可生物降解材料的现状和发展前景

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可生物降解材料的研究现状和发展前景

摘要:本文阐述了可生物降解材料的定义、种类及降解机理,综述了可生物降解材料在国内外各个领域的研究现状和最新应用进展,并对其发展前景进行了展望。

关键字:生物降解材料、降解机理、应用进展

Abstract : The definition, variety and the degradation mechanism of biodegradable materials were elaborated. The research situation and their recent progress in applications were reviewed at home and abroad, and then the development prospect was looked forward.

Key words :Biodegradable materials; Degradation mechanism; Application progress

1前言

近年来,随着经济的飞速发展,人们对物质和精神的追求越来越高,对产品的包装也相应的有了更高要求,人们在购买产品时,不仅看外包装的美观程度,还考虑其他各种各样的功能。正是由于人们对产品包装的追求不断提升,很多新型包装材料不断被应用到产品包装中。

合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1],被广泛应用到产品的包装中。然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,成为白色污染源,严重危害环境,造成地下水及土壤污染,危害人类生存与健康,给人类赖以生存的环境造成了不可忽视的负面影响[2]。另外,生产合成高分子材料的原料——石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而可生物降解材料正是解决这方面问题的有效途径。

2可生物降解材料定义及降解机理

生物降解材料,亦称为“绿色生态材料”,指的是在土壤微生物和酶的作用下能降解的材料。具体地讲,就是指在一定条件下,能在细菌、霉菌、藻类等自然界的微生物作用下,导致生物降解的高分子材料[3]。

理想的可生物降解材料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终转化成CO2 和H2O而成为自然界中碳素循环的一个组成部分的高分子材料。

生物降解材料的分解主要是通过微生物的作用,因而,生物降解材料的降解机理即材料被细菌、霉菌等作用消化吸收的过程。首先,微生物向体外分泌水解酶与材料表面结合,通过水解切断表面的高分子链,生成小分子量的化合物,然后降解的生成物被微生物摄入体内,经过种种代谢路线,合成微生物体物或转化为微生物活动的能量,最终转化成CO2 和H2O[4]。按其降解的化学本质则分为水解和酶解两种。

2.1水解机理

材料的降解实质上是其内部的高分子链段在特定条件下断裂成低分子量的寡聚物,并最终分解为单体的过程。材料的“溶蚀”则是指由于分子链发生断裂,形成的水溶性小分子物质离开聚合物材料,导致材料的力学性能降低,材料最终完全消失的过程,溶蚀又可表面溶蚀和整体溶蚀。

如果分子链段的降解速度比水分子在材料中的扩散速度快,链段的水解限制在材料表面,而很难进入到材料的内部,这种方式属于表面溶蚀或异相溶蚀,如果水分子在材料的扩散速度比高分子链段的水解速度快,那么材料表面和内部的降解同时进行,因此属于整体溶蚀。

2.2酶解机理

2.2.1酶促水解机理

对于易水解的聚合物,在体内可能同时存在单纯的水解和酶催化水解两种作用。脂肪酶能促进聚酯分解,而水解酶可促进易水解聚合物的降解。脂肪酶R.delemer lipase、Rhizopus arrhizus lipase、Pseudomnas lipase为PCL的特异性降解酶,在这些酶存在下,PCL降解速度加快,在通常情况下完全降解需要2-3年,而在酶的存在下完全降解时间缩短为几天。2.2.2酶促氧化机理

对一些非水解性聚合物,其可能的降解机理是酶促氧化机理。免疫组织学研究证实,材料在体内最后通过吞噬细胞内吞作用而被吸收代谢的。高分子生物材料植入体内后,在局部会引起不同程度的急性炎症反应,当组织受到损伤后,周围血管的通透性发生变化,多喝白细胞迅速向炎症部位移动,被激活的中性粒细胞能使单核细胞分化为巨噬细胞。多形核白细胞和巨噬细胞的代谢产生出大量的过氧阴离子(O2),这种不稳定的中间体进而转换为更强的氧化剂(H2O2)。体内的还原型辅酶2(NADPH)氧化酶都参与了这个转化反应,而过氧化歧化酶(SOD)则起到加速转化的作用。H2O2有可能在植入部位引发聚合物自身分解反应;同时H2O2在肌过氧化酶(MPO)的作用下可进一步转化为次氯酸。次氯酸也是一种生物材料的强氧化剂,可氧化聚酰胺、聚脲、聚氨酯中的氨基,使高分子链断开,从而达到降解的作用。

在生物可降解材料中,对降解起主要作用的是细菌、霉菌、真菌和放线菌等微生物,按其降解作用的形式又可分为3种[5]:(1)生物的物理作用,由于生物细胞的增长而使材料发生机械性毁坏;(2)生物的生化作用,微生物对材料作用而产生新的物质;(3)酶的直接作用,微生物侵蚀材料制品部分成分进而导致材料分解或氧化崩溃。

3可生物降解材料的特点

生物降解材料具有以下特点:(1)可与垃圾一起处理,也可制成堆肥回归大自然;(2)因降解而使其体积减小,延长填埋场使用寿命;(3)不存在普通塑料需要焚烧的问题,可抑制二嗯英等有害气体的排放;(4)可减少随意丢弃对野生动植物的危害;(5)储存运输方便,只要保持干燥,不需避光;(6)应用范围广,不但可以应用于农业和包装行业,还可以广泛应

用于医疗行业。

4可生物降解材料的分类

生物可降解材料按降解机理和破坏方式可分为[6]完全生物降解型和生物破坏性材料两种。

4.1 完全生物降解材料

完全生物降解材料是指本身可以被细菌、真菌、放线菌等微生物全部分解的生物降解材料。它能在细菌或其水解酶作用下,最终分解成CO2 和水等物质回归自然,所以被称为“绿色材料”。从制备方法上可分为3 种:微生物发酵法、化学合成和天然高分子共混。

4.1.1 微生物发酵法

微生物发酵法是指以有机物为碳源,通过微生物的发酵而得到的生物降解材料。主要以聚羟基脂肪酸酯类较多[7],聚烃基脂肪酸脂(PHA) 是由很多细菌合成的一种细胞内聚酯,具有生物可降解性、生物相容性等许多优良性能,在生物医学材料、组织工程材料、缓释材料、电学材料以及包装材料等方面将发挥其重要的作用。

美国宝洁公司已经开发成功了作为缝合线、无纺布和各种包装用材料的PHA系列产品及其多种应用。目前,PHA在全球的研究主要集中在利用其生物可降解性、生物相容性等特征,开发在医疗、制药、电子等高附加值领域的用途。PHB是一种硬而脆的热塑性聚合物,其常温下的力学性能与PP相当,导致PHB这种力学性能的主要原因应为结晶度和结晶形态[8]。

4.1.2 化学合成法

化学合成高分子型降解材料是指利用化学方法合成制造的生物降解材料,大多是在分子结构中引入能被微生物降解的含酯基结构的脂肪族聚酯,目前具有代表性的工业化产品有聚己内酯(PCL) 、聚琥珀酸丁二脂(PBS) 、聚乳酸(PLA) 、脂肪族聚酯/ 芳香族聚酯共聚物(CPE) 等。

聚乳酸具有优良的生物相容性和可吸收性,无毒、无刺激性,它在自然界中能完全分解为CO2和H2O,对环境无污染,是目前最有前途的可生物降解的聚合物之一。聚乳酸用途广泛,目前已被应用于生物医用高分子、纺织和包装等行业。聚己内酯(PCL)具有优良的生物相容性、记忆性以及生物可降解性等,其产品多集中在医疗和日用方面,如矫正器、缝合线、绷带、降解塑料等。

4.1.3 天然高分子共混

天然高分子生物降解材料是利用生物可降解的天然高分子如植物来源的生物物质和动物来源的甲壳质等为基材制造的材料,以使产品具有降解性。植物来源包括细胞壁组成的纤维素、半纤维素、木质素、淀粉、多糖类及碳氢化合物,动物来源主要是虾、螃蟹等甲壳动物[9]。主要品种有PHB / PCL、糊化淀粉/ PCL、糊化淀粉/ PHBV 等。

此类降解材料原料来源丰富,可完全生物降解,而且产物安全无毒性,日益受到重视。然而,天然高分子材料虽具有完全生物降解性,但是它的热学、力学性能差,不能满足工程

相关文档
最新文档