机械能守恒定律典型例题精析(附答案)
高中物理---机械能守恒定律-----典型例题(含答案)【经典】
第五章:机械能守恒定律第一讲:功和功率考点一:恒力功的分析与计算1.(单选)起重机以1 m/s2的加速度将质量为1 000 kg的货物由静止开始匀加速向上提升,g取10 m/s2,则在1 s内起重机对货物做的功是( ).答案D A.500 J B.4 500 J C.5 000 JD.5 500 J2.(单选)如图所示,三个固定的斜面底边长度相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。
完全相同的三物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部,在此过程中( ) 选DA.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多3、(多选)在水平面上运动的物体,从t=0时刻起受到一个水平力F的作用,力F和此后物体的速度v随时间t的变化图象如图所示,则( ).答案ADA.在t=0时刻之前物体所受的合外力一定做负功B.从t=0时刻开始的前3 s内,力F做的功为零C.除力F外,其他外力在第1 s内做正功D .力F 在第3 s 内做的功是第2 s 内做功的3倍 4.(单选)质量分别为2m 和m 的A 、B 两种物体分别在水平恒力F 1和F 2的作用下沿水平面运动,撤去F 1、F 2后受摩擦力的作用减速到停止,其v -t 图象如图所示,则下列说法正确的是( ).答案 CA .F 1、F 2大小相等B .F 1、F 2对A 、B 做功之比为2∶1C .A 、B 受到的摩擦力大小相等D .全过程中摩擦力对A 、B 做功之比为1∶25. (单选)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f2>2W f1B .W F 2>4W F 1,W f2=2W f1C .W F 2<4W F 1,W f2=2W f1D .W F 2<4W F 1,W f2<2W f1 答案 C6.如所示,建筑工人通过滑轮装置将一质量是100 kg 的料车沿30°的斜面由底端匀速地拉到顶端,斜面长L 是4 m ,若不计滑轮的质量和各处的摩擦力,g 取10 N/kg ,求这一过程中:(1)人拉绳子的力做的功;(2)物体的重力做的功;(3)物体受到的各力对物体做的总功。
机械能守恒定律典型例题剖析
机械能守恒定律典型例题剖析例1、如图示,长为l 的轻质硬棒的底端和中点各固定一个质量为m 的小球,为使轻质硬棒能绕转轴O 转到最高点,则底端小球在如图示位置应具有的最小速度v=。
解:系统的机械能守恒,ΔE P +ΔE K =0因为小球转到最高点的最小速度可以为0,所以,例2.如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。
一柔软的细线跨过定滑轮,两端分别与物块A 和B 连结,A 的质量为4m ,B 的质量为m ,开始时将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升。
物块A 与斜面间无摩擦。
设当A 沿斜面下滑S 距离后,细线突然断了。
求物块B 上升离地的最大高度H.解:对系统由机械能守恒定律4mgSsin θ–mgS=1/2×5mv 2∴v 2=2gS/5细线断后,B 做竖直上抛运动,由机械能守恒定律mgH=mgS+1/2×mv 2∴H=1.2S 例3.如图所示,半径为R 、圆心为O 的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上.一根轻质长绳穿过两个小圆环,它的两端都系上质量为m 的重物,忽略小圆环的大小。
(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图).在两个小圆环间绳子的中点C 处,挂上一个质量M =m的重物,使两个小圆环间的绳子水平,然后无初速释放重物M .设绳子与大、小圆环间的摩擦均可忽略,求重物M 下降的最大距离.(2)若不挂重物M .小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态?解:(1)重物向下先做加速运动,后做减速运动,当重物速度为零时,下降的距离最大.设下降的最大距离为h , 2由机械能守恒定律得解得(另解h=0舍去)(2)系统处于平衡状态时,两小环的可能位置为两小环同时位于大圆环的底端.b .两小环同时位于大圆环的顶端.c .两小环一个位于大圆环的顶端,另一个位于大圆环的底端.d .除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧α角的位置上(如图所示).对于重物,受绳子拉力与重力作用,有T=mg对于小圆环,受到三个力的作用,水平绳的拉力T 、竖直绳子的拉力T 、大圆环的支持力N.两绳子的拉力沿大圆环切向的分力大小相等,方向相反得α=α′,而α+α′=90°,所以α=45°例4.如图质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。
机械能守恒定律(含答案)
9.质量为 的物体,从静止开始以 的加速度下落高度 的过程中()
A.物体的机械能守恒B.物体的机械能减少
C.物体的重力势能减少 D.物体克服阻力做
10.某同学身高 ,在运动会上参加跳高比赛,起跳后身体横着越过了 高度的横杆,据此可估算他起跳时竖直向上的速度大约为( 取 )
A. B. C. D.
15.如图所示,斜面倾角 ,小球从斜面上A点做平抛运动的初动能为6J,不计空气阻力,小球落在斜面上P点的动能为多少.
16.如图所示,小球用不可伸长的长度为 的轻绳悬于O点,小球A在最低点需获得多大的速度才能在竖直平面内做完整的圆周运动?
答案:
1、D 2、CD 3、ABD 4、D 5、C 6、BD 7、A 8、B
11.如图所示,轻弹簧的一端悬挂于O点,另一端与小球P相连接,将P提起使弹簧处于水
平位置且无形变,然后自由释放小球,让它自由摆下,在小球摆到最低点的过程中()
A.小球的机械能守恒
B.小球的动能增加
C.小球的机械能减小
D.不能确定小球的机械能是否守恒
12.一个质量为 的物体以 的加速度竖直向下加速运动,则在此物体下降 高度的过程中,物体的重力势能减小了_____,动能增加了______,机械能增加了_______.
13.如图所示,ABC是一段竖直平面内的光滑的 圆周长的圆形轨道,圆轨道的半径为R,O为圆心,OA水平,CD是一段光滑的水平轨道,一根长 粗细均匀的细杆开始时正好搁在圆轨道的两个端点上,现由静止开始,释放细杆,则此杆最后在水平轨道上滑行的速度为________.
14.一人在高出地面 处抛出一个质量为 的小球,不计空气阻力,小球落地时的速率为 ,则人抛球时对小球做的功为________.
(完整版)机械能守恒定律练习题及其答案
机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。
例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。
【高考物理必刷题】机械能守恒定律(后附答案解析)
12C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功4竖直悬挂.用外力将绳的下端缓慢地竖直向上拉.在此过程中,外力做功为()5的两点上,弹性绳的原长也为.将;再将弹性绳的两端缓慢移至天花板)6时,绳中的张力大于如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上,物块质量为,到小环的距离为,其两侧面与夹子间的最大静摩擦力均为.小环和物块以速度右匀速运动,小环碰到杆上的钉子后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为.下列说法正确的是()78受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下9的太空飞船从其飞行轨道返回地面.飞船在离地面高度的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为1 2C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功天体椭圆运行中,从远日点向近日点运行时,天体做加速运动,万有引力做正功,引力势能转化为动能;反之,做减速运动,引力做负功,动能转化为引力势能;而整个过程机械能守恒.从这个规律出发,CD正确,B错误.同时由于速度的不同,运动个椭圆4,那么重心上升,外力做的功即为绳子增5答案解析6C设斜面的倾角为,物块的质量为,去沿斜面向上为位移正方向,根据动能定理可得:上滑过程中:,所以;下滑过程中:,所以据能量守恒定律可得,最后的总动能减小,所以C正确的,ABD错误.故选C.7时,绳中的张力大于A.物块向右匀速运动时,对夹子和物块组成的整体进行分析,其在重力和绳拉力的作B.绳子的拉力总是等于夹子对物块摩擦力的大小,因夹子对物块的最大摩擦力为,C.当物块到达最高点速度为零时,动能全部转化为重力势能,物块能达到最大的上升8受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下和受到地面的支持力大小均为;在的动能达到最大前一直是加速下降,处于失受到地面的支持力小于,故A、B正确;达到最低点时动能为零,此时弹簧的弹性势能最大,9答案解析考点一质量为的太空飞船从其飞行轨道返回地面.飞船在离地面高度处以的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为.(结果保留2位有效数字)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(1)求飞船从离地面高度处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的.(2);(1)(2)地地,地,大大大,大.(1)大,,由动能定理得:地,.(2)机械能机械能和机械能守恒定律机械能基础。
机械能守恒定律典型例题精析(附答案)
机械能守恒定律一、选择题1.某人用同样的水平力沿光滑水平面和粗糙水平面推动一辆相同的小车,都使它移动相同的距离。
两种情况下推力做功分别为W1和W2,小车最终获得的能量分别为E1和E2,则下列关系中正确的是()。
A、W1=W2,E1=E2B、W1≠W2,E1≠E2C、W1=W2,E1≠E2D、W1≠W2,E1=E22.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是( )A.匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小B.匀速上升和加速上升机械能增加,减速上升机械能减小C.由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况D.三种情况中,物体的机械能均增加3.从地面竖直上抛一个质量为m的小球,小球上升的最大高度为H.设上升过程中空气阻力F阻恒定.则对于小球的整个上升过程,下列说法中错误的是( )A.小球动能减少了mgHB.小球机械能减少了F阻HC.小球重力势能增加了mgHD.小球的加速度大于重力加速度g4.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对小球施加一个方向水平向右的恒力F,使小球从静止开始运动,则小球在向右运动的整个过程中( )A.小球和弹簧组成的系统机械能守恒B.小球和弹簧组成的系统机械能逐渐增加C.小球的动能逐渐增大D.小球的动能先增大后减小二、计算题1.如图所示,ABCD是一条长轨道,其AB段是倾角为的斜面,CD段是水平的,BC是与AB和CD相切的一小段弧,其长度可以略去不计。
一质量为m的物体在A点从静止释放,沿轨道滑下,最后停在D点,现用一沿轨道方向的力推物体,使它缓慢地由D点回到A点,设物体与轨道的动摩擦因数为,A 点到CD 间的竖直高度为h ,CD (或BD )间的距离为s ,求推力对物体做的功W 为多少2.一根长为L 的细绳,一端拴在水平轴O 上,另一端有一个质量为m 的小球.现使细绳位于水平位置并且绷紧,如下图所示.给小球一个瞬间的作用,使它得到一定的向下的初速度.(1)这个初速度至少多大,才能使小球绕O 点在竖直面内做圆周运动(2)如果在轴O 的正上方A 点钉一个钉子,已知AO=2/3L ,小球以上一问中的最小速度开始运动,当它运动到O 点的正上方,细绳刚接触到钉子时,绳子的拉力多大3.如图所示,某滑板爱好者在离地h =1.8m 高的平台上滑行,水平离开A 点后落在水平地面的B 点,其水平位移s 1=3m ,着地时由于存在能量损失,着地后速度变为v =4m/s ,并以此为初速沿水平地面滑行s 2=8m 后停止,已知人与滑板的总质量m =60kg 。
物理机械能守恒定律题及解析
物理机械能守恒定律题及解析
题目:一个质量为10kg的物体,从高度为5m的斜面顶端下滑,初始速度为零,斜面底端有一个垂直向上的弹簧。
物体压缩弹簧后被弹起,最后飞出斜面,求物体飞出斜面的速度和弹簧对物体做的功。
解析:根据机械能守恒定律,物体在运动过程中,其重力势能和动能之间相互转化,而总的机械能保持不变。
在本题中,物体在斜面上运动,重力势能转化为动能,而弹簧的弹力对物体做功,将一部分动能再次转化为弹簧的势能,最终物体飞出斜面时,其速度和弹簧的势能分别为:
1.物体飞出斜面的速度
根据机械能守恒定律,物体在斜面上的重力势能和动能之和保持不变,即:
mgh + 0 = 1/2 m v^2
其中,m为物体的质量,g为重力加速度,h为物体在斜面上的高度,v为物体在斜面上的速度。
根据题目给出的条件,可以计算出物体在斜面上的速度:
v = sqrt(2gh) = sqrt(2 x 9.8 x 5) = 7.98 m/s
2.弹簧对物体做的功
弹簧对物体做功,将物体的动能转化为弹簧的势能,根据机械能守恒定律,有:
1/2 m v^2 = W
其中,m为物体的质量,v为物体在斜面上的速度,W为弹簧对物体做的功。
根据题目给出的条件,可以计算出弹簧对物体做的功:
W = 1/2 m v^2 = 1/2 x 10 x 7.98^2 = 304.1 J
因此,弹簧对物体做的功为304.1焦耳。
高考物理《机械能守恒定律》真题练习含答案
高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。
人教版高中物理必修二 8.4 机械能守恒定律 练习(含答案)
机械能守恒定律练习一、单选题1.下列所述的物体在运动过程中满足机械能守恒的是( )A. 跳伞运动员张开伞后,在空中匀速下降B. 忽略空气阻力,物体竖直上抛C. 火箭升空过程D. 拉着物体沿光滑斜面匀速上升【答案】B【解析】解:A、跳伞运动员在空中匀速下降,动能不变,重力势能减小,因机械能等于动能和势能之和,则机械能减小。
故A错误。
B、忽略空气阻力,物体竖直上抛,只有重力做功,机械能守恒,故B正确。
C、火箭升空,动力做功,机械能增加。
故C错误。
D、物体沿光滑斜面匀速上升,动能不变,重力势能在增加,所以机械能在增大。
故D错误。
故选:B。
物体机械能守恒的条件是只有重力或者是弹簧弹力做功,或看物体的动能和势能之和是否保持不变,即采用总量的方法进行判断。
解决本题的关键掌握判断机械能是否守恒的方法,1、看是否只有重力做功。
2、看动能和势能之和是否不变。
2.安徽芜湖方特水上乐园是华东地区最大的水上主题公园。
如图为彩虹滑道,游客先要从一个极陡的斜坡落下,接着经过一个拱形水道,最后达到末端。
下列说法正确的是( )A. 斜坡的高度和拱形水道的高度差要设计合理,否则游客经过拱形水道的最高点时可能飞起来B. 游客从斜坡的最高点运动到拱形水道最高点的过程中,重力一直做正功C. 游客从斜坡下滑到最低点时,游客对滑道的压力最小D. 游客从最高点直至滑到最终停下来过程中,游客的机械能消失了【答案】A【解析】解:A、斜坡的高度和拱形水道的高度差要设计合理,不能让游客经过拱形水A正确;B、游客从斜坡的最高点运动到拱形水道最高点的过程中,游客的位置是先降低后升高,所以重力先做正功后做负功,故B错误;C、游客从斜坡上下滑到最低点时,加速度向上,处于超重状态,游客对滑道的压力最大,故C错误;D、游客从最高点直至滑到最终停下来过程中,游客的机械能没有消失,而是转化为其他形式的能(内能),故D错误。
故选:A。
高点运动到拱形水道最高点的过程中,游客是先降低后升高的;游客在最低点时,其加速度向上,游客处于超重状态;整个过程是符合能量守恒的,机械能不是消失,而是转化为其它形式的能。
高中物理机械能守恒定律(解析版)
机械能守恒定律目录一.练经典---落实必备知识与关键能力 (1)二.练新题---品立意深处所蕴含的核心价值 (1)一.练经典---落实必备知识与关键能力1.(2022·山东学考)若忽略空气阻力的影响,下列运动过程中物体机械能守恒的是()A.被掷出后在空中运动的铅球B.沿粗糙斜面减速下滑的木块C.随热气球一起匀速上升的吊篮D.随倾斜传送带加速上行的货物【答案】A【解析】:机械能守恒的条件是只有重力做功,被掷出后在空中运动的铅球只有重力做功,机械能守恒;沿粗糙斜面下滑的木块除重力外还有摩擦力做功,机械能不守恒;随热气球一起匀速上升的吊篮在上升过程中动能不变,重力势能随高度增大而增大,机械能不守恒;随倾斜传送带加速上行的货物在上行过程中动能增大,重力势能增大,机械能不守恒。
故A正确。
2.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计滑轮质量和任何阻力时A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒【答案】CD【解析】:甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错误。
乙图中物体B除受重力外,还受弹力,弹力对B做负功,机械能不守恒,但从能量特点看A、B组成的系统机械能守恒,B错误。
丙图中A、B组成的系统只有重力做功,动能和势能相互转化,总的机械能守恒,C正确。
丁图中动能不变,势能不变,机械能守恒,D正确。
3.(2022·浙江7月学考)如图所示,质量为m的小球从距桌面h1高处的A点由静止释放,自由下落到地面上的B点,桌面离地高为h2。
选择桌面为参考平面,则小球()A.在A点时的重力势能为-mgh1B .在A 点时的机械能为mg (h 1+h 2)C .在B 点时的重力势能为mgh 2D .在B 点时的机械能为mgh 1 【答案】D【解析】: 选择桌面为参考平面,小球在A 点的重力势能为mgh 1,A 错误;小球在A 点的机械能等于重力势能和动能之和,而动能为零,所以在A 点的机械能为mgh 1,B 错误;小球在B 点的重力势能为-mgh 2,小球在B 点的机械能与在A 点的机械能相同,也是mgh 1,C 错误,D 正确。
高中物理 汽车启动问题 机械能守恒 典型例题(含答案)【经典】
汽车启动问题考点四:汽车启动问题1.(单选)一起重机的钢绳由静止开始匀加速提起质量为m 的重物,当重物的速度为v 1时,起重机的功率达到最大值P ,以后起重机保持该功率不变,继续提升重物,直到以最大速度v 2匀速上升,物体上升的高度为h ,则整个过程中,下列说法正确的是( )A .钢绳的最大拉力为P v 2B .钢绳的最大拉力为mgC .重物匀加速的末速度为P mgD .重物匀加速运动的加速度为P mv 1-g 答案 D 2. (单选)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t 的变化如图所示.假定汽车所受阻力的大小f 恒定不变.下列描述该汽车的速度v 随时间t 变化的图线中,可能正确的是( ) 答案 A3.(多选)一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a 和速度的倒数1v 图像如图8所示。
若已知汽车的质量,则根据图像所给的信息,能求出的物理量是( )A .汽车的功率 选ABCB .汽车行驶的最大速度C .汽车所受到的阻力D .汽车运动到最大速度所需的时间解析:选ABC 由F -F f =ma ,P =F v 可得:a =P m ·1v -F f m ,对应图线可知,P m =k =40,可求出汽车的功率P ,由a =0时,1v m=0.05可得:v m =20 m/s ,再由v m =P F f,可求出汽车受到的阻力F f ,但无法求出汽车运动到最大速度的时间。
4.(单选)把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆叫做动车.几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组,就是动车组,假设动车组运行过程中受到的阻力与其所受重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等.若1节动车加3节拖车编成的动车组的最大速度为120 km/h ;则6节动车加3节拖车编成的动车组的最大速度为( ).答案 CA .120 km/hB .240 km/hC .320 km/hD .480 km/h5.(单选)两辆完全相同的汽车,都拖着完全相同的拖车以相同的速度在平直公路上匀速齐头并进,某一时刻两拖车同时与汽车脱离,之后甲汽车保持原来的牵引力继续前进,乙汽车保持原来的功率继续前进,则一段时间后(假设均未达到最大功率)( ).答案 AA .甲车超前,乙车落后B .乙车超前,甲车落后C .它们仍齐头并进D .甲车先超过乙车,后乙车又超过甲车6.(多选)某科技创新小组设计制作出一种全自动升降机模型,用电动机通过钢丝绳拉着质量为m 的升降机由静止开始匀加速上升,当升降机的速度为v1时,电动机的功率达到最大值P,以后电动机保持该功率不变,直到升降机以最大速度v2匀速上升为止.整个过程中忽略一切阻力和钢丝绳的质量,重力加速度为g,则下列说法正确的是().答案BDA.钢丝绳的最大拉力为Pv2B.升降机的最大速度v2=P mgC.钢丝绳的拉力对升降机所做的功等于升降机克服升降机重力所做的功D.升降机速度由v1增大至v2的过程中,钢丝绳的拉力不断减小7、某汽车发动机的额定功率为60 kW,汽车质量为5 t,汽车在运动中所受阻力的大小恒为车重的0.1倍.(g 取10 m/s2) 答案(1)12 m/s 1.4 m/s2(2)16 s(1)若汽车以额定功率启动,则汽车能达到的最大速度是多少?当汽车速度达到5 m/s时,其加速度是多少?(2)若汽车以恒定加速度0.5 m/s2启动,则其匀加速过程能维持多长时间?8.质量为2 000 kg、额定功率为80 kW的汽车,在平直公路上行驶的最大速度为20 m/s.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s2,运动中汽车所受阻力的大小不变.求:(1)汽车所受阻力的大小.答案(1)4 000 N(2)4.8×104 W(3)5 s(4)2×105 J(2)3 s末汽车的瞬时功率.(3)汽车做匀加速运动的时间.(4)汽车在匀加速运动中牵引力所做的功.9.修建高层建筑常用塔式起重机.在起重机将质量m=5×103kg的重物竖直吊起的过程中,重物由静止开始向上做匀加速直线运动,加速度a=0.2m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做v m=1.02m/s的匀速运动.取g=10m/s2,不计额外功.求:(1)起重机允许输出的最大功率.(2)重物做匀加速运动所经历的时间和起重机在第2秒末的输出功率.答案:(1)5.1×104 W(2)5 s 2.04×104 W10.如图甲所示,在水平路段AB 上有一质量为2×103 kg 的汽车,正以10 m/s 的速度向右匀速运动,汽车前方的水平路段BC 较粗糙,汽车通过整个ABC 路段的v -t 图象如图乙所示(在t =15 s 处水平虚线与曲线相切),运动过程中汽车发动机的输出功率保持20 kW 不变,假设汽车在两个路段上受到的阻力(含地面摩擦力和空气阻力等)各自有恒定的大小.(1)求汽车在AB 路段上运动时所受的阻力F f 1;(2)求汽车刚好到达B 点时的加速度a ;(3)求BC 路段的长度.答案 (1)2 000 N (2)-1 m/s 2 (3)68.75 m解析:(1)汽车在AB 路段时,有F 1=F f1,P =F 1v 1,F f1=P /v 1,联立解得:F f1=20×10310N =2 000 N 。
高中物理机械能守恒定律典型题及答案
高中物理机械能守恒定律典型题及答案1.忽略空气阻力,下列物体运动过程中满足机械能守恒的是( )A.电梯匀速下降B.物体由光滑斜面顶端滑到斜面底端C.物体沿着斜面匀速下滑D.拉着物体沿光滑斜面匀速上升2.(2017河北保定模拟)如图所示,倾角为θ的光滑斜面体C固定于水平地面上,小物块B置于斜面上,通过细绳跨过光滑的定滑轮与物体A相连接,释放后,A将向下运动,则在A碰地前的运动过程中( )A.A的加速度大小为gB.物体A的机械能守恒C.由于斜面光滑,所以物块B的机械能守恒D.A、B组成的系统机械能守恒3.(多选)如图所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一固定的竖直墙壁(不与槽粘连).现让一小球自左端槽口A点的正上方由静止开始下落,从A点与半圆形槽相切进入槽内,则下列说法正确的是( )A.小球在半圆形槽内运动的全过程中,只有重力对它做功B.小球从A点向半圆形槽的最低点运动的过程中,小球的机械能守恒C.小球从A点经最低点向右侧最高点运动的过程中,小球与半圆形槽组成的系统机械能守恒D.小球从下落到从右侧离开半圆形槽的过程中,机械能守恒4. 如图所示,小球从高处下落到竖直放置的轻弹簧上,弹簧一直保持竖直,空气阻力不计,那么小球从接触弹簧开始到将弹簧压缩到最短的过程中,下列说法中正确的是( )A.小球的动能一直减小B.小球的机械能守恒C.克服弹力做功大于重力做功D.最大弹性势能等于小球减少的动能5.静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力。
不计空气阻力,在整个过程中,物体的机械能随时间变化的关系正确的是( )6.如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下。
重力加速度大小为g。
当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )A.Mg-5mgB.Mg+mgC.Mg+5mgD.Mg+10mg7.取水平地面为重力势能参考平面,一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等。
(典型题)高中物理必修二第八章《机械能守恒定律》测试题(含答案解析)
一、选择题1.如图所示,轻质弹簧竖直放置,下端固定。
小球从弹簧的正上方某一高度处由静止下落,不计空气阻力,则从小球接触弹簧到弹簧被压缩至最短的过程中()A.小球的动能一直减小B.小球的机械能守恒C.弹簧的弹性势能先增加后减小D.小球的重力势能一直减小2.从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地(不计空气阻力),以下说法正确的是()①运行的时间相等②重力的平均功率相等③落地时重力的瞬时功率相等④落地时的动能相等A.④B.②③C.③④D.②③④3.两个互相垂直的力F1与F2作用在同一物体上,使物体运动,物体通过一段位移时,力F1对物体做功为4J。
力F2对物体做功为3J,则力F1与F2的合力对物体做功为()A.0 B.5J C.7J D.25J4.关于功和能,下列说法不正确的是()A.滑动摩擦力对物体可以做正功B.当作用力对物体做正功时,反作用力可以不做功C.一对互为作用力和反作用力的滑动摩擦力,做功之和一定为零D.只有重力做功的物体,在运动过程中机械能一定守恒5.物体从某一高度做初速为0v的平抛运动,p E为物体重力势能,k E为物体动能,h为下落高度,t为飞行时间,v为物体的速度大小。
以水平地面为零势能面,不计空气阻力,下E与各物理量之间关系可能正确的是()列图象中反映pA.B.C.D.6.在水平地面上竖直上抛一个小球,小球在运动过程中重力瞬时功率的绝对值为P,离地高度h。
不计空气阻力,从抛出到落回原地的过程中,P与h关系图像为()A.B.C.D.7.如图,游乐场中,从高处P到水面Q处有三条不同的光滑轨道,图中甲和丙是两条长度相等的曲线轨道,乙是直线轨道。
甲、乙、丙三小孩沿不同轨道同时从P处自由滑向Q 处,下列说法正确的有()A.甲的切向加速度始终比丙的小B.因为乙沿直线下滑,所经过的路程最短,所以乙最先到达Q处C.虽然甲、乙、丙所经过的路径不同,但它们的位移相同,所以应该同时到达Q处D.甲、乙、丙到达Q处时的速度大小是相等的8.将一个小球从水平地面竖直向上抛出,它在运动过程中受到的空气阻力大小恒定,其上升的最大高度为20m,则运动过程中小球的动能和重力势能相等时,其高度为(规定水平地面为零势能面)()A.上升时高于10m,下降时低于10mB.上升时低于10m,下降时高于10mC.上升时高于10m,下降时高于10mD.上升时低于10m,下降时低于10m9.在倾角为30°的斜面上,某人用平行于斜面的力把原来静止于斜面上的质量为2kg的物体沿斜面向上推了2m的距离,并使物体获得1m/s的速度,已知物体与斜面间的动摩擦因数为33,g取10m/s2,则在这个过程中()A.物体机械能增加41J B.摩擦力对物体做功20JC.合外力对物体做功1J D.物体重力势能增加40J10.按压式圆珠笔内装有一根小弹簧,尾部有一个小帽,压一下小帽,笔尖就伸出来。
机械能守恒定律典型例题
机械能守恒定律典型例题一、单物体在重力作用下的机械能守恒1. 例题- 质量为m = 1kg的物体从离地面h = 5m高处以初速度v_0= 10m/s水平抛出,不计空气阻力,求物体落地时的速度大小。
2. 解析- (1)首先分析物体的运动过程,物体在平抛运动过程中,只有重力做功。
- (2)取地面为零势能面,根据机械能守恒定律E_1=E_2。
- (3)物体抛出时的机械能E_1包括动能E_k1和重力势能E_p1。
- 动能E_k1=(1)/(2)mv_0^2=(1)/(2)×1×10^2 = 50J。
- 重力势能E_p1=mgh = 1×10×5=50J。
- 所以E_1=E_k1 + E_p1=50 + 50 = 100J。
- (4)物体落地时的机械能E_2只有动能E_k2(因为重力势能E_p2 = 0)。
- (5)由E_1=E_2,即100=(1)/(2)mv^2,解得v=√(frac{2×100){1}} =10√(2)m/s。
二、系统内物体间机械能守恒(轻绳连接)1. 例题- 如图所示,一轻绳跨过定滑轮,两端分别系着质量为m_1和m_2的物体(m_1,m_2开始时静止在地面上,当m_1由静止释放下落h高度时(m_1未落地),求此时m_2的速度大小。
(不计滑轮质量和摩擦)2. 解析- (1)对于m_1和m_2组成的系统,只有重力做功,系统机械能守恒。
- (2)设m_1下落h高度时,m_1和m_2的速度大小均为v。
- (3)以地面为零势能面,系统初始机械能E_1为m_1的重力势能m_1gh。
- (4)系统末态机械能E_2为m_1的动能(1)/(2)m_1v^2、m_1的重力势能m_1g(h - h)(此时m_1相对于初始位置下降了h),以及m_2的动能(1)/(2)m_2v^2和m_2的重力势能m_2gh。
- (5)根据机械能守恒定律E_1=E_2,即m_1gh=(1)/(2)m_1v^2+(1)/(2)m_2v^2+m_2gh。
高中物理第八章机械能守恒定律典型例题(带答案)
高中物理第八章机械能守恒定律典型例题单选题1、如图所示,质量为M 、半径为R 的半球形碗放置于水平地面上,碗内壁光滑。
现使质量为m 的小球沿碗壁做匀速圆周运动,其轨道平面与碗口平面的高度差用h 表示,运动过程中碗始终保持静止,设碗与地面间的最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .h 越小,地面对碗的摩擦力越小B .h 越小,地面对碗的支持力越大C .若h =R 2,则小球的动能为mgR D .若h =R 2,M =10m ,则碗与地面之间的动摩擦因数可以小于√311答案:CA .对小球受力分析,其受到重力和支持力,二力的合力提供向心力,则F 向=mg tan θθ为小球与半球形碗球心连线与竖直方向的夹角。
由几何关系知:h 越小,θ越大;则向心力F 向越大,对碗和小球组成的整体,由牛顿第二定律有f =F 向=mg tan θ故h 越小,地面对碗的摩擦力越大,A 错误;B .对碗和小球组成的整体受力分析,竖直方向合力为零,故地面对碗的支持力始终等于碗和小球的重力,故B 错误;C .若h =R 2,则θ=60°对小球根据牛顿第二定律可知34mg tan60°=m 2√32R则小球的动能E k =12mv 2=mgR C 正确;D .若h =R2,根据 mg tan60°=ma n解得a n =√3g结合AB 选项的分析可知μ(M +m )g ≥f =ma n解得μ≥√311D 错误。
故选C 。
2、2013年12月2日1时30分,嫦娥三号探测器由长征三号乙运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察。
嫦娥三号的飞行轨道示意图如图所示。
假设嫦娥三号在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则( )A .若已知嫦娥三号环月段圆轨道的半径、运动周期和引力常量,则可算出月球的密度B .嫦娥三号由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其减速C .嫦娥三号在环月段椭圆轨道上P 点的速度大于Q 点的速度34D.嫦娥三号在动力下降阶段,其引力势能增大答案:BA.由于不确定月球的半径,根据密度公式,无法求月球的密度,选项A错误;B.嫦娥三号在进行变轨时,改变卫星的速度,此时万有引力不变,要做向心运动,故应让发动机点火使其减速,选项B正确;C.根据开普勒定律可知:近月点的速度大于远月点的速度,即v Q>v P,选项C错误;D.嫦娥三号在动力下降阶段,引力做正功,引力势能减小,选项D错误。
高中物理第八章机械能守恒定律知识总结例题(带答案)
高中物理第八章机械能守恒定律知识总结例题单选题1、如图所示,用细绳系住小球,让小球从M点无初速度释放,小球从M点运动到N点的过程中( )A.若忽略空气阻力,则机械能不守恒B.若考虑空气阻力,则机械能守恒C.绳子拉力不做功D.只有重力做功答案:CA.忽略空气阻力,拉力与运动方向垂直不做功,只有重力做功,机械能守恒,故A错误;B.若考虑空气阻力,阻力做功,则机械能不守恒,故B错误;C.拉力与运动方向即速度方向垂直不做功,故C正确;D.如果考虑阻力,重力和阻力都做功,不考虑阻力,重力做功,故D错误。
故选C。
2、如图,高台跳水项目中要求运动员从距离水面H的高台上跳下,在完成空中动作后进入水中。
若某运动员起跳瞬间重心离高台台面的高度为h1,斜向上跳离高台瞬间速度的大小为v0,跳至最高点时重心离台面的高度为h2,入水(手刚触及水面)时重心离水面的高度为h1。
图中虚线为运动员重心的运动轨迹。
已知运动员的质量为m,不计空气阻力,则运动员跳至最高点时速度及入水(手刚触及水面)时速度的大小分别是()A.0,√v02+√2gHB.0,√2g(H+ℎ2−ℎ1)C.√v02+2g(ℎ1−ℎ2),√v02+2gH D.√v02+2g(ℎ1−ℎ2),√v02+2g(H−ℎ1)答案:C从跳离高台瞬间到最高点,据动能定理得−mg(ℎ2−ℎ1)=12mv2−12mv02解得最高点的速度v=√v02+2g(ℎ1−ℎ2)从跳离高台瞬间到入水过程,据动能定理得mgH=12mvʹ2−12mv02解得入水时的速度vʹ=√v02+2gH故选C。
3、如图所示,斜面倾角为θ=37°,物体1放在斜面紧靠挡板处,物体1和斜面间动摩擦因数为μ=0.5,一根很长的不可伸长的柔软轻绳跨过光滑轻质的小定滑轮,绳一端固定在物体1上,另一端固定在物体2上,斜面上方的轻绳与斜面平行。
物体2下端固定一长度为h的轻绳,轻绳下端拴在小物体3上,物体1、2、3的质量之比为4:1:5,开始时用手托住小物体3,小物体3到地面的高度也为h ,此时各段轻绳刚好拉紧。
机械能守恒典型例题带详解【范本模板】
第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。
解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。
(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。
在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。
由以上两式解得104204220⨯==g v h m=10m. 点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。
本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。
例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。
解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==.根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。
解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。
重力势能的减少量241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。
机械能守恒定律习题(含答案)
图 2 图3 《机械能守恒》 第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。
在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。
)1、关于机械能是否守恒的叙述,正确的是( ) A .做匀速直线运动的物体机械能一定守恒 B .做变速运动的物体机械能可能守恒C .外力对物体做功为零时,机械能一定守恒D .若只有重力对物体做功,物体的机械能一定守恒2、质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是( )A .mgh ,减少mg (H-h )B .mgh ,增加mg (H+h )C .-mgh ,增加mg (H-h )D .-mgh ,减少mg (H+h ) 3、一个物体以一定的初速度竖直上抛,不计空气阻力,那么如图2所示,表示物体的动能E k 随高度h 变化的图象A 、物体的重力势能E p 随速度v 变化的图象B 、物体的机械能E 随高度h 变化的图象C 、物体的动能E k 随速度v 的变化图象D ,可能正确的是( )4、物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为 ( ) A .1:4 B .1:3 C .1:2 D .1:15、如图3所示,质量为m 的木块放在光滑的水平桌面上,用轻绳绕过 桌边的定滑轮与质量为M 的砝码相连,已知M =2m ,让绳拉直后使砝码 从静止开始下降h (小于桌面)的距离,木块仍没离开桌面,则砝码的速率为( )A .31gh 6 B .mgh C .gh 2D .gh 332图1图46、质量为m 的小球用长为L 的轻绳悬于O 点,如图4所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在 此过程中F 做的功为( ) A .FL sin θ B .mgL cos θ C .mgL (1-cos θ) D .Fl tan θ7、质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mgh B .物体的机械能减少了54mgh C .物体克服阻力所做的功为51mgh D .物体的重力势能减少了mgh8、如图5所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自 由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少 B .重物的重力势能增大 C .重物的机械能不变 D .重物的机械能减少9、如图6所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A .重力势能和动能之和总保持不变 B .重力势能和弹性势能之和总保持不变 C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变10、平抛一物体,落地时速度方向与水平方向的夹角为θ.取地面为参考平面,则物体被抛出时,其重力势能和动能之比为( ) A .tan θ B .cot θ C .cot 2θ D .tan 2θ第Ⅱ卷(非选择题,共60分)二、填空题(每小题6分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒定律
一、选择题
1.某人用同样的水平力沿光滑水平面和粗糙水平面推动一辆相同的小车,都使它移动相同的距离。
两种情况下推力做功分别为W1和W2,小车最终获得的能量分别为E1和E2,则下列关系中正确的是()。
A、W1=W2,E1=E2
B、W1≠W2,E1≠E2
C、W1=W2,E1≠E2
D、W1≠W2,E1=E2
2.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是( )
A.匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小
B.匀速上升和加速上升机械能增加,减速上升机械能减小
C.由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况
D.三种情况中,物体的机械能均增加
3.从地面竖直上抛一个质量为m的小球,小球上升的最大高度为H.设上升过程中空气阻力F阻恒定.则对于小球的整个上升过程,下列说法中错误的是( )
A.小球动能减少了mgH
B.小球机械能减少了F阻H
C.小球重力势能增加了mgH
D.小球的加速度大于重力加速度g
4.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对小球施加一个方向水平向右的恒力F,使小球从静止开始运动,则小球在向右运动的整个过程中( )
A.小球和弹簧组成的系统机械能守恒
B.小球和弹簧组成的系统机械能逐渐增加
C.小球的动能逐渐增大
D.小球的动能先增大后减小
二、计算题
1.如图所示,ABCD是一条长轨道,其AB段是倾角为的斜面,CD段是水平的,BC 是与AB和CD相切的一小段弧,其长度可以略去不计。
一质量为m的物体在A点从静止释放,沿轨道滑下,最后停在D点,现用一沿轨道方向的力推物体,使它缓慢地由D点回到A点,设物体与轨道的动摩擦因数为,A点到CD间的竖直高度为h,CD(或BD)间的距离为s,求推力对物体做的功W为多少?
2.一根长为L的细绳,一端拴在水平轴O上,另一端有一个质量为m的小球.现使细绳位于
水平位置并且绷紧,如下图所示.给小球一个瞬间的作用,使它得到一定的向下的初速度.
(1)这个初速度至少多大,才能使小球绕O点在竖直面内做圆周运动?
(2)如果在轴O的正上方A点钉一个钉子,已知AO=2/3L,小球以上一问中的最小速度开始运动,当它运动到O点的正上方,细绳刚接触到钉子时,绳子的拉力多大?
3.如图所示,某滑板爱好者在离地h =1.8m 高的平台上滑行,水平离开A 点后落在水平地面的B 点,其水平位移s 1=3m ,着地时由于存在能量损失,着地后速度变为v =4m/s ,并以此为初速沿水平地面滑行s 2=8m 后停止,已知人与滑板的总质量m =60kg 。
求:(空气阻力
忽略不计,g =10m/s 2
)
(1)人与滑板在水平地面滑行时受到的平均阻力大小;
(2)人与滑板离开平台时的水平初速度;
(3)着地过程损失的机械能。
4.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球
自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
求 (1)小球运动到B 点时的动能;
(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大? (3)小球下滑到距水平轨道的高度为R 2
1
时速度的大小和方向;
5.固定的轨道ABC 如图所示,其中水平轨道AB 与半径为R /4的光滑圆弧轨道BC 相连接,AB 与圆弧相切于B 点。
质量为m 的小物块静止在水一平轨道上的P 点,它与水平轨道间的动摩擦因数为μ=0.25,PB =2R 。
用大小等于2mg 的水平恒力推动小物块,当小物块运动到B 点时,立即撤去推力(小物块可视为质点)
(1)求小物块沿圆弧轨道上升后,可能达到的最大高度H ;
(2)如果水平轨道AB 足够长,试确定小物块最终停在何处?
6.倾角为θ=45°的斜面固定于地面,斜面顶端离地面的高度h 0=1m ,斜面底端有一垂直于斜而的固定挡板。
在斜面顶端自由释放一质量m =0.09kg 的小物块(视为质点)。
小物块与斜面之间的动摩擦因数μ=0.2。
当小物块与挡板碰撞后,将以原速返回。
重力加速度g =10m/s 2。
试求:
(1)小物块与挡板发生第一次碰撞后弹起的高度;
(2)小物块从开始下落到最终停在挡板处的过程中,小物块的总路程。
B
C
1.答案:C
2. D 3 A 4 BD
1.[解析]物体由A 到D 的过程中,重力做正功,滑动摩擦力做负功,支持力不做功。
物体由D 点回到A 点的过程中,推力做正功,重力做负功,滑动摩擦力做负功,支持力不做功,并且,从A 到D 和从D 回到A 的过程中,滑动摩擦力做功相等(摩擦力的大小未变,位移的大小未变)。
设A 到D 滑动摩擦力做功为W f ,由A 到D 用动能定理有
由D 到A 用动能定理有
2.(1)gL 3;2mg
3 解:(1) 人:B →C 过程:根据动能定理:∵ 221
cos18002fs mv =-∴ f =2
2
2s mv =60N
(2) 人:B →C 过程做平抛运动:∵0212
x v t
h gt =⎧⎪
⎨=⎪⎩∴ v 0=h g s 21=5m/s
(3) 人:B →C 过程:设PGB 0E =:∵ 22
011(0)()1350J 22
E mv mv mgh ∆=+-+=-
∴ 1350J E E =∆=损 4 解:
(1)m :A →B 过程:∵动能定理
2
B 102
mgR mv =-
2
KB B 12
E mv mgR ∴=
= ① (2) m :在圆弧B 点:∵牛二律
2B
B v N mg m R
-= ②
将①代入,解得 N B =3mg 在C 点:N C =mg
(3) m :A →D :∵动能定理
211022
D mgR mv =- D v gR ∴=30.
5. m :B →C ,根据动能定理:2200F R f R mgH ⋅-⋅-=- 其中:F =2mg ,f =μmg
∴ 3.5H R =
(2)物块从H 返回A 点,根据动能定理:
mgH -μmgs =0-0 ∴ s =14R
小物块最终停在B 右侧14R 处 6. 解:
R
m B
D
A
O
R/2 C
D
(1) 设弹起至B 点,则m :A →C →B 过程:根据动能定理:
01
01()cos45()00sin 45sin 45h h mg h h mg μ--+=-
∴ 100122
m 133
h h h μμ-=
==+ (2) m :从A 到最终停在C 的全过程:根据动能定理:
0cos 4500o mgh mg s μ-⋅=-
∴ s =
μ
2h。