高二文科数学导数及其应用

合集下载

【名师推荐】文科高二下期末复习之导数及其应用

【名师推荐】文科高二下期末复习之导数及其应用

期末考试前的倒数第二次课教学目标一、非学科目标1、学习主动性;2、学习方法与习惯:及时订正、思考与总结、提升题目量;二、学科目标1、导数及其应用知识点及题型复习;教学过程一、了解情况1、学测发挥;2、期末考试时间;3、检查作业并收集问题;4、复习的打算及探讨复习的方式(这个要仔细听学生的意见,尊重她的选择);二、讲解作业(肯定亮点,在总结中引导思考,客观对待不足)三、开始边讲解边做题(在这个过程中去认真发现学生的亮点,着重肯定,不断的在讲解和总结题型中提出问题并共同探讨,不足之处也要真诚的指出来,一个题型讲一题,讲之前先让学生做一做)求值1.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .2.)(x f =aG 3+3G 2+2,4)1(=-'f ,则a=3.已知函数f(G)的导函数为,且满足f(G)=3G 2+2G ,则=.4.设f (G )、g(G )分别是定义在R 上的奇函数和偶函数,当G <0时,f (G )g ′(G )+f ′(G )g(G )>0且g(-3)=0,则不等式f (G )g(G )<0的解集是__________. )(x f ')2('f )5('f5.设()ln f x x x =,若0'()2f x =,则0x =()A.2eB.eC.ln 22D.ln 2切线1.曲线f(G)=G 3-3G ,过点A(0,16)作曲线f(G)的切线,则曲线的切线方程为。

2.若直线y x =是曲线323y x x ax =-+的切线,则a =。

3.垂直于直线2G-6P+1=0,且与曲线5323-+=x x y 相切的直线的方程是________.4.已知直线1+=kx y 与曲线b ax x y ++=3切于点(1,3),则b 的值为()A .3B .-3C .5D .-5 5.若点P 在曲线23+-=x x y 上移动,经过点P 的切线的倾斜角为α,则α的取值范围为() A.⎥⎦⎤⎢⎣⎡2,0π B.⎪⎭⎫⎢⎣⎡⎪⎭⎫⎢⎣⎡πππ,432,0 C.⎥⎦⎤⎢⎣⎡ππ,43 D.⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡43,22,0πππ 单调性1.函数13)(23+-=x x x f 是减函数的区间为()A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)2.函数P =aG 3-G 在(-∞,+∞)上是减函数,则实数a 的取值范围为;3.已知函数13)(23+-+=x x ax x f 在R 上是减函数,则a 的取值范围是:.4.若32()(0)f x ax bx cx d a =+++>在R 上是增函数,则()(A )240b ac ->(B )0,0b c >>(C )0,0b c =>(D )230b ac -<5、函数3y x ax b =++在(1,1)-上为减函数,在(1,)+∞上为增函数,则()(A )1,1a b ==(B )1,a b R =∈(C )3,3a b =-=(D )3,a b R =-∈ 极值1、函数331x x y -+=的极大值,极小值分别是A.极小值-1,极大值1B.极小值-2,极大值3C.极小值-2,极大值2D.极小值-1,极大值32.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =()(A )2 (B )3 (C )4 (D )53.函数f(G)=G 3-aG 2-bG+a 2,在G=1时有极值10,则a 、b 的值为() A.a=3,b=-3,或a=-4,b=11 B.a=-4,b=11 C.a=3,b=-3 D.以上都不正确4、已知函数)(x f 的导数为x x x f 44)(3-=',且图象过点(0,-5),当函数)(x f 取得极大值-5时,G 的值应为A.–1B.0C.1D.±15.若函数f(G)=G 3-3bG+3b 在(0,1)内有极小值,则() A.0<b<1 B.b<1 C.b>0 D.b< 最值1.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是()A .5,-15B .5,-4C .-4,-15D .5,-16 2.(06浙江文)32()32f x x x =-+在区间[]1,1-上的最大值是()(A)-2(B)0(C)2(D)4 3函数P =G 3+x3在(0,+∞)上的最小值为 A.4 B.5 C.3 D.14.(07湖南理)函数3()12f x x x =-在区间[33]-,上的最小值是.5.(20GG 安徽文)设函数1()21(0),f x x x x=+-<则()f x () A .有最大值B .有最小值C .是增函数D .是减函数解答题(重点) 题型一:利用导数研究函数的单调性、极值、最值。

高中数学选修本(文科)导数的应用(一)

高中数学选修本(文科)导数的应用(一)

导数的应用(一)【考点指津】1.函数的导数与单调性的关系:若f'(x)>0,则f(x)为增函数;若f'(x)恒等于零,则f(x)为常数;若f(x)<0,则f(x)为减函数.2.从函数图象出发,通过数形结合的方法直观了解可导函数的单调性与其导数的关系,熟练掌握用导数的符号判别函数增减性的方法.【知识在线】1. 函数y=x 2-x+1的单调递减区间是 ( )A .(-∞,12 )B .(12 ,+∞)C .(-∞,-12 )D . (-12,+∞)2.若函数f(x)=ax+b 上是R 上的单调函数,则a 、b 应满足( )A . a>0,b>0B .a>0,b ∈RC .a<0,b ∈RD . a ≠0,b ∈R3.已知函数f(x)=x 2(x-3),则f(x)在R 上的单调递减区间是 ,单调递增区间为 .4.若三次函数f(x)=x 3+kx 在(-∞,+∞)内是增函数,则实数k的取值范围是 .5.证明函数f(x)=x 2-4x+1在区间(-∞,2)上是减函数.【讲练平台】例1 函数y=x 2-13x 3的单调递增区间为 ,单调递减区间为 .分析 先求函数的导数f'(x),再根据f'(x)>0(或f'(x)<0)解得f(x)的递增(或递减)区间.解 由 y=x 2-13x 3可得y'=2x-x 2 令y'>0,即2x-x 2>0,解得0<x<2,因此,当x ∈(0,2)时,函数为减函数,即单调递减区间为(0,2).令y'<0,即2x-x2,解得x<0或x>2因此,当x∈(-∞,0)或(2,+∞)时,函数为增函数,即单调递增区间为(-∞,0)或(2,+∞).点评本题也可用函数单调性的定义来解,但在判断函数的单调性时,“导数法”要比“定义法”简捷得多.例2 函数y=f(x)的导数y'>0是函数f(x)单调递增的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件分析借助函数的导数与单调性之间的关系,充分性即可判定.必要性可结合具体的例子来加以说明.解由函数的导数与单调性的关系:导数为正,函数为增;导数为负,函数为减.因此不难知道:y'>0可推出函数f(x)单调递增.但反之不然,例如对于函数y=x3来说,它在R上是增函数,而它在x=0处的导数等于0,因此并不能推出y'>0.故选B.点评应当注意函数在它的单调区间内某点处的导数可能为零,并非一定要恒大于零或恒小于零.例3若函数f(x)=ax3+x,(1) 求实数a的取值范围,使f(x)在R上是增函数.(2) 求实数a的取值范围,使f(x)恰好有三个单调区间.分析若条件(1)成立,则f'(x)>0对x∈R恒成立,据此可解得a的范围;若条件(2)成立,则方程f'(x)=0应当有两个不等实根,可由判别式大于0求得a的范围.解 f'(x)=3ax2+1(1)∵f'(x)=3ax2+1对x∈R恒成立,f(x)在R上是增函数,∴当a≥0时,f'(x)>0(2) 令3ax2+1=0有两个不等实根,∴Δ=-12a>0,∴a<0点评求函数的导数和解相关的不等式是研究函数单调性的常用手段和关键所在.例4 设a>0,函数f(x)=x3-ax在[1,+ )上是单调函数.(1)求实数a的取值范围;(2)设x0≥1,f(x) ≥1,且f(f(x0))=x0,求证:f(x0)=x0.分析(1)因为最高次的系数为大于0,故在区间[1,+∞)是单调函数只能是单调增函数,对于任意x 1.x 2∈[1,+∞]且x 1<x 2,则f (x 2)-f (x 1) <0恒成立的a 的取值范围.解(1)任取x 1.x 2∈[1,+∞]且x 1<x 2,则f (x 2)-f (x 1)=(x 23-ax 2)-(x 13-ax 1)=(x 2-x 1)(x 22+x 1x 2+x 12-a ), ∵1≤x 1<x 2,∴x 22+x 1x 2+x 12>3,显然,不存在一个常数a ,使得x 22+x 1x 2+x 12-a 恒为负数,∵f (x )有确定的单调性,∴必存在一个常数a ,使x 22+x 1x 2+x 12-a 恒为正数,即x 22+x 1x 2+x 12>a ,∴a ≤3,这时有f (x 2) >f (x 1), ∴f (x )在[1,+∞]上是增函数,故a 的取值范围是(0,3).(2)设f (x 0)=u ,则f (u )=x 0,于是⎪⎩⎪⎨⎧=-=-03030x au u u ax x ,则(330u x -)-a (x 0-u )=u -x 0即(x 0-u )(x 02+x 0u +u 2+1-a )=0, ∵x 0≥1,u ≥1, x 02+x 0u +u 2 ≥3, 又∵0<a ≤3, ∴x 02+x 0u+u 2+1-a >0, ∴x 0-u=0,即u=x 0,故f(x 0)=x 0.点评 方程思想是见的数学思想,本题第二小题就是设变量列方程解题.其次本题第二小题还可以利用反证法来证明.【知能集成】求函数单调区间的步骤为:(1)确定函数的定义域;(2)求导数f'(x); (3)解不等式f'(x)>0,得f(x)的递增区间;解不等式f'(x)<0, 得f(x)的递减区间.【训练反馈】1.若函数f(x)=x 3+x 2+mx+1是R 上的单调函数,则实数m 的取值范围是 ( )A .( 13 ,+∞)B .(- ∞, 13 )C .[13 ,+∞]D .(-∞,13) 2.若f(x)=ax 2+bx 在区间(0,+∞)单调递增,则a 、b 应满足( )A . a>0,b=0B .a=0,b>0C .a>0,b=0或a=0,b>0D .以上答案都不对3.函数y=f(x)的导数y'<0是函数f(x)单调递减的 条件.4.确定函数f(x)=x 3-6x 2+9x+2单调增区间是 ,单调减区间是 .5.设f(x)=(x-1)2,g(x)=x 2-1,(1) 写出f[g(x)]的解析式; (2)求函数f[g(x)]的单调区间.6.已知a ≥0,函数f(x)=x 3-ax 在[1,+∞]上是单调增函数,则a的最大值是 ( )A .0B .1C .2D .37.当正数k= 时,函数f(x)=kx 3+3(k-1)x 2-k 2+1在区间(0,4)上是减函数.8.求函数f(x)=ax 3+bx 2+cx+d(a>0)在R 上是增函数的充要条件 .9.若x>0时,有f'(x)>g'(x),则当f(x)和g(x)满足 条件时,当x>0时,一定有f(x)>g(x).10.已知y=sinx 的导函数为y'=cosx ,证明:若0<x<π2,则有sinx<x .。

高二文科生数学导数知识点

高二文科生数学导数知识点

高二文科生数学导数知识点数学导数是高中数学中的一项重要内容,也是大学数学的基础。

对于高二文科生来说,掌握导数知识点,不仅可以帮助他们更好地理解数学问题,还能在应对高考数学时取得更好的成绩。

本文将介绍高二文科生应该掌握的数学导数知识点。

一、导数的定义导数是函数在某一点上的变化率,表示函数在该点附近的近似线性近似。

如果函数f(x)在点x=a处可导,则其导数定义为:f'(a) = lim┬(x→a)⁡〖(f(x)-f(a))/(x-a)〗。

二、导数的基本运算规则在进行导数运算时,可以利用以下基本运算规则简化计算。

1. 常数规则对于任意常数c,有d/dc(c) = 0。

2. 幂函数规则对于任意正整数n和常数k,有d/dx(x^n) = nx^(n-1) 和 d/dx(kx) = k。

3. 和差法则对于两个函数f(x)和g(x),有d/dx(f(x) ± g(x)) = d/dx(f(x)) ±d/dx(g(x))。

4. 乘法法则对于两个函数f(x)和g(x),有d/dx(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)。

5. 商法则对于两个函数f(x)和g(x)(g(x)≠0),有d/dx(f(x)/g(x)) = (f'(x)g(x)-f(x)g'(x))/[g(x)]^2。

6. 复合函数法则对于复合函数y = f(g(x)),有dy/dx = f'(g(x))g'(x)。

三、常见函数的导数对于一些常见的函数,我们需要掌握其导数的计算方法。

1. 幂函数的导数对于幂函数y = x^n,其中n为正整数,其导数为dy/dx =nx^(n-1)。

2. 指数函数的导数对于指数函数y = a^x,其中a为正实数且a≠1,其导数为dy/dx = a^xlna。

3. 对数函数的导数对于对数函数y = logₐx,其中a为正实数且a≠1且x>0,其导数为dy/dx = 1/(xlna)。

导数及其运用.doc高二(7-8)30页word文档

导数及其运用.doc高二(7-8)30页word文档

导数及其运用知识网络;⎝⎭②复合函数的求导法则:'(())x f x ϕ=''()()f u x ϕ或x u x u y y '''⋅=★ 重 难 点 突 破 ★1.重点:理解导数的概念与运算法则,熟练掌握常见函数的计算和曲线的切线方程的求法2.难点:切线方程的求法及复合函数求导3.重难点:借助于计算公式先算平均增长率,再利用函数的性质解决有关的问题. (1)平均变化率的实际含义是改变量与自变量的改变量的比。

问题1.比较函数()2xf x =与()3xg x =,当[1,2]x ∈时,平均增长率的大小. 点拨:解题规律技巧妙法总结: 计算函数的平均增长率的基本步骤是(1)计算自变量的改变量21x x x ∆=- (2)计算对应函数值的改变量22()()y f x f x ∆=- (3)计算平均增长率:2121()()f x f x y x x x -∆=∆-对于()2xf x =, 2111223,21y x ∆-==∆-又对于()3xg x =,212233821y x ∆-==∆- 故当[1,2]x ∈时, ()g x 的平均增长率大于()f x 的平均增长率. (2)求复合函数的导数要坚持“将求导进行到底”的原则,问题2. 已知2)2cos 1(x y +=,则='y .点拨:复合函数求导数计算不熟练,其x 2与x 系数不一样也是一个复合的过程,有的同学忽视了,导致错解为:)2cos 1(2sin 2x x y +-='.设2u y =,x u 2cos 1+=,则)2()2sin (2)2cos 1(2'⋅-⋅='+=''='x x u x u u y y x u x)2cos 1(2sin 42)2sin (2x x x u +-=⋅-⋅=∴)2cos 1(2sin 4x x y +-='.(3)求切线方程时已知点是否切点至关重要。

高考数学文科导数及其应用最全讲解含答案解析

高考数学文科导数及其应用最全讲解含答案解析

第四单元 导数及其应用教材复习课“导数”相关基础知识一课过1.基本初等函数的导数公式2.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). [小题速通]1.下列求导运算正确的是( ) A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2 C .(3x )′=3x log 3eD .(x 2cos x )′=-2sin x解析:选B ⎝⎛⎭⎫x +1x ′=1-1x 2;(log 2x )′=1x ln 2;(3x )′=3x ln 3;(x 2cos x )′=2x cos x -x 2sin x ,故选B.2.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C ∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2).3.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A.193 B.163 C.133D.103解析:选D 因为f ′(x )=3ax 2+6x , 所以f ′(-1)=3a -6=4, 所以a =103. 4.(2016·天津高考)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________.解析:因为f (x )=(2x +1)e x ,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x , 所以f ′(0)=3e 0=3. 答案:3[清易错]1.利用公式求导时,一定要注意公式的适用范围及符号,如(x n )′=nx n-1中n ≠0且n∈Q *,(cos x )′=-sin x .2.注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.1.已知函数f (x )=sin x -cos x ,若f ′(x )=12f (x ),则tan x 的值为( )A .1B .-3C .-1D .2解析:选B ∵f ′(x )=(sin x -cos x )′=cos x +sin x , 又f ′(x )=12f (x ),∴cos x +sin x =12sin x -12cos x ,∴tan x =-3.2.若函数f (x )=2x +ln x 且f ′(a )=0,则2a ln 2a =( ) A .-1 B .1 C .-ln 2D .ln 2解析:选A f ′(x )=2x ln 2+1x ,由f ′(a )=2a ln 2+1a =0,得2a ln 2=-1a ,则a ·2a ·ln 2=-1,即2a ln 2a =-1.导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).[小题速通]1.(2018·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 2.设函数f (x )=x ln x ,则点(1,0)处的切线方程是________.解析:因为f ′(x )=ln x +1,所以f ′(1)=1,所以切线方程为x -y -1=0. 答案:x -y -1=03.已知曲线y =2x 2的一条切线的斜率为2,则切点的坐标为________.解析:因为y ′=4x ,设切点为(m ,n ),则4m =2,所以m =12,则n =2×⎝⎛⎭⎫122=12,则切点的坐标为⎝⎛⎭⎫12,12.答案:⎝⎛⎭⎫12,124.函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =3x -2,则f (1)+f ′(1)=________.解析:因为函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =3x -2,所以f ′(1)=3,且f (1)=3×1-2=1,所以f (1)+f ′(1)=1+3=4.答案:4[清易错]1.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7解析:选A 因为y =x 3,所以y ′=3x 2, 设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564, 当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1,所以选A.2.(2017·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.解析:因为函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,所以此函数的图象在点(1,3)处的切线斜率为3+a ,所以⎩⎪⎨⎪⎧ 3+a =2,3=1+a +b ,解得⎩⎪⎨⎪⎧a =-1,b =3.答案:31.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f ′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间. [小题速通]1.函数f (x )=2x 3-9x 2+12x +1的单调减区间是( ) A .(1,2) B .(2,+∞)C .(-∞,1)D .(-∞,1)和(2,+∞)解析:选A 解f ′(x )=6x 2-18x +12<0可得1<x <2,所以单调减区间是(1,2). 2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )解析:选D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B.⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:选C 由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立⇔g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立⇔Δ=a 2-24≤0或⎩⎪⎨⎪⎧Δ=a 2-24>0,-a4≤1,g (1)=5+a ≥0⇔-26≤a ≤26或a >26⇔a ≥-26,故选C.[清易错]若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立, ∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[小题速通]1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4解析:选A 由图象及极值点的定义知,f (x )只有一个极小值点. 2.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2a ×(-3)+3=0,解得a =5.3.(2017·济宁一模)函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0D .不存在解析:选A f ′(x )=x -1x =x 2-1x ,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12.4.若函数f (x )=12x 2-ax +ln x 有极值,则a 的取值范围为________.解析:f ′(x )=x -a +1x =x 2-ax +1x(x >0),因为函数f (x )=12x 2-ax +ln x 有极值,令g (x )=x 2-ax +1,且g (0)=1>0,所以⎩⎨⎧a2>0,g ⎝⎛⎭⎫a 2=-a 24+1<0,解得a >2.答案:(2,+∞)5.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:由题意,f ′(x )=3x 2-4ax +a 2=0,得x =a3或a .又∵x 1<2<x 2,∴x 1=a3,x 2=a ,∴⎩⎪⎨⎪⎧a >2,a3<2,∴2<a <6.答案:(2,6)[清易错]1.f ′(x 0)=0是x 0为f (x )的极值点的既不充分也不必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.2.求函数最值时,易误认为极值点就是最值点,不通过比较就下结论. 1.(2017·岳阳一模)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x ) C .y =x e -xD .y =x +2x解析:选D 因为A 、B 为单调函数,所以不存在极值,C 不是奇函数,故选D. 2.设函数f (x )=x 3-3x +1,x ∈[-2,2]的最大值为M ,最小值为m ,则M +m =________. 解析:f ′(x )=3x 2-3, 由f ′(x )>0可得x >1或x <-1, 由f ′(x )<0可得-1<x <1,所以函数f (x )的增区间是[-2,-1],[1,2],减区间是[-1,1]. 又因为f (-2)=-1,f (-1)=3,f (1)=-1,f (2)=3, 所以M =3,m =-1, 所以M +m =2. 答案:2一、选择题1.已知函数f (x )=log a x (a>0且a ≠1),若f ′(1)=-1,则a =( ) A .e B.1e C.1e2 D.12解析:选B 因为f ′(x )=1x ln a ,所以f ′(1)=1ln a=-1,所以ln a =-1,所以a =1e . 2.直线y =kx +1与曲线y =x 2+ax +b 相切于点A(1,3),则2a +b 的值为( ) A .-1 B .1 C .2D .-2解析:选C 由曲线y =x 2+ax +b ,得y ′=2x +a , 由题意可得⎩⎪⎨⎪⎧k +1=3,k =2+a ,1+a +b =3,解得⎩⎪⎨⎪⎧k =2,a =0,b =2,所以2a +b =2.3.函数y =2x 3-3x 2的极值情况为( ) A .在x =0处取得极大值0,但无极小值 B .在x =1处取得极小值-1,但无极大值C .在x =0处取得极大值0,在x =1处取得极小值-1D .以上都不对解析:选C y ′=6x 2-6x ,由y ′=6x 2-6x >0,可得x >1或x <0, 即单调增区间是(-∞,0),(1,+∞). 由y ′=6x 2-6x <0,可得0<x <1,即单调减区间是(0,1),所以函数在x =0处取得极大值0,在x =1处取得极小值-1. 4.若f(x)=-12x 2+m ln x 在(1,+∞)是减函数,则m 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1]D .(-∞,1)解析:选C 由题意,f ′(x )=-x +mx ≤0在(1,+∞)上恒成立,即m ≤x 2在(1,+∞)上恒成立,又因为x 2>1,所以m ≤1.5.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4)D .(2,+∞)解析:选D 依题意得f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,解得x >2,∴f (x )的单调递增区间是(2,+∞).故选D.6.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m =( ) A .0 B .1 C .2D .3解析:选B f(x)=x(x 2-2mx +m 2)=x 3-2mx 2+m 2x ,所以f ′(x)=3x 2-4mx +m 2=(x -m)(3x -m).由f ′(1)=0可得m =1或m =3.当m =3时,f ′(x)=3(x -1)(x -3),当1<x<3时,f ′(x)<0,当x<1或x>3时,f ′(x)>0,此时在x =1处取得极大值,不合题意,∴m =1,此时f ′(x)=(x -1)(3x -1),当13<x <1时,f ′(x)<0,当x<13或x>1时,f ′(x)>0,此时在x =1处取得极小值.选B .7.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12解析:选A 已知曲线y =x 24-3ln x (x >0)的一条切线的斜率为12,由y ′=12x -3x =12,得x =3,故选A.8.若函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 3-3x +a ,x >0的值域为[0,+∞),则实数a 的取值范围是( )A .[2,3]B .(2,3]C .(-∞,2]D .(-∞,2)解析:选A 当x ≤0时,0≤f (x )=1-2x <1; 当x >0时,f (x )=x 3-3x +a ,f ′(x )=3x 2-3, 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减, 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,所以当x =1时,函数f (x )取得最小值f (1)=1-3+a =a -2.由题意得0≤a -2≤1,解得2≤a ≤3,选A.二、填空题9.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是________.解析:由题意知f (x )的定义域为(0,+∞),f ′(x )=1+ax ,要使函数f (x )=x +a ln x 不是单调函数,则需方程1+ax =0在(0,+∞)上有解,即x =-a ,∴a <0.答案:(-∞,0)10.已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.解析:∵f ′(x )=1x -2f ′(-1)x +3,∴f ′(-1)=-1+2f ′(-1)+3, ∴f ′(-1)=-2,∴f ′(1)=1+4+3=8. 答案:811.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +3,则f (1)+f ′(1)=________.解析:由题意知f ′(1)=12,f (1)=12×1+3=72,∴f (1)+f ′(1)=72+12=4.答案:412.已知函数g (x )满足g (x )=g ′(1)e x -1-g (0)x +12x 2,且存在实数x 0,使得不等式2m-1≥g (x 0)成立,则实数m 的取值范围为________.解析:g ′(x )=g ′(1)e x -1-g (0)+x ,令x =1时,得g ′(1)=g ′(1)-g (0)+1, ∴g (0)=1,g (0)=g ′(1)e 0-1=1,∴g ′(1)=e ,∴g (x )=e x -x +12x 2,g ′(x )=e x -1+x ,当x <0时,g ′(x )<0,当x >0时,g ′(x )>0, ∴当x =0时,函数g (x )取得最小值g (0)=1. 根据题意得2m -1≥g (x )min =1,∴m ≥1. 答案:[1,+∞) 三、解答题13.已知函数f (x )=x +ax +b (x ≠0),其中a ,b ∈R.(1)若曲线y =f (x )在点P (2,f (2))处的切线方程为y =3x +1,求函数f (x )的解析式; (2)讨论函数f (x )的单调性;(3)若对于任意的a ∈⎣⎡⎦⎤12,2,不等式f (x )≤10在⎣⎡⎦⎤14,1上恒成立,求实数b 的取值范围. 解:(1)f ′(x )=1-ax2(x ≠0),由已知及导数的几何意义得f ′(2)=3,则a =-8.由切点P (2,f (2))在直线y =3x +1上可得-2+b =7,解得b =9,所以函数f (x )的解析式为f (x )=x -8x+9.(2)由(1)知f ′(x )=1-ax2(x ≠0).当a ≤0时,显然f ′(x )>0,这时f (x )在(-∞,0),(0,+∞)上是增函数. 当a >0时,令f ′(x )=0,解得x =±a , 当x 变化时,f ′(x ),f (x )的变化情况如下表:上是减函数.(3)由(2)知,对于任意的a ∈⎣⎡⎦⎤12,2,不等式f (x )≤10在⎣⎡⎦⎤14,1上恒成立等价于⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫14≤10,f (1)≤10,即⎩⎪⎨⎪⎧b ≤394-4a ,b ≤9-a对于任意的a ∈⎣⎡⎦⎤12,2成立,从而得b ≤74, 所以实数b 的取值范围是⎝⎛⎦⎤-∞,74. 14.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导,得f ′(x )=14-a x 2-1x (x >0),由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2,令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 由此知函数f (x )在x =5时取得极小值f (5)=-ln 5,无极大值. 高考研究课(一)导数运算是基点、几何意义是重点 [全国卷5年命题分析][典例] (1)(2018·惠州模拟)已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π(2)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 018(x )等于( )A .-sin x -cos xB .sin x -cos xC .sin x +cos xD .cos x -sin x(3)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1D .e[解析] (1)∵f ′(x )=-1x 2cos x +1x (-sin x ),∴f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. (2)∵f 1(x )=sin x +cos x , ∴f 2(x )=f 1′(x )=cos x -sin x , ∴f 3(x )=f 2′(x )=-sin x -cos x , ∴f 4(x )=f 3′(x )=-cos x +sin x , ∴f 5(x )=f 4′(x )=sin x +cos x , ∴f n (x )是以4为周期的函数,∴f 2 018(x )=f 2(x )=cos x -sin x ,故选D.(3)由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x . ∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.[答案](1)C(2)D(3)B[方法技巧]1.可导函数的求导步骤(1)分析函数y=f(x)的结构特点,进行化简;(2)选择恰当的求导法则与导数公式求导;(3)化简整理答案.2.求导运算应遵循的原则求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.[即时演练]1.(2018·江西九校联考)已知y=(x+1)(x+2)(x+3),则y′=()A.3x2-12x+6 B.x2+12x-11C.x2+12x+6 D.3x2+12x+11解析:选D法一:y′=(x+2)(x+3)+(x+1)(x+3)+(x+1)(x+2)=3x2+12x+11.法二:∵y=(x2+3x+2)(x+3)=x3+6x2+11x+6,∴y′=3x2+12x+11.2.已知函数f(x)=x ln x,若f′(x0)=2,则x0=________.解析:f′(x)=ln x+1,由f′(x0)=2,即ln x0+1=2,解得x0=e.答案:e导数的几何意义第(1)问中,难度较低,属中、低档题.常见的命题角度有:(1)求切线方程;(2)确定切点坐标;(3)已知切线求参数值或范围;(4)切线的综合应用.角度一:求切线方程1.已知函数f(x)=ln(1+x)-x+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是________.解析:∵f′(x)=11+x-1+2x,∴f′(1)=32,f(1)=ln 2,∴曲线y=f(x)在点(1,f(1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.答案:3x -2y +2ln 2-3=0角度二:确定切点坐标2.(2018·沈阳模拟)在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x -1上,且在第三象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:∵y ′=3x 2-1,曲线C 在点M 处的切线的斜率为2,∴3x 2-1=2,x =±1, 又∵点M 在第三象限,∴x =-1,∴y =(-1)3-(-1)-1=-1, ∴点M 的坐标为(-1,-1). 答案:(-1,-1)角度三:已知切线求参数值或范围3.(2017·武汉一模)已知a 为常数,若曲线y =ax 2+3x -ln x 上存在与直线x +y -1=0垂直的切线,则实数a 的取值范围是________.解析:由题意知曲线上存在某点的导数值为1, 所以y ′=2ax +3-1x =1有正根, 即2ax 2+2x -1=0有正根. 当a ≥0时,显然满足题意;当a <0时,需满足Δ≥0,解得-12≤a <0.综上,a ≥-12.答案:⎣⎡⎭⎫-12,+∞ 4.若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围是________. 解析:设y =a ln x -1的切点为(x 0,y 0),求导y ′=ax ,则切线的斜率为ax 0,所以公切线方程为y -(a ln x 0-1)=ax 0(x -x 0),联立方程y =x 2-1可得x 2-ax 0x +a -a ln x 0=0,由题意,可得Δ=⎝⎛⎭⎫-ax 02-4(a -a ln x 0)=0, 则a =4x 20(1-ln x 0).令f(x)=4x2(1-ln x)(x>0),则f′(x)=4x(1-2ln x),易知,函数f(x)=4x2(1-ln x)在(0,e)上是增函数,在(e,+∞)上是减函数,所以函数f(x)=4x2(1-ln x)的最大值是f(e)=2e,则正实数a的取值范围是(0,2e].答案:(0,2e]角度四:切线的综合应用5.(2016·全国卷Ⅱ)已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.解:(1)f(x)的定义域为(0,+∞).当a=4时,f(x)=(x+1)ln x-4(x-1),f(1)=0,f′(x)=ln x+1x-3,f′(1)=-2.故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于ln x-a(x-1)x+1>0.设g(x)=ln x-a(x-1) x+1,则g′(x)=1x-2a(x+1)2=x2+2(1-a)x+1x(x+1)2,g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;②当a>2时,令g′(x)=0,得x1=a-1-(a-1)2-1,x2=a-1+(a-1)2-1.由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,因此g(x)<0.综上,a的取值范围是(-∞,2].[方法技巧]利用导数解决切线问题的方法(1)已知切点A(x0,f(x0))求斜率k,即求该点处的导数值:k=f′(x0).(2)已知斜率k,求切点A(x1,f(x1)),即解方程f′(x1)=k.(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0求解.1.(2014·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D y ′=a -1x +1,由题意得y ′x =0=2,即a -1=2,所以a =3. 2.(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析:因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1,所以切线方程为y -2=x -1,即x -y +1=0.答案:x -y +1=03.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________.解析:y =ln x +2的切线方程为: y =1x 1·x +ln x 1+1(设切点横坐标为x 1), y =ln(x +1)的切线方程为: y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点的横坐标为x 2), ∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 答案:1-ln 24.(2015·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1.又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案:15.(2015·全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:∵y =x +ln x , ∴y ′=1+1x,y ′x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为 y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y , 得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 答案:8一、选择题 1.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1 B.12 C .-2D .2解析:选A ∵y ′=-1-cos x sin 2x ,∴y ′x =π2=-1,由条件知1a =-1,∴a =-1. 2.(2018·衡水调研)曲线y =1-2x +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2解析:选A ∵y =1-2x +2=x x +2, ∴y ′=x +2-x (x +2)2=2(x +2)2,y ′|x =-1=2, ∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1),即y =2x +1.3.(2018·济南一模)已知曲线f (x )=ln x 的切线经过原点,则此切线的斜率为( ) A .e B .-e C .1eD .-1e解析:选C 法一:∵f (x )=ln x ,x ∈(0,+∞), ∴f ′(x )=1x.设切点P(x 0,ln x 0),则切线的斜率为k =f ′(x 0)=1x 0=k OP =ln x 0x 0.∴ln x 0=1,∴x 0=e ,∴k =1x 0=1e.法二:(数形结合法):在同一坐标系下作出y =ln x 及曲线y =ln x 经过原点的切线,由图可知,切线的斜率为正,且小于1,故选C .4.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f(x)图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴直线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1, 又因为y 0=12x 20+mx 0+72(m <0), 解得m =-2,故选D.5.(2018·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,πC .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 6.已知曲线y =1e x+1,则曲线的切线斜率取得最小值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0 C .4x +2y -1=0D .4x -2y -1=0解析:选A y ′=-e x(e x +1)2=-1e x +1ex +2,因为e x >0,所以e x +1e x ≥2e x ×1ex =2(当且仅当e x =1e x ,即x =0时取等号),则e x +1ex +2≥4,故y ′=-1e x +1ex +2≥-14(当x =0时取等号).当x =0时,曲线的切线斜率取得最大值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A . 二、填空题7.已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:由题意,当x >0时,则-x <0,f (x )=f (-x )=ln x -3x ,则f ′(x )=1x -3,所以曲线y =f (x )在点(1,-3)处的切线的斜率f ′(1)=-2,则切线方程为y -(-3)=-2(x -1),即2x +y +1=0.答案:2x +y +1=08.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围三角形的面积等于________. 解析:∵y ′=1x ln 2,∴k =1ln 2, ∴切线方程为y =1ln 2(x -1), 令y =0,得x =1,令x =0,得y =-1ln 2, ∴所求三角形面积为S =12×1×1ln 2=12ln 2.答案:12ln 29.(2017·东营一模)函数f (x )=x ln x 在点P(x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P(x 0,f (x 0))的坐标为________.解析:∵f (x )=x ln x , ∴f ′(x )=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1⇔ln x 0+1=1⇔ln x 0=0⇔x 0=1, ∴f (x 0)=1·ln 1=0, ∴P(1,0). 答案:(1,0)10.设过曲线f (x )=-e x -x(e 为自然对数的底数)上的任意一点的切线为l 1,总存在过曲线g (x )=mx -3sin x 上的一点处的切线l 2,使l 1⊥l 2,则m 的取值范围是________.解析:设曲线f (x )上任意一点A(x 1,y 1),曲线g(x )上存在一点B(x 2,y 2),f ′(x )=-e x-1,g ′(x )=m -3cos x .由题意可得f ′(x 1)g ′(x 2)=-1,且f ′(x 1)=-ex 1-1∈(-∞,-1),g ′(x 2)=m -3cos x 2∈[m -3,m +3].因为过曲线f (x )=-e x -x (e 为自然对数的底数)上的任意一点的切线为l 1,总存在过曲线g (x )=mx -3sin x 上的一点处的切线l 2,使l 1⊥l 2,所以(0,1)⊆[m -3,m +3],所以m -3≤0,且m +3≥1,解得-2≤m ≤3. 答案:[-2,3] 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k , 则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞). 12.(2017·北京高考)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解:(1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.1.(2018·广东七校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 3解析:选D y =ln x ,x ∈(0,1)的导数y ′=1x >1, 设切点为(t ,ln t ),则切线l 的方程为y =1t x +ln t -1,因为函数y =x 2的图象在点(x 0,x 20)处的切线l 的斜率为2x 0, 则切线方程为y =2x 0x -x 20,因为l 也与函数y =ln x ,x ∈(0,1)的图象相切, 则有⎩⎪⎨⎪⎧2x 0=1t ,x 20=1-ln t ,则1+ln 2x 0=x 20,x 0∈(1,+∞).令g (x )=x 2-ln 2x -1,x ∈(1,+∞), 所以该函数的零点就是x 0,则排除A 、B ;又因为g ′(x )=2x -1x =2x 2-1x >0,所以函数g (x )在(1,+∞)上单调递增.又g (1)=-ln 2<0,g (2)=1-ln 22<0,g (3)=2-ln 23>0, 从而2<x 0< 3.2.函数y =f (x )图象上不同两点M (x 1,y 1),N (x 2,y 2)处的切线的斜率分别是k M ,k N ,规定φ(M ,N )=|k M -k N ||MN |(|MN |为线段MN 的长度)叫做曲线y =f (x )在点M 与点N 之间的“弯曲度”.设曲线f (x )=x 3+2上不同两点M (x 1,y 1),N (x 2,y 2),且x 1x 2=1,则φ(M ,N )的取值范围是________.解析:f ′(x )=3x 2,设x 1+x 2=t (|t |>2), 则φ(M ,N )=|3x 21-3x 22|(x 1-x 2)2+(x 31+2-x 32-2)2 =|3x 21-3x 22|(x 1-x 2)2[1+(x 21+x 1x 2+x 22)2]=3|x 1-x 2|·|x 1+x 2||x 1-x 2|1+[(x 1+x 2)2-x 1x 2]2=3|x 1+x 2|1+[(x 1+x 2)2-1]2=3|t |1+(t 2-1)2=3t 2+2t2-2.设g (x )=x +2x ,x >4,则g ′(x )=1-2x 2>0,所以g (x )在(4,+∞)上单调递增,所以g (x )>g (4)=92. 所以t 2+2t 2-2>52,所以0<φ(M ,N )<3105.答案:⎝⎛⎭⎫0,3105高考研究课(二) 函数单调性必考,导数工具离不了 [全国卷5年命题分析]函数单调性的判断[典例] 设函数f (x )=-a 22[解] 由f (x )=-a 2ln x +x 2-ax ,可知f ′(x )=-a 2x +2x -a =2x 2-ax -a 2x=(2x +a )(x -a )x(x >0). 若a >0,则当x ∈(0,a )时,f ′(x )<0,函数f (x )单调递减,当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增;若a =0,则f ′(x )=2x >0在x ∈(0,+∞)内恒成立,函数f (x )单调递增;若a <0,则当x ∈⎝⎛⎭⎫0,-a 2时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝⎛⎭⎫-a2,+∞时,f ′(x )>0,函数f (x )单调递增.[方法技巧]导数法判断函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[即时演练]1.(2017·芜湖一模)函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A.()0,+∞ B.()-∞,0 C.()-∞,1D.()1,+∞解析:选D 由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D.2.(2016·全国卷Ⅱ节选)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x+x +2>0.解:f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0.利用导数研究函数单调性的应用函数的单调性是高考命题的重点,其应用是考查热点.,常见的命题角度有: (1)y =f (x )与y =f ′(x )的图象辨识; (2)比较大小;(3)已知函数单调性求参数的取值范围; (4)构造函数解不等式.角度一:y =f (x )与y =f ′(x )的图象辨识1.已知函数f (x )=ax 3+bx 2+cx +d ,若函数f (x )的图象如图所示,则一定有( )A .b >0,c >0B .b <0,c >0C .b >0,c <0D .b <0,c <0解析:选B 由函数的图象与y 轴的交点在原点的上方可知,d >0,f ′(x )=3ax 2+2bx +c ,由函数的图象可知,函数f (x )有两个极值点,且先增,再减,最后增,所以方程f ′(x )=0有两个大于0不同的实根,且a >0,由根与系数的关系可得-2b 3a >0,c3a>0,则b <0,c >0.2.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )解析:选B 由函数f (x )的导函数y =f ′(x )的图象自左至右是先增后减,可知函数y =f (x )图象的切线的斜率自左至右先增大后减小.角度二:比较大小3.已知函数F (x )=xf (x ),f (x )满足f (x )=f (-x ),且当x ∈(-∞,0]时,F ′(x )<0成立,若a =20.1·f (20.1),b =ln 2·f (ln 2),c =log 212·f ⎝⎛⎭⎫log 212,则a ,b ,c 的大小关系是( ) A .a >b >c B .c >a >b C .c >b >a D .a >c >b解析:选C 因为f (x )=f (-x ),所以f (x )是偶函数,则函数F (x )=xf (x )是奇函数. 因为当x ∈(-∞,0]时,F ′(x )<0成立, 所以F (x )在(-∞,0]上是减函数, 所以F (x )在R 上是减函数, 因为20.1>1,0<ln 2<1,log 212=-1<0,所以c >b >a .角度三:已知函数单调性求参数的取值范围4.(2018·宝鸡一检)已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范围是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)解析:选C ∵f (x )的定义域为(0,+∞),f ′(x )=2x +4+a x =2x 2+4x +ax,f (x )在(1,2)上是单调函数,∴f ′(x )≥0或f ′(x )≤0在(1,2)上恒成立,即2x 2+4x +a ≥0或2x 2+4x +a ≤0在(1,2)上恒成立,即a ≥-()2x 2+4x 或a ≤-(2x 2+4x )在(1,2)上恒成立.记g (x )=-(2x 2+4x ),1<x <2, 则-16<g (x )<-6,∴a ≥-6或a ≤-16,故选C.5.(2018·成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3) [方法技巧]由函数的单调性求参数的范围的方法(1)可导函数f (x )在D 上单调递增(或递减)求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)对x ∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f (x )在D 上不单调,则f (x )在D 上有极值点,且极值点不是D 的端点.角度四:构造函数解不等式6.已知函数f ′(x )是函数f (x )的导函数,且f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,则不等式f (x )<e x-2的解集为( )A .(-∞,e)B .(1,+∞)C .(1,e)D .(e ,+∞) 解析:选B 令g (x )=f (x )e x -2,g ′(x )=f ′(x )-f (x )e x -2<0,所以函数g (x )=f (x )ex -2是减函数,又g (1)=1,所以不等式f (x )<e x-2的解集为(1,+∞).7.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2f (x +2 018)-f (-1)<0的解集为________.解析:令g (x )=x 2f (x ),由2f (x )+xf ′(x )>x 2(x <0),得g ′(x )=2xf (x )+x 2f ′(x )=x [2f (x )+xf ′(x )]<x 3<0,故函数g (x )=x 2f (x )在(-∞,0)上是减函数,故由不等式(x +2 018)2f (x +2 018)-f (-1)<0,可得-1<x +2 018<0,即-2 019<x <-2 018,所以不等式的解集为(-2 019,-2 018).答案:(-2 019,-2 018)1.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎡⎦⎤-1,13 C.⎣⎡⎦⎤-13,13 D.⎣⎡⎦⎤-1,-13 解析:选C 法一:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.法二:函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C.2.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D.3.(2017·全国卷Ⅰ)已知函数f (x )=e x (e x -a )-a 2x . (1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.解:(1)函数f (x )的定义域为(-∞,+∞), f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减, 在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. (2)①若a =0,则f (x )=e 2x ,所以f (x )≥0.②若a >0,则由(1)得,当x =ln a 时,f (x )取得最小值,最小值为f (ln a )=-a 2ln a . 从而当且仅当-a 2ln a ≥0,即0<a ≤1时,f (x )≥0.③若a <0,则由(1)得,当x =ln ⎝⎛⎭⎫-a 2时,f (x )取得最小值,最小值为f ⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2=a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2.从而当且仅当a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2≥0, 即-2e 34≤a <0时,f (x )≥0.综上,a 的取值范围是⎣⎡⎦⎤-2e 34,1.一、选择题1.已知函数f (x )=ln x +x 2-3x (a ∈R),则函数f (x )的单调递增区间为( ) A.⎝⎛⎭⎫-∞,12 B .(1,+∞) C.⎝⎛⎭⎫-∞,12和(1,+∞) D.⎝⎛⎭⎫0,12和(1,+∞) 解析:选D f ′(x )=2x 2-3x +1x (x >0),令f ′(x )=0,得x =12或x =1,当0<x <12或x >1时,f ′(x )>0,所以f (x )的单调递增区间为⎝⎛⎭⎫0,12和(1,+∞). 2.(2018·成都外国语学校月考)已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的图象大致是( )解析:选A 设g (x )=f ′(x )=2x -2sin x ,g ′(x )=2-2cos x ≥0,所以函数f ′(x )在R 上单调递增.3.对于R 上可导的任意函数f (x ),若满足1-xf ′(x )≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)解析:选A 当x <1时,f ′(x )<0,此时函数f (x )单调递减,当x >1时,f ′(x )>0,此时函数f (x )单调递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值, 所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).4.已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x 得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又f (-x )=-x sin(-x )=x sin x ,因而f (x )为偶函数,∴当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.5.(2017·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定解析:选A 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意知g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)e x 2,所以e x 1f (x 2)>e x 2f (x 1). 6.(2018·九江模拟)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为( )A.⎝⎛⎦⎤-∞,43B.⎣⎡⎭⎫43,+∞ C.⎝⎛⎦⎤-∞,-32D.⎣⎡⎭⎫-32,+∞ 解析:选B f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立, 即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立, ∵⎝⎛⎭⎫-x +1x max =83, ∴2a ≥83,即a ≥43.二、填空题7.设函数f (x )=x (e x -1)-12x 2,则函数f (x )的单调增区间为________.解析:因为f (x )=x (e x -1)-12x 2,所以f ′(x )=e x -1+x e x -x =(e x -1)(x +1).令f ′(x )>0,即(e x -1)·(x +1)>0,解得x ∈(-∞,-1)或x ∈(0,+∞).所以函数f (x )的单调增区间为(-∞,-1)和(0,+∞).答案:(-∞,-1)和(0,+∞)8.已知函数f (x )=x ln x -ax 2-x .若函数f (x )在定义域上为减函数,则实数a 的取值范围是________.解析:由题意可知函数f (x )的定义域为(0,+∞). f ′(x )=ln x -2ax ,因为函数f (x )在定义域上为减函数, 所以ln x -2ax ≤0,即a ≥ln x2x在(0,+∞)上恒成立,。

文科数学专题导数及其应用

文科数学专题导数及其应用

(1)若f(x)在x=1处取得极值,求a的值; (2)求f(x)的单调区间.
解析:(1)f′(x)=ax+a 1-1+2x2
=axa+x2+1a1-+2x2, ∵f(x)在x=1处取得极值, ∴f′(1)=0, 即a+a-2=0,解得a=1. (2)f′(x)=axa+x2+1a1-+2x2, ∵x≥0,a>0, ∴ax+1>0.
整合训练
3.(1)(2009年中山模拟)函数y=4x2+1x的单调递增区间为(
)
A.(0,+∞)
B.12,+∞
C.(―∞,―1)
D.―∞,―12
(2)(2010年山东卷)已知某生产厂家的年利润y(单位:万
元)与年产量x(单位:万件)的函数关系式为y= 则使该生产厂家获得最大年利润的年产量为(
则|PQ|2=x20+(y0-2)2=x20+(xx00++xmxm00)22 =2x20+mx202+2m≥2 2m2+2m,
∴2 2m2+2m=2, 2 2·|m|+2m=2,
由前面讨论知,g(x)在区间[1,2]上的最大值与最小值只能在x=1, 2,2时取得,而g(1)
=35,g( 2)=43 2,g(2)=34,因此g(x)在区间[1,2]上的最大值为g( 2)=432,最小值为g(2)
=34.
跟踪训练
2.已知函数f(x)=ln(ax+1)+
1-x 1+x
,x≥0,其中a>0.
①当a≥2时,在区间[0,+∞)上, f′(x)>0, ∴f(x)的单调递增区间为[0,+∞). ②当0<a<2时,
由f′(x)>0解得x>
2-a a,或x<

2-a a(舍去,∵x≥0)
由f′(x)<0解得-
2-a a<x<

高二文科数学教案《3.3导数在研究函数中的应用(四)》

高二文科数学教案《3.3导数在研究函数中的应用(四)》

3.3.2函数的极值与导数(四)教学目标:理解函数的极大值、极小值、极值点的意义.掌握函数极值的判别方法.进一步体验导数的作用.教学重点:求函数的极值.教学难点:严格套用求极值的步骤.一、复习引入1. 函数极值的性质注意:⑴ 极值点的导数为零,切线与y 轴垂直.⑵ 极值是局部概念,反映了函数在某一点附近的大小情况;而最大值、最小值是对于整个定义区间上的点而言.⑶ 函数的极值点x i 是区间[a , b ]内部的点,区间的端点不能成为极值点.⑷ 若f (x )在区间(a , b )内有极值,则f (x )在(a , b )内一定不是单调函数.⑸ 函数的极大(小)值可能不止一个,并且函数的极大值不一定大于极小值,极小值不一定小于极大值.2. 导数法求函数的极值的一般步骤:⑴ 求导函数f '(x );⑵ 求方程 f '(x )=0的根;⑶ 列表检查f '(x )在方程f '(x )=0的根的左右两侧的符号,若在根x 0的左侧附近为正,右侧为负,则函数y 极大值=f (x 0) ;若在根x 1的左侧附近为负,右侧为正,则函数y 极小值=f (x 1).一、讲授新课题型一、利用导函数研究原函数的性质练习1.函数f (x )的定义域为开区间(a , b ),导函数f'(x )在区间(a , b )内的图象如图所示,则函数f (x )在开区间(a , b )内有极小值点 (A ) A. 1个 B. 2个 C. 3个 D. 4个题型二、利用极值求函数的系数例1.如果函数f (x )=ax 5-bx 3+c (a ≠0)在x =±1时有极值,极大值为4,极小值为0,试求a ,b ,c 的值.练习2.如果函数f (x )=x 3+ax 2+bx +c ,且知当x =-1时取得极大值为7,当x =3时取得极小值,试求函数f (x )的极小值,并求a ,b ,c 的值.f (f (f (f (题型三、由函数的图象特征确定参数取值范围例2. 设a 为实数,函数f (x )=x 3-x 2-x +a .(1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点.(2005年高考全国卷Ⅱ)练习3. 函数f (x )=ax 3+x +1有极值的充要条件是( )A. a ≥0B. a >0C. a ≤0D. a <0练习4.已知f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是 .练习5.已知f (x )=x 3+3ax 2+3(a +2)x +1有极大值又有极小值,则a 的取值范围是 .三、课堂小结题型一、利用导函数研究原函数的性质题型二、利用极值求函数的系数题型三、由函数的图象特征确定参数取值范围四、课后作业1.《学案》作业三十;2.(2006年北京卷)已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0),如图所示.求:(Ⅰ)0x 的值;(Ⅱ),,a b c 的值.(Ⅰ)0x =1; (Ⅱ)2,9,12a b c ==-=.备讲题1.已知函数cx bx x x f ++=2331)( 的导函数f'(x )过点(1, 0)且函数f (x )在(-∞, 1)上是增函数.(1)求实数b 的取值范围;(2)若f'(x )的极大值为34,求f (x )的解析式. 2.设函数f (x )=ax -x 3在区间)22,0(内是增函数. (1)求实数a 的取值范围;(2)若f (x )的极小值为-2,求实数a 的值.。

高二数学导数模块知识点总结(3篇)

高二数学导数模块知识点总结(3篇)

高二数学导数模块知识点总结(3篇)高二数学导数模块知识点总结(精选3篇)高二数学导数模块知识点总结篇1导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:在点处的导数记作:2、导数的几何物理意义:曲线在点处切线的斜率①=f/(_0)表示过曲线=f(_)上P(_0,f(_0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数最大值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。

当函数=f(_)的自变量_在一点_0上产生一个增量Δ_时,函数输出值的增量Δ与自变量增量Δ_的比值在Δ_趋于0时的极限a如果存在,a即为在_0处的导数,记作f(_0)或df(_0)/d_。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

高中文科导数知识点汇总

高中文科导数知识点汇总

高中文科导数知识点汇总高中文科导数知识点汇总高中文科中,导数是数学分析中的重要概念之一。

导数可以帮助我们研究函数的变化情况以及求解函数的极值等问题。

下面是一些高中文科中常见的导数知识点的汇总:1. 定义:导数可以被视为函数在某一点处的变化率。

如果函数f(x)在点x=a处导数存在,则导数的定义为:f'(a)=lim(x→a) (f(x)-f(a))/(x-a)。

其中,lim表示极限。

2. 导数记号:函数的导数可以用不同的符号表示。

除了上面提到的f'(a),还可以用dy/dx、f(x)、y′等来表示。

3. 导函数:如果一个函数在定义域上的每个点都存在导数,那么我们可以得到一个新的函数,称为原函数的导函数。

导函数的表示可以是f'(x)或者y'。

4. 在数值上求导:对于函数f(x),如果我们要求它在某点x=a 处的导数,可以通过计算函数在该点附近的斜率来近似求得。

具体方法有使用差商和利用求极限。

差商的计算方式为:(f(a+h)-f(a))/h,其中h→0。

5. 导数的几何意义:函数在某一点的导数可以表示函数在该点处的切线的斜率。

切线的斜率是函数在该点的局部增长率的表示。

6. 导数的运算法则:导数满足一些有用的运算法则,这些法则可以帮助我们简化求导的过程。

常见的导数运算法则包括:常数法则、幂函数法则、和差法则、乘积法则、商法则、复合函数法则等。

7. 高阶导数:除了一阶导数,我们还可以计算高阶导数。

高阶导数表示导函数求导的结果。

例如,f''(x)表示函数f(x)的二阶导数。

8. 反函数和导数:如果一个函数f(x)在某一区间上是可递增或可递减的,并且在该区间上的导数不为零,那么它的反函数f^(-1)(x)在相应区间上也有导数,并且具有以下关系式:(f^(-1))'(y)=1/f'(x),其中y=f(x)。

9. 隐函数和导数:隐函数是指不能直接用y=f(x)的形式表示的函数,而是以xy的关系表示的函数。

高中数学复习讲义选修导数运算及其运用要点归纳(高二文科版)

高中数学复习讲义选修导数运算及其运用要点归纳(高二文科版)
1 cos2 x
16,求下列函数的导数
(1) y 2x cosx 3x log 2 x
( 2) y ax5 bx4 cx3 dx2 ex f
17.已知函数 f ( x) x3 bx2 ax d 的图像过点 P( 0,2),且在点 M ( 1, f ( 1)) 处的切 线方程为 6x y 7 0 ,求函数的解析式 。
(文科版)
3.函数的单调性与导数的关系 在某个区间 ( a, b) 内,如果 f ' (x) 0 ,那么函数 y f ( x) 在这个区间内单调递增; 如果 f ' ( x) 0 ,那么函数 y f ( x) 在这个区间内单调递减
4.求解函数 y f (x) 单调区间的步骤: ( 1)确定函数 y f ( x) 的定义域; ( 2)求导数 y' f ' ( x) ; ( 3)解不等式 f ' ( x) 0 ,解集在定义域内的部分为增区间; ( 4)解不等式 f ' ( x) 0 ,解集在定义域内的部分为减区间.
x
A.a C.- a
B.± a D. a2
8.f( x)与 g(x)是定义在 R 上的两个可导函数,若 f( x),g( x)满足 f′(x)
=g′( x),则 f(x)与 g(x)满足
A.f (x) =g(x)
B.f( x)- g( x)为常数函数
C.f( x) =g(x)=0
D.f( x) +g(x)为常数函数
D.9.8 m/s 是物体从 1 s 到 1+Δ s 这段时间内的平均速度 2.曲线 y=x3 在点 P 处的切线斜率为 3,则 P 点的坐标为
A.(-2,- 8)
B.(- 1,- 1)
C.(-2,- 8)或 (2,8)

高二导数的基础知识及应用

高二导数的基础知识及应用

导数及其应用知识归纳1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x ∆有极限。

如果x∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

4.两个函数的和、差、积的求导法则法则或差)的导数,等于这两个函数的导数的和(或差),即:法则,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +='''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:形如y=f [x (ϕ])的函数称为复合函数。

高中数学导数及其运用

高中数学导数及其运用

导数及其应用一、相关概念1.导数的概念函数y=f(x),如果自变量x在X。

处有增量A x,那么函数y相应地有增量A y =f (x。

+ A x )-f(x ),比值包叫做函数y=f(X)在x至U x + A x之间的平均变化率,即o A x0 oA y f (x + A x) - f (x ) 八 A y一二 J一)八o,。

如果当A x f 0时,一有极限,我们就说函数y=f(x)在点xA x A x A x o处可导,并把这个极限叫做f (x)在点x o处的导数,记作f’(x0)或y'l x_x o。

A y f (x + A x) - f (x )即 f(x ) = lim - = lim -一o ------------ o-。

oA x fo A x A x f o A x①求函数的增量A y =f (x0 + A x ) -f (x o);②求平均变化率孚=f(xo +之)-f(xo);A x A xA y③取极限,得导数f’(x )= lim-2-。

A f o A x2.导数的几何意义函数y=f (x)在点x°处的导数的几何意义是曲线y=f (x)在点p (x°, f (x°))处的切线的斜率。

也就是说,曲线y=f (x)在点p (x o, f (x o))处的切线的斜率是f'(x o)。

相应地,切线方程为y-y =f/(x ) (x-x )。

3.导数的物理意义oo o如果物体运动的规律是s=s (t),那么该物体在时刻t的瞬间速度v= s' (t)。

如果物体运动的速度随时间的变化的规律是v=v(t),则该物体在时刻t的加速度a=v, (t)。

二.求导数的方法1几个常用函数的导数1.若f (x) _ j 则f'(x) ;2.若f (x) _ x,则f'(x) ;3.若f (x) _ x2,则f'(x) ;4.若f (x) _ 1,则f'(x) 。

《导数的应用文科》课件

《导数的应用文科》课件
导数在数学、物理、工程等 领域的应用将更加广泛
导数在金融、经济等领域的 应用将更加重要
导数在教育、科普等领域的 应用将更加普及
感谢观看
汇报人:
导数在历史学中的应用
历史事件的变化趋 势:通过导数分析 历史事件的发展趋 势和变化规律
历史人物的评价: 通过导数分析历史 人物的贡献和影响
历史事件的影响: 通过导数分析历史 事件对后世的影响 和意义
历史事件的比较: 通过导数分析不同 历史事件之间的异 同和联系
导数在哲学中的应用
单击此处添加标题
导数在哲学中的定义:导数在哲学中通常被用来描述事物发展的趋势和变 化速度。
自然语言处理: 导数在语言模型 和情感分析中用 于优化模型参数
计算机视觉:导 数在图像识别和 图像生成中用于 优化模型参数
导数在大数据分析中的应用前景
导数在数据分析中的重要性:导 数是数据分析中的重要工具,可 以帮助我们更好地理解和分析数 据。
导数在机器学习中的应用:导数 在机器学习中扮演着重要的角色, 可以帮助我们更好地理解和优化 机器学习模型。
《导数的应用文科》 PPT课件
单击此处添加副标题
汇报人:
目录
添加目录项标题 导数在生活中的应用 导数的实际应用案例 总结与展望
导数的定义与性质 导数在文科中的应用 导数的未来发展前景
01
添加章节标题
02
导数的定义与性质
导数的定义
导数是函数在某一点的切线斜率 导数是函数在某一点的瞬时变化率 导数是函数在某一点的极限值 导数是函数在某一点的微分值
导数的性质
导数是函数在某一点的切线斜率 导数是函数在某一点的瞬时变化率 导数是函数在某一点的局部线性近似 导数是函数在某一点的局部线性逼近

高二数学 导数及其应用

高二数学 导数及其应用

4.导数和函数单调性的关系 (1)若 f′(x)>0 在(a,b)上恒成立,则 f(x)在(a,b)上是增 函数, f′(x)>0 的解集与定义域的交集的对应区间为增区间; (2)若 f′(x)<0 在(a, b)上恒成立, f(x)在(a, 则 b)上是减函数, f′(x)<0 的解集与定义域的交集的对应区间为减区间.
(2)导数的四则运算法则 ①[u(x)± v(x)]′=u′(x)± v′(x). ②[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x). u′(x)v(x)-u(x)v′(x) u(x) ③[ ]′= (v(x)≠0). v(x) [v(x)]2 (3)复合函数求导 复合函数 y=f(g(x))的导数和 y=f(u),u=g(x)的导数之间 的关系为 yx′=f′(u)g′(x). 3.函数的性质与导数 (1)在区间(a, b)内, 如果 f′(x)>0, 那么函数 f(x)在区间(a, b)上单调递增; 在区间(a,b)内,如果 f′(x)<0,那么函数 f(x)在区间(a, b)上单调递减.
热点分类突破
题型一 例1 导数几何意义的应用 1 4 已知曲线 y= x3+ . 3 3
(1)求曲线在点 P(2,4)处的切线方程; (2)求曲线过点 P(2,4)的切线方程.
思维启迪 “该曲线过点 P(2,4)的切线”与“该曲线在点 P(2,4)处的切线方程”是有区别的:过点 P(2,4)的切线 中,点 P(2,4)不一定是切点;在点 P(2,4)处的切线中,点 P(2,4)是切点.

(1)所求切线的斜率为 y′|x=2=22=4,故所求的曲线的切
线方程为 y-4=4(x-2),即 4x-y-4=0. 1 4 (2) 设 曲 线 y = x3 + 与 过 点 P(2,4) 的 切 线 相 切 于 点 3 3 1 3 4 Ax0, x0+ , 则切线的斜率为 k=y′| x=x0=x2, 0 切线方程为 3 3 1 3 4 2 y- x0+ =x0(x-x0), 3 3 因为点 P(2,4)在切线上, 1 3 4 2 x0+ =x0(2-x0),解得 x0=2 或 x0=-1, 所以 4- 3 3 故所求的切线的方程为:4x-y-4=0 或 x-y+2=0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二期末统测复习之一:《导数及其应用1》班级 姓名1. 导数的概念及意义;2. 常见的一些基本函数的导数;3. 导数的四则运算及复合函数的求导法则; 4. 导数的应用(单调性,极值,最值);【基础训练】1、曲线22x y =在点(1,2)处的瞬时变化率为( )A 2B 4C 5D 62、函数x x x y sin cos -=在下列哪个区间内是减函数( )A )23,2(ππ B )2,(ππ C )25,23(ππ D ()ππ3,23、已知函数()f x 在1x =处切线方程为230x y -+=,则=∆∆+-∆+→∆xf x x f x )1()1()31(lim 0( )A . 1-B . 1C 6D 114、已知函数bx ax x x f +-=23)(的图象与x 轴切于点(1,0),则)(x f 的极值为( )A .极大值274,极小值0 B .极大值2716-,极小值4- C .极小值-274,极大值0D .极大值2716,极小值4-5、如图所示的曲线是函数d cx bx x x f +++=23)(22 )A . 98B . 910C . 916D . 45【典型例题】例1.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)求函数f (x )的极大值和极小值;(2)求曲线y= f (x )在2=x 的切线方程.例4.已知:在函数x mx x f -=3)(的图象上,以),1(n N 为切点的切线的倾斜角为4π. (1)求m ,n 的值; (2)是否存在最小的正整数k ,使得不等式1993)(-≤k x f 对于]3,1[-∈x 恒成立?如果存在,请求出最小的正整数k ;如果不存在,请说明理由. .【巩固练习】1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 3.函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 4.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )5.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( )A .),3[]3,(+∞--∞YB .]3,3[-C .),3()3,(+∞--∞YD .)3,3(-6.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A . (0)(2)2(1)f f f +<B . (0)(2)2(1)f f f +≤C .(0)(2)2(1)f f f +≥ D . (0)(2)2(1)f f f +>7.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )abxy)(x f y ?=OA .1个B .2个C .3个D .4个 8.若函数()()2f x x x c =-在2x =处有极大值,则常数c 的值为_________; 9.函数x x y sin 2+=的单调增区间为 。

10.设函数()cos(3)(0)f x x ϕϕπ=+<<,若()()f x f x '+为奇函数,则ϕ=__________ 11.设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。

12.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是13.求函数y =14.已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。

15.已知23()log x ax bf x x++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由.高二期末统测复习之二:导数及其应用(二)【典型例题】例1.函数()23123x x f x x =+++的零点的个数是 A .0 B .1 C .2 D .3例2.若函数()3213f x x a x =- (a>0)满足:对于任意的[]12,0,1x x ∈都有()()12||1f x f x -≤恒成立,则a 的取值范围是 .例3.(1)一物体按规律x =bt 3作直线运动,式中x 为时间t 内通过的距离,媒质的阻力正比于速度的平方(比例系数为k ).试求物体由x =0运动到x =a 时,阻力所作的功。

(2)抛物线y=ax 2+bx 在第一象限内与直线x +y=4相切.此抛物线与x 轴所围成的图形的面积记为S .求使S 达到最大值的a 、b 值,并求S max .例4.已知函数)0()(>+=t xtx x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为),(11y x M 、),(22y x N .(1)求证:21,x x 为关于x 的方程022=-+t tx x 的两根;(2)设)(t g MN =,求函数)(t g 的表达式;(3)在(2)的条件下,若在区间]16, 2[内总存在1+m 个实数121,,,m a a a +L (可以相同),使得不等式)()()()(121+<+++m m a g a g a g a g Λ成立,求m 的最大值.【巩固练习】1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx ,1+Δy ),则xy∆∆等于A .4B .4xC .4+2ΔxD .4+2Δx 2 2.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是( ) A .5 , -15 B .5 , 4 C .-4 , -15 D .5 , -163.设底面为正三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为( ) ABCD.5.设a >0,f (x )=ax 2+bx +c ,曲线y =f (x )在点P (x 0,f (x 0))处切线的倾斜角的取值范围为[0,4π],则P 到曲线y =f (x )对称轴距离的取值范围为A .[0,a 1]B .[0,a 21]C .[0,|a b 2|]D .[0,|ab 21-|]6.已知函数⎩⎨⎧≥+-<=)0(4)3(),0()(x a x a x a x f x 满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是 ( )A .⎥⎦⎤ ⎝⎛41,0B .()0,1C .⎪⎭⎫⎢⎣⎡1,41 D .()0,37.设a ∈R ,函数()x xf x e a e -=+⋅的导函数是()f x ',且()f x '是奇函数 . 若曲线()y f x =的一条切线的斜率是32,则切点的横坐标为( ) A . ln 22- B .ln 2-C .ln 22D . ln 28.已知函数()ln ln a xf x x+=在[)1,+∞上为减函数,则实数a 的取值范围是 ( )A .10a e << B .0a e <≤ C .a e ≤ D .a e ≥9.已知函数xe y x=在0x x =处的导数值与函数值互为相反数,则_____0=x10. 函数()x x x f ln =的单调递增区间是____________11.已知函数3()128f x x x =-+在区间 ]1,3[- 上的最大值与最小值分别为,M m , 则M m -=__________13.已知函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为_________.14. 曲线y =x 2+1上过点P 的切线与曲线y =-2x 2-1相切,求点P 的坐标.15.已知函数()()()2ln ,0f x x g x ax x a ==-≠.若函数()y f x =与()y g x =的图象在公共点P 处有相同的切线,求实数a 的值并求点P 的坐标;16.设函数f (x )=(x -a )(x -b )(x -c )(a 、b 、c 是两两不等的常数),求)(a f a '+)(b f b '+)(c f c '的值.。

相关文档
最新文档