广东省清远市中考数学真题试卷
中考数学试题及解析 广东清远
C图2广东省清远市初中毕业生学业考试数学科试题一、选择题(本大题共10小题,每小题3分,共30分) 1.(11·清远)—3的倒数是 A .3 B .—3C .13D .— 13【答案】D2.(11·清远)数据2、2、3、4、3、1、3的众数是 A .1 B .2C .3D .4【答案】C3.(11·清远)图1中几何体的主视图是【答案】C4.(11·清远)据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为 A .0.68×109 B .6.8×108C .6.8×107D .68×107【答案】B5.(11·清远)下列选项中,与xy 2是同类项的是 A .—2xy 2 B .2x 2yC .xyD .x 2y 2【答案】A6.(11·清远)已知∠α=35°,则∠α的余角是 A .35° B .55°C .65°D .145°【答案】B7.(11·清远)不等式x —1>2的解集是 A .x >1 B .x >2C .x >3D .x <3【答案】C8.(11·清远)如图2,点A 、B 、C 在⊙O 上,若∠BAC =20º,则∠BOC 的度数为 A .20º B .30ºC .40ºD .70º【答案】C9.(11·清远)一次函数y =x +2的图象大致是B . A .C .D .【答案】A10.(11·清远)如图3,若要使平行四边形 ABCD 成为菱形,则需要添加的条件是 A .AB =CDB .AD =BC C .AB =BCD .AC =BD【答案】C二、填空题(本大题共6小题,每小题3分,共18分) 11.(11·清远)计算:2x 2·5x 3= _ ▲ .【答案】10x 712.(11·清远)分解因式:2x 2-6x =_ ▲ .【答案】2x (x -3)13.(11·清远)反比例函数y =k x的图象经过点P(-2,3),则k 的值为 _ ▲ .【答案】y =- 6x14.(11·清远)已知扇形的圆心角为60°,半径为6,则扇形的弧长为_ ▲ .(结果保留π)【答案】2π15.(11·清远)为了甲、乙、丙三位同学中选派一位同学参加环保知识竞赛,老师对他们的五次环保知识测验成绩进行了统计,他们的平均分均为85分,方差分别为S 2甲=18,S 2乙=12,S 2丙=23.根据统计结果,应派去参加竞赛的同学是 _ ▲ .(填“甲”、乙、“丙”中的一个) 【答案】(填)16.(11·清远)如图4,在□ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若△ECF 的面积为1,则四边形ABCE 的面积为 _ ▲ .【答案】三、解答题(本大题共5小题,每小题6分,共30分) 17.(11·清远)计算:9+2cos60º+(12)-1-0.【答案】原式=3+1+2-1=5 18.(11·清远)解方程:x 2-4x -1=o .【答案】【答案】方法一:由原方程,得(x -2)2=5 x +2=± 5B图4B图3∴x =-2± 5方法一:△=20,x =-4±202∴x =-2± 519.(11·清远)△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的边长为1个单位. (1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.【答案】20.(11·清远)先化简、再求值:(1-1x +1)÷xx 2-1,其中x =2+1.【答案】原式=(x +1x +1-1x +1)÷x x 2-1=x x +1×x 2-1x =xx +1×(x -1)( x +1)x =x -121.(11·清远)如图6,小明以3米/秒的速度从山脚A 点爬到山顶B 点,已知点B 到山脚的垂直距离BC为24米,且山坡坡角∠A 的度数为28º,问小明从山脚爬上山顶需要多少时间?(结果精确到0.1).(参考数据:sin28º=0.46,cos28º=0.87,tan28º=0.53)【答案】在Rt △ABC 中,BC =24,∠A =28º,AB =BC ÷sin ∠A =24÷0.46≈52.18 ∴小明从山脚爬上山顶需要时间=52.183÷3≈17.4 (秒) 答:小明从山脚爬上山顶需要17.4秒四、解答题(本大题共3小题,每小题8分,共24分)22.(11·清远)如图2,AB 是⊙O 的直径,AC 与⊙O 相切,切点为A ,D 为⊙O 上一点,AD 与OC 相交于点E ,且∠DAB =∠C . (1)求证:OC ∥BD ;(2)若AO =5,AD =8,求线段CE 的长.【答案】(1)∵AB 是⊙O 的直径,∴∠ADB =90º,∵AC 与⊙O 相切,∴∠CAB =90º, ∵∠DAB =∠C ∴∠AOC =∠B ∴OC ∥BD(2)∵AO =5,∴AB =10,又∵AD =8,∴BD =6 ∵O 为AB 的中点,OC ∥BD , ∴OE =3,∵∠DAB =∠C ,∠AOC =∠B ∴△AOC ∽△DBA∴CO AB =AO DB ∴CO 10=56 ∴CO =253∴CE =CO -OE =253-3=16323.(11·清远)在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余相同),其中黄球有图7A图6C1个,从袋中任意摸出一个球是黄球的概率为13.(1)求袋中白球的个数;(2)第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画状图的方法求两次都摸到黄球的概率.【答案】(1)1÷13=3(个)∴白球的个数=3-1=2(2)列表如下:∴共有16种不同的情况,两次都摸出黄球只有一种情况, 故两次都摸到黄于的概率是1924.(11·清远)如图8,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:AB =DF ;(2)若AD =10,AB =6,求tan ∠EDF 的值.【答案】(1)在矩形ABCD 中,AD ∥BC ,AD =BC ,∠ABE =90º ∴∠DAE =∠AEB , 又∵AE =BC ∴AE =AD ∵DF ⊥AE ∠AFD =90º ∴∠AFD =∠ABE∴△ABE ≌△DF A ∴AB =DF(2)∵△ABE ≌△DF A ∴AB =DF =6 AE =AD =10在Rt △ADF 中,AD =10 DF =6 ∴AF =8 ∴EF =2 在Rt △DFE 中,tan ∠EDF =EF DF =13五、解答题(本大题共2小题,每小题9分,共18分)25.(11·清远)某电器城经销A 型号彩电,今年四月份每台彩电售价为元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元. (1)问去年四月份每台A 型号彩电售价是多少元?B 图8E(2)为了改善经营,电器城决定再经销B 型号彩电.已知A 型号彩电每台进货价为1800元,B 型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A 型号彩电继续以原价每台元的价格出售,B 型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获得最大?最大利润是多少? 【答案】(1)设去年四月份每台A 型号彩电售价是x 元50000x =400002000∴x =2500 经检验x =2500 满足题意答:去年四月份每台A 型号彩电售价是2500元≤≥ (2)设购进A 型号彩电y 台,则购进B 型号彩电(20-y )台根据题意可得:⎩⎨⎧1800y +1500(20-y )≥320001800y +1500(20-y )≤33000解得203≤y ≤10∵y 是整数∴y 可取的值为7,8,9,10共有以下四种方案:购进A 型号彩电7台,则购进B 型号彩电13台 购进A 型号彩电8台,则购进B 型号彩电12台 购进A 型号彩电9台,则购进B 型号彩电11台 购进A 型号彩电10台,则购进B 型号彩电10台 (3)设利润为W 元,则W =(-1800) y +(1800-1500) (20-y )=6000-100 y ∵W 随y 的增大而减小 ∴y 取最小值7时利润最大 W =6000-100 y =6000-100×7=5300(元)购进A 型号彩电7台,则购进B 型号彩电13台时,利润最大,最大利润是5300元 26.(11·清远)如图9,抛物线y =(x +1)2+k 与x 轴交于A 、B 两点,与y 轴交于点C (0,-3). (1)求抛物线的对称轴及k 的值;(2)抛物线的对称轴上存在一点P ,使得P A +PC 的值最小,求此时点P 的坐标; (3)点M 是抛物线上一动点,且在第三象限.① 当M 点运动到何处时,△AMB 的面积最大?求出△AMB 的最大面积及此时点M 的坐标; ② 当M 点运动到何处时,四边形AMCB 的面积最大?求出四边形AMCB 的最大面积及此时点M 的坐标.【答案】(1)抛物线的对称轴为直线x =-1,把C (0,-3)代入y =(x +1)2+k 得 -3=1+k ∴k =-4 (2)连结AC ,交对称轴于点P∵y =(x +1)2-4 令y =0 可得(x +1)2-4=0∴x 1=1 x 2=-3 ∴A (-3,0) B (1,0)设直线AC 的关系式为:y =m +b =0 b =-3 ∴线AC 的关系式为y =-CB 的最大面积及此时点M 的坐标.(3)① 设M 的坐标为(x , (B =12×AB ×|y m |=12×4×[4-(x =8-2(x +1)2当x =-1时,S 最大,最大值为S =8 M 的坐标为(-1,-4) ② 过M 作,S 四边形AMCB =S △AMO +S △CMO +S △CBO =12×AB ×|y m |+12×CO ×|x m |+12×OC ×BO=6-32 (x +1)2+12×3×(-x )+12×3×1=-32x 2-92 x +6=-32(x 2+3x -9)=-32(x +32)2-818当x =-32 时,S 最大,最大值为818。
清远市2020版中考数学试卷A卷
清远市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分) |-2|的绝对值的相反数是()A . -2B . 2C . -3D . 32. (2分)(2017·官渡模拟) H7N9禽流感病毒的直径大约为0.0000000805米,这个数用科学记数法表示为()A . 8.05×10﹣8B . 8.05×10﹣7C . 80.5×10﹣9D . 0.805×10﹣73. (2分)下列调查中,最适合采用普查方式的是()A . 对重庆市中小学视力情况的调查B . 对“神舟”载人飞船重要零部件的调查C . 对市场上老酸奶质量的调查D . 对浙江卫视“奔跑吧,兄弟”栏目收视率的调查4. (2分) (2017八下·和平期末) 若在实数范围内有意义,则x的取值范围是()A . x>1B . x≥1C . x≠1D . x>﹣15. (2分)(2017·成都) 下列计算正确的是()A . a5+a5=a10B . a7÷a=a6C . a3•a2=a6D . (﹣a3)2=﹣a66. (2分)在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A . 文B . 明C . 城D . 国7. (2分) (2019八上·滦南期中) 下列命题中,属于假命题的是()A . 三角形三个内角和等于B . 两直线平行,同位角相等C . 同位角相等,两直线平行D . 相等的两个角是对顶角8. (2分)当分式方程中的a取下列某个值时,该方程有解,则这个a是()A . 0B . 1C . -1D . -29. (2分) (2017七下·宜城期末) 如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A . 80°B . 82°C . 83°D . 85°10. (2分)如图,用半径为,面积的扇形无重叠地围成一个圆锥,则这个圆锥的高为()A . 12cmB . 6cmC . 6√2 cmD . 6 cm11. (2分) (2015九下·深圳期中) 如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且,则k的值是()A . 4B . 2C .D .12. (2分)如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120°,则BC的长为()A . 4cmB . 4cmC . 2cmD . 2cm二、填空题 (共6题;共9分)13. (4分)(1)有一列数:1,-2,-3,4,-5,-6,7,-8,….那么接下来的3个数分别是________ ,________ , ________ ;(2)有一列数:,,,,….那么接下来的第7个数是________ .14. (1分)(2019·高台模拟) 把多项式mx2﹣4my2分解因式的结果是________.15. (1分) (2017八下·南通期中) 一组数据2,x,4,3,3的平均数是3,则这组数据的方差是________.16. (1分)(2017·天津模拟) 如图,在⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为________.17. (1分) (2018八上·东湖期中) 如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过________秒时,△DEB与△BCA全等.18. (1分) (2018九上·江苏期中) 如图,过点C(2,1)分别作x轴、y轴的平行线,交直线y=﹣x+4于B、A两点,若二次函数y=ax2+bx+c的图象经过坐标原点O,且顶点在矩形ADBC内(包括边上),则a的取值范围是________.三、解答题 (共8题;共75分)19. (5分)计算:.20. (10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为 A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)(1)求Rt△ABC的面积(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F的坐标.21. (10分) (2016九上·蓬江期末) 如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为C,且△AOC的面积为2,(1)求该反比例函数的解析式;(2)求△AOB的面积.22. (8分)(2018·陕西) 对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=________,n=________;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.23. (10分)(2012·盐城) 如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.(1)求证:DE=EC;(2)若AD= BC,试判断四边形ABED的形状,并说明理由.24. (15分) (2015八下·南山期中) 某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?25. (7分)如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)填空:①若⊙O的半径为5,tanB=,则CF=________;②若⊙O与BF相交于点H,当∠B的度数为________时,四边形OBHE为菱形.26. (10分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C、D;②⊙D的半径=(结果保留根号);③∠ADC的度数为.④求过A,B,C三点的抛物线的解析式。
2023清远中考数学试题及答案
2023清远中考数学试题及答案2023年清远中考数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是整数?A. 3.14B. 0.5C. -2D. 0.33333答案:C2. 以下哪个表达式等于2?A. 3 + 1B. 2 × 1C. 4 ÷ 2D. 5 - 3答案:C3. 如果一个数的平方是9,那么这个数可能是?A. 3B. -3C. 3和-3D. 以上都不是答案:C4. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 任意三角形答案:B5. 以下哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D6. 以下哪个方程的解是x=2?A. 2x - 4 = 0B. 3x + 6 = 12C. x^2 - 4 = 0D. 2x + 3 = 7答案:A7. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x答案:A8. 以下哪个选项是正确的三角函数值?A. sin(30°) = 1/2B. cos(60°) = √3/2C. tan(45°) = √2D. cot(30°) = √3答案:A9. 以下哪个选项是正确的统计量?A. 平均数B. 中位数C. 众数D. 以上都是答案:D10. 以下哪个选项是正确的几何定理?A. 勾股定理B. 泰勒斯定理C. 欧拉定理D. 以上都是答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 如果一个角的补角是120°,那么这个角是______。
答案:60°13. 一个等腰三角形的底角是45°,那么顶角是______。
答案:90°14. 一个圆的半径是5cm,那么它的周长是______。
清远市2020版中考数学试卷A卷
清远市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列关于“﹣1”的说法中,错误的是()A . ﹣1的相反数是1B . ﹣1是最小的负整数C . ﹣1的绝对值是1D . ﹣1是最大的负整数2. (2分) (2017八下·重庆期中) 计算2 × ÷ 的结果是()A .B .C .D . 23. (2分)(2017·迁安模拟) 下列几何体中,同一个几何体的主视图与俯视图不同的是()A .B .C .D .4. (2分)(2018·长沙) 下列说法正确的是()A . 任意掷一枚质地均匀的硬币10次,一定有5次正面向上B . 天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C . “篮球队员在罚球线上投篮一次,投中”为随机事件D . “a是实数,|a|≥0”是不可能事件5. (2分)关于x的方程(a﹣2)x2﹣2x﹣3=0有一根为﹣1,则另一根为()A . ﹣3B . 3C . 2D . 16. (2分)(2014·四川理) 已知直线y=-x+6和y=x-2,则它们与y轴所围成的三角形的面积为()A . 6B . 10C . 20D . 12二、填空题 (共10题;共11分)7. (1分) (2016七上·绍兴期中) 如果x2=64,那么 =________.8. (1分) 2015年1月29日,联合国贸易和发展会议公布的《全球投资趋势报告》称,2014年中国吸引外国投资达1280亿美元,成为全球外国投资第一大目的地国.1280亿美元用科学记数法表示为________美元.9. (1分)计算:3a3•a2﹣2a7÷a2=________ .10. (1分)(2017·深圳模拟) 分解因式:ax2﹣9a=________.11. (1分)某校九(1)班分成12小组做50米短跑练习,并且各组将每次的时间都记录下来,每组都跑五次,各组对谁的成绩比较稳定意见不一,如果你是其中的一员,你应该选用的统计量是________ .12. (1分) (2015八下·绍兴期中) 若方程(x﹣1)(x2﹣2x+m)=0的三个根可以作为一个三角形的三边之长,则m的取值范围:________.13. (1分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED= cm,则平行四边形ABCD的周长是________.14. (2分)如图,在△ABC中,AB=AC,AD⊥BC,E是AC的中点.若DE=5,则AB的长为________,若AD=8,则BC=________.15. (1分)已知关于x的不等式(1﹣a)x>2的解集为x<﹣3,则a________.16. (1分)如图,点P在正方形ABCD内,△PBC是正三角形,AC与PB相交于点E.有以下结论:①∠ACP=15°;②△APE是等腰三角形;③AE2=PE•AB;④△APC的面积为S1 ,正方形ABCD的面积为S2 ,则S1:S2=1:4.其中正确的是________ (把正确的序号填在横线上).三、解答题 (共10题;共99分)17. (10分) (2017八下·鹤壁期中) 计算:(1) |﹣5|+(π﹣3.1)0﹣()﹣1+(2)(x﹣2)• + .18. (13分)(2018·焦作模拟) 为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t ≤20分钟的学生记为A类,20分钟<t ≤40分钟的学生记为B类,40分钟<t ≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)这次共抽查了________名学生进行调查统计,m=________%,n=________%;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人.19. (5分)一个不透明的袋中装有黄球、黑球和红球共40个,它们除颜色外都相同,其中红球有22个,且经过试验发现摸出一个球为黄球的频率接近0.125.(1)求袋中有多少个黑球;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个球是黄球的概率达到,问至少取出了多少个黑球?20. (5分) (2017八上·鄂托克旗期末) 如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.21. (5分)列方程或方程组解应用题:某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?22. (10分)(2018·铜仁) 如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.23. (10分)(2017·马龙模拟) 如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF= ,求⊙O的半径r及sinB.24. (15分) (2018九上·大洼月考) 家惠商场服装部为促进营销、吸引顾客,决定试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%.试销过程中发现,销售量y(件)与销售单价x(元)之间存在一次函数关系y=-x+120.(1)求试销期间该服装部销售该品牌服装获得利润W(元)与销售单价x(元)的函数关系式;(2)销售单价定为多少元时,服装部可获得最大利润,最大利润是多少元?(3)若在试销期间该服装部获得利润不低于500元,试确定销售单价x的范围.25. (11分)(2019·北京模拟) 如图1,在△ABC中,∠ACB=90°,AC=BC,E为∠ACB平分线CD上一动点(不与点C重合),点E关于直线BC的对称点为F,连接AE并延长交CB延长线于点H,连接FB并延长交直线AH 于点G.(1)求证:AE=BF.(2)用等式表示线段FG,EG与CE的数量关系,并证明.(3)连接GC,用等式表示线段GE,GC与GF的数量关系是________.26. (15分)(2018·兴化模拟) 如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上. 对角线EG、FP相交于点O.(1)若AP=3,求AE的长;(2)连接AC,判断点O是否在AC上,并说明理由;(3)在点P从点A到点B的运动过程中,正方形PEFG也随之运动,求DE的最小值.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共11分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共99分)17-1、17-2、18-1、18-2、18-3、19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
广东省清远市2021版中考数学试卷(II)卷
广东省清远市2021版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列各组数中,结果相等的是()A . ﹣22与(﹣2)2B . 与() 3C . ﹣(﹣2)与﹣|﹣2|D . ﹣12017与(﹣1)20172. (2分)如图所示,AB⊥BD,AC⊥CD,∠D=35°,则∠A的度数为()A . 65°B . 35°C . 55°D . 45°3. (2分) 2012年4月30日,我国在西昌卫星发射中心用“长征三号乙”运载火箭成功发射两颗北斗导航卫星,其中静止轨道卫星的高度约为36000km.这个数据用科学记数法表示为()A . 36×103kmB . 3.6×103kmC . 3.6×104kmD . 0.36×105km4. (2分)(2017·邢台模拟) 计算正确的是()A . a3﹣a2=aB . (ab3)2=a2b5C . (﹣2)0=0D . 3a2•a﹣1=3a5. (2分)一个几何体的三视图如图所示,那么这个几何体是()A .B .C .D .6. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a+bm<m(am+b)(m≠1);④(a+c)2<2;⑤a>.其中正确的是()A . ①⑤B . ①②⑤C . ②⑤D . ①③④7. (2分)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A . 4:00气温最低B . 6:00气温为24℃C . 14:00气温最高D . 气温是30℃的时刻为16:008. (2分)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A . 116°B . 32°C . 58°D . 64°9. (2分)(2018·宜昌) 尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A .B .C .D .10. (2分) (2019七下·武昌期中) 不等式组的解集在数轴上表示为()A .B .C .D .11. (2分) (2019七下·长春月考) 如图,把一张长方形纸片ABCD沿EF折叠后,点C , D分别落在C , D 的位置上,EC交AD于点G ,已知∠EFG=58°,则∠BEG等于()A . 58°B . 116°C . 64°D . 74°12. (2分)观察下列钢管横截面图,则第13个图中钢管的个数是()A . 271B . 269C . 273D . 267二、填空题. (共6题;共6分)13. (1分) (2018七下·浦东期中) 化简()2+ =________.14. (1分)(2017·内江) 在函数y= + 中,自变量x的取值范围是________.15. (1分)如图,菱形ABCD周长为8,∠BAD=120°,P为BD上一动点,E为CD中点,则PE+PC的最小值长为________.16. (1分)(2011·宁波) 如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是________人.17. (1分) (2019八下·锦江期中) 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为________.18. (1分) (2017九上·安图期末) 如图,在△ABC中,DE∥BC,若 = ,DE=9,则BC的长为________.三、解答题. (共8题;共75分)19. (5分)(2016·南宁) 计算:|﹣2|+4cos30°﹣()﹣3+ .20. (5分)先化简再求值: ÷ ,其中x满足x2+x-2=0.21. (15分)(2018·绍兴模拟) 如图,已知点A(0,4)和点B(3,0)都在抛物线y=mx2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为D,点B的对应点为C,若四边形ABCD为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AC的交点为点E,x轴上的点F,使得以点C、E、F为顶点的三角形与△ABE相似,请求出F点坐标.22. (10分) (2016七下·普宁期末) 手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?①丙抢到金额为1元的红包;②乙抢到金额为4元的红包③甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.①求出甲抢到红包A的概率;②若甲没抢到红包A,则乙能抢到红包A的概率又是多少?23. (10分) (2020九上·鞍山期末) 如图,直线l的解析式为y= x,反比例函数y=(x>0)的图象与l交于点N,且点N的横坐标为6.(1)求k的值;(2)点A、点B分别是直线l、x轴上的两点,且OA=OB=10,线段AB与反比例函数图象交于点M,连接OM,求△BOM的面积.24. (10分)(2018·孝感) “绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.25. (10分) (2016九上·济宁期中) 如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.26. (10分)(2012·绍兴) 把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题. (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题. (共8题;共75分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。
广东省清远市中考数学试卷及答案
2009年清远市初中毕业生学业考试数学科试题说明:1.全卷共4页,考试时间为100分钟,满分120分.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指字区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域. 不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的清洁,考试结束后,将本试卷和答题卡一半交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上.1. —5等于()A . 5 B. -5 C. -1 D.-5 52 .不等式X-2 < 0的解集在数轴上表示正确的是()-3 -2 -1 0 1 2 3C.3.今年我国参加高考人数约为10200000,将10200000用科学记数法表示为2, 2 A. a b2 3B. a b2」6C. a bA. 10.2勺07 B • 1.02W07 C. 0.102X107 D. 102X1074 .某物体的三视图如图1所示,那么该物体形状可能是(A.圆柱B.球C.正方体D.长方体5.小明记录某社区七次参加“防甲型33, 32, 32, 31, 32, 28, A .26.6.28 C. 32H1N1流感活动”的人数分别如下:这组数据的众数是()D. 33方程X2 =16的解是(A .7 .已知OO的半径r ,圆心是(A.相交C. X = -4D. X=16O到直线l的距离为d ,当d = r时,直线l与OO的位置关系8.计算:B.相切3 2(ab3)=(C.相离D.以上都不对-3 ^2 -1 0 1 2 3A. _3 -2-10 1 2 3B.I J I I u u I-3 -2-10 1 2 3D.9.如图 2, AB // CD , A . 20° B. 60° EF_LAB 于 E, EF 交 CD 于 F ,已知 4 = 60°,则』2=()C. 30°D.45图2 图310.如图3, AB 是CDO 的直径,弦 则 tan£COE=( A . 3 B. 4 5 5 、填空题(本大题共 应题号的答题卡上. CD_LAB 于点 E,连结 OC ,若 OC=5, CD =8, 八 3C,— 4 6小题,每小题 D. 4 3 3分,共18分)请把下列各题的正确答案填写在相 11 .计算:3乂(-2)= 12.当 X = 时,分式 x —2 1 …、——无意义. k 13.已知反比例函数 y=-的图象经过点(2,3),则此函数的关系式是 14 .如果a 与5互为相反数,那么 a=. 15.如图4所示,转盘平面被等分成四个扇形,并分别填上红、黄两种颜色,自由转动这个 转盘,当它停止转动时,指针停在黄色区域的概率为 05NB4)。
清远中考数学试题及答案
清远中考数学试题及答案一、选择题:1. 若函数f(x)在区间[0,5]上连续,则f(x)=|x-3|的最小值是()A. 0B. 1C. 2D. 32. 三个有理数x,y,z满足x<y<z,若x、y、z能被7整除,则x、y、z的最小值是()A. -5B. 0C. 1D. 23. 已知函数f(x)=3x^2+2x+1,则f(-1)+f(1)=()A. 2B. 4C. 6D. 84. 二次函数y=(-x+4)(x+a)的图象与x轴交于点(-3,0)和(1,0),则a的值为()A. 6B. -6C. -2D. 25. 已知等差数列{an}的前n项和为Sn=n(2n+1),则a1的值为()A. 1B. 3C. 5D. 7二、填空题:1. 设函数f(x)=ax^2+bx+c的图像经过点(1,1),则a+b+c=()。
2. 若正方形ABCD的边长为2a,则对角线AC的长为()。
3. 将20元纸币兑换成1元、5元和10元三种零钱,其中1元纸币4张,10元纸币2张,剩下的都是5元纸币,那么共有()张5元纸币。
4. 解方程|x-3|=7的解集为()。
5. 若a:b=3:5,b:c=4:7,c:d=9:7,则a:b:c:d=()。
三、解答题:1. 用有理数表示根号12的最简形式。
2. 某商品原价800元,现在打折6折出售。
小明购买该商品需要支付的金额是多少?3. 解方程组:{2x-y=3{3x+y=44. 某数乘以它的倒数等于1,这个数是多少?5. 在△ABC中,∠B=60°,AB=8,AC=4,则BC的长度为多少?答案:一、选择题:1. B 2. D 3. C 4. B 5. A二、填空题:1. -1 2. 2a√2 3. 3 4. {-4, 10} 5. 27:45:28:35三、解答题:1. 2√32. 480元3. {x=2, y=1}4. 15. 4以上为清远中考数学试题及答案,供参考。
广东省清远市2020年(春秋版)中考数学试卷D卷
广东省清远市2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·汕头模拟) ﹣的绝对值为()A . ﹣2B . ﹣C .D . 12. (2分) (2020九下·龙岗期中) 如图所示,直线m∥n,∠1=63°,∠2=34°,则∠BAC的大小是()A . 73°B . 83°C . 77°D . 87°3. (2分)(2017·滨江模拟) 下列计算正确的是()A . x4+x2=x6B . (a+b)2=a2+b2C . (3x2y)2=6x4y2D . (﹣m)7÷(﹣m)2=﹣m54. (2分)(2020·随县) 一个几何体的三视图如图所示,则该几何体为()A . 圆柱B . 圆锥C . 四棱柱D . 四棱锥5. (2分) (2020七下·万州期末) 已知关于x、y的方程组的解为整数,且关于x的不等式组有且仅有5个整数解,则所有满足条件的整数a的和为()A . ﹣1B . ﹣2C . ﹣8D . ﹣66. (2分)分式方程的解是()A . x=1B . x=﹣1C . x=7D . x=﹣77. (2分) (2018九上·岐山期中) 岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A .B .C .D .8. (2分)(2019·温州模拟) 如图1所示,一架伸缩楼梯托架AD固定在墙面上,托架AD始终与地面垂直且AD=DE.如图2,旋转支撑臂DE绕着点D旋转,当伸缩楼梯下放时,楼梯长AC=5米,点C正好接触地面,此时,旋转支撑臂DE与楼梯托架AD之间的夹角为120°;当伸缩楼梯上收时,旋转支撑臂DE绕着点D逆时针旋转30°,楼梯长AC'变为4米,此时,楼梯底部的脚垫C'到地面的距离为()米A .B .C .D . 19. (2分)某中学要在校园内划出一块面积是100cm2的矩形土地做花圃,设这个矩形的相邻两边的长分别为xm和ym,那么y关于x的函数关系式可表示为()A . y=100xB . y=100 – xC . y=50 – xD . y=10. (2分)学习了“平行线”后,张明想出了过已知直线外一点画这条直线的平行线的新方法,他是通过折一张半透明的纸得到的(如图①~④):从图中可知,张明画平行线的依据有()(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行.A . (1)(2)B . (2)(3)C . (1)(4)D . (3)(4)二、填空题 (共6题;共6分)11. (1分)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为________ .12. (1分) (2019七下·西安期中) 如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是________.13. (1分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是________14. (1分) (2020八下·无锡期中) 如图,菱形ABCD中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD 的周长为20,则OE的长等于________.15. (1分)(2020·鄂尔多斯) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2 ,则阴影部分面积S阴影=________.16. (1分) (2017八上·丰都期末) 正方形ABCD中,E、F分别在AD、DC上,∠ABE=∠CBF=15°,G是AD 上另一点,且∠BGD=120°,连接EF、BG、FG、EF、BG交于点H,则下面结论:①DE=DF;②△BEF是等边三角形;③∠BGF=45°;④BG=EG+FG中,正确的是________(请填番号)三、解答题 (共8题;共82分)17. (5分)(2014·金华) 计算:﹣4cos45°+()﹣1+|﹣2|.18. (5分) (2015八上·永胜期末) 如图,已知∠BAC=∠BCA,∠BAE=∠BCD=90°,BE=BD.求证:∠E=∠D.19. (10分) (2017七下·南平期末) 一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.(1)求口袋中红球的个数.(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是,你认为对吗?请你用列表或画树状图的方法说明理由.20. (10分)(2020·余杭模拟) 已知:PA= ,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求①AB②PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.21. (10分) (2017八下·丰台期末) 已知关于x的一元二次方程.(1)求证:此方程有两个不相等的实数根;(2)选择一个m的值,并求出此时方程的根.22. (15分)直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t 秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法)(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.23. (12分)(2019·石家庄模拟) 如图,在矩形ABCD中,AB=3,BC=4,半径为1的动圆圆心M从A点出发,沿着AB方向以1个单位长度/每秒的速度匀速运动,同时动点N从点B出发,沿着BD方向也以1个单位长度/每秒的速度匀速运动,设运动的时间为t秒(0≤t≤2.5),以点N为圆心,NB的长为半径的⊙N与BD , AB的交点分别为E , F ,连结EF , ME .(1)①当t=________秒时,⊙N恰好经过点M;②在运动过程中,当⊙M与△ABD的边相切时,t=________秒;(2)当⊙M经过点B时,①求N到AD的距离;②求⊙N被AD截得的弦长;(3)若⊙N与线段ME只有一个公共点时,直接写出t的取值范围.24. (15分)(2018·锦州) 在平面直角坐标系中,直线与x轴交于点B,与y轴交于点C,二次函数的图象经过点B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共82分)17-1、18-1、19-1、19-2、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。
清远市2020版中考数学试卷(I)卷
清远市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各式中结果为负数的是()A . ﹣(﹣3)B . |﹣3|C . (﹣3)2D . ﹣322. (2分)(2020·黄石) 如图所示,该几何体的俯视图是()A .B .C .D .3. (2分)下列计算正确的是()A . x5﹣x4=xB . 23=6C . ﹣(2x+3)=2x﹣3D . ﹣x3+3x3=2x34. (2分)使有意义的x的取值范围是()A . x>2B . x<-2C . x≤2D . x≥25. (2分)五名同学在“爱心捐助”活动中,捐款数额为8,10,10,4,6(单位:元),这组数据的中位数是()A . 10B . 9C . 8D . 66. (2分) (2019八上·绍兴期末) 一次函数的图象经过坐标系的()A . 第一、二、三象限B . 第二、三、四象限C . 第一、二、四象限D . 第一、三、四象限7. (2分)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个单位长度后,得到的点A′的坐标为()A . (﹣4,﹣2)B . (2,﹣2)C . (﹣4,6)D . (2,6)8. (2分)如图,线段,分别以A,B为圆心,以AB的长为半径作弧,两弧交于C,D两点,则阴影部分的面积为()A .B .C .D .9. (2分)(2011·嘉兴) 如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2 ,四边形ABCD面积是11cm2 ,则①②③④四个平行四边形周长的总和为()A . 48cmB . 36cmC . 24cmD . 18cm10. (2分) (2018九上·彝良期末) 在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A .B .C .D .二、填空题 (共8题;共9分)11. (1分)(2018·普宁模拟) 全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是________.12. (1分) (2019七下·鼓楼期中) 已知a+b=2,a-b=-1,则a2-b2=________.13. (1分)(2019·平谷模拟) 甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s甲2=0.2,S乙2=0.08,成绩比较稳定的是________(填“甲”或“乙”)14. (2分)有一个质地均匀的正二十面体形状的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后,朝正上方的数字为“6”的概率是________,数字________朝正上方的可能性最大.15. (1分) (2019八上·南通月考) 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.16. (1分) (2019八上·江津期末) 如图,△ABC中,AB=AC,∠A=40°,DE是腰AB的垂直平分线,求∠DBC=________.17. (1分) (2019九上·长春月考) 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m , BD=14m ,则旗杆AB的高为________m .18. (1分)(2018·伊春) 如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1 ,△B2C1B3的面积为S2 ,△B3C2B4的面积为S3 ,如此下去,则Sn=________.三、解答题 (共7题;共61分)19. (10分) (2020八上·阳泉期末)(1)解方程:(2)先化简,再从0≤x≤4中选一个适合的整数代入求值。
广东省清远市2020年(春秋版)中考数学试卷B卷
广东省清远市2020年(春秋版)中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·亳州模拟) 4的相反数是()A . 4B . -4C .D . 22. (2分)在下列式子中,与3a是同类项的是()A .B .C .D .4. (2分) (2016九上·金东期末) 若,则 =()A .B .C .D .5. (2分)若分式的值为0,则x的值为()A . 1B . ﹣1C . ±1D . 06. (2分)(2016·台湾) 表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?()成绩(分)507090男生(人)101010女生(人)5155合计(人)152515A . 男生成绩的四分位距大于女生成绩的四分位距B . 男生成绩的四分位距小于女生成绩的四分位距C . 男生成绩的平均数大于女生成绩的平均数D . 男生成绩的平均数小于女生成绩的平均数7. (2分) (2018九上·江苏月考) 方程组有唯一解,则m的值是()A .B .C .D . 以上答案都不对8. (2分)用12.56分米长的铁丝围成下面图形,()面积最大。
A . 正方形B . 长方形C . 圆形D . 三角形9. (2分) (2019九上·临城期中) 如图,内接于⊙ ,,,则⊙ 半径为()A . 4B . 6C . 8D . 1210. (2分) (2019九上·三门期末) 如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E现有下列结论:①b2﹣4a<0;②b>0;③5a+b<0;④AD+CE=4.其中正确结论个数为()A . 4B . 3C . 2D . 1二、填空题 (共8题;共9分)11. (1分)(2017·濉溪模拟) 计算:tan45°﹣2cos60°=________.12. (1分) (2015八下·扬州期中) 当x________时,分式有意义.13. (1分) (2015八上·大石桥期末) 若一个多边形的内角和等于其外角和的2倍,则它是________边形.14. (2分)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x=________ ,y=________ .15. (1分) (2020七下·福绵期末) 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于________.16. (1分)如图,直线L1 , L2交于一点P,若y1≥y2 ,则x的取值范围是________17. (1分)(2020·溧阳模拟) 如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O 的半径是________.18. (1分)(2017·武汉模拟) 计算:8+(﹣5)的结果为________.三、解答题(一) (共5题;共40分)19. (10分) (2018八上·大石桥期末) 先化简,再求值:(1),其中;(2),其中 .20. (10分)(2019·甘肃) 如图,在中,,以为直径的⊙ 交于点,切线交于点 .(1)求证:;(2)若,求的长.21. (5分)(2019·泸西模拟) 党的十九大提出,建设生态文明是中华民族永续发展的千年大计,某同学参加“加强生态环境保护,建设美丽中国”手工大赛,他用一种环保材料制作A、B两种手工艺品,制作1件A种手工艺品和3件B种手工艺品需要环保材料5米,制作4件A种手工艺品和5件B种手工艺品需要环保材料13米,求制作一件A种手工艺品和1件B种手工艺品各需多少米环保材料?22. (5分)小强家有一块三角形菜地,量得两边长分别为,,第三边上的高为 .请你帮小强计算这块菜地的面积.(结果保留根号)23. (10分)在一副扑克牌中取牌面花色分别为黑桃、红心、方块各一张,洗匀后正面朝下放在桌面上.(1)从这三张牌中随机抽取一张牌,抽到牌面花色为红心的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面花色后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面花色.当两张牌的花色相同时,小王赢;当两张牌面的花色不相同时,小李赢.请你利用树状图或列表法分析该游戏规则对双方是否公平?并说明理由.四、解答题(二) (共5题;共52分)24. (11分)(2017·独山模拟) 某校八年级共有800名学生,准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查八年级部分女生;方案二:调查八年级部分男生;方案三:到八年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是________;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)请你估计该校八年级约有多少名学生比较了解“低碳”知识.25. (10分)(2017·承德模拟) 如图,函数y= (x>0)图象上一点P的横坐标是4,过点P作直线l交x轴于点A,交y轴负半轴于点B,且OA=OB.(1)求直线l的函数解析式;(2)过点P作直线l的垂线l1 ,交函数y= (x>0)图象于点C,求△OPC的面积.26. (11分)(2018·博野模拟) 如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为________;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD ,求AE的长.27. (10分)(2012·镇江) 如图,AB是⊙O的直径,DF⊥AB于点D,交弦AC于点E,FC=FE.(1)求证:FC是⊙O的切线;(2)若⊙O的半径为5,cos∠ECF= ,求弦AC的长.28. (10分)如图:已知y=ax2+bx+c与x轴交于A,B两点,A,B坐标分别是(﹣1,0)和(3,0)与y轴交于点C(0,3).(1)求抛物线解析式,并确定其对称轴;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(一) (共5题;共40分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、四、解答题(二) (共5题;共52分) 24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、28-1、28-2、。
清远市中考数学试卷
清远市中考数学试卷姓名:________ 班级:________ 成绩:________一、一.选择题 (共12题;共24分)1. (2分) (2019八上·永定月考) 下列算式结果为-3的是()A .B .C .D .2. (2分)(2020·硚口模拟) 下列事件是随机事件的是()A . 从装有2个红球、2个黄球的袋中摸出3个球,它们的颜色不全相同B . 通常温度降到0℃以下,纯净的水结冰C . 任意画一个三角形,其内角和是360°D . 随意翻到一本书的某页,这页的页码是奇数3. (2分)(2019·大同模拟) “山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A . 56×108B . 5.6×108C . 5.6×109D . 0.56×10104. (2分)(2020·枣阳模拟) 不等式组的解集是()A . -1≤ <2B . -1<≤2C . -1≤ ≤2D . -1<<25. (2分)如图,直线AB、CD相交于点E,DF AB. 若∠D=70°,则∠CEB等于()A . 70°B . 80°C . 90°D . 110°6. (2分) (2020九下·射阳月考) 下列标志是中心对称图形,但不是轴对称图形的是()A .B .C .D .7. (2分)人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:,,,则成绩较为稳定的班级是()A . 甲班B . 乙班C . 两班成绩一样稳定D . 无法确定8. (2分)(2018·新乡模拟) 用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A .B .C .D .9. (2分) (2019七下·鼓楼期中) 下列命题是真命题的是()A . 相等的角是对顶角B . 若,则C . 同角的余角相等D . 两直线平行,同旁内角相等10. (2分)如图,在中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是()A . 4.75B . 4.8C . 5D .11. (2分)如图,都是由同样大小的⊙按一定规律所组成的,其中第一个图形有5个⊙,第二个图形一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第2019个图形中基本图形的个数为()A . 6056B . 6057C . 6058D . 605912. (2分) (2019九上·鄂州期末) 已知直线y=kx(k>0)与双曲线y=交于点A(x1 , y1),B(x2 ,y2)两点,则x1y2+x2y1的值为()A . ﹣4B . 0C . 2D . 4二、填空题 (共6题;共15分)13. (1分) (2020九下·舞钢月考) 计算:﹣2cos60°=________.14. (1分) (2017九上·灯塔期中) 某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为________米.15. (1分)(2019·宿迁) 下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为________.16. (1分)一个圆锥的底面半径为1厘米,母线长为2厘米,则该圆锥的侧面积是________厘米2(结果保留π).17. (1分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长________.18. (10分) (2019九下·佛山模拟) 如图,已知钝角△ABC(1)过点A作BC边的垂线,交CB的延长线于点D;(尺规作图,保留作图痕迹,不要求写作法)(2)当BC=AB,∠ABC=120°时,求证:AB平分∠DAC。
【真题汇总卷】2022年广东省清远市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析)
2022年广东省清远市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,ABC ∆中,DE 是ABC ∆的中位线,连接DC ,BE 相交于点F ,若1DEF S ∆=,则ADE S ∆为( )A .3B .4C .9D .12 2、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )A .548510⨯B .648.510⨯C .74.8510⨯D .0.48510⨯ 3、下列问题中,两个变量成正比例的是( ) A .圆的面积S 与它的半径r B .三角形面积一定时,某一边a 和该边上的高h ·线○封○密○外C .正方形的周长C 与它的边长aD .周长不变的长方形的长a 与宽b4、已知二次函数y =x 2﹣2x +m ,点A (x 1,y 1)、点B (x 2,y 2)(x 1<x 2)是图象上两点,下列结论正确的是( )A .若x 1+x 2<2,则y 1>y 2B .若x 1+x 2>2,则y 1>y 2C .若x 1+x 2<﹣2,则y 1<y 2D .若x 1+x 2>﹣2,则y 1>y 2 5、下列各数中,是无理数的是( )A .0BC .227D .3.14159266、如图,在△ABC 和△DEF 中,AC ∥DF ,AC =DF ,点A 、D 、B 、E 在一条直线上,下列条件不能判定△ABC ≌△DEF 的是( ).A .C F ∠=∠B .ABC DEF ∠=∠ C .AB DE =D .BC EF =7、一圆锥高为4cm ,底面半径为3cm ,则该圆锥的侧面积为( )A .29cm πB .212cm πC .215cm πD .216cm π8、如图,要在二次函数()y x 2x =-的图象上找一点(),M a b ,针对b 的不同取值,所找点M 的个数,有下列三种说法:①如果3b =-,那么点M 的个数为0;②如果1b =.那么点M 的个数为1;③如果3b =,那么点M 的个数为2.上述说法中正确的序号是( )A .①B .②C .③D .②③9、下列图形中,既是轴对称图形又是中心对称图形是( ) A .B .C .D . 10、一把直尺与一块直角三角板按下图方式摆放,若237∠=︒,则1∠=( ) A .52°B .53°C .54°D .63°第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、如图,已知点B 在线段CF 上,AB ∥CD ,AD ∥BC ,DF 交AB 于点E ,联结AF 、CE ,S △BCE :S △AEF 的比值为___. ·线○封○密·○外2、若关于x 的二次三项式x 2−2(x +1)x +4是完全平方式,则k =____.3、如图,在△xxx 中,AB =AC =6,BC =4,点D 在边AC 上,BD =BC ,那么AD 的长是______4、如图,在△xxx 中,∠xxx =90°,xx =5,4BC =,xx 为△xxx的角平分线.M 为xx 边上一动点,N 为线段xx 上一动点,连接xx 、xx 、xx ,当xx +xx取得最小值时,△xxx 的面积为______.5、底面圆的半径为3,高为4的圆锥的全面积是______.三、解答题(5小题,每小题10分,共计50分)1、如图,ABC EDF △≌△,20AF =,8EC =,求AE 的值.2、下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:248320x y x y -=⎧⎨-=⎩①②.解:①4⨯,得8416x y -=③,⋯⋯⋯⋯⋯⋯第一步, ②-③,得4y -=,⋯⋯⋯⋯⋯⋯⋯第二步, 4y =-.⋯⋯⋯⋯⋯第三步, 将4y =-代入①,得0x =.⋯⋯⋯⋯第四步, 所以,原方程组的解为04x y =⎧⎨=-⎩.⋯⋯⋯⋯⋯第五步. 填空: (1)这种求解二元一次方程组的方法叫做______. A 、代入消元法 B 、加减消元法 (2)第______步开始出现错误,具体错误是______; (3)直接写出该方程组的正确解:______. 3、已知二次函数23y ax bx =+-的图象经过()()1,4,1,0A B --两点. (1)求a 和b 的值;(2)在坐标系xOy 中画出该二次函数的图象.4、如图,数轴上A 和B .·线○封○密○外(1)点A 表示 ,点B 表示 .(2)点C 表示最小的正整数,点D 表示38的倒数,点E 表示235,在数轴上描出点C 、D 、E .(3)将该数轴上点A 、B 、C 、D 、E 表示的数用“<”连起来: .5、在实数范围内分解因式:2x 2﹣3xy ﹣y 2.-参考答案-一、单选题1、A【分析】根据DE ∥BC ,得△DEF ∽△CBF ,得到4CBF DEF S S ∆∆=,利用BE 是中线,得到ADE S ∆+DEF S ∆=CBF S ∆,计算即可.【详解】∵DE 是ABC ∆的中位线,∴DE ∥BC ,BC =2DE ,∴△DEF ∽△CBF , ∴22()2CBF DEF S BC S DE ∆∆==, ∴4CBF DEF S S ∆∆=,∵1DEF S ∆=,∴4CBF S ∆=,∵BE 是中线,∴ABE S ∆=CBE S ∆, ∵DE 是ABC ∆的中位线, ∴DE ∥BC , ∴BDE S ∆=CDE S ∆,∴BDF S ∆=CFE S ∆, ∴BDF S ∆+ADE S ∆+DEF S ∆=CFE S ∆+CBF S ∆,∴ADE S ∆+DEF S ∆=CBF S ∆, ∴ADE S ∆=3, 故选A . 【点睛】 本题考查了三角形中位线定理,中线的性质,相似三角形的性质,熟练掌握中位线定理,灵活选择相似三角形的性质是解题的关键. 2、C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数. 【详解】 解:48500000科学记数法表示为:48500000=74.8510⨯. 故答案为:74.8510⨯. ·线○封○密○外【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3、C【分析】分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.【详解】解:2,S r 所以圆的面积S 与它的半径r 不成正比例,故A 不符合题意; 1,2S ah 2,S a h所以三角形面积一定时,某一边a 和该边上的高h 不成正比例,故B 不符合题意;=4,C a 所以正方形的周长C 与它的边长a 成正比例,故C 符合题意;22,C a b 长方形 2,2C b a 长方形 所以周长不变的长方形的长a 与宽b 不成正比例,故D 不符合题意;故选C【点睛】本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.4、A【分析】由二次函数y =x 2﹣2x +m 可知对称轴为x =1,当x 1+x 2<2时,点A 与点B 在对称轴的左边,或点A 在左侧,点B 在对称轴的右侧,且点A 离对称轴的距离比点B 离对称轴的距离小,再结合抛物线开口方向,即可判断.【详解】解:∵二次函数y =x 2﹣2x +m ,∴抛物线开口向上,对称轴为x =1,∵x 1<x 2,∴当x 1+x 2<2时,点A 与点B 在对称轴的左边,或点A 在左侧,点B 在对称轴的右侧,且点A 离对称轴的距离比点B 离对称轴的距离大, ∴y 1>y 2,故选:A .【点睛】本题考查了二次函数的性质,灵活应用x 1+x 2与2的关系确定点A 、点B 与对称轴的关系是解决本题的关键. 5、B 【分析】 无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断. 【详解】 A .0是整数,属于有理数,故本选项不合题意; BC.227是分数,属于有理数,故本选项不合题意; D .3.1415926是有限小数,属于有理数,故本选项不合题意; 故选:B .【点睛】本题考查了无理数,掌握无理数的含义是解题的关键.6、D【分析】·线○封○密○外根据各个选项中的条件和全等三角形的判定可以解答本题.【详解】解:∵AC∥DF,∴∠A=∠EDF,∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;故选:D.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.7、C【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.【详解】解: ∵一圆锥高为4cm,底面半径为3cm,∴圆锥母线5,∴圆锥的侧面积=1523152ππ⨯⨯⨯=(cm2).故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 8、B【分析】把点M 的坐标代入抛物线解析式,即可得到关于a 的一元二次方程,根据根的判别式即可判断. 【详解】解:∵点M (a ,b )在抛物线y =x (2-x )上,()2b a a ∴=- 当b =-3时,-3=a (2-a ),整理得a 2-2a -3=0, ∵△=4-4×(-3)>0, ∴有两个不相等的值, ∴点M 的个数为2,故①错误; 当b =1时,1=a (2-a ),整理得a 2-2a +1=0, ∵△=4-4×1=0, ∴a 有两个相同的值, ∴点M 的个数为1,故②正确; 当b =3时,3=a (2-a ),整理得a 2-2a +3=0, ∵△=4-4×3<0, ∴点M 的个数为0,故③错误; 故选:B . 【点睛】 本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.·线○封○密○外9、B【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意;B、既是轴对称图形又是中心对称图形,故选项正确,符合题意;C、不是轴对称图形,是中心对称图形,故选项错误,不符合题意;D、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意.故选:B.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.10、B【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线, ∵直尺的两边互相平行, ∴3237∠=∠=︒,14∠=∠, ∴490353∠=︒-∠=︒, ∴1453∠=∠=︒, 故选B . 【点睛】 本题主要考查了平行线的性质,掌握平行线的性质是解题的关键. 二、填空题 1、1 【分析】 连接BD ,利用平行线间距离相等得到同底等高的三角形面积相等即可解答. 【详解】 解:连接BD ,如下图所示: ·线○封○密○外∵BC∥AD ,∴S △AFD = S △ABD ,∴S △AFD - S △AED = S △ABD - S △AED ,即S △AEF = S △BED ,∵AB∥CD ,∴S △BED =S △BEC ,∴S △AEF =S △BEC ,∴S △BCE :S △AEF =1.故答案为:1.【点睛】本题以平行为背景考查了同底等高的三角形面积相等,找到要求的三角形有关的同(等)底或同(等)高是解题的关键.2、﹣3或1【分析】根据x 2+22这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.【详解】解:∵二次三项式x 2−2(x +1)x +4是完全平方式,∴x 2−2(x +1)x +4=22(2)44x x x -=-+或x 2−2(x +1)x +4=(x +2)2=x 2+4x +4, ∴−2(x +1)=4或−2(x +1)=−4,解得k =﹣3或k =1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.3、103 【分析】 根据等腰三角形的等边对等角可得∠ABC =∠C =∠BDC ,根据相似三角形的判定证明△ABC ∽△BDC ,根据相似三角形的性质求解即可. 【详解】 解:∵AB =AC ,BD =BC , ∴∠ABC =∠C ,∠C =∠BDC , ∴△ABC ∽△BDC ,∴xx xx =xx xx , ∵AB =AC =6,BC =4,BD =BC ,∴64=4xx , ∴xx =83, ∴AD =AC -CD =6-83=103, 故答案为:103. 【点睛】 本题考查等腰三角形的性质、相似三角形的判定与性质,熟练掌握等腰三角形的性质和相似三角形的判定与性质是解答的关键. 4、185 【分析】 ·线○封○密·○外利用点M关于AC的对称点确定N点,当x、x、x′三点共线且xx′⊥xx时,xx+xx′的长取得最小值,再利用三角形的面积公式求出xx′,在利用勾股定理求xx′后即可求出△xxx 的面积.【详解】∵xx为△xxx的角平分线,将xx沿xx翻折,∴x的对应点x′一定在xx边上.∴xx+xx=xx+xx′∴当x、x、x′三点共线且xx′⊥xx时,xx+xx′的长取得最小值∵在xx△xxx中,xx=5,4BC ,∴xx=3∵x△xxx=12xx⋅xx′=12xx⋅xx∴xx′=125∴在xx△xx′x中,xx′=√xx2−x′x2=95=xx∴x△xxx=12xx⋅xx=12×95×4=185.【点睛】本题考查了最短路径问题以及勾股定理,灵活运用勾股定理是解题的关键.5、24x【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的底面积和侧面积公式代入求出即可. 【详解】 ∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的底面积为:xx 2=9x ,圆锥的侧面积为:xxx =x ×3×5=15x , ∴圆锥的全面积为:9x +15x =24x 故答案为:24x . 【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键. 三、解答题1、6【分析】由ABC EDF △≌△全等的性质可知AC =EF ,进而推得AE =CF ,故()12AE AF CE =-. 【详解】 ∵ABC EDF △≌△ ∴AC =EF ∵AC AE CE EF CF CE =+=+,∴AE =CF ∴()()111208126222AE AF CE =-=-=⨯= 【点睛】 ·线○封○密○外本题考查了全等三角形的性质,全等三角形的对应边相等,对应角相等,可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等.2、(1)B(2)二;3(4)y y ---应该等于y(3)44x y =⎧⎨=⎩【分析】(1)②−③消去了x ,得到了关于y 的一元一次方程,所以这是加减消元法;(2)第二步开始出现错误,具体错误是−3y −(−4y )应该等于y ;(3)解方程组即可.(1)解:②-③消去了x ,得到了关于y 的一元一次方程,故答案为:B ;(2)解:第二步开始出现错误,具体错误是()34y y ---应该等于y ,故答案为:二;()34y y ---应该等于y ;(3)解:②-③得4y =, 将4y =代入①,得:4x =, ∴原方程组的解为44x y =⎧⎨=⎩. ·线故答案为:44x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.3、(1)12a b =⎧⎨=-⎩ (2)见解析【分析】(1)利用待定系数法将()()1,4,1,0A B --两点代入抛物线求解即可得;(2)根据(1)中结论确定函数解析式,求出与x ,y 轴的交点坐标及对称轴,然后用光滑的曲线连接即可得函数图象.(1)解:∵二次函数23y ax bx =+-的图象经过()()1,4,1,0A B --两点,∴3430a b a b +-=-⎧⎨--=⎩, 解得:12a b =⎧⎨=-⎩ . (2)解:由(1)可得:函数解析式为:223y x x =--,当0y =时,2230x x --=,解得:11x =-,23x =,∴抛物线与x 轴的交点坐标为:()1,0-,()3,0,抛物线与y 轴的交点坐标为:()0,3-, 对称轴为:21221b x a -=-=-=⨯, 根据这些点及对称轴在直角坐标系中作图如下.【点睛】题目主要考查待定系数法确定函数解析式及作函数图象,熟练掌握待定系数法确定函数解析式是解题关键.4、(1)114,112(2)见解析(3)1<114<112<223<235 【分析】 (1)根据数轴直接写出A 、B 所表示的数即可;·线(2)根据最小的正整数是1,38的倒数是223,然后据此在数轴上找到C 、D 、E 即可; (3)将A 、B 、C 、D 、E 表示的数从小到大排列,再用 “<”连接即可.(1)解:由数轴可知A 、B 表示的数分别是:114,112. 故答案为:114,112. (2)解:∵最小的正整数是1,38的倒数是223∴C 表示的数是1,D 表示的数是223, ∴如图:数轴上的点C 、D 、E 即为所求.(3)解:根据(2)的数轴可知,将点A 、B 、C 、D 、E 表示的数用“<”连接如下:1<114<112<223<235. 【点睛】本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.5、3173172.44x y x y【分析】 先令22230,x xy y 把y 看作是常数,再解一元二次方程可得12317317,,44x y x y 从而可得因式分解的答案.【详解】解:令22230,x xy y222=342170,yy y 317,4y y x 12317317,,44x y x y 22317317232.44x xy y x y x y【点睛】本题考查的是在实数范围内进行因式分解,一元二次方程的解法,掌握“利用公式法解一元二次方程”是解本题的关键.。
2020年广东省清远市中考数学试卷-含详细解析
2020年广东省清远市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
【真题汇编】2022年广东省清远市中考数学真题汇总 卷(Ⅱ)(含答案详解)
2022年广东省清远市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、平面直角坐标系中,O 为坐标原点,点A 的坐标为()2,1-,将OA 绕原点按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .()1,2B .()2,1-C .()2,1--D .()1,2-- 2、下列格点三角形中,与右侧已知格点ABC 相似的是( ) A .B . ·线○封○密○外C .D .3、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB 于点D ,测出,AB CD 的长度,即可计算得出轮子的半径.现测出40cm,10cm AB CD ==,则轮子的半径为( )A .50cmB .35cmC .25cmD .20cm4(约为0.618),就称这个矩形为黄金矩形.若矩形ABCD 为黄金矩形,宽AD 1,则长AB 为( )A .1B .﹣1C .2D .﹣25、如图,在△ABC 和△DEF 中,AC ∥DF ,AC =DF ,点A 、D 、B 、E 在一条直线上,下列条件不能判定△ABC ≌△DEF 的是( ).A .C F ∠=∠B .ABC DEF ∠=∠ C .AB DE =D .BC EF =6、下列各数中,是无理数的是( )A .0 BC .227D .3.1415926 7、下列关于x 的方程中,一定是一元二次方程的是( ) A .33x x += B .()221x x x -=-C .20x =D .20ax bx c ++= 8、如图,要在二次函数()y x 2x =-的图象上找一点(),M a b ,针对b 的不同取值,所找点M 的个数,有下列三种说法:①如果3b =-,那么点M 的个数为0;②如果1b =.那么点M 的个数为1;③如果3b =,那么点M 的个数为2.上述说法中正确的序号是( ) A .①B .②C .③D .②③ 9、下列说法中,正确的是( ) A .东边日出西边雨是不可能事件. B .抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7. C .投掷一枚质地均匀的硬币10000次,正面朝上的次数一定为5000次. D .小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618. 10、如图,在106⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.点E 是格点四边形ABCD 的AB 边上一动点,连接ED ,EC ,若格点DAE △与EBC 相似,则DE EC +的长为( ) ·线○封○密○外A.B C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,CD=6,OA交BC于点E,则AD的长度是 ___.2、如图,直线AA∥AA∥AA,如果AAAA =13,AA=2,AA=6,那么线段BE的长是_____________.3、如图,AAAA为一长条形纸带,AA∥AA,将AAAA沿AA折叠,C、D两点分别A′、A′对应,若122∠=∠,则∠AAA的度数为_________.4、给出下列程序:若输入的A 值为1时,输出值为1;若输入的A 值为1-时,输出值为−3;则当输入的A 值为8时,输出值为______.5、程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,问大、小和尚各有多少人?设大和尚A 人,小和尚A 人,根据题意可列方程组为______.三、解答题(5小题,每小题10分,共计50分) 1、先化简,再求值:2312(2)22x x x x x ++++÷--,其中4x =. 2、如图,已知Rt ABC △,90ABC ∠=︒.·线○封○密·○外(1)请用尺规作图法,作AC的垂直平分线DE,垂足为E,交BC于D.(不要求写作法,保留作图痕迹)(2)若线段4AB=,8CB=,求线段AD的长.3、如图,已知△ABC.(1)请用尺规在图中补充完整以下作图,保留作图痕迹:作∠ACB的角平分线,交AB于点D;作线段CD的垂直平分线,分别交AC于点E,交BC于点F;连接DE,DF;(2)求证:四边形CEDF是菱形.4、综合与探究如图,直线243y x=-+与x轴,y轴分别交于B,C两点,抛物线243y ax x c=++经过B,C两点,与x轴的另一个交点为A(点A在点B的左侧),抛物线的顶点为点D.抛物线的对称轴与x轴交于点E.(1)求抛物线的表达式及顶点D的坐标;(2)点M是线段BC上一动点,连接DM并延长交x轴交于点F,当:1:4FM FD=时,求点M的坐标;(3)点P 是该抛物线上的一动点,设点P 的横坐标为m ,试判断是否存在这样的点P ,使90PAB BCO ∠+∠=︒,若存在,请直接写出m 的值;若不存在,请说明理由. 5、如图,在Rt △ABC 与Rt △ABD 中,∠ACB =∠DAB =90°,AB 2=BC ·BD ,AB =3,过点A 作AE ⊥BD ,垂足为点E ,延长AE 、CB 交于点F ,连接DF(1)求证:AE =AC ; (2)设BC x =,AE y EF =,求y 关于x 的函数关系式及其定义域; (3)当△ABC 与△DEF 相似时,求边BC 的长. -参考答案-一、单选题1、D【分析】如图过点A 作AC 垂直于y 轴交点为C ,过点B 作BD 垂直于y 轴交点为D ,·线○封○密○外909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,A BOD ∠=∠,故有AOC OBD ≌,21OD AC BD OC ====,,进而可得B 点坐标.【详解】解:如图过点A 作AC 垂直于y 轴交点为C ,过点B 作BD 垂直于y 轴交点为D∵909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,∴A BOD ∠=∠在AOC △和OBD 中90A BOD ACO ODB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOC OBD AAS ≌∴21OD AC BD OC ====,∴B 点坐标为(1,2)--故选D .【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.2、A【分析】根据题中利用方格点求出ABC的三边长,可确定ABC为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.【详解】解:ABC的三边长分别为:AB=ACBC=∵222AB AC BC+=,∴ABC为直角三角形,B,C选项不符合题意,排除;A选项中三边长度分别为:2,4,==A选项符合题意,D≠故选:A.【点睛】题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.3、C·线○封○密○外【分析】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O,连接OB.Rt△OBC中,BC=1AB=20cm,2根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4、C【分析】根据黄金矩形的定义,得出宽与长的比例即可得出答案.【详解】解:,ADAB ∴=1)2AB∴==.故选:C.【点睛】本题考查新定义题型,给一个新的定义,根据定义来解题,对于这道题是基础题型.5、D【分析】根据各个选项中的条件和全等三角形的判定可以解答本题.【详解】解:∵AC∥DF,∴∠A=∠EDF,∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;故选:D.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.·线○封○密○外6、B【分析】无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断.【详解】A .0是整数,属于有理数,故本选项不合题意;B C.227是分数,属于有理数,故本选项不合题意; D .3.1415926是有限小数,属于有理数,故本选项不合题意;故选:B .【点睛】本题考查了无理数,掌握无理数的含义是解题的关键.7、C【分析】根据一元二次方程的定义判断.【详解】A.含有3x ,不是一元二次方程,不合题意;B.()221x x x -=-整理得,-x +1=0,不是一元二次方程,不合题意;C .x 2=0是一元二次方程,故此选项符合题意;D.当a =0时,ax 2+bx +c =0,不是一元二次方程,不合题意.故选C.【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax 2+bx +c =0(a ≠0). 8、B 【分析】把点M 的坐标代入抛物线解析式,即可得到关于a 的一元二次方程,根据根的判别式即可判断. 【详解】 解:∵点M (a ,b )在抛物线y =x (2-x )上,()2b a a ∴=- 当b =-3时,-3=a (2-a ),整理得a 2-2a -3=0, ∵△=4-4×(-3)>0,∴有两个不相等的值,∴点M 的个数为2,故①错误;当b =1时,1=a (2-a ),整理得a 2-2a +1=0, ∵△=4-4×1=0,∴a 有两个相同的值,∴点M 的个数为1,故②正确;当b =3时,3=a (2-a ),整理得a 2-2a +3=0,∵△=4-4×3<0,∴点M 的个数为0,故③错误;故选:B .【点睛】·线○封○密○外本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.9、D【分析】根据概率的意义进行判断即可得出答案.【详解】解:A、东边日出西边雨是随机事件,故此选项错误;.B、抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7,错误;有7次正面朝上,不能说明正面朝上的概率是0.7,随着实验次数的增多越来越接近于理论数值0.5,故C选项错误;C、投掷一枚质地均匀的硬币10000次,正面朝上的次数可能为5000次,故此选项错误;D、小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618,此选项正确.故选:D【点睛】此题主要考查了概率的意义,正确理解概率的意义是解题关键.10、C【分析】分DAE△∽EBC和DAE△∽CBE△两种情况讨论,求得AE和BE的长度,根据勾股定理可求得DE 和EC的长度,由此可得DE EC+的长.【详解】解:由图可知DA=3,AB=8,BC=4,AE=8-EB,∠A=∠B=90°,若DAE△∽EBC,则DA AEEB BC=,即384EBEB-=,解得2EB =或6EB =,当2EB =时,EC =DE ==DE EC + 当6EB =时,EC =DE =DE EC +,若DAE △∽CBE △, 则DA AE BC BE =,即384BE BE -=,解得327BE =(不符合题意,舍去),故DE EC +故选:C . 【点睛】本题考查相似三角形的性质和判定,勾股定理,能结合图形,分类讨论是解题关键.注意不要忽略了题干中格点三角形的定义. 二、填空题 1、6√3 【分析】 过O 作AA ⊥AA 于点F ,故AA =AA =12AA ,由AA =AA 得AA ⊥AA ,故∠AAA =60°根据直径所对的圆周角等于90°得∠AAA =90°,由直角三角形中30°角所对的边是斜边的一半可得AA =AA =AA =6,由三角形外角的性质得∠AAA =∠AAA =12∠AAA =30°,在AA △AAA 中由勾股定理可得AF 的值,进而可得AD 值. 【详解】 ·线○封○密○外AA 如图,过O作AA⊥AA于点F,故AA=AA=12∵AA=AA,∴AA⏜,⏜=AA∴AA⊥AA,∴∠AAA=60°,∵BD为⊙O的直径,∴∠AAA=90°∵AA=6,∠AAA=30°,AA=6,∴AA=2AA=12,AA=AA=12∠AAA=30°,∴∠AAA=∠AAA=12在AA△AAA中,AA=6,∠AAA=30°,∴AA=3,∴AA=√AA2+AA2=√62−32=3√3,∴AA=2AA=6√3.故答案为:6√3.【点睛】本题考查圆周角定理,直角三角形的性质以及勾股定理,解题的关键是掌握直角三角形中30°角所对的边是斜边的一半,属于中考常考题型. 2、3 【分析】过点D 作DG ∥AC 交CF 于点G ,交BE 于点H ,根据AA ∥AA ∥AA ,可得AA AA =AA AA =13,四边形ABHD 和四边形ACGD 是平行四边形,从而得到BH =AD =CG =2,AA AA =14 ,进而得到FG =4,再由BE ∥CF ,得到△DEH ∽△DFG ,从而得到HE =1,即可求解. 【详解】 解:如图,过点D 作DG ∥AC 交CF 于点G ,交BE 于点H , ∵AA ∥AA ∥AA ,∴AA AA =AA AA =13,四边形ABHD 和四边形ACGD 是平行四边形, ∴BH =AD =CG =2,AA AA =14 , ∵AA =6,∴FG =4,∵BE ∥CF ,∴△DEH ∽△DFG ,·线○封○密·○外∴AAAA =AAAA=14,∴HE=1,∴BE=BH+HE=3.故答案为:3【点睛】本题主要考查了平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定,熟练掌握平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定是解题的关键.3、108°度【分析】由折叠得∠AAA=∠A′AA,由长方形的性质得到∠1=∠AAA=∠A′AA,由∠2+2∠1= 180°,求出∠2的度数,即可求出∠AAA的度数.【详解】解:由折叠得∠AAA=∠A′AA,∵四边形AAAA是长方形,∴AA∥AA,∴∠1=∠AAA=∠A′AA,∴∠2+2∠1=180°,∵122∠=∠,∴∠2+4∠2=180°,得∠2=36°,∴∠A ′AA =∠1=72°,∴∠AAA =∠2+∠A ′AA =108°, 故答案为:108°. 【点睛】 此题考查了折叠的性质,平行线的性质,正确掌握折叠的性质及长方形的性质是解题的关键. 4、3 【分析】 设输出的值为y ,根据程序可得计算法则:A =A √A 3+A ,根据待定系数法确定k ,b 的值,再将8代入即可. 【详解】 解:设输出的值为A ,根据图示可得计算法则为A =A √A 3+A , ∵若输入的A 值为1时,输出值为1;若输入的A 值为1-时,输出值为−3, ∴{A +A =1−A +A =−3,解得{A =2A =−1, ∴A =2√A 3−1, 当A =8时,A =2×2−1=3, 5、{A +A =1003A +13A =100 【分析】 根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可. 【详解】 解:设大和尚A 人,小和尚A 人, ·线○封○密○外∵共有大小和尚100人,∴A +A =100;∵大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,∴3A +13A =100.联立两方程成方程组得{A +A =1003A +13A =100.故答案为:{A +A =1003A +13A =100.【点睛】本题考查二元一次方程组的应用,解决此类问题的关键就是认真对题,从题目中提取出等量关系,根据等量关系设未知数列方程组.三、解答题1、11x x -+,35【分析】先把所给分式化简,再把4x =代入计算.【详解】解:原式=22432()2212x x x x x x --+⨯--++ =2212212x x x x x --⨯-++ =()()()211221x+x x x x+--⨯- =11x x -+, 当4x =时, ·线原式=413=415-+. 【点睛】本题考查了分式的计算和化简,解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.2、(1)见解析.(2)线段AD 的长为5.【分析】(1)利用垂直平分线的作图方法直接画图即可.(2)由垂直平分线的性质可知:AD CD =,设CD x =,在Rt ABD ∆中,利用勾股定理列出关于x 的方程,并进行求解即可.(1)(1)分别以点A 、C 为圆心,以大于2AC 长画弧,连接两组弧的交点,与AC 交于点E ,与BC 交于点D ,如下所示:(2)(2)解:连接AD ,如下图所示:由垂直平分线的性质可知:AD CD =设CD x =,8BD BC CD BC AD x =-=-=-在Rt ABD ∆中,由勾股定理可知:222AB BD AD +=222(8)4x x ∴=-+解得:5x =故AD 的长为5.【点睛】本题主要是考查了垂直平分线的画法及性质、勾股定理求解边长,熟练掌握垂直平分线的作法,以及利用勾股定理列方程求边长,是解决该题的关键.3、(1)见解析(2)见解析【分析】(1)根据要求的步骤作角平分线和垂直平分线即可,并连接DE ,DF ;(2)根据垂直平分线的性质可得,EC ED FC FD ==,进而证明ECO ≌FCO 即可得CE CF =,进而根据四边相等的四边形是菱形,即可证明四边形CEDF 是菱形.(1)如图所示,,CD EF 即为所求,(2) 证明:如图,设,CD EF 交于点OEF 垂直平分CD ,EC ED FC FD ∴==在ECO 与FCO 中 ECO FCO CO CO COE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴ECO ≌FCO CE CF ∴= CE ED DF FC ∴=== ∴四边形CEDF 是菱形 ·线○封○密·○外【点睛】本题考查了作角平分线和垂直平分线,菱形的判定,掌握基本作图和菱形的判定定理是解题的关键.4、(1)214-433y x x =++,16(2,)3;(2)44,3⎛⎫ ⎪⎝⎭;(3)存在,m 的值为4或8 【分析】(1)分别求出,B C 两点坐标代入抛物线243y ax x c =++即可求得a 、c 的值,将抛物线化为顶点式,即可得顶点D 的坐标;(2)作MG x ⊥轴于点G ,可证ΔMGF ∽DEF ∆,从而可得FM MG FD DE =,代入:1:4FM FD =,163DE =,可求得43MG =,代入243y x =-+可得4x =,从而可得点M 的坐标; (3)由90PAB BCO ∠+∠=︒,90CBO BCO ∠+∠=︒可得∠=∠PAB CBO ,由,B C 两点坐标可得42tan 63∠==CBO ,所以2tan 3∠=PAB ,过点P 作PQ ⊥AB ,分点P 在x 轴上方和下方两种情况即可求解.【详解】(1)当0x =时,得4y =,∴点C 的坐标为(0,4),当0y =时,得2403x -+=,解得:6x =, ∴点B 的坐标为(6,0),将,B C 两点坐标代入,得43660,3 4.a c c ⎧+⨯+=⎪⎨⎪=⎩ 解,得1,34.a c ⎧=-⎪⎨⎪=⎩ ∴抛物线线的表达式为214- 4.33y x x =++ ∵()()222141116444442.33333y x x x x x =-++=--+-+=--+∴顶点D 坐标为16(2,)3. (2)作MG x ⊥轴于点G ,∵MFG DFE ∠=∠,90MGF DEF ∠=∠=︒, ∴ΔMGF ∽DEF ∆. ∴FM MG FD DE =. ∴11643MG =. ∴43MG = 当43y =时,42-433x =+ ∴4x =. ∴点M 的坐标为44,3⎛⎫ ⎪⎝⎭. (3)∵90PAB BCO ∠+∠=︒,90CBO BCO ∠+∠=︒, ∴∠=∠PAB CBO , ∵点B 的坐标为(6,0),点C 的坐标为(0,4), ∴42tan 63∠==CBO , ·线○封○密○外∴2tan 3∠=PAB , 过点P 作PQ ⊥AB ,当点P 在x 轴上方时,214122323-++=+m m m 解得m =4符合题意,当点P 在x 轴下方时,214122323--=+m m m 解得m =8符合题意,∴存在,m 的值为4或8.【点睛】本题考查了抛物线解析式的求法,抛物线的性质,三角形相似的判定及性质,三角函数的应用,解题的关键是准确作出辅助线,利用数形结合的思想列出相应关系式.5、(1)证明见解析(2)2912y x =-,03x << (332【分析】(1)由题意可证得ABD EBA ,ABD EBA ,即∠EAB =∠CAB ,则可得AEB ACB ≅,故AE =AC . (2)可证得FEB FCA ,故有FE AC FC BE⋅=,在Rt AFC 中由勾股定理有222AF FC AC =+,联立后化简可得出2912y x =-,BC 的定义域为03x <<. (3)由(1)(2)问可设BC BE x ==,29x DE x -=,AEFE =ABC 与△DEF 相似时,则有ACB DEF 和ACB FED 两种情况,再由对应边成比例列式代入化简即可求得x 的值. (1)∵AB 2=BC ·BD ∴AB BD BC AB = 又∵∠ACB =∠DAB =90° ∴ABC DBA ∴∠ADB =∠CAB 在Rt △EBA 与Rt △ABD 中∠AEB =∠DAB =90°,∠ABD =∠ABD∴ABD EBA ∴∠ADB =∠EAB∴∠EAB =∠CAB在Rt △EBA 与Rt △CAB 中∠EAB =∠CABAB =AB·线○封○密○外∠ACB =∠AEB =90°∴AEB ACB ≅∴AE =AC(2)∵∠ACB =∠FEB =90°,∠F =∠F∴FEB FCA ∴BE AC FE FC= ∴FE AC FC BE ⋅=在Rt AFC 中由勾股定理有222AF FC AC =+即222()FE AE FC AC +=+ 代入化简得2222222FE AC FE AE FE AE AC BE ⋅++⋅⋅=+ 由(1)问知AC =AE ,BE =BC =x 则2222222FE AE FE AE FE AE AE x ⋅++⋅⋅=+ 式子左右两边减去2AE 得22222FE AE FE FE AE x ⋅+⋅⋅= 式子左右两边同时除以2FE 得2212AE AE FE x +⋅= ∵AE y EF= ∴2212AE y x+=在Rt ABE △中由勾股定理有AE =即AE ∴22912x y x-+= 移项、合并同类项得2912y x =-, 由图象可知BC 的取值范围为03x <<.(3)由(1)、(2)问可得 BC BE x ==,29x DE x -=,AEFE =当ACB DEF 时 由(1)问知AEB DEF 即AE DE BE FE =29x -=229x x -=约分得229212x x -= 移向,合并同类项得294x = 则32x =或32x =-(舍) 当ACB FED 时由(1)问知AEB FED·线○封○密○外即AE FE BE DE=2929x x x-=-29x x =- 约分得22212929x x x x x =⋅-- 移项得224(92)(9)2x x x --=去括号得22448191822x x x x --+=移向、合并同类项得23x =则x =x =综上所述当△ABC 与△DEF 相似时, BC32. 【点睛】本题考查了相似三角形的判定及证明,全等三角形的判定及证明,勾股定理,需熟练掌握相似三角形和全等三角形的判定及性质,本题解题过程中计算过程较复杂繁琐,耐心细致的计算是解题的关键.。
2021年广东省清远市中考数学真题
2021年广东省清远市中考数学真题及答案第I 卷(选择题)一、单选题()1.下列实数中,最大的数是______。
A.πC.2- D.3()2.据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为______。
A.90.51085810⨯ B.751.085810⨯C.45.1085810⨯ D.85.1085810⨯()3.同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是______。
A.112B.16C.13D.12()4.已知93,274m n ==,则233m n +=______。
A.1B.6C.7D.12()5.若0a ,则ab =______。
B.92C. D.9()6.下列图形是正方体展开图的个数为______。
A.1个B.2个C.3个D.4个()7.如图,AB 是⊙O 的直径,点C 为圆上一点,3,AC ABC =∠的平分线交AC 于点D ,1CD =,则⊙O 的直径为______。
B. C.1 D.2()8.设6的整数部分为a ,小数部分为b ,则(2a b 的值是______。
A.6B. C.12D.()9.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积S =.这个公式也被称为海伦-秦九韶公式.若5,4p c ==,则此三角形面积的最大值为______。
B.4C. D.5()10.设O 为坐标原点,点A 、B 为抛物线2y x =上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值______。
A.12B.2C.2D.1第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.二元一次方程组2222x y x y +=-⎧⎨+=⎩的解为______。
广东省清远市2020版中考数学试卷A卷
广东省清远市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)﹣1的倒数为()A .B .C . -D . -2. (2分) (2018七上·汽开区期中) 天安门广场的面积约440000平方米.440000这个数用科学计数法表示为()A . 44×104 .B . 4.4×105 .C . 0.44×106 .D . 4.4×104 .3. (2分)(2017·通州模拟) 下列图形中,正方体展开后得到的图形不可能是()A .B .C .D .4. (2分)下列各式化简结果为无理数的是()A .B .C .D .5. (2分)两圆的半径分别为3cm和4cm,圆心距为1cm,则两圆的位置关系是()A . 相离B . 相交C . 外切D . 内切6. (2分)2x•(﹣3xy)2•(﹣x2y)3的计算结果是()A . ﹣6x4y5B . ﹣18x9y5C . 6x9y5D . 18x8y57. (2分) (2016九上·临洮期中) 关于x的一元二次方程x2+ax﹣1=0的根的情况是()A . 没有实数根B . 只有一个实数根C . 有两个相等的实数根D . 有两个不相等的实数根8. (2分) (2017九上·相城期末) 对于一组数据﹣1、4、﹣1、2下列结论不正确的是()A . 平均数是1B . 众数是-1C . 中位数是0.5D . 方差是3.59. (2分)小明每天骑自行车或步行上学,他上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟。
设小明步行的平均速度为米每分钟,根据题议,下面列出的方程正确的是()A .B .C .D .10. (2分)(2018·安顺) 一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是()A . 12B . 9C . 13D . 12或911. (2分) (2019八下·顺德期末) 如图,、分别是平行四边形的边、上的点,且,分别交、于点、 .下列结论:①四边形是平行四边形;② ;③ ;④ ,其中正确的个数是()A . 1个B . 2个C . 3个D . 4个12. (2分)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是A . m>﹣1B . m<1C . ﹣1<m<1D . ﹣1≤m≤1二、填空题. (共6题;共6分)13. (1分) (2019七上·长沙月考) 比较大小:﹣ ________﹣((填“>”或“<”或“=”).14. (1分) (2020八下·高新期末) 若在实数范围内有意义,则x的取值范围是________。
广东省清远市2020版中考数学试卷A卷
广东省清远市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·长沙) 下列各数中,比﹣3小的数是()A . ﹣5B . ﹣1C . 0D . 12. (2分)(2019·路北模拟) 如图,直线AB∥CD ,则下列结论正确是()A . ∠1=∠2B . ∠3=∠4C . ∠1+∠3=180°D . ∠3+∠4=180°3. (2分)(2019·石首模拟) 下图是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A . 圆锥B . 圆柱C . 三棱锥D . 三棱柱4. (2分) (2017七下·龙华期末) 如果一个三角形的两边长分别为5,12,则第三边的长可以是()A . 18B . 13C . 7D . 55. (2分)下列运算正确的是()A . 3x﹣x=2B . (3x2)3=9x6C . (a+2)2=a2+4D . ÷=36. (2分)已知点A(2-a ,a +1)在第一象限,则a的取值范围是()A . a>2B . -1<a<2C . a<-1D . a<17. (2分) (2016九上·古县期中) 下列调查中,适合用普查方式的是()A . 了解2016年最新一批炮弹的杀伤半径B . 了解阳泉电视台《XX》栏目的收视率C . 了解黄河的鱼的种类D . 了解某班学生对“山西精神”的知晓率8. (2分) (2019八下·孝南月考) 如图,在□ABCD中,∠B=110°,延长AD至点F,延长CD至点E,连结EF,则∠E+∠F=()A . 110°B . 30°C . 50°D . 70°9. (2分)(2017·南山模拟) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中结论正确的个数是()A . 4个B . 3个C . 2个D . 1个10. (2分)(2017·洛阳模拟) 如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF 沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A . (2017,0)B . (2017 ,)C . (2018,)D . (2018,0)11. (2分)(2019·高阳模拟) 如图,四边形ABCD是平行四边形,现用无刻度的直尺和圆规作如下操作①以点A为圆心,AB的长为半径画弧,交AD于点F;②分别以点B , F为圆心,大于 BF的长为半径画弧,两弧相交于点G;③连接AG并延长,交BC于点E .连接BF ,若AE=8,BF=6,则AB的长为()A . 5B . 8C . 12D . 1512. (2分)如图,在⊙O的内接△ABC中,∠ABC=30°,AC的延长线与过点B的⊙O的切线相交于点D,若⊙O的半径OC=1,且BD∥OC,则CD的长为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2019八下·长沙开学考) 若实数 a 满足则 a =________;14. (1分)关于x的方程x2+x+c=0的一个根是2,则c=________.15. (1分)(2019·萧山模拟) 有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,不放回,再抽出一张卡片,以第一次抽取的数字为十位数,第二次抽取的数字为个位数,则组成的两位数是6的倍数的概率是________.16. (1分)已知,如图,⊙O是△ABC的外接圆,OD⊥AC交圆于D,连接AD,CD,BD,∠ABD=50°.则∠DBC=________.17. (1分)(2017·薛城模拟) 对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3= =﹣.则方程x⊗(﹣2)= ﹣1的解是________.18. (1分)(2020·铁岭) 一张菱形纸片的边长为,高等于边长的一半,将菱形纸片沿直线折叠,使点与点重合,直线交直线于点,则的长为________ .三、解答题 (共8题;共98分)19. (10分)(1)计算:(﹣2)0﹣(﹣1)2017+ ﹣sin45°;(2)化简:(﹣)÷ .20. (5分)(2020·合肥模拟) 先化简,再求值:,其中,.21. (15分) (2017八下·大丰期中) 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)在图1中,画出一个平行四边形,使其面积为6;(2)在图2中,画出一个菱形,使其面积为4;(3)在图3中,画出一个矩形,使其邻边不等,且都是无理数.22. (13分) (2018八下·邗江期中) 综合题(1)在下列表格中填上相应的值x…-6-4-3-2-112346……-1________-2________________________3________________1…(2)若将上表中的变量 ,用y来代替(即有y=),请以表中的 x,y 的值为点的坐标,在下方的平面直角坐标系描出相应的点,并用平滑曲线顺次连接各点(3)在(2)的条件下,可将y看作是x的函数,请你结合你所画的图像,写出该函数图像的两个性质:________(4)结合图像,借助之前所学的函数知识,直接写出不等式的解集:________23. (15分) (2017九上·相城期末) 某校为了解学生“自主学习、合作交流” 的情况,对某班部分同学进行了一段时间的跟踪调查,将调查结果(A:特别好;B:好;C:一般;D:较差)绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中,求类所占圆心角的度数;(3)学校想从被调查的类(1名男生2名女生)和D类(男女生各占一半)中分别选取一位同学进行“一帮一”互助学习,请用画树形图或列表的方法求所选的两位同学恰好是一男一女的概率.24. (10分) (2017八上·宁波期中) 威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?25. (10分)(2017·松江模拟) 如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.26. (20分)(2020·韶关期末) 如图,在平面直角坐标系中,抛物线y= x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y= x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学科试题说明: 1.全卷共4页,考试时间为100分钟,满分120分.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的清洁,考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上. 1.3-的倒数是( ).A.3B.3-C.31D.31-2.数据2、2、3、4、3、1、3中,众数是( ).A.1B.2C.3D.4 3.图1中几何体的主视图是( ).4.据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为( ).A.91068.0⨯B.8108.6⨯C.7108.6⨯D.71068⨯ 5.下列选项中,与2xy 是同类项的是( ).A.22xy -B.y x 22C.xyD.22y x 6.已知︒=∠35α,则α∠的余角是 ( ).A.︒35B.︒55C.︒65D.︒145 7.不等式21>-x 的解集是( ).A.1>xB.2>xC.3>xD.3<x8.如图2,点A 、B 、C 在⊙O 上,若︒=∠20BAC ,则BOC ∠的度数为 ( ). A.︒20 B.︒30 C.︒40 D.︒70 9.一次函数2+=x y 的图象大致是( ).10.如图3,若要使平行四边形ABCD 成为菱形,则需要添加的条件是( ).A C BD图1图2ABCDA.CD AB =B.BC AD =C.BC AB =D.BD AC =二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应题号的答题卡上. 11.计算:=⋅3252x x .12.分解因式:=-x x 622 .13.反比例函数xky =的图象经过点P (2-,3),则k 的值为 . 14.已知扇形的圆心角为︒60,半径为6,则扇形的弧长为 .(结果保留π) 15.为了从甲、乙、丙三位同学中选派一位同学参加环保知识竞赛,老师对他们的五次环保知识测验成绩进行了统计,他们的平均分均为85分,方差分别为182=甲S ,122=乙S ,232=丙S . 根据统计结果,应派去参加竞赛的同学是 .(填“甲、乙、丙”中的一个)16.如图4,在□ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若△ECF 的面积为1,则四边形ABCE 的面积为 .三、解答题(本大题共5小题,每小题6分,共30分)17.计算:012011)21(60cos 29-+︒+-.18.解方程:0142=--x x .19.△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的边长为1个单位.(1)△111C B A 与△ABC 关于纵轴(y 轴)对称,请你在图5中画出△111C B A ;(2)将△ABC 向下平移8个单位后得到△222C B A ,请你在图5中画出△222C B A .20.先化简、再求值:1)111(2-÷+-x xx ,其中12+=x .21.如图6,小明以3米/秒的速度从山脚A 点爬到山顶B 点,已知点B 到山脚的垂直距离BC 为24米,且山坡坡角A∠的度数为︒28,问小明从山脚爬上山顶需要多少时间?(结果精确到1.0) (参考数据:46.028sin ≈︒,87.028cos ≈︒,53.028tan ≈︒)EBCD A F图4ABC图6四、解答题(本大题共3小题,每小题8分,共24分)22.如图7,AB 是⊙O 的直径,AC 与⊙O 相切,切点为A ,D 为⊙O 上一点,AD 与OC 相交于点E ,且C DAB ∠=∠. (1)求证:OC ∥BD ;(2)若5=AO ,8=AD ,求线段CE 的长.23.在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余都相同),其中黄球有1个,从袋中任意摸出一个球是黄球的概率为31.(1)求袋中白球的个数;(2)第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画树状图的方法求两次都摸到黄球的概率.24.如图8,在矩形ABCD 中,E 是BC 边上的点,BC AE =,DF ⊥AE ,垂足为F ,连接DE . (1)求证:DF AB =;(2)若10=AD ,6=AB ,求EDF ∠tan 的值.五、解答题(本大题共2小题,每小题9分,共18分)25.某电器城经销A 型号彩电,今年四月份每台彩电售价为2000元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元..,今年销售额只有4万元... (1)问去年四月份每台A 型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B 型号彩电.已知A 型号彩电每台进货价为1800元,B 型号彩电每台进货价为1500元,电器城预计用不多于3.3万元..且不少于2.3万元..的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A 型号彩电继续以原价每台2000元的价格出售,B 型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?26.如图9,抛物线k x y ++=2)1(与x 轴交于A 、B 两点,与y 轴交于点C (0,3-). (1)求抛物线的对称轴及k 的值;(2)抛物线的对称轴上存在一点P ,使得PC PA +的值最小,求此时点P 的坐标;B图7 BCADEF图8(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标.yA BO xC图92011年清远市初中毕业生学业考试数学科试题参考答案与评分标准一、选择题(每小题3分,共30分)1.D2.C3.C4.B5.A6.B7.C8.C9.A 10.C 二、填空题(每小题3分,共18分)11. 510x 12.)3(2-x x 13.6- 14. π2 15.乙 16.3三、解答题:(每小题6分,共30分)17.解:原式122123-+⨯+= ………………………………………………………(4分)1213-++= ………………………………………………………(5分) 5=. ………………………………………………………(6分) 18.解法一:这里,1=a ,4-=b ,1-=c . …………………………(1分) ∵020)1(14)4(422>=-⨯⨯--=-ac b , …………………………(2分) ∴5225241220)4(±=±=⨯±--=x ,…………………………(4分)即 521+=x ,522-=x . …………………………(6分) 解法二:142=-x x , …………………………………………(1分) 2222124+=+-x x , …………………………………………(2分) 即 5)2(2=-x . …………………………………………(3分) 52±=-x ,…………………………………………(4分)即 52=-x ,或52-=-x . …………………………………………(5分) ∴521+=x ,522-=x . …………………………………………(6分)19.解:如图5所示:(注:画出△1B A 1分,共6分)20.解:原式1)1111(2-÷+-++=x xx x x ……………………………………………(1分) xx x x 112-⋅+= ……………………………………………(2分) xx x x x )1)(1(1-+⋅+= ……………………………………………(3分) 1-=x . ……………………………………………(4分) 当12+=x 时,原式112-+= ……………………………………………(5分)2C 2B图52=. ……………………………………………(6分) 21.解:依题意:在Rt △ACB 中,︒=∠90ACB ,AB BCA =sin , ……………………………………(1分)∴17.5246.02428sin 24sin ≈≈︒==A BC AB (米). …………………………………(4分) ∴4.1739.17317.52≈==t (秒). 答:小明从山脚爬上山顶需要的时间约为4.17秒.…………………………………(6分) 四、解答题:(每小题8分,共24分)22.(1)证明:∵AB 是⊙O 的直径,∴︒=∠90D . …………………………(1分) ∵AC 与⊙O 相切,∴︒=∠90CAB . …………………………(2分) 即︒=∠+∠90DAB CAD . ∵C DAB ∠=∠,∴︒=∠+∠90C CAD .∴︒=∠90AEO . ∴D AEO ∠=∠. …………………………(3分) ∴OC ∥BD . …………………………(4分) (2)解: ∵︒=∠90AEO ,∴AD OE ⊥.∴482121=⨯==AD AE . …………………………(5分)在Rt △OEA 中,︒=∠90AEO ,∴3452222=-=-=AE OA OE . …………………………(6分) ∵︒=∠=∠90OEA AEC ,DAB C ∠=∠, ∴△ACE ∽△OAE .∴OEAEAE CE =, …………………………(7分) 即344=CE . 解得:316=CE . …………………………(8分) (注:其它证法可参照本证法给分) 23.解:(1)由黄球有1个,从袋中任意摸出一个球是黄球的概率为31得:袋中共有乒乓球的个数为:3311=÷(个). …………………(2分) 所以袋中白球的个数为2个. …………………(3分) (2)解法一:1种,所以两次都摸到黄球的概率为91. …………………(8分)解法二:……………(6分)依题意,画树状图为:(黄,黄) (黄,白) (黄,白) (白,黄) (白,白) (白,白) (白,黄) (白,白) (白,白) (6分)由以上树状图可知,共有9种结果,其中两次都摸到黄球的结果只有1种,所以两次都摸到黄球的概率为91. …………………(8分)24.(1)证明:在矩形ABCD 中,BC AD =,AD ∥BC ,︒=∠90B .∵AD ∥BC ,∴FAD BEA ∠=∠. …………………………(1分) ∵DF ⊥AE ,∴︒=∠90DFA .∴DFA B ∠=∠. …………………………(2分) ∵BC AE =,BC AD =,∴AD AE = …………………………(3分) ∴△AEB ≌△DAF∴DF AB =. …………………………(4分)(2)解:由(1)可知:6==AB DF ,10==AD AE . …………………………(5分) 在Rt △AFD 中,︒=∠90DFA ,∴86102222=-=-=DF AD AF . …………………………(6分) ∴2810=-=-=AF AE EF , …………………………(7分) 在Rt △DFE 中,︒=∠90DFE ,∴3162tan ===∠DF EF EDF . ………………………… (8分)五、解答题(每小题9分,共18分) 25.解:(1)设去年四月份每台A 型号彩电售价x 元,依题意:20004000050000=x . ………………(2分) 解得:2500=x .经检验,2500=x 是原方程的解. ∴2500=x .答:去年四月份每台A 型号彩电售价是2500元. ………………(3分) (2)设电器城在此次进货中,购进A 型号彩电a 台,则B 型号彩电)20(a -台,依题意: ⎩⎨⎧≤-+≥-+.33000)20(15001800,32000)20(15001800a a a a ………………(5分)解得:10320≤≤a . 由于a 只取非负整数,所以7=a ,8,9,10. ………………(6分)所以电器城在此次进货中,共有4种进货方案,分别是: 方案一:购进A 型号彩电7台、B 型号彩电13台; 方案二:购进A 型号彩电8台、B 型号彩电12台; 方案三:购进A 型号彩电9台、B 型号彩电11台;方案四:购进A 型号彩电10台、B 型号彩电10台. ………………(7分)(3)设电器城获得的利润为y 元,则y 与a 的函数关系式为:6000100)20)(15001800()18002000(+-=--+-=a a a y . ……………(8分) ∵6000100+-=a y ,y 随a 的增大而减小,且7=a ,8,9,10. ∴当7=a 时,y 可取得最大值,530060007100=+⨯-=最大y . 开始 黄 白 白 黄 白 白 黄 白 白 黄 白 白xy OA BC MHN 图9P因此,当购进A 型号彩电7台、B 型号彩电13台时,电器城获得的利润最大,最大利润为5300元. ………………(9分)(注:其它解法可参照本解法给分) 26.解:(1)抛物线k x y ++=2)1(的对称轴为:直线1-=x .…………(1分) ∵抛物线k x y ++=2)1(过点C (0,3-),则k ++=-2)10(3, ∴4-=k .…………(2分)(2)如图9,根据两点之间线段最短可知,当P 点在线段AC 上就可使PC PA +的值最小,又因为P 点要在对称轴上,所以P 点应为线段AC 与对称轴直线1-=x 的交点.由(1)可知,抛物线的表达式为:324)1(22-+=-+=x x x y .令0=y ,则04)1(2=-+x ,解得:31-=x ,12=x .则点A 、B 的坐标分别是A (3-,0)、B (1,0).设直线AC 的表达式为b kx y +=,则 ⎩⎨⎧-==+-303b b k 解得:⎩⎨⎧-=-=31b k所以直线AC 的表达式为3--=x y .…………(3分) 当1-=x 时, 23)1(-=---=y ,所以,此时点P 的坐标为(1-,2-). ………… (4分)(3)①依题意得:当点M 运动到抛物线的顶点时,△AMB 的面积最大.由抛物线表达式4)1(2-+=x y 可知,抛物线的顶点坐标为(1-,4-).∴点M 的坐标为(1-,4-). …………(5分)△AMB 的最大面积84)13(21=⨯+⨯=∆AMB S . …………(6分)②方法一:如图9,过点M 作x MH ⊥轴于点H ,连结AM 、MC 、CB .点M 在抛物线上,且在第三象限,设点M 的坐标为(x ,322-+x x ),则 OBC OHMC AMH AMCB S S S S ∆∆++=梯形四边形 3121))(323(21)32)(3(2122⨯⨯+-+--++--+=x x x x x x 629232+--=x x …………(7分) 875)23(232++-=x . 当23-=x 时,四边形AMCB 的面积最大,最大面积为875.………(8分)当23-=x 时,4153)23(2)23(3222-=--⨯+-=-+x x . ∴四边形AMCB 的面积最大时,点M 的坐标为(23-,415-). (9分) 方法二:如图9,过点M 作x MH ⊥轴于点H ,交直线AC 于点N ,连结AM 、MC 、CB . 点M 在抛物线上,且在第三象限,设点M 的坐标为(x ,322-+x x ),则 点N 的坐标为(x ,3--x ),则x x x x x MN 3)32(322--=-+---=.则AMC ABC AMCB S S S ∆∆+=四边形3)3(213)13(212⨯--+⨯+⨯=x x629232+--=x x …………(7分) 875)23(232++-=x . 当23-=x 时,四边形AMCB 的面积最大,最大面积为875.………(8分)当23-=x 时,4153)23(2)23(3222-=--⨯+-=-+x x . ∴四边形AMCB 的面积最大时,点M 的坐标为(23-,415-). (9分)。