工程流体力学课件第11章:流体的测量

合集下载

《工程流体力学 》PPT课件

《工程流体力学 》PPT课件
总之,工程流体力学这门课非常重要,流体 力学的知识今后会经常用到。大家一定要化力气 扎扎实实地学好工程流体力学。
第一章 流体及其物理性质
§1.1流体的定义和特征 §1.2流体力学发展简史 §1.3流体的连续介质假设 §1.4国际单位制 §1.5流体的密度 §1.6流体的压缩性和膨胀性 §1.7流体的粘性 §1.8液体的表面张力
为非常大,另一方面,要通过流体质点反映流体及其物 理量在空间的变化,故流体质点相对于整个流体力学问 题的区域又是非常小,即微观无限大与宏观无限小。

在大多数流体力学问题中,这个条件能够满足。
例:许多工程问题,特征尺寸大于1mm,取Vmin=1mm3, 以10-3 cm作为流体质点的特征尺寸,δV′=10-9 cm3,对 于这个流体质点,考察在标准状况下的气体,则δV′中 包含2.69×1010个分子,完全能得到与分子数无关的统 计平均特性。而另一方面,Vmin/δV′=106,也完全能体 现出流体质点的变化.

lim 包含P(x,y,z)点的流体质点的密度
m
V V V
作为P(x,y,z)点的流体密度。而一般教科书都定义:


lim
V 0

m V
这是数学上的δV→0,或上节中所述的宏观无限小。
从宏观角度,即与所述问题的整个流体体积相比, δV′→0。
现分子统计平均特性的体积。 微元体积δV′中的所有流体分子的
总体就称为流体质点。δV′就是流体质点(微团)的体积。
四、流体的连续介质假设(模型)
流体是由无数连续分布的流体质点组成的连续介质。
而表征流体特性的物理量可由流体质点的物理量代表,
且在空间连续分布。这就是流体的连续介质假设(模型)。

《工程流体力学 》课件

《工程流体力学 》课件

1
动量守恒定律的原理
从动量的守恒角度出发,深刻理解动量守恒定律的实际含义。
2
螺旋桨叶片受力分析方法
通过螺旋桨叶片受力分析的实例,解析动量守恒定律在实际问题中的应用。
3
旋转流体给出经典范例。
能量守恒定律
1 什么是能量守恒定律?
解析能量守恒定律的定义及其基本特性,令人信服地说明其重要性。
第二章:质量守恒定律
详细介绍质量守恒定律的深刻含义和应用范围, 以及流体连续性方程的应用实例。
第四章:能量守恒定律
归纳总结能量守恒定律的核心表述和基本特征, 以及流体能量方程的求解方法。
流体力学基础
1
流体的基本概念
定义流体和非流体的区别,详细介绍流体的基本性质和特征。
2
流场参数
分类介绍各项流场参数的定义、特征和计算方法,重点阐述雷诺数的作用。
概述水力发电站的基本构造和 设备,重点描述流场参数的计 算方法和水力器件的工作原理。
油气管道压力调节方 法
介绍油气管道压力发生变化的 原因和影响,以及调节压力的 方法与流体力学的联系。
结论和要点
结论1
质量守恒定律的意义及其在实际 问题中的应用。
结论2
动量守恒定律的实际含义,以及 其在涡轮和桨叶设计中的应用。
2 如何求解能量守恒定律?
采用实例解析法,将复杂的能量守恒定律应用问题简单化。
3 如何避免能量损失?
从能量损失的根源出发,提出避免能量损失的有效途径。
应用举例
机翼气动力设计
阐述机翼气动力设计的重要性 及其与流体力学的联系,以及 之前学到的动量守恒定律和能 量守恒定律在机翼气动力设计 中的应用。
水力发电站设计
结论3

工程流体力学课件_孔珑_第四版

工程流体力学课件_孔珑_第四版
工程流体力学
流体力学与热力学教研室
第1章 绪论 第2章 流体静力学
目 录
第3章 流体动力学原理
第4章 管流损失和水力计算
第5章 气体的一维定常流动
第1章 绪论
§1.1 流体力学发展史简述 §1.2 流体力学研究的对象和应用
§1.3 连续介质模型
§1.4 流体的主要物理性质 §1.5 作用在流体上的力 返回目录
0 C,1mm3 水含3.4×1019个分子 如此大量的分子, 容易取得它们共同 作用的有代表性的 统计平均值
气体含2.7×1016个分子
§1.3
2. 流体质点
连续介质模型
是研究流体的机械运动中所取的最小流体微元
是体积无限小而又包含大量分子的流体微团 从宏观看,和流动所涉及的物体的特征长度相比,该微团的尺度充 分小,在数学上可以作为一个点来处理
N-S方程
§1.1
流体力学发展简述
19世纪末开始,针对复杂的流体力学问题,理论分析和实验研究 逐渐密切结合起来。
O. Reynolds (1842-1912) 1883年用实验验证了粘性 流体的两种流动状态——层流 和紊流的客观存在,找到了实 验研究粘性流体运动规律的相 似准则——雷诺数,以及判别 层流和紊流的临界雷诺数。
§1.1
流体力学发展简述
T. von Karman (1881-1963)
提出了分析带旋涡尾 流及其所产生的阻力的 理论——卡门涡街
提出了计算紊流粗糙 管阻力系数的理论公式
§1.1
流体力学发展简述
周培源 (1902- 1993)
钱学森 (1911-)
主要从事物理学的基础 理论中难度最大的两个方面, 即爱因斯坦广义相对论引力 论和流体力学中的湍流理论 的研究与教学并取得出色成 果。

工程流体力学电子课件

工程流体力学电子课件

教材及教学参考书

禹华谦主编,工程流体力学,第1版,高等教育出版社,2004 禹华谦主编,工程流体力学(水力学),第2版,西南交通大学 出版社,2007 黄儒钦主编,水力学教程,第3版,西南交通大学出版社,2006 刘鹤年主编,流体力学,第1版,中国建筑工业出版社,2001 李玉柱主编,流体力学,第1版,高等教育出版社,1998 禹华谦主编,水力学学习指导,西南交通大学出版社,1998 禹华谦编著,工程流体力学新型习题集,天津大学出版社,2006
汽车阻力来自前部还是后部?

汽车发明于19世纪末,当时人们认为汽车的阻力主要来自前部对 空气的撞击,因此早期的汽车后部是陡峭的,称为箱型车,阻力 系数CD很大,约为0.8。
汽车阻力来自前部还是后部?

实际上汽车阻力主要来自后部形成的尾流,称为形状阻力。
汽车阻力来自前部还是后部?

20世纪30年代起,人们开始运用流体力学原理改进汽车尾部形状, 出现甲壳虫型,阻力系数降至0.6。
汽车阻力来自前部还是后部?

20世纪50-60年代改进为船型,阻力系数为0.45。
汽车阻力来自前部还是后部?

80年代经过风洞实验系统研究后,又改进为鱼型,阻力系数为0.3。

以后进一步改进为楔型,阻力系数为0.2。
汽车阻力来自前部还是后部?

90年代后,科研人员研制开发的未来型汽车,阻力系数仅为0.137。
工程流体力学课件
西南交通大学国家工科力学基础课教学基地 工 程 流 体力 学 教 研 室
工程流体力学课件
☞你想知道高尔夫球飞得远应表面光滑还是粗
糙吗? ☞你想知道汽车阻力来至前部还是尾部吗? ☞你想知道机翼升力来至下部还是上部吗? ☞你想知道……… ———请学习

流体动力学基础(工程流体力学).ppt课件

流体动力学基础(工程流体力学).ppt课件

dV
II '
t t
dV
II '
t
dt t0
t
lim
dV
III
t t
dV
I
t
t 0
t
δt→0, II’ → II
x
nv
z
III
v II ' n
I
o y
20 20
dV
dV
II
tt II
t
lim t t0
t
dV
dV
lim III
t t
t0
t
v cosdA
质点、质点系和刚体 闭口系统或开口系统
均以确定不变的物质集协作为研讨对象!
7 7
定义:
系统(质量体)
在流膂力学中,系统是指由确定的流体质点所组成的流 体团。如下图。
系统以外的一切统称为外界。 系统和外界分开的真实或假象的外表称为系统的边境。
B C
A
D
Lagrange 方法!
系统
8
8
特点:
(1) 一定质量的流体质点的合集 (2) 系统的边境随流体一同运动,系统的体积、边境面的
31 31
固定的控制体
对固定的CV,积分方式的延续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一同运动时,延续性方程方式不变,只
需将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32 32
延续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
令β=1,由系统的质量不变可得延续性方程

《流体力学》课件

《流体力学》课件

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。

古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。

流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。

建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

此后千余年间,流体力学没有重大发展。

15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。

但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。

流体力学的主要发展:17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。

他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。

使流体力学开始成为力学中的一个独立分支。

但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。

之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。

欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。

工程流体力学-课件全集

工程流体力学-课件全集
19世纪末,边界层理论,紊流理论,可压缩流体力学。
四、流体力学的分支:
工程流体力学、稀薄气体力学、磁流体力学、非牛顿流体 力学、生物流体力学、物理-化学流体力学。
五、流体力学的任务 解决科学研究和工农业生产中遇到的有关流体流动的问
题。 涉及的技术部门:航空、水利、机械、动力、航海、冶
金、建筑、环境。 例如:动力工程中流体的能量转换 机械工程中润滑液压传动气力传输 船舶的行波阻力(水,风的阻力) 高温液态金属在炉内或铸模内的流动 市政工程中的通风通水 高层建筑受风的作用(风载计算) 铁路,公路隧道中心压力波的传播(空气阻力) 汽车的外形与阻力的关系(流线型) 燃烧中的空气动力学特征 血液在人体内的流动 污染物在大气中的扩散
表示单位质量流体占有的体积
流体的密度与温度和压强有关,温度或压强变化时都会引
起密度的变化。
.
dρ P dP T dT
四.等温压缩系数,体积压缩系数
密度的相对变化律.
d 1
1
P dP T dT KdP TdT
K-等温压缩系数:表示在温度不变的情况下,增加单位压强所引起的 密度变化率.也称 K ---体积压缩系数:表示压强增加时,体积相对 减小,密度增加.
一:流体力学的定义
研究流体在外力作用下平衡和运动规律的一门学科,是力学的一个分支.
二:
物体
固体 : 在静止状态时能抵抗一定数量的拉力,压力和剪切力。
流体(包括液体和气体) : 不能抵抗抗力和剪切力.流体在剪切力的 作用下将发生连续不断的变形运动,直至剪切力消失为止。
流体的这种性质称为易流动性。
三:流体力学的发展
1653年,帕斯卡原理:静止液体的压强可以均匀的传遍整个流场.

流体力学课件 ppt

流体力学课件 ppt

流体阻力计算
利用流体动力学方程,可以计算 流体在管道中流动时的阻力,为 管道设计提供依据。
管道优化设计
通过分析流体动力学方程,可以 对管道设计进行优化,提高流体 输送效率,减少能量损失。
流体动力学方程在流体机械中的应用
泵和压缩机性能分析
流体动力学方程用于分析泵和压缩机的性能 ,预测其流量、扬程、功率等参数,为机械 设计和优化提供依据。
适用于不可压缩的流体。
方程意义
描述了流体压强与密度、重力加速度和深度之间的 关系。
Part
03
流体动力学基础
流体运动的基本概念
01
02
03
流体
流体是气体和液体的总称 ,具有流动性和不可压缩 性。
流场
流场是指流体在其中运动 的区域,可以用空间坐标 和时间描述。
流线
流线是表示流体运动方向 的曲线,在同一时间内, 流线上各点的速度矢量相 等。
能量损失的形式
流体流动的能量损失可以分为沿程损失和局部损失两种形式。沿程损失是指流体在流动过程中克服摩擦阻力而损 失的能量,局部损失是指流体在通过管道或槽道的局部障碍物时损失的能量。
Part
05
流体动力学方程的应用
流体动力学方程在管道流动中的应用
稳态流动和非稳态
流动
流体动力学方程在管道流动中可 用于描述稳态流动和非稳态流动 ,包括流速、压力、密度等参数 的变化规律。
变化的流动。
流体动力学基本方程
1 2
质量守恒方程
表示流体质量随时间变化的规律,即质量守恒原 理。
动量守恒方程
表示流体动量随时间变化的规律,即牛顿第二定 律。
3
能量守恒方程
表示流体能量随时间变化的规律,即热力学第一 定律。

流体力学完整版课件全套ppt教程最新

流体力学完整版课件全套ppt教程最新

取一微元正交六面体。
左侧面压力: 右侧面压力:
( p 1 p dx)dydz 2 x
( p 1 p dx)dydz 2 x
y
p 1 p dx 2 x
z
p 1 p dx 2 x
x
再考虑 x 轴方向的质量力,可列出 x 轴方向的平衡方程:
(p
1 2
p x
dx)dydz ( p
1 2
p x
ν× 106/ m2/s
1.792 1.007 0.661 0.477 0.367 0.296
空气
μ × 106/ Pa·s
ν× 106/ m2/s
17.09 18.08 19.04 19.97 20.88 21.75
13.20 15.00 16.90 18.80 20.90 23.00
§1.3 流体的物理性质
➢ 牛顿流体与非牛顿流体
牛顿流体; 塑性体; 伪塑性体; 宾汉体。
du dy
(du)n dy
du dy
(du)n
dy
0
du dy
➢ 粘性流体与理想流体
实际流体都具有粘性。理想流体就是忽略流体的粘性。
§1.3 流体的物理性质
1.3.4 液体的表面张力
➢ 表面ห้องสมุดไป่ตู้力现象演示
肥皂薄膜对棉线作用一个拉力。
温度/ K
291 291 293
σ× 103/ N/m
73 490 472
§1.3 流体的物理性质
➢ 表面张力产生的压差
由表面张力引起的液体自由表面两边 的附加压力差为:
p ( 1 1 ) R1 R2
➢ 毛细现象
当液体与固体接触时,如果液体分子 间的吸引力(内聚力)大于液体分子 和固体分子间的引力(附着力),则 液体抱成团与固体不浸润;当液体分 子内聚力小于附着力时,则液体就能 浸润固体表面。

《流体力学》PPT课件

《流体力学》PPT课件

h
3
流体力学的基础理论由三部分组成: 一是流体处于平衡状态时,各种作用在流体上的力之间关系
的理论,称为流体静力学; 二是流体处于流动状态时,作用在流体上的力和流动之间关
系的理论,称为流体动力学; 三是气体处于高速流动状态时,气体的运动规律的理论,称
为气体动力学。 工程流体力学的研究范畴是将流体流动作为宏观机械运动进
温度 t (℃)
20 20 20 20 20 20 20 20 20 20 20 20 -257 -195 20
密度
( kg/m3) 998
1026 1149
789 895 1588 1335 1258 678 808 850-958 918
72 1206 13555
相对密度 d
1.00 1.03 1.15 0.79 0.90 1.59 1.34 1.26 0.68 0.81 0.85-0.93 0.92 0.072 1.21 13.58
动 力 黏 度 104
( P a·s) 10.1 10.6 — 11.6 6.5 9.7 —
14900 2.9
19.2 72 —
0.21 2.8
15.6
2021/1/10
h
14
表1-2
在标准大气压和20℃常用气体性质
气体


二氧化碳
一氧化碳


密度
( kg/m3) 1.205 1.84 1.16
h
1
第一节 流体力学的研究对象和任务

第二节 流体的主要物理性质

第三节 流体的静压强及其分布规律
第四节 流体运动的基本知识
第五节 流动阻力和水头损失
返回

工程流体力学基础课件

工程流体力学基础课件
三、连续介质模型 1.连续介质假设 在流体力学中假设流体是一种由密集质点(大小与流动空间相比微不足道,又含有大量分子、具有一定质量的流体微元)组成、内部无空隙的连续体。 与一切物体一样。流体是由大量分子所组成,而分子之间由于其相互吸引和排斥的分子力之作用,所有分子都在时刻不停地在运动着。液体和气体的分子运动,比一般固体更为激烈,上面所谓流体的平衡和运动规律,不包括这里所说微观上的分子运动。流体力学所要研究的是流体在宏观上的平衡和运动规律 具体地说就是由外部原因,比如重力、压力差摩擦力等作用所引起的宏观运动,若把物体的平衡状态,作为运动状态的特例,那么,流体力学的研究任务,就可简单地说成是研究流体的宏观运动规律。 流体力学研究流体宏观机械运动的规律,也就是大量分子同机平均的规律性 1755年瑞士数学家和力学家欧拉(Euler.L.1701—1783)首先提出,把流体当 作是由密集质点构成的、内部无间隙的连续流体来研究,这就是连续介质假设 这里所说的质点,是指大小同所有流动空间相比微不足道,又含有大量分子,具 有一定质量的流体微元。
(录象) 布朗运动
(录象)表面张力a
(录象)表面张力其研究内容的侧重点不同,分为理论流体力学和工程流体力 学,理论流体力学主要运用严密的数学推理方法,力求结果的准确性和 严密性;工程流体力学则侧重于解决工程实际中出现的问题,而不去追 求数学上的严密性。从历史发展角度分为古典流体力学、试验流体力学 和现代流体力学,古典流体力学是在古典力学基础上,运用严密的数学 工具,建立有关理想流体及实际流体的基本运动方程,但实际情况往往 比理论假设不符。实验流体力学是工程技术人员用实验方法制定一些经 验公式,满足工程需要,但有些公式缺乏理论基础。近来发展成的现代 流体力学是由实验方法和理论分析相结合,实践和理论并重的学科。 目前流体力学已经发展出许多分支,如:《环境流体力学》、 《计 算流体力学》、 《高等流体力学》、《电磁流体力学》、《化学流体力 学》、《生物流体力学》、《高温气体力学》 、《非牛顿流体力学》、 《工业流体力学》、《随机水流体力学》、《坡面流体力学》、《高速 流体力学》、《流体动力学》、《空气动力学》、《多相流体力学》、 《实验流体力学》、《爆破力》等。在公路与桥梁工程中,在地下建筑、 岩土工程、水工建筑、矿井建筑等土木工程等各个分支中,也只有掌握 好流体的各种力学性质和运动规律,才能有效地、正确地解决工程实际 中所遇到的各种流体力学问题。

工程流体力学的讲义共121页PPT

工程流体力学的讲义共121页PPT

z
( )
2dt
代入 和
z
1 2
(v x
u ) y

y
1 2
(u z
w x
)
x
1 2
(w y
v ) z

xiyjzk
当 0 称无旋流或势流。 0 称有旋流或涡流。
流体运动是否有旋不能只看其运动轨 迹,而要看它是否绕自身轴转动。
例:
例: ux vy 流动是否存在?是否有旋?
uy vx
流动是否存在?是否有旋?
y
v
+
∂ ∂
v dy y
u
d
+
∂ ∂
u y
dy
v+∂v dy+ v ∂y x
dx
c u+∂ ∂xudx+uydy
vu
a
v + ∂ v dx ∂x
b u + ∂ u dx ∂x
u dydt y
d’
Δα
a’ Δβ
c’
b’
v dxdt x
定义:单位时间内ab、cd转过的平均角度
称角变形速度,用 θ表示。
x
d’ ∂ v d y d t
c’
∂y
a’

u
d
x
b’
dt
∂x
定义:单位长度、单位时间内线变形称
为线变形率,用 ε表示。
由定义有:
x
u dxdt x
dxdt
u x
y
v y
z
w z
三个方向 的线变形
三.角变形
讨后论 ,由b点于的这两 vx d个x 和速d度点增的量 uy ,d y 使作原用图,形经发时生间角dt 变形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.金属弹簧压力表
当测量较高的压强,或对于各种流体系统检测压强时, 常采用金属弹簧管式压力表 图11-7是金属弹簧管式压 力表的基本结构示意图。当有压强的被测流体通入时 ,具有扁椭圆形截面的金属弹簧管l(图中 段),在内 外压差的作用下产生弹性变形,由管末端处的拉杆2拉动 扇形齿轮3使与其啮合的齿轮4转动,带动指针5指示压 强值。游丝7用以消除齿轮间的间隙,提高测量精度。 调节螺钉9的位置可以改变传动放大系数,调节压力表 量程。6为表盘,8为连接螺柱。弹簧管的变形随压强 上升而增大,通常根据不同的压强测量范围和测量精 度要求选用合适量程和精度的金属压力表。
1.液体测压计 液体测压计是根据流体静力学原理设计利用液柱高来测
量压强的仪表。在静力学中曾学过,对于静止且连通 的均质液体,在重力场中等压面是水平面。因此连通 的均质静止流体中,任意两点的压强差只与两点间的 垂直高度有关,而与容器的形状无关,这样,若在被 测液体的容器壁上所要测量压强处开孔并接透明(如玻 璃)管子,即可测出液体中的压强。
11.1.1静压的测量
无论流体处于静止状态,或对于流动的流体,当用固定 壁面开孔感受压强或用对流场干扰很小的探针通过周 壁小孔感受到的流体压强都可称为流场中某点的静压。
通常认为,只要壁面上开设的静压孔足够小,孔的轴线 垂直壁面,孔的边缘没有毛刺或凹凸不平,静压孔中 感受到的就是测点上流体压强的真实值。而当孔的边 缘处有毛刺或凹凸不平时,将会产生局部旋涡,使测 量值不准确。静压孔内外流体的相互影响引起了测量 结果产生误差。
(2) U形管测压计
图11-4所示为U形管测压计,它一端与大气相通.另一端 连接到所要测量压强的 点处。根据U形管内量得的液 柱高度差计算出 点的压强。
通常根据被测点的压强大小和被测流体的性质,选用U形 管中的工作介质。当被测压强较大时,可以采用密度 较大的水银等作为工作介质;当测量气体压强且被测 点压强不大时,可以采用酒精、水、四氯化碳等液体 做工作介质。在容器中被测液体静止不动时,读数误 差在 左右,若被测液体处于流动状态时,因U形测压 管内工作介质液面波动将使读数误差增大至 。
目前广泛应用于动态压强测量的传感器主要有电阻式、 应变式、电容式、电感式、压电式、压阻式等压强传 感器。电阻式压强传感器由于非线性误差大,频率响 应低而主要在测量精度和动态响应要求不高的场合使 用。应变式压强传感器由压强敏感元件和贴在它上面 的电阻应变片组成,前者将被测压强转换为应变量, 然后由电阻应变片将应变量变换为电阻的变化量,并 通过电桥将变化的电阻量以电压输出;压强敏感元件 有膜片式、应变筒式、应变梁式等多种,而电阻应变 片则有箔式、丝式和半导体应变片三类。应变式压力 传感器测量范围可达 ,动态频响达到 ,测量误差为 。 由于其结构简单、体积小、测量精度高、价格适中而 得到广泛应用。
使用一定时间的金属压力表,应该用压力表校正装置进 行校正,以保证其测量精度。
11.1.3动态压强的测量
对流动过程的实验研究和对工业生产中的流体系统进行 动态监测,以及对流体机械的流动特性进行数据采集 时,经常会遇到动态压强(Dynamic Pressure)的测量和 压强的远距离传送、显示、记录以及控制等问题。为 了实现压强信号的远传显示,通常将压强用波纹管、 膜片等弹性敏感元件转变为位移、力和其它应变信号 ,然后通过电阻式、电感式或电容式等电动变换器转 换为电信号,放大后远传至显示或记录仪表。这种压 强变送器因动态响应较慢,主要适用于测量静态压强 或变化缓慢的压强。
静压孔的几何形状和孔 轴方向所能引起的静 压测量误差如图11-2 所示。虽然垂直壁面 的静压孔存在一定误 差,但因对于小于1 mm 的 小 孔 , 误 差 很 小,且与壁面垂直时 容易加工,所以静测量压强的方法很多,通常根据被测压强的大小和测量 精度要求选用不同的压强测量仪表。
第11章 流体的测量
11.1 压强的测量 11.2 流速的测量 11.3 流量的测量 工程实例
第11章 流体的测量
教学提示:本章讨论流体及流动参数的测量原理、方法 和常用仪器。同时本章也可作为流体静力学基本方程 和能量方程的实际应用。
教学要求:掌握流速、流量、压强的测量原理和常用仪 器。
11.1压强的测量
壁面没有开设测压孔,近壁处是很薄的边界层,壁面处 流速为零。这时沿壁面法线方向上没有压强梯度,各 点的压强等于边界层外边界上的压强,这时,因为流 体的粘性,在法线方向上存在速度梯度而使流体对壁 面作用有切应力,壁面处流速为零。
当壁面开设静压孔后,在 粘性切应力作用下,静 压孔内流体产生流动, 近孔处的流线向孔内稍 许弯曲,影响到边界层 内法线方向的静压不再 保持不变,并导致静压 孔内感受出的压强偏离 流体中静压的真实值。 其偏差的程度主要决定 于静压孔的几何参数和 加工情况。图11-1给出 了孔径和流速对静压测 量的影响。
在进行流体力学研究和涉及流体力学的工程实际应用中, 压强的测量技术是流体要素测量的基础,用皮托管测 速和用某些阻尼器测量流量参数,通常都通过压强测 量的转换来实现。
压强通常不能直接显示,必须将它变换为位移、角位移、 力或各种电量参数进行测量。压强的测量装置由压强 感受、传输和指示三部分组成。在常规测量中,压强 感受常用测压孔和各种形状的压强探针,感受到的压 强大小通过各种液体测压管或金属压力表来指示。在 测量动态压强时常采用压力传感器(Pressure transduce r),将所感受到的动态压强转换为电信号输入相应的仪 表指示或输入计算机实时打印输出。显然,测量的精 度主要取决于压强感受和压强指示两个环节的误差大 小。
(1) 单管测压计
这是一种最简单的测压计(见图11-3):将一根玻璃管与液 体中所要测量压强处容器壁上的压力感受孔相连接, 管子的另一端开口与大气相通,利用测量被测液体在 管中上升的液柱高度来测定容器中液体的压强。为减 小因毛细现象所带来的测量误差,管子内径不能小于 ,通常取 。
在容器内压强的作用下,液体在测压管中上升高度为 , 若液体的密度为 ,则由流体静压强基本公式得出容器 液体中 点的计示压强为
相关文档
最新文档