六年级奥数分数的速算与巧算(最新整理)

合集下载

小学六年级奥数速算与巧算(最新)

小学六年级奥数速算与巧算(最新)

【#小学奥数# 导语】数学速算法是指利用数与数之间的特殊关系进行较快的加减乘除运算的计算方法。

以下是?无忧考网整理的《小学六年级奥数速算与巧算》相关资料,希望帮助到您。

1.小学六年级奥数速算与巧算①1870-280-520=1870-(280+520)=1870-800=1070②4995-(995-480)=4995-995+480=4000+480=4480③4250-294+94=4250-(294-94)=4250-200=4050④1272-995=1272-1000+5=2772.小学六年级奥数速算与巧算①536+(541+464)+459=(536+464)+(541+459)=2000②588+264+148=588+(12+252)+148=(588+12)+(252+148)=600+400=1000③8996+3458+7546=(8996+4)+(3454+7546)=9000+11000(把3458分成4和=9000+110003454)=20000④567+558+562+555+563 =560×5+(7-2+2-5+3)=2800+5=28053.小学六年级奥数速算与巧算①478-128+122-72=(478+122)-(128+72)=600-200=400②464-545+99+345=464-(545-345)+100-1 =464-200+100-1=363③537-(543-163)-57=537-543+163-57=(537+163)-(543+57)=700-600=100④947+(372-447)-572=947+372-447-572=(947-447)-(572-372)=500-200=3004.小学六年级奥数速算与巧算一、(1+2+3+……+2009+2010+……+2+1)÷2010 【分析】1+2+3+……+2009+2010+……+2+1)÷2010 =2010×2010÷2010=2010二、123×9+82×8+41×7-2009【分析】40123×9+82×8+41×7-2010=41×3×9+41×2×8+41×7-2010=41×(27+16+7)-2010=2050-2010=40三、(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)解答:分析题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦.但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…=1000-999=1,因此可以对算式进行分组运算.解解法一:分组法解法二:等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500。

六年级奥数-第一讲[1].分数的速算与巧算.学生版(最新整理)

六年级奥数-第一讲[1].分数的速算与巧算.学生版(最新整理)

第一讲:分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.知识点拨一、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即,那么有1a b⨯a b <1111(a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:,形式的,我们有:1(1)(2)n n n ⨯+⨯+1(1)(2)(3)n n n n ⨯+⨯+⨯+1111[(1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1) (2)11a b a b a b a b a b b a+=+=+⨯⨯⨯2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

六年级数学奥数分数的速算与巧算

六年级数学奥数分数的速算与巧算

【举一反三】 计算:( 7) 2012 2013 - 1 2012 2011 2013
( 8) 1988 1989 1987 1988 1989 1
例 4. 计算: ( 1) 128128 × 161616 323232 256256
( 2) 2007 20072007 2007200720 07 2005 20052005 2005200520 05
9
9
1
算。( 2)把题中的 166 分成 41 的倍数与另一个较小的数相加的形式,
20
再利用除法的运算性质使计算简便。
(1) 56 8 ÷ 8=( 56+ 8 )÷ 8=( 56+ 8 )× 1 = 56× 1 + 8 × 1 = 7+ 1 = 7 1
9
9
98
89 8 9 9
1
(2) 166 ÷41 = (164 +
41 ) ×
1
= 164 ×
1 + 41 ×
1
=4
1
20
20 41
41 20 41 20
【举一反三】
计算:(1) 64 8 ÷ 8 17
5
(2) 145 ÷12
7
2
( 3) 54 ÷17
5
1
(4) 170 ÷ 13
12
例 2.
计算: 2004
2004 2004
1
2005 2006
分析与解: 数太大了,不妨用常规方法计算一下,先把带分数化成假分数。分母
(2)错位相减法: 根据算式的特点, 将原算式扩大一个整数倍 ( 0 除外), 用扩大后的算式同原算式相减,可以使复杂的计算变得简便。

小学六年级分数奥数题100道及答案(完整版)

小学六年级分数奥数题100道及答案(完整版)

小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。

思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。

2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。

思路:5×6=30(米)。

3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。

思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。

4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。

思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。

5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。

思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。

6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。

思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。

7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。

思路:设公路长x 米,1/2x-2/5x=60,解得x=300。

8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。

思路:设全书有x 页,1/5x+25=3/10x,解得x=125。

六年级分数简便运算奥数题及答案

六年级分数简便运算奥数题及答案

六年级分数简便运算奥数题及答案(1)1/1*3+1/2*4+1/3*5+1/4*6+1/5*7......1/98*100+1/99*101=(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+……+1/98-1/100+1/99-1/101)÷2=(1+1/2-1/100-1/101)÷2=15049/10100÷2=15049/20200(2)6分之1+12分之1+24分之1+48分之1+96分之1+192分之1=1/6×(1+1/2+1/4+1/8+1/16+1/32)=1/6×(1-1/32)=1/6-1/192=31/192(3)1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+4/(1×2×3×4×5)+5/(1×2×3×4×5×6)+6/(1×2×3×4×5×6×7)= 1-1/(1×2)+1/(1×2)-1/(1×2×3)+1/(1×2×3)-1/(1×2×3×4)+1/(1×2×3×4)-1/(1×2×3×4×5)+1/(1×2×3×4×5)-1/(1×2×3×4×5×6)+1/(1×2×3×4×5×6)-1/(1×2×3×4×5×6×7)=1-1/(1×2×3×4×5×6×7)=1-1/5040=5039/5040(4)6360/39)/(1600/39)=6360/1600=3.975一、工程问题甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时开启甲乙两水管,5小时后,再开启排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

六年级奥数得分的速算与巧算

六年级奥数得分的速算与巧算

六年级奥数得分的速算与巧算简介本文档旨在介绍六年级奥数中的速算与巧算方法,帮助学生在考试中提高得分。

通过掌握这些技巧,学生可以更快地计算数学题目,提高解题效率。

速算方法快速计算乘法- 九九乘法口诀:掌握好九九乘法口诀是快速计算乘法的基础。

学生可以多加练,通过口诀快速推算乘法结果。

快速计算除法- 倍数法:当被除数是某个数的倍数时,可以直接除以该数,并乘以倍数。

例如,72除以6,可以先将72除以6得到12,然后再乘以2,得到24,即72除以6等于24。

快速计算加法和减法- 同、末位、进位法:对于两位数的加法和减法,可以使用同、末位、进位法快速计算。

具体方法是将两个数字的个位数相加或相减,得到末位数,然后再将十位数相加或相减并加上进位(如果有),得到十位数。

巧算方法十字相加法- 十字相加法适用于两个两位数相加的情况。

将两个两位数竖直排列,分别计算个位、十位和百位的和,并按照十位、百位、千位的顺序写下结果。

这样可以更方便地进行大位数的加法计算。

集合运算法- 集合运算法适用于含有括号的加法或减法运算。

首先将括号中的数值计算出来,然后再进行其他运算。

这样可以简化计算过程,提高计算速度。

结论通过研究和掌握速算与巧算方法,学生可以在六年级奥数中提高得分。

这些方法在解决复杂的数学题目时起到了很大的帮助作用。

建议学生在平时多加练,熟练掌握这些方法,并在考试时加以应用。

相信通过努力和练,学生一定能够在奥数考试中获得优异的成绩。

*注意:本文中的计算方法基于中国六年级奥数的常见要求和标准,可能与其他地区或机构的要求略有不同。

建议学生在实际学习中结合自身情况进行适当调整。

以上计算方法仅供参考,不可作为权威指南。

*。

小学六年级奥数运算部分的分数计算 (4页)

小学六年级奥数运算部分的分数计算 (4页)

小学六年级奥数运算部分的分数计算 (4
页)
小学六年级奥数运算部分的分数计算
简介
本文档旨在帮助小学六年级学生进行奥数运算部分的分数计算。

以下将介绍几个常见的分数计算方法。

分数加法
分数加法是将两个或多个分数相加的运算。

要进行分数加法,
必须保持分母相同。

以下是一个示例:
1/4 + 2/4 = 3/4
分数减法
分数减法是将一个分数减去另一个分数的运算。

和分数加法一样,分母必须相同。

以下是一个示例:
3/4 - 1/4 = 2/4
分数乘法
分数乘法是将两个或多个分数相乘的运算。

分数乘法的规则很
简单,只需要将分子相乘得到新的分子,分母相乘得到新的分母。

以下是一个示例:
2/3 * 3/5 = 6/15
分数除法
分数除法是将一个分数除以另一个分数的运算。

分数除法的规
则是将第一个分数的分子乘以第二个分数的倒数。

以下是一个示例:3/4 ÷ 1/2 = 3/4 * 2/1 = 6/4
分数化简
分数化简是将分数转化为最简形式的运算,使分子和分母的公
约数最大化。

例如,将8/12化简为2/3。

将分数化简可以让计算更
简便明了。

总结
通过掌握分数加法、减法、乘法、除法和化简的方法,小学六年级学生可以更好地进行奥数运算部分的分数计算。

以上提供的方法是常见而简单的分数计算技巧,旨在帮助小学六年级的学生更好地理解和应用。

希望能对你有所帮助。

【精品】通用版2022年六年级奥数精品讲义易错专项高频计算题-分数的巧算(含答案)

【精品】通用版2022年六年级奥数精品讲义易错专项高频计算题-分数的巧算(含答案)

通用版六年级奥数专项精品讲义及常考易错题汇编计算问题-分数的巧算【知识点归纳】分数运算符合的定律.(1)乘法交换律 a×b=b×a(2)乘法结合律 a×(b×c)=(a×b)×c(3)乘法分配律 a×(b+c)=a×b+a×c;a×(b-c)=a×b-a×c (4)逆用乘法分配律 a×b+a×c=a×(b+c);a×b-a×c=a×(b-c)(5)互为倒数的两个数乘积为1.除法的几个重要法则(1)商不变性质被除数和除数乘以(或除以)同一个非零的数,商不变,即a÷b=(a×n)÷(b×n)(n≠0)a÷b=(a÷m)÷(b÷m)(m≠0)(2)当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数;反之也成立(也可称为除法分配律).如:(a±b)÷c=a÷c±b÷c; a÷c±b÷c=(a±b)÷c.【解题方法点拨】分数巧算就是熟能生巧的过程,综合运用乘法分配律,分数化小数,小数化分数以及带分数化假分数、带分数拆分等方法达到巧算的目的.1、把同分母的分数凑成整数.a.先去括号;b.利用交换律把同分母分数凑在一起;c.利用减法性质把同分母分数凑在一起.2、分数乘法中,利用乘法交换律,交换数的位置,以达到约分的目的;利用乘法结合律,以达到约分的目的,从而简算.3、分数混合运算中有除法,先将除法转化为乘法,然后再利用乘法的分配律的方法来计算以达到凑整的目的.4、懂得拆分.一.选择题1.+++…++的和是()A.1 B.2012 C.10062.的值是多少.()A.B.C.D.3.如果+=×2=;++=×3=;+++=×4=,则+++…+=()A.B.C.D.4.用简便方法计算:的结果是()A.B.C.D.5.若将算式的值化为小数,由小数点后第1个数字是()A.4 B.3 C.2 D.16.计算:(1+)×(1+)×(1+)×…×(1+)=()A.50 B.99 C.100 D.2007.分母为2009的所有真分数相加是多少?()A.1004 B.2008 C.330 D.789二.填空题8.2019×(1﹣)×(1﹣)×(1﹣)×……×(1﹣)=.9.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非.”如图:在一个边长为1的正方形纸板上,依次贴上面积为“,,…”的矩形彩色纸片,请你用“数形结合”的思想,依据数形变化的规律,计算+++++…=.10.+++=.11.=.12.+++…+,这个算式结果的整数部分是.13.2006×2008×(+)=.14.=.15.+++++=.三.计算题16.计算我最细心,怎样算简便就怎样算.×+÷(+﹣)×1201999+999×999×(﹣)×0.3÷17.计算题①(9﹣3﹣1)×2②++③8888×58﹣4444×16+44④150﹣120÷1.4×0.84⑤17×37﹣174×1.9+17×82⑥1999×﹣18.运算能力展示.7.8÷[32×(1)+3.6][12×19×()]9 ()×()﹣()×()19.计算 (1)1+12+123+1234+12345+123456 (2)(142857+428571+285714+857142+571428+714285)+9 (3)149×(4)3(5)(10+876+312)×(876+312+918)﹣(10+876+312+918)×(876+312) (6)解方程:13﹣2(2x ﹣3)=5﹣(x ﹣2) 20.计算。

小学奥数教程:分数乘除法速算巧算_全国通用(含答案)

小学奥数教程:分数乘除法速算巧算_全国通用(含答案)

小学奥数教程:分数乘除法速算巧算_全国通用(含答案)分数是小学阶段的关键知识点,在小学的学习有分水岭一样的阶段性标志,许多难题也是从分数的学习开始遇到的。

分数基本运算的常考题型有(1)分数的四则混合运算(2)分数与小数混合运算,分化小与小化分的选择(3)复杂分数的化简(4)繁分数的计算分数与小数混合运算的技巧在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。

技巧1:一般情况下,在加、减法中,分数化成小数比较方便。

技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。

此时要将包括循环小数在内的所有小数都化为分数。

技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。

技巧4:在运算中,使用假分数还是带分数,需视情况而定。

技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。

【例1】58的分母扩大到32,要使分数大小不变,分子应该为__________。

【考点】分数乘除法【难度】2星【题型】填空【关键词】走美杯,五年级,初赛【解析】根据分数的基本性质:分母扩大倍数,要使分数大小不变,分子应该为扩大相同的倍数。

分母扩大:328=4(倍),分子为:45=20。

【答案】20【巩固】小虎是个粗心大意的孩子,在做一道除法算式时,把除数56看成了58来计算,算出的结果是120,这道算式的正确答案是__________ 。

【考点】分数乘除法【难度】2星【题型】填空【关键词】走美杯,初赛,六年级【解析】根据题意可知,被除数为5120758,所以正确的答案为575906。

【答案】90例题精讲知识点拨教学目标分数乘除法速算巧算。

分数巧算六年级奥数题

分数巧算六年级奥数题

分数巧算六年级奥数题分数巧算六年级奥数题作为小学数学中的重要组成部分,分数一直是让学生头疼的难题。

今天,我们就来挑战一组六年级奥数题,通过巧妙计算让分数的运算变得轻松愉快。

1、1/3 + 2/9 = ?解题思路:想要让这两个分数相加,需要先找到它们的通分。

1/3是3的倍数,2/9是9的倍数,所以我们可以将2/9化成3的倍数再进行运算,即2/9 = 2/9 * 3/3 = 6/27。

现在,两个分数分别为9分之3和27分之6,可以进行相加,结果为9分之5。

2、5/8 - 3/16 = ?解题思路:同样需要先找到这两个分数的通分。

5/8是8的倍数,3/16是16的倍数,可以将5/8化成16的倍数,即5/8 * 2/2 = 10/16。

现在,两个分数分别为16分之10和16分之3,可以进行相减,结果为16分之7。

3、2/5 × 5/7 = ?解题思路:分数乘法可以直接将分子相乘,分母相乘。

2/5 × 5/7 =10/35。

但需要注意,分数应该尽量化简,所以我们可以将10/35化简为2/7,这就是最简分数形式的答案。

4、3/4 ÷ 6/5 = ?解题思路:在进行除法运算时,需要将除号转化成乘号,即3/4 ÷ 6/5 = 3/4 × 5/6。

现在,我们可以直接相乘,结果为15/24。

同样需要化简,所以可以将15/24化简为5/8。

5、8 1/6 ÷ 2 1/2 = ?解题思路:在整数与分数的运算中,需要将整数转化成分数,并将除号转化成乘号。

8 1/6可以转化成49/6,2 1/2可以转化成5/2。

所以,81/6 ÷ 2 1/2 = 49/6 × 2/5 = 49/15。

通过这几道奥数题,我们可以发现,分数的运算并不难,只需要耐心地找到通分、化简、转化运算符号,再进行计算,就能得出正确的答案。

相信在以后的数学学习中,我们都可以运用这些巧妙的计算方法,轻松解决分数的运算难题。

小学奥数专题-分数加减法速算与巧算

小学奥数专题-分数加减法速算与巧算

分数加减法速算与巧算教学目标本讲知识点属于计算板块的部分,难度并不大.要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧.知识点拨一、基本运算律及公式一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变.即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变.即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变.二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”.如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)【例 1】1141041004 2282082008+++=_____【例 2】如果111207265009A+=,则A=________(4级)模块一:分组凑整思想【例 3】1121123211219951 1222333331995199519951995 +++++++++++++++【例 4】11112222333181819 23420345204520192020⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++++++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【例 1】分母为1996的所有最简分数之和是_________【巩固】所有分母小于30并且分母是质数的真分数相加,和是__________. 模块二、位值原理【例 5】44444 999999999999999 55555 ++++【例 6】1111123102612110++++=.例题精讲【巩固】111111 19931992199119901 232323-+-++-【巩固】111112342346+-+=_______。

小学奥数全解 之 分数加减法速算与巧算

小学奥数全解 之 分数加减法速算与巧算

分数加减法速算与巧算知识点拨一、基本运算律及公式一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。

即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。

即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。

二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。

如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)【例 1】 如果111207265009A +=,则A =________(4级) 【考点】分数约分 【难度】2星 【题型】计算 【关键词】希望杯,六年级,一试 【解析】 111112591207265009873773725125920082008+=+=⨯=⨯⨯⨯⨯,所以A =2008. 【答案】2008【例 2】 11410410042282082008+++=_____ 【考点】分数约分 【难度】1星 【题型】计算【关键词】希望杯,五年级,一试【解析】 原式=1111=22222+++ 【答案】2模块一:分组凑整思想【例 3】 1111222233318181923420345204520192020⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 【考点】分组凑整 【难度】3星 【题型】计算 【解析】 观察可知分母是2分子和为1分母是3分子和为12+;分母是4分子和为123++;……依次类推;分母是20子和为12319++++. 原式()1111(12)(123)1231923420=+⨯++⨯++++⨯++++ ()1111(12)22(13)3211919223420=+⨯+⨯÷+⨯+⨯÷++⨯+⨯÷ 12319952222=++++=【例 4】 11211232112199511222333331995199519951995+++++++++++++++ 【考点】分组凑整 【难度】3星 【题型】计算 【解析】 观察可知分母是1的和为1;分母是2的和为2;分母是3的和为3;……依次类推;分母是1995的和为1995.这样,此题简化成求1231995++++的和.11211232112199511222333331995199519951995+++++++++++++++ 12341995119951995299819951991010=+++++=+⨯÷=⨯=() 【答案】1991010例题精讲【考点】分组凑整 【难度】2星 【题型】计算【解析】 因为1996=2×2×499。

六年级奥数分数乘法的巧算

六年级奥数分数乘法的巧算

六年级奥数分数乘法的巧算Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】分数乘法的巧算(一)一、拆分因数,使计算简便。

1、拆分分数:一个分数接近单位“1”(小于单位“1”或大于单位“1”)例:1. 计算 3334 × 27 2. 计算2322 × 17练习1:4850 × 13 4341 × 13 3334 × 13 3938 × 252、拆分整数:整数接近分数的分母或接近分母的倍数例: 1. 计算2010 × 1232009 2. 计算 93 × 2346练习2:52 × 3750 1001 × 1011002 199 × 8999 4365 × 129二、先分拆分数,然后运用乘法分配律进行简便运算。

1、分母相同的,拆分成一个分数与另一个因数的积的形式,再运用乘法分配律进行计算例:1. 计算 34 × 27 + 14 × 39 2. 计算 57 × 27- 27 × 29练习3:16 × 45 + 56 × 15 57 × 19 — 8 × 472、将一个带分数拆分成整数加分数的形式,再运用乘法分配律进行计算例:计算 15311 × 17 4457 ×49练习4:2137 × 15 2915 × 56 3429 × 911 2916 × 67作业(一)2728 × 15 1002 × 1001001 35 × 31 + 15 × 7 2623 × 15作业(二)22311 × 17 3842 × 43 13 × 45 + 23 × 15 3940 × 13 131 × 3865 57 × 9 — 47 ×6作业(四)1738 × 37 103 × 15104 57 × 5 + 47 × 6 2517 × 78二、乘法分配律的进一步运用例1:计算527 ×5 + 457 ×923练习1:335 ×25 25 + 37910 ×625 338 ×4+ 558 ×535 1049 ×4 — 249 ×712例2:计算22×17 + 11×27 + 337 ×211练习2:39×14 + 25×34 + 264 ×313 9×38 + 15×18 — 54 ×35×149 +234 × 15 + × 59 + 14 × 15 9×35 + 24×15 — 115 ×38作业(一)(325 + 523 +635 + 613 )×(3 — 311 ) 1614 ×45 + 1717 ×78 + 1315 ×56 625 ×7 + 335 ×1013 22×15 + 11×25 + 335 ×211作业(二)(449 + 856 + 759 + 716 )×(3 — 314 ) 1915 ×56 + 1919 ×89 — 2513 ×34 425 ×1025 +17910 ×535 39×17 + 25×37 + 267 ×313作业(三)(1227 — 235 — 325 +1757 )×(8 — 38 ) 715 ×56 +13 12 ×23 + 2225 ×57 758 ×4+ 438 ×535 9×313 + 15×113 — 1013 ×35专题训练:例1:计算12 + 14 + 18 + 116 + 132 + 164 + 1128巩固练习:12 + 14 + 18 + 116 + 132 + 164 12 + 14 + 18 + 116 + 132 + 164 + 1128 + 1256 分数乘法的巧算综合作业:计算下面各题1.4950× 123839× 4058× 15 +38× 23 2.978×8+ 867× 7+ 756×6+ 645×579617×59 +119×517 + 50×19999+1002×10001001×1002—32001×20032002 + 2002×20042003 +40052002×2003。

六年级奥数分数的速算与巧算

六年级奥数分数的速算与巧算

六年级奥数分数的速算与巧算介绍本文档旨在介绍六年级奥数中分数的速算与巧算方法。

通过掌握这些方法,学生可以更高效地解决分数相关的计算题目。

分数的基本概念分数由分子和分母组成,表示部分与整体之间的比例关系。

例如,1/2表示将一个整体分成两个相等的部分,其中一个部分为1。

分子表示部分的数量,分母表示整体被分成的块数。

分数的速算方法相同分母的分数相加当两个分数的分母相同,我们只需要将分子相加,分母不变即可。

例如:1/4 + 2/4 = (1+2)/4 = 3/4。

相同分母的分数相减同样,当两个分数的分母相同,我们只需要将分子相减,分母不变即可。

例如:3/4 - 1/4 = (3-1)/4 = 2/4。

不同分母的分数相加与相减当两个分数的分母不同,我们需要找到它们的最小公倍数作为通分的分母。

然后将分子按照最小公倍数进行转换,并进行相应的计算。

例如:1/3 + 1/4 = 4/12 + 3/12 = 7/12。

分数的乘法分数的乘法可以直接将分子相乘,分母相乘得到结果。

例如:2/3 * 3/4 = (2*3)/(3*4) = 6/12。

分数的除法分数的除法可以转换为乘法的倒数计算。

即,将第二个分数的分子与分母交换位置,然后进行乘法计算。

例如:2/3 ÷ 1/4 = 2/3 * 4/1 = 8/3。

分数的巧算方法取整当分子比分母大于等于1时,分数可以通过取整来近似计算。

例如:7/4 可以近似为 2。

转化为小数可以将分数转化为小数进行计算。

例如:1/2 可以转化为 0.5。

分数的倍数关系分数之间存在倍数关系时,可以利用这种关系来进行巧算。

例如:1/2 + 1/4 = 2/4 + 1/4 = 3/4。

约分将分数约分至最简形式,可以更方便进行计算。

例如:4/8 可以约分为 1/2。

结论通过掌握以上分数的速算与巧算方法,六年级的奥数学生可以更快速、准确地解决分数相关的计算题目。

同时,这些方法也可在实际生活中应用到日常计算中。

分数奥数速算巧算 - 计算结果

分数奥数速算巧算 - 计算结果

分数奥数速算巧算 - 计算结果简介分数奥数速算是一种通过简单的计算技巧快速得出分数运算结果的方法。

这种方法能够提高分数计算的效率和准确性,对于奥数竞赛和日常数学研究都非常有用。

本文主要介绍几种分数奥数速算的巧算方法,并给出相应的计算结果。

速算方法1. 分数加减法速算在分数加减法中,我们可以通过求出分数的通分来实现速算。

以下是一个例子:问题:计算 2/3 + 5/6 - 1/4 的结果。

2/3 + 5/6 - 1/4的结果。

解答:首先找到这三个分数的最小公倍数为12,然后按照通分的原则进行转换:2/3 = 8/12 = 8/125/6 = 10/12 = 10/121/4 = 3/12 = 3/12那么,原问题可以转换为:8/12 + 10/12 - 3/12 = (8 + 10 - 3)/12 = 15/12 = 1 1/4 = (8 + 10 - 3)/12 = 15/12 = 1 1/4因此,原问题的计算结果为 1 1/4。

1 1/4。

2. 分数乘法速算在分数乘法中,我们可以通过简化分数的乘法表达式来实现速算。

以下是一个例子:问题:计算 2/3 × 3/5 × 5/7 的结果。

2/3 × 3/5 × 5/7的结果。

解答:可以根据乘法交换律,按照任意顺序进行乘法运算。

我们选择将分母中的5和3相乘,并将分子中的2和7相乘,得到:(2 × 7)/(3 × 5) × (5/1) = 14/15 × 5/1 = 14/3 = 14/15 × 5/1 = 14/3因此,原问题的计算结果为 14/3。

14/3。

3. 分数除法速算在分数除法中,我们可以通过简化分数的除法表达式来实现速算。

以下是一个例子:问题:计算 3/4 ÷ (2/5) 的结果。

3/4 ÷ (2/5)的结果。

解答:可以根据除法的逆运算,转换为乘法运算。

(完整版)六年级奥数专题分数的计算技巧

(完整版)六年级奥数专题分数的计算技巧

(完整版)六年级奥数专题分数的计算技巧六年级奥数专题分数的计算技巧专题简介分数四则运算中有许多十分有趣的现象与技巧,它主要通过一些运算定律、性质和一些技巧性的方法,达到计算正确而迅速的目的。

基础学习例 1.83 × 72 ÷ 109 例2. 432 ÷ 851 × 2213典型例题例1、计算:(1)4544×37 (2)2004×200367 分析与解:观察这两道题的数字特点,第(1)题中的4544与1只相差1个分数单位,如果把4544写成(1-451)的差与37相乘,再运用乘法分配律可以使计算简便。

同样,第(2)题中可以把整数2004写成(2003+1)的和与2003 67相乘,再运用乘法分配律计算比较简便。

(1)4544×37 (2)2004×200367 =(1-451)×37 = (2003+1)×200367例2、计算: (1)73151×81 (2) 166201÷41分析与解:(1)73151把改写成(72 + 1516),再运用乘法分配律计算比常规方法计算要简便得多,所以(2)把题中的166201分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计算简便。

例3、计算:(1)41×39 + 43×25 + 426×133 六年级奥数专题分数的计算技巧专题简介分数四则运算中有许多十分有趣的现象与技巧,它主要通过一些运算定律、性质和一些技巧性的方法,达到计算正确而迅速的目的。

基础学习例1. 83 × 72 ÷ 109 例2. 432 ÷ 851 × 2213 = 83 × 72 × 910 = 411 × 138 × 2213 = 34259781023 = 22213413811 = 425 = 1典型例题例1、计算:(1)4544×37 (2)2004×200367 分析与解:观察这两道题的数字特点,第(1)题中的4544与1只相差1个分数单位,如果把4544写成(1-451)的差与37相乘,再运用乘法分配律可以使计算简便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


32 1 52 1 72 1
19932 1 19952 1
【巩固】计算: 12 22 32 502

13 35 5 7
99 101
【巩固】 2 2 4 4 6 6 8 8 10 10 1 3 3 5 5 7 7 9 9 11
1
1
1
【例 6】
2
3
1999
1 1 (1 1) (1 1)
1
1[ 1
1
]
n (n 1) (n 2) 2 n (n 1) (n 1)(n 2)
1
1[
1
1
]
n (n 1) (n 2) (n 3) 3 n (n 1) (n 2) (n 1) (n 2) (n 3)
裂差型裂项的三大关键特征: (1)分子全部相同,最简单形式为都是 1 的,复杂形式可为都是 x(x 为任意自然数)的,但是只要将 x
【例 10】 计算:13 33 53 73 93 113 133 153
【巩固】 1 3 2 4 3 5 9 11
【巩固】计算:1 2 3 2 3 4 3 4 5 8 9 10
【例
11】
计算:1
1 3
1 32
1 33
1 34
1 35
1 36
(22 42 62 1002 ) (12 32 52 992 ) 【例 12】 计算:
(1 1) (1 1) (1
1)
2
2
3
2
3
1999
【巩固】计算:1 1 1
1
1 2 1 2 3 1 2 2007
【巩固】 1 1 1
1
3 35 357
3 5 7 21
【例 7】 1 2 1 2 3 1 2 3 4 1 2 3 50
知识点拨
一、裂项综合
(一)、“裂差”型运算
(1)对于分母可以写作两个因数乘积的分数,即 1 形式的,这里我们把较小的数写在前面,即 a b , ab
那么有
1
1
1 (
1 )
ab ba a b
(2)对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即:
1
1

形式的,我们有:
n (n 1) (n 2) n (n 1) (n 2) (n 3)
【例
13】
12
计算:
22
22
32
32
42
42
52
20002
20012
1 2 23 3 4 45
2000 2001
【例 14】 2007 8.5 8.5 1.5 1.5 10 160 0.3

【巩固】计算: 53 57 47 43

【巩固】计算:1119 12 18 1317 14 16
9
)
2 (
3
9 )
234
10 2 3 4
10 2
234
10 3 4
10
【巩固】计算
1
1
2 3
1 1
1 1
1 1
4 1
3
1
1 2009
4
1
1
2009
【巩固】
( 7.88 6.77 5.66 ) ( 9.31 10.98 10 ) ( 7.88 6.77 5.66 10 ) (
1
【例 9】
22
计算:
32
992
22 1 32 1
992 1
12 【巩固】计算:
22
992
12 100 5000 22 200 5000
992 9900 5000
【例 1】
24 1 23
1 45
20
1
21
1 12
12
1 22
12
22
1 102
模块二、换元与公式应用
2 23 234
2 3 50
【例 8】 12 12 22 12 22 32 12 22 32 42 12 22 262
13 13 23 13 23 33 13 23 33 43
13 23 263
【巩固】
1
1 22 1
1
1 32 1
1
1 992
【例 20】
2002

1
化成循环小数后第 100 位上的数字之和是_____________.
2009 287
【巩固】纯循环小数 0.abc 写成最简分数时,分子和分母的和是 58 ,则三位数 abc _________
【例 21】 在下面的括号里填上不同的自然数,使等式成立.
果该是多少?
【巩固】将循环小数 0.027 与 0.179672 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一
位小数是多少?
【例 18】 有 8 个数, 0.51 , 2 , 5 , 0.51 , 24 , 13 是其中 6 个,如果按从小到大的顺序排列时,第 4
39
47 25
个数是 0.51 ,那么按从大到小排列时,第 4 个数是哪一个数?
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数
与分数的主要利用运算定律进行简算的问题.
4、通项归纳法
通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,
使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.
2
3
10)
【例 5】 1 1 1 1 1 1
.
32 1 52 1 72 1 92 1 112 1 132 1
【巩固】计算: 3 5 7 15
12 22 22 32 32 42
72 82
【巩固】计算: 32 1 52 1 72 1 19932 1 19952 1
纯循环小数
混循环小数
分子
循环节中的数字所组成的数
循环小数去掉小数点后的数字所组成的数与不循环部分数字 所组成的数的差
分母
按循环位数添 9,不循环位数添 0,组成分母,其中 9 在 0 n 个 9,其中 n 等于循环节所含的数字个数
的左侧
·
0.a
a

9
··
0.a b
ab

99
··
0.0 a b
ab
1
【巩固】计算
1
1 2
1 3
1 4
1 5
1 2
1 3
1 4
1 5
1 6
1
1 2
1 3
1 4
1 5
1 6
1 2
1 3
1 4
1 5
1 2
2 3
3 4
9 10
2
1 2
2 3
3 4
9 10
1 2
1
1 2
2 3
9 10
2 3
3 4
9 10
1 (
2
3
9 )2
1 (
2
3
9 ) 1 (1 1 2 3
ab

99 10 990
··
0.a b c
abc
a
,……
990
2、单位分数的拆分:
例:
1 10
=
1 20
1 20
=
1
1
=
1
1
=
1
1
=
1
1
分析:分数单位的拆分,主要方法是: 从分母 N 的约数中任意找出两个 m 和 n,有:
1 1(m n) m n = 1 1 N N(m n) N(m n) N(m n) A B

【巩固】计算:1 99 2 98 3 97 49 51

【巩固】看规律 13 12 ,13 23 32 ,13 23 33 62 ……,试求 63 73. 143
【例
15】
计算:
(1
1
1)
1 (
1
1 )
(1
1
1
1
)
1 (
1 )
24 246
246 24
【巩固】 (1 1 1 1) (1 1 1 1) (1 1 1 1 1) (1 1 1)
234 345
8 9 10 9 10 11
【巩固】计算:
3
4
5
12
1 2 45 235 6 3 4 6 7
10 111314
【例 3】
1 2 3 4
9
2 23 234 2345
2 3 410
【例 4】 1 1 1
1
1 1 2 1 23
1 2 100
2
3
4
50
1 (1 2) (1 2) (1 2 3) (1 2 3) (1 2 3 4)
1 2 3 9 10 9 8 3 2 1
【巩固】⑴ 314159262 31415925 31415927 ________;
⑵12342 87662 2468 8766 ________.
【巩固】计算:12 22 32 42 20052 20062 20072
(1 2 3 49) (1 2 3 50)
2
3
4
100
1 (1 2) (1 2) (1 2 3) (1 2 3) (1 2 3 4)
(1 2 99) (1 2 100)
【巩固】
1
2 1(1
2)
(1
2)
3 (1
2
3)
(1
2
3
相关文档
最新文档