步发电机的原 始方程就是一组常系数微分方程。
二. dq0坐标下的同步发电机的 等效结构 d轴方向: d(定子)、f(励磁)、D q轴方向: q(定子)、Q d轴方向相当于一个三卷变; q轴方向相当于一个双卷变; 0轴方向相当于一个单匝线圈;
7
郑州航空工业管理学院
磁链方程可记为:
abc LSS fDQ RS
LSR iabc LRR i fDQ
LSS :定子绕组间自感、互感系数矩阵
LRR :转子绕组间自感、互感系数矩阵
LRS , LSR :定转子绕组间互感系数矩阵
18
郑州航空工业管理学院
四. 电压方程的坐标变换
• Park方程:电压方程
vabc abc Rs v fDQ fDQ 0
vabc abc Rsiabc vdq 0 Pvabc P abc PRsiabc P abc Rsidq 0 dq 0 P P 1 dq 0 Rsidq 0

第三章 同步发电机的基本方程

第三章 同步发电机的基本方程

第三章同步发电机的基本方程3-1 基本前提3.1 基础假设•电机铁心的导磁系数为常数;•电机定子三相绕组结构对称,磁轴空间相差120o;•电机转子在结构上对纵轴和横轴对称;•转子绕组的磁动势在定子绕组所感应的空载电动势是时间的正弦函数;•电机定、转子表面光滑。

3.1 正方向的规定•定子绕组:磁链正方向:各轴线正方向;电流正方向:产生正向磁连的电流;•转子绕组:横轴落后于纵轴。

同步机磁路结构图3.1 正方向的规定同步机电路结构图•定子绕组:–三相电流的正方向:流出绕组为正;•转子绕组:–励磁电流的正方向:从励磁电源流出为正。

3-2 同步发电机的原始方程3.2.3 同步发电机原始方程的电感系数•定子各绕组的自感系数:的变化规律自感Laa⇓定子绕组的自感系数是以Π为周期是时变的。

3.2.3 同步发电机原始方程的电感系数•定子绕组间的互感系数:⇓定子绕组的互感系数是以Π为周期是时变的。

互感L ab 的变化规律3.2.3 同步发电机原始方程的电感系数•转子绕组间的自感系数:由于定子是个空心的圆柱,转子绕组电流产生的磁通,其磁路的磁导总是不变的。

因此,转子各绕组的自感系数Lff 、LDD和LQQ都是常数。

3.2.3 同步发电机原始方程的电感系数•转子绕组间的互感系数:由于定子是个空心的圆柱,且转子绕组间的相互位置固定不变,从而转子绕组电流产生的磁通,其磁路的磁导总是不变的。

因此,转子各绕组的互感系数都是常数。

3.2.3 同步发电机原始方程的电感系数•转子绕组间的互感系数:•d轴绕组间:励磁绕组f和阻尼绕组D之间的互感系数L fD =LfD=常数。

•d、q轴绕组间:由于d、q轴绕组相互垂直,因此d、q轴绕组间的互感系数LfQ = LQf=LDQ=LQD=0。

3.2.3 同步发电机原始方程的电感系数•定、转子绕组间的互感系数:⇓定、转子绕组间的互感系数是以2Π为周期是时变的。

互感L af 的变化规律3-3 d、q、0坐标系的同步机方程3.3.1 同步发电机原始方程变系数产生的原因•转子的旋转•转子的d、q轴不对称3.3.2 电流相量的分解•采用双反应理论把电流相量分解为和横轴纵轴分量id分量i。

简述同步发电机的基本方程

简述同步发电机的基本方程
(1-7)~(1-9)
2. 定子绕组间的互感系数
L ab L ba [m 0 m 2 cos 2( 30 o )] L bc L cb [m 0 m 2 cos 2( 90 o )] L ca L ac [m 0 m 2 cos 2( 150 o )]
(1-26)
1 id sin( 120 o ) 1 iq sin( 120 o ) 1 i0
sin
(1 2绕组电压、磁链都可 以进行,且变换矩阵P(P-1)相同
[dq0坐标系变量的零轴分量]
[例1-1] 定子绕组三相对称电流分别为直流、基频、倍频,变换到dq0坐标系后分别 成为基频、直流、基频。
二、 d、q、0坐标系统的电势方程
转子绕组的变量(v、i、ψ)本身就是 dq0坐标系统变量。 定子绕组的原始电势方程为
& vabc ψabc rS i abc (1 28)
全式左乘P,并经过矩阵运算推导,得 d、q、0坐标系统的定子电势方程
二、假定正向的选取
转子绕组电压、电流的正向按“负荷法则” 选取:支路电流由电位“+”流向电位“-” 定子绕组电压、电流的正向按“发电机法则 ”选取:支路电流由电位“-”流向电位
另外,在理想同步电机结构示意图中:
• 转子d轴超前q轴90o • 定子绕组轴线正向与该绕组磁链正向一致 • 转子的位置用d轴与定子a轴的夹角α表示
4. 定子绕组和转子绕组间的互感系数
Laf Lfa m af cos L bf Lfb m af cos( 120 o ) Lcf Lfc m af cos( 120 o ) LaD L Da maD cos
L bD L Db maD cos( 120 o ) LcD L Dc maD cos( 120 o )

3同步发电机的基本方程

3同步发电机的基本方程

基础知识
R :磁阻
:磁导
F :磁势
λ 1 R
Fa ωaia
Φ :气隙磁通 Φ λF
R
G
V I GV
:磁链 Ψ Φ Li
uL
dΨ dt

dt
L di dt
第三章同步发电机的基本方程
电枢反应:三相同步电机有两个旋转磁通势,一个是励磁旋转 磁通势(转子旋转磁通势),是机械方式形成的;一个是定子 旋转磁通势(电枢旋转磁通势),是电气方式形成的。气隙总 磁通势是这两者合成的。电枢电流不同,电枢旋转磁通势便会 不同,合成磁通势也不同。因此电枢旋转磁通势对合成旋转磁 通势的影响称为电枢反应。
aq
Fa
I ia
ib
ia I
I cos cos( 120
)
ic I cos( 120 )
d
id I cos( )
iq
ic
id
ib
iq
I
sin(
)
b
定子电流通用向量
c
第三章同步发电机的基本方程
三角恒等式:
cos( ) 2 [cos cos cos( 120 )cos( 120 ) cos( 120 )cos( 120 )]
0
3 d 2 dt 0 0
0
d 0
0 0
q 0
0
0 0
0 d q
0
q
d
0 0 0
变压器电势:

d

q
发电机电势: d
q

vdq0 ( dq0 S ) rsidq0
d

d
q
rid

q q d riq

第3章 同步发电机的基本方程_2014

第3章 同步发电机的基本方程_2014

Park变换的另一种推导方法
同理可对定子电压和磁链作同样的变换。
✓ 不同频率abc三相对称电流的dq0分量
➢ dq0坐标系下的发电机电势方程
✓ “伪静止”等效绕组
➢ dq0系统的磁链方程和电感系数
➢ 同步电机常用标幺制
✓ 同步电机标幺值方程
➢ 基本方程的拉氏运算式
✓ 同步电机的电抗
➢ 同步电机对称稳态运行:根据同步电机Park方程式,得 到用相量表示的稳态电势方程式,等值电路,相量图; 空载电势Eq和等值隐极机电势EQ的定义;
➢ 基本前提
同步电机基本回路图(理想同步电机假设、假定正方向)
➢ 同步电机原始方程
✓ 电势方程
✓ 磁链方程
✓ 电感系数
Review:磁路欧姆定律
➢ dq0坐标系的同步电机方程
坐标变换和dq0系统 ✓ 采用通用相量表示定子三相电流
✓ 通用相量的dq轴分量
✓ 用dq轴分量表示iabc
✓ Park变换—idq0 ---iabc
设想:将静止的abc三相定子绕组等效为随转子旋转的dd 和qq绕组。等效绕组中的电流id和iq产生的磁势对转子相对 静止,磁通磁路磁阻不变,因此电感系数为常数。
➢ 本节主要结论
✓ 磁链方程式中,同步电机许多电感系数随转子位置角 发生周期性变化,是时变系数;
✓ 将磁链方程代入同步电机电势方程,将得到一组时变 系数微分方程,不便于求解;
✓ 磁链方程式出现变系数的原因:(1)转子的旋转使 定转子绕组间产生相对运动,致使定转子绕组间的互 感系数发生相应的周期性变化;(2)转子在磁路上 只是分别对d轴和q轴对称,而不是随意对称,由此导 致定子各绕组的自感和互感发生周期性变化;
定子绕组自感系数—以a相为例

电力系统分析第二篇 同步发电机的基本方程

电力系统分析第二篇 同步发电机的基本方程
同步发电机的基本方程
主讲教师:徐 箭 所在单位:电气工程学院
内容提要 本章将根据理想同步发电机内部的各电
磁量的关系,建立同步发电机的较为精确而 完整的数学模型,为电力系统的暂态分析准 备必要的基础知识。
《电力系统分析》 主讲人:电气工程学院 徐箭
3-1 3-2 3-3 3-6
基本前提 同步发电机的原始方程 dq0坐标系的同步发电机方程 同步电机的对称稳态运行
LfD=LDf=常数; 纵轴和横轴阻尼绕组之间的互感系数为零(因为两
绕组相互垂直),即LfQ=LQf= LDQ=LQD=0 。
《电力系统分析》 主讲人:电气工程学院 徐箭
⒋ 定子绕组和转子绕组间的互感系数
无论是凸极机还是隐极机,这些互感系数都与定子绕
组和转子绕组的相对位置有关。下面以励磁绕组和定子a
=
w2
⎡⎢⎣λmσ
+
1 4
(λad
+ λaq )⎤⎥⎦⎬⎫⎪⎪
( ) m2
=
1 2
w2
λad −λaq
⎪ ⎪⎭
《电力系统分析》 主讲人:电气工程学院 徐箭
Lab = Lba = −⎡⎣m0 + m2 cos2(α +30°)⎤⎦
定子各相绕组间的互感系数也是转子位置角的周期 函数,周期为π;
变化部分的幅值与自感系数的相等,即m2=l2; m0恒大于m2,因此定子绕组间的互感系数恒为负
《电力系统分析》 主讲人:电气工程学院 徐箭
3-1 基本前提 一、理想同步电机 二、假定正方向的选取
《电力系统分析》 主讲人:电气工程学院 徐箭
一、理想同步电机
不计磁路饱和、磁滞、涡流等的影响,即假定电机的 导磁系数为常数;

同步发电机的基本方程

同步发电机的基本方程

P 1 S P ψ dq0
d sin dt d 2 cos dt 3 0
2 3 0 3 d 2 dt 0
sin( 120 )
d dt d cos( 120 ) dt 0
ib I cos( 120 ) ic I cos( 120 )
id I cos( ) iq I sin( )
图2-7 通用电流相量在两种坐标系统上的投影关系
由两种不同的投影可得他们之间的关系
2 i d [i a cos ib cos( 120 ) ic cos( 120 ) 3 2 i q [i a sin ib sin( 120 ) ic sin( 120 ) 3
id iq i 0 cos( 120 ) cos( 120 ) cos 2 sin sin( 120 ) sin( 120 ) 3 1 1 1 2 2 2 ia ib ic
2-2 同步发电机的原始方程
正方向的规定: (1) 绕组轴线的正方 向作为磁链的正方向. (2)定子绕组产生的磁 链方向与轴线方向相 反时的电流为正值. (3)转子绕组产生的磁 链方向与轴线方向相 同时的电流为正值. (4)电压的正方向 如图2-2示。 图2-1 同步发电机各绕组轴线正方向示意图
图2-2
R i v abc ψ abc S abc
左乘P
R i v dq0 Pψ abc S dq 0
由于Ψdq0=Pψabc
所以
P ψ Pψ ψ dq 0 abc abc

同步发电机的基本方程

同步发电机的基本方程

VS
详细描述
同步发电机的电压方程是描述发电机端电 压与内部电势、电流和阻抗之间关系的数 学表达式。这个方程通常采用三相坐标系 或同步坐标系来表示。在三相坐标系中, 电压方程可以表示为三个一阶微分方程, 而在同步坐标系中,电压方程可以简化为 一个二阶微分方程。
同步发电机的电流方程
总结词
描述同步发电机内部电流与电压、磁链和阻 抗之间的关系。
工业领域
在工业领域中,同步发电机可用于驱动各种电动 机、压缩机、泵等设备。
交通领域
在交通领域中,同步发电机可用于驱动列车、地 铁、船舶和飞机等交通工具。
02
同步发电机的基本原理
同步发电机的电磁原理
总结词
描述同步发电机如何通过磁场和电流相互作用产生电力的过程。
详细描述
同步发电机的基本原理是利用磁场和电流的相互作用产生电能。在发电机中,磁场由励磁系统产生,而转子上的 导线则会在旋转过程中切割磁力线,从而产生感应电动势。这个电动势的大小与磁场强度、导线切割磁力线的速 度以及导线与磁场的相对角度有关。
详细描述
功率控制的主要目标是确保发电机输出的有功功率和 无功功率满足电网的需求,同时保持电网的稳定运行 。为实现这一目标,功率控制器需要监测电网的有功 功率和无功功率需求,以及发电机的输出功率,通过 调节发电机的励磁电流和气门开度等参数,实现有功 功率和无功功率的解耦控制。常用的功率控制策略包 括恒功率控制、恒压控制和下垂控制等。
详细描述
同步发电机的磁链方程是描述发电机内部磁链与电压、电流和极对数之间关系的数学表 达式。这个方程通常采用三相坐标系或同步坐标系来表示。在三相坐标系中,磁链方程 可以表示为三个一阶微分方程,而在同步坐标系中,磁链方程可以简化为一个二阶微分

第二章2.4同步发电机及其基本方程

第二章2.4同步发电机及其基本方程

派克变换及d,q,0坐标系统
原始方程中的定子绕组方程取空间静止不 动,转子各绕组电量取随转子旋转的d.q 两相坐标系统列写。 Park变换是一种坐标变换,它将静止的定 子abc绕组变换到旋转的dq0坐标系统,变 换后定子dd、qq绕组中的等效磁势相对与 转子静止,磁路磁阻不变,相应的电感系 数也就变为常数。
LSR iabc LRR i fDQ
ψ dq 0 P 0 ψ abc P 0 LSS ψ = ψ = 0 U L RS fDQ 0 U fDQ P 0 LSS = 0 U LRS PLSS P 1 = LRS P 1
1
2.4同步发电机及其基本方程
本节知识点:
认识同步发电机的结构 同步电机的电势方程和磁链方程 同步发电机的基本方程 稳态运行模型及相关参数 暂态运行模型及相关参数 同步发电机的序参数
同步发电机的分类
1 隐极机 定子; 转子可以认为各向磁阻相同; 高速旋转的汽轮机。 2 凸轮机 定子同隐极机; 转子磁阻不再随意对称; 水轮机。
M af = maf cos α M bf = mbf cos( α 120 ) M cf = mcf cos( α + 120 )
定子和转子各相绕阻间的互感系数
定子绕组与直轴阻尼绕组间的互感系数
M aD = maD cos α M bD = mbD cos( α 120 ) M cD = mcD cos( α + 120 )
电磁基础
磁动势F = NI F l 磁通φ = ,其中Rm = 磁链ψ = Nφ = NI Rm s F 串联回路φ = Rm1 + Rm 2 E = j 4.44 fNφ
理想同步发电机
1、定子abc三相绕组结构完全相同,互相对称, 空间相隔120度电角度。 2、电机转子在结构上对于d轴与q轴完全对称。 3、定子、转子铁心同轴且表面光滑(忽略定、 转子上的齿槽),忽略齿谐波。 4、定子、转子绕组电流产生的磁动势在气隙中 是正弦分布的,忽略高次谐波。 5、磁路是线性的,无饱和,无磁滞和涡流损耗, 认为电机铁心部分导磁系数为常数,可应用迭 加原理。

第3章同步发电机的基本方程

第3章同步发电机的基本方程

a
f
f
x
ad
d a
a
ad
d
f a f x
maf wwf ad
f a f x d
ad
a d
(4)定子绕组和转子各绕组间的互感系数—abc--D
a
ad
a
D
D
x
aD wwD iD ad cos
L L m cos Da aD aD LbD LDb maD cos 120 L L m cos 120 Dc aD cD
绕组轴线正向示意图
3-3 dq0坐标系的同步电机方程
1. 坐标变换和 dq0坐标系 2. dq0坐标系下的电势方程
3. dq0坐标系下的磁链方程和电感系数
4. 同步电机标幺值基本方程
1. 坐标变换与dq0坐标系
(1)采用通用相量表示定子三相电流
F
a
I
定子三相对称电流可以用以同 步转速旋转的通用相量I表示;
if rf uf iD rD ec eD iQ rQ eQ rc ua ub uc ic ef ra ea eb rb ib ia

i
abc rS u abc ψ u ψ fDQ fDQ 0
0 i abc i rR fDQ
eQ

i
e
3-2 同步电机的原始方程式
1. 电势方程
ua u b uc u f 0 0 a r b 0 c 0 f D Q 0 0 r 0 0 r 0 rf 0 0 0 0 rD 0 ia ib ic 0 i f 0 iD rQ iQ

第七章 同步发电机的基本方程

第七章 同步发电机的基本方程
派克变换就是将a、b、c三相电流、电压及磁链经过某种 变换(变换的方法不唯一)转换成另外三组量,即d轴、 q轴、零轴分量,完成了从a、b、c坐标系到d、q、0坐 标系的变换。 采用abc坐标系统或dq0坐标系统表示的电量是交直流 互换的,因此为分析发电机运行带来了方便。
7.2.2 d、q、0坐标系统的发电机基本方程
电力系统在运行时常常受到各种扰动,如果扰动后电力系 统出现了异常,如停电等就是电力系统事故,最常见的有短 路故障、负荷投切,系统内的元件上发生不同相之间的或相 与地之间的短路故障(如绝缘破坏引起的匝间短路等)。 短路故障引起的短路电流比正常值要大得多,其冲击电流 和热效应损坏电气设备,同时短路故障改变了网络结构,因 而改变了发电机的输出功率,造成了发电机输出和输入的不 平衡,严重时可造成发电机组之间的失步,造成系统失去稳 定,因此必须对电力系统的各种暂态情况进行分析研究。
maD 0 id i 0 maQ q 0 0 i0 mr 0 if LD 0 iD 0 LQ iQ
电压方程的派克变换形式
d q u d rs i d q d u q rS i q o u o rS io f u f rf i f D 0 u D rD i D Q 0 u Q rQ iQ
转子绕组的 自感
定转子绕组间的互感
转子绕组间的互感
各绕组的磁链方程:
绕组的自感系数以及绕组间的互感系数,大部分是随角度的 变化而周期性变化,求解发电机的运行状态十分不便。
绕组的自感、互感系数
a相绕组磁路磁阻(磁导)的变化与转子d轴与a相绕组轴线的夹 角 有关 —— a 相轴线与直轴 d 轴的夹角 1)定子绕组的自感系数

同步发电机的基本方程

同步发电机的基本方程

二、假定正向的选取
3-2 同步发电机的原始方程
一、电势方程和磁链方程
a r ϕ va v ϕb 0 b ϕ c 0 vc − − = f 0 ϕ −vf ϕ 0 D 0 Q 0 0 ϕ
f
maf = ww f λad
3-3 d-q-0坐标系的同步电机方程
一、坐标变换和d-q-0系统
许多自感系数和互感系数是时间的周期函数:转子旋转导致自感磁 通和互感磁通的磁通路径发生周期性的变化 由于定子纵轴和横轴磁通路径对应的磁导是常数,因此在分析定子 磁势对转子绕组影响的时候,如果能将定子三相绕组的合成磁势分 解为纵轴分量和横轴分量(即d轴上的虚拟绕组dd和q轴上虚拟绕组 qq的磁势),则能避免出现周期性变化电感系数。 (1)定子abc绕组电流三相对称时
cosα cos(α - 1200 ) cos(α + 1200 ) i d i = 2 sinα sin(α - 1200 ) sin(α + 1200 ) q 3 12 12 12 i0
sinα 1 i d i a cosα o o i b = cos(α - 120 ) sin(α - 120 ) 1 i q ic cos(α + 120o ) sin(α + 120o ) 1 i 0
第三章 同步发电机的基本方程
3-1 基本前提 3-2 同步发电机的原始方程 3-3 d、q、0坐标系的同步电机方程 3-6 同步电机的对称稳态运行
3-1 基本前提
一、理想同步电机
忽略磁路饱和、磁滞、涡流等的影响,假设电机铁心部分的导磁系 数为常数; 电机转子在结构上对于纵轴和横轴分别对称; 定子a、b、c三相绕组的空间位置互差120电角度,在结构上完全相 同,它们均在气隙中产生正弦分布的磁动势; 电机空载,转子恒速旋转时,转子绕组的磁动势在定子绕组所感应 的空载电势是时间的正弦函数; 定子和转子的槽和通风沟不影响定子和转子的电感,即认为电机的 定子和转子具有光滑的表面; 定子:a、b、c三个绕组 转子q轴:阻尼绕组Q 转子d轴:励磁绕组f和阻尼绕组D

第3章 同步发电机的基本方程

第3章 同步发电机的基本方程

场有了相对运动,就会在这个鼠笼里产生感应电流,形成附加磁 场(起阻尼作用)。
第三章 同步发电机的基本方程
简化前提
一、理想同步电机的简化假设
为了方便分析,常采用以下假设(理想同步机):
1、忽略磁路饱和、磁滞、涡流等影响,假设电机铁心部分导磁系数为常数。 2、电机转子在结构上对于纵轴和横轴分别对称。 3、定子的abc三相绕组空间位置互差120度电角度,在结构上完全对称。 4、电机空载,转子恒速旋转时,转子绕组的词董事在定子绕组所感应的空 载电动势是时间的正弦函数。 5、定子和转子的槽和通风沟不影响转子和定子的电感,即认为定子和转子 有光滑的表面。
(3)机座和端盖等。 (1)转子铁心:
由整块铸(锻)钢制成。 2. 转子 (2)励磁绕组:
工作时施加直流励磁。 (3)阻尼绕组和转轴等。
阻尼绕组
5第.2 三三章相同同步步电机发的电基机本结的构基本方程
二、励磁方式
1. 直流励磁机励磁
励磁绕组由小型直流发电机供电。
2. 静止整流器励磁
交流励磁机→整流→直流电 电刷
第三章 同步发电机的基本方程
第三节 d、q、0坐标系的同步电机方程
一、坐标变换 定子a,b,c三相绕组对转子的影响可考虑为其对转子
d,q轴的影响之效应和,为此我们引入一种数学变换,即: 著名的派克变换。从数学角度考虑,派克变换是一种线性 变换;从物理意义上理解,它将观察者的角度从静止的定 子绕组转移到随转子一同旋转的转子上,从而使得定子绕 组自、互感,定、转子绕组间互感变成常数,大大简化了 同步电机的原始方程。
第三章 同步发电机的基本方程
磁学有关公式
B d
dA
F
Rm
F iw

同步发电机的基本方程

同步发电机的基本方程

b
α=240° 定子绕组的互感
三、电势方程和磁链方程(续8)
(2)定子绕组间的互感
Lab Lba m0 m2 cos 2 30 Lbc Lcb m0 m2 cos 2 90 L L m m cos 2 150 ac 0 2 ca
三、电势方程和磁链方程(续9)
(3)转子各绕组的自感系数和互感系数
由于定子的内缘呈圆柱形,转子绕组电流产生的磁通路 径的磁阻不变,因此其自感系数为常数,可分别记为Lf、 LD、LQ。 同理,转子各绕组间的互感系数也为常数。两纵轴绕组 间的互感系数LfD=LDf=常数。转子纵轴与直轴垂直,互感 系数为0,即 LfQ=LQf=LDQ=LQD=0。
二、dq0坐标系下的同步机基本方程(续1)
其中
m af 0 0 m aD 0 0 0 m aQ 0
3 2 m af 3 m aD 2 0 0 0 3 m aQ 2 0 0 0
PLSR
LRS P 1
PLSS P 1
M ab Lbb M cb M fb M Db M Qb M ac M bc Lcc M fc M Dc M Qc M af M bf M cf L ff M Df M Qf
M SR iabc i LRR fDQ
M aD M bD M cD M fD LDD M QD M aQ ia i M bQ b M cQ ic M fQ i f M DQ iD LQQ iQ
x
d
a ×
·
x
α=0
α=90
a
a
三、电势方程和磁链方程(续4)

第3章 同步发电机的基本方程

第3章 同步发电机的基本方程

从数学角度考虑,派克变换是一种线性变换;从物理意义上 理解,它将观察者的角度从静止的定子绕组转移到随转子一 同旋转的转子上,从而使得定子绕组自、互感,定、转子绕 组间互感变成常数,大大简化了同步电机的原始方程。 同步电机稳态对称运行时, 电枢磁势幅值不变,转速恒 定,对于转子相对静止。它 可以用一个以同步转速旋转 & 的矢量 Fa来表示。如果定子 电流用一个同步旋转的通用 & & 相量 I 表示,那么,相量 Fa与 & 相量 I 在任何时刻都同相位, 而且在数值上成比例,如图 所示。
式中:& = dψ / dt ψ
& v abc ψ abc rs v = − ψ − fDQ & fDQ 0 0 iabc rR i fDQ
ψ a ψ b ψ c L ψ f ψ D ψ Q
Laa = l 0 + l 2 cos 2α
Lbb = l 0 + l 2 cos 2(α − 120 0 ) Lcc = l 0 + l 2 cos 2(α + 120 0 )
由此可见,定子绕组的自感系数是转子位置角α的 周期函数,其变化周期为π。
2. 定子绕组间的互感 以a相与b相之间的互感系数Lab为例
i abc = P −1 i dq 0
由此可见,当三相电流不平衡时,每相电流中都含有相同的零 轴分量i0。由于定子三相绕组完全对称,在空间互相位移 120°电角度,三相零轴电流在气隙中的合成磁势为零,故不 产生与转子绕组相交链的磁通。它只产生与定子绕组交链的磁 通,其值与转子的位置无关。
二、d、q、0系统的电势方程
第三节
d、q、0坐标系的同步电机方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Laf Lbf
Lfa Lfb
maf maf
cos
cos( 120o)
Lcf
Lfc
maf
cos(
120o)
LaD LDa maD cos
LbD LDb maD cos( 120o)
LcD
LDc
maD
cos(
120o)
以(-90° )代换 得到定子绕组与转子横轴阻尼绕组之间的互感系数
m0 > m2
l2 m2
定子电感矩阵LSS对称
定子绕组间的互感
3.转子绕组的自感和互感
自感系数和互感系数都是常数,分别记为
Lf , LD, LQ LfD=LDf, LfQ=LQf=0, LDQ=LQD =0 4.定子绕组和转子绕组间的互感系数 仅讨论周期与特征点
= 0°时,a相与f绕组互感最大,周期为2。
3-1 基本前提
一、理想同步电机
从三个方面把握假设的实质:
(1) 对称性质:转子结构关于交轴直轴对称,定子三相绕组轴线对称;
(2) 正弦性质:定、转子绕组磁势及气隙磁通正弦分布 (分布绕组,斜槽、分数槽,磁 性槽契等),磁势、磁通的分布曲线及其叠加可用正弦函数描述;
(3) 线性性质:铁心磁场不饱和,电路分析可用叠加原理。
励磁电压等于:电阻压降加感应反电势。 为何轴线顺序与相量顺序相反?
同步发电机的回路图
同步发电机各绕组轴线正 向示意图
3-2 同步发电机的原始方程
一、电势方程和磁链方
1.电势方程(将前述6个绕组的电压方程联立求解)
va
vb
&a r 0 0
&b
0
r
0
ia
0
ib
vc v f
&c &f
Ld
=
l0
+
m0
+
1 2
l2
+
m2
1 Lq = l0 + m0 - 2 l2 - m2
LaQ LbQ LcQ L fQ LDQ LQQ
ia
ib
ic
i f
iD
iQ
式中, Laa为绕组a的自感系数; Lab 为绕组a和绕组b之间的 互感系数;其余类此。
磁链方程可简写成:
ψabc ψ fDQ
LSS
LRS
LSR iabc
LRR
i
fDQ
定子电流正方向: 由发电机机端流出。 (符合实际情况)
相电流磁链方向: 为绕组轴线方向。
(轴线方向定义)
感应电势分别为: &a , &c , &b
(符合楞次定律)
定子电压等于: 感应电势减去电阻压降。(符合实际情况)
va = &a-ria
转子:
励磁电流磁链方向:d轴正方向。
d 轴超前于q轴90°。
vf = &f +rf if
实施办法(思路):定子电感系数矩阵LSS是一个实对称矩阵,必与一对角矩阵相似。
即:存在P,使 P LSS P-1=diang[Ld、 Lq 、 L0]
二元对称方程组,按列与按行消 去,可以使系数矩阵对角化,使 方程解耦。举例如右矩阵变换。
A
1 0.5
0.5
1
根据LSS,求解特征值为Ld、Lq 、L0(恰为常数),对应的特征相量可排列成相似变换矩阵
有关,而正弦变化规律函数的周期与特征点则可以直接观察。)
电感系数讨论:电感矩阵LSS是对称阵矩阵,且各系数是转子位置角的周期函数。
1.定子自感 (仅讨论周期与特征点:周期为 ,= 0°时,a相最大。)
Laa l0 l2 cos 2
Lbb l0 l2 cos 2( 120o)
Lcc
l0
l2 cos 2(a
120o)
定义:d轴与a相绕组轴线正方向的夹角 l0 > l2
定子绕组的自感
2.定子互感 (仅讨论周期与特征点:周期为 ,= -30°时,a相与b相互感最大)
Lab Lbc
Lba Lcb
[m0 m2 cos 2( [m0 m2 cos 2(
30o)] 90o)]
Lca Lac [m0 m2 cos 2( 150o)]
华中科技大学何仰赞 温增银编
电力系统分析
湖南大学电气与信息工程学院
刘光晔 2011年5月
第三章 同步发电机的基本方程
▪ 3-1 基本前提 ▪ 3-2 同步发电机的原始方程 ▪ 3-3 d、q、0坐标系的同步电机方程 ▪ 3-4 同步电机的常用标幺制 ▪ 3-5 基本方程的拉氏运算形式 ▪ 3-6 同步电机的对称稳态运行
0
0
r
rf
0
0
iicf
0
&D
0
0
rD
0
iD
0 &Q
0 0 rQ iQ
va = &a-ria vf = &f +rf if
电势方程可简写成:
vabc v fDQ
&abc &fDQ
rS
0
0 iabc
rR
i
fDQ
讨论:6电压个方程,表面上看相互独立,实际上是相互耦合的。
2.磁链方程( 6个绕组之间有互感磁链)
a b
c f
D
Q
Laa Lba
Lca
L
fa
LDa
LQa
Lab Lbb Lcb L fb LDb LQb
Lac Laf Lbc Lbf Lcc Lef L fc L ff LDc LDf LQc LQf
LaD LbD LcD L fD LDD LQD
讨论:旋转磁势幅值是单 相脉振磁势振幅的3/2倍
a
b
c
120
120
三相脉振磁场合成旋转磁场示意图
也可用物理学中 波的传递现象解 释旋转磁场形成
二、假定正向的选取 绕组轴线方向的定义?
准备:画螺两个单端接地的旋绕组,电流流入为电抗器,电流流出为发电机(考虑磁
定子:
铁往复运动使磁链变化发电)。根据右手螺旋定则,讨论轴线方向、电流、磁链、电 压、电势参考方向的关系。分别写出这两种情形的电压方程,即为电势原始方程。
LaQ LbQ
LQa LQb
maQ maQ
sin sin(
120o)
LcQ
LQc
maQ
sin(
12q、0坐标系的同步电机方程
一、坐标变换和d、q、0系
坐标变换的目标: 简化磁链方程中的电感系数矩阵:将定子电感矩阵对角化,同时将变系 数矩阵化为常系数矩阵。最后得到解耦的常系数磁链方程,简化分析计算。
自感和互感系数是变化的,必须进一步讨论。
原始方程说明: 1. 原始方程有6个状态(电压)方程,6个代数(磁链)方程,总计12个方程。 2. 从外部看,只关心绕组端口的电流与电压,故将保留电压方程,消去磁链方程。 3. 发电机准确数学模型为6阶状态(电压)方程。
二、电感系数(说明:自感大小与磁路的磁导有关,互感大小与绕组之间的位置角
相关文档
最新文档