高中数学高考二轮复习随机变量及其分布列教案(全国专用)

合集下载

2012数学二轮复习课件 随机变量及其分布

2012数学二轮复习课件 随机变量及其分布

2.常见的离散型随机变量的分布
(1) ห้องสมุดไป่ตู้点分布
分布列为(其中0 < p < 1): ξ 0 1 P 1-p p
( 2 ) 二项分布在n次独立重复试验中,事件A发生的
次数ξ 是一个随机变量,其所有可能取的值为0,1, 2,
k 3, ,n,并且P (ξ = k ) = Cn p k q n − k (其中k = 0,1, 2, , … …
( 3) 记“甲同学在一次数学竞赛预赛中成绩高于80分
6 3 为事件A,则P( A) = = . 8 4 3 随机变量ξ的可能取值为0、 2 3,且ξ ~B(3, ), 1、、 4 k 3 k 1 3− k 所以P(ξ = k ) = C3 ( ) ( ) ,k = 0,1, 2,3. 4 4 所以随机变量ξ的分布列为:
甲 9 8 4 5 8 2 3 1 7 8 9 0 0 0 2 乙 5 3 5 5
( 2 ) 派甲参加比赛比较合适.理由如下:
1 x甲 = (70 × 2 + 80 × 4 + 90 × 2 + 8 + 9 + 1 + 2 + 4 + 8 + 3 + 8 5) = 85, 1 x乙 = (70 ×1 + 80 × 4 + 90 × 3 + 5 + 0 + 0 + 3 + 5 + 0 + 2 + 8 5) = 85, 1 2 2 2 2 s = [( 78 − 85 ) + ( 79 − 85 ) + ( 81 − 85 ) + ( 82 − 85 ) + 8
(1) 设甲、乙两人同时承担H 任务为事件A,

2019-2020年高三数学二轮复习 专题六 第2讲 概率、随机变量及其分布列教案

2019-2020年高三数学二轮复习 专题六 第2讲 概率、随机变量及其分布列教案

2019-2020年高三数学二轮复习 专题六 第2讲 概率、随机变量及其分布列教案自主学习导引 真题感悟1.(2012·北京)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A.π4B.π-22C.π6D.4-π4解析 如图,平面区域D 是面积为4的正方形,D 内到坐标原点的距离大于2的点所组成的区域为图中阴影部分,其面积为4-π,故此点到坐标原点的距离大于2的概率为4-π4,故选D.答案 D2.(2012·山东)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .解析 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意知P (B )=34,P (C )=P (D )=23,由于A =B C -D -+B -C D -+B -C -D , 根据事件的独立性和互斥性得P (A )=P (B C -D -+B -C D -+B -C -D )=P (B C -D -)+P (B -C D -)+P (B -C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34+23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意知X 的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性得P (X =0)=P (B -C -D -)=[1-P (B )][1-P (C )][1-P (D )]=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136. P (X =1)=P (B C -D -)=P (B )P (C -)P (D -)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112, P (X =2)=P (B -C D -+B -C -D )=P (B -C D -)+P (B -C -D )=⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19, P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D )=34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13, P (X =4)=P (B -CD )=⎝⎛⎭⎪⎫1-34×23×23=19, P (X =5)=P (BCD )=34×23×23=13.故X所以EX =0×36+1×12+2×9+3×3+4×9+5×3=4112. 考题分析本部分内容的基础是概率,高考试题中无论是以古典概型为背景的分布列,还是以独立重复试验为背景的分布列,都要求计算概率.解此类问题的一个难点是正确的理解题意,需特别注意. 网络构建高频考点突破考点一:古典概型与几何概型【例1】(1)(2012·衡水模拟)盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是A.18125B.36125C.44125D.81125(2)(2012·海淀二模)在面积为1的正方形ABCD 内部随机取一点P ,则△PAB 的面积大于等于14的概率是________.[审题导引] (1)解题的关键是理解题意,应用计数原理与排列组合公式计算基本事件的个数;(2)首先找到使△PAB 的面积等于14的点P ,然后据题意计算.[规范解答] (1)设事件“取球次数恰为3次”为事件A ,则P (A )=2C 12·C 13·C 1353=36125. 2)如图所示,设E 、F 分别是AD 、BC 的中点,则当点P 在线段EF 上时,S △PAB =14,要使S △PAB >14,需点P 位于矩形EFCD 内,故所求的概率为:P (A )=S 矩形EFCD S 正方形ABCD =121=12.[答案] (1)B (2)12【规律总结】解答几何概型、古典概型问题时的注意事项(1)有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常用到计数原理与排列、组合的相关知识.(2)在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件数的求法与基本事件总数的求法的一致性.(3)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解.(4)利用几何概型求概率时,关键是构成试验的全部结果的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域. 【变式训练】1.(1)(2012·石景山一模)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是________.解析 阴影部分的面积为S 阴=2⎠⎛0πsin x d x=-2cos x |π0=4,故P =S 阴S ⊙O =4π3答案 4π32.(2012·广州模拟)从3名男生和n 名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为3435,则n =________.解析 据题意知,所选3人中都是男生的概率为C 33C 3n +3,∴至少有1名女生的概率为1-C 33C 3n +3=3435,∴n =4. 答案 4考点二:相互独立事件的概率与条件概率【例2】(1)甲射击命中目标的概率为34,乙射击命中目标的概率为23,当两人同时射击同一目标时,该目标被击中的概率为A.12 B .1 C.1112 D.56(2)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=A.18B.14C.25D.12 [审题导引] (1)把事件“目标被击中”分解为三个互斥事件求解;(2)据古典概型的概率分别求出P (A )与P (AB ),然后利用公式求P (B |A ).[规范解答] (1)解法一 设甲、乙射击命中目标分别记作事件A 、B ,则P (A )=34,P (B )=23,则该目标被击中的概率为 P (A B -)+P (A -B )+P (AB )=34×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23+34×23=1112. 解法二 若采用间接法,则目标未被击中的概率为 P (A - B -)=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23=112,则目标被击中的概率为1-P (A - B -)=1-112=1112.(2)P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P ABP A =110410=14.【规律总结】(1)求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解. (2)一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”“至多”等问题往往用这种方法求解.(3)注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.(4)牢记公式P n (k )=C k n p k (1-p )n -k,k =0,1,2,…,n ,并深刻理解其含义. 2.解答条件概率问题时应注意的问题(1)正确理解事件之间的关系是解答此类题目的关键.(2)在求P (AB )时,要判断事件A 与事件B 之间的关系,以便采用不同的方法求P (AB ).其中,若B ⊆A ,则P (AB )=P (B ),从而P (B |A )=P BP A. 【变式训练】3.(2012·宜宾模拟)设某气象站天气预报准确率为0.9,则在4次预报中恰有3次预报准确的概率是A .0.287 6B .0.072 9C .0.312 4D .0.291 6解析 据题意知在4次预报中恰有3次预报准确的概率为C 34·0.93·0.1=0.291 6.答案 D4.(2012·枣庄模拟)如图,CDEF 是以圆O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在扇形OCFH 内”(点H 将劣弧EF 二等分),B 表示事件“豆子落在正方形CDEF 内”,则P (B |A )=A.3πB.2πC.38D.3π16解析 ∵圆的半径为1,则正方形的边长为2,∴P (A )=S 扇形OCFH S ⊙O =12·34ππ=38,P (AB )=3822π=34π,则P (B |A )=P AB P A =34π38=2π.答案 B考点三:离散型随机变量的分布列、期望、方差【例3】(2012·合肥模拟)某公司设有自行车租车点,租车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为14、12;一小时以上且不超过两小时还车的概率分别为12、14;两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望E ξ. [审题导引] (1)把事件“甲、乙两人所付租车费用相同”分解为三个互斥事件:租车费用为2元、租车费用为4元、租车费用为6元,分别求其概率,然后求和;(2)甲、乙两人所付的租车费用之和可能为4元、6元、8元、10元、12元,分别求出ξ取上述各值的概率即可得到其概率分布列.[规范解答] (1)甲、乙两人所付费用相同即为2,4,6元.都付2元的概率为P 1=14×12=18; 都付4元的概率为P 2=12×14=18;都付6元的概率为P 3=14×14=116;故所付费用相同的概率为P =P 1+P 2+P 3 =18+18+116=516. (2)依题意,ξ的可能取值为4,6,8,10,12.P (ξ=4)=18;P (ξ=6)=14×14+12×12=516;P (ξ=8)=14×14+12×14+12×14=516;P (ξ=10)=14×14+12×14=316;P (ξ=12)=14×14=116.故ξ的分布列为所求数学期望E ξ=4×18+6×516+8×516+10×316+12×116=152【规律总结】解答离散型随机变量的分布列及相关问题的一般思路(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值. (3)根据分布列和期望、方差公式求解.注意 解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题. 【变式训练】5.(2012·西城二模)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是35,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率.解析 (1)设乙答题所得分数为X ,则X 的可能取值为-15,0,15,30.P (X =-15)=C 35C 310=112;P (X =0)=C 25C 15C 310=512;P (X =15)=C 15C 25C 310=512;P (X =30)=C 35C 310=112.EX =112×(-15)+12×0+12×15+12×30=2.(2)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则P (A )=C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫25+⎝ ⎛⎭⎪⎫353=81125,P (B )=512+112=12. 故甲乙两人至少有一人入选的概率P =1-P (A -·B -)=1-44125×12=103125.名师押题高考【押题1】在不等式组⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0,x ≥0,y ≥0所表示的平面区域内,点(x ,y )落在x ∈[1,2]区域内的概率是________.解析 如图所示,不等式组所表示的平面区域的面积是72,在这个区域中,x ∈[1,2]区域的面积是1,故所求的概率是27.答案 27[押题依据] 几何概型与线性规划问题都是高考的热点,二者结合命题,立意新颖、内涵丰富,能够很好地考查基础知识与基本能力,故押此题.【押题2】乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率; (3)求比赛局数的分布列.解析 (1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12.记“甲以4比1获胜”为事件A ,则P (A )=C 34⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫124-312=18.(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 35⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫125-312=532, 乙以4比3获胜的概率为P 2=C 36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫126-312=532,所以P (B )=P 1+P 2=516.(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P (X =4)=2C 44⎝ ⎛⎭⎪⎫124=18,P (X =5)=2C 34⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫124-312=14, P (X =6)=2C 35⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫125-2·12=516,P (X =7)=2C 36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫126-3·12=516.[押题依据] 赛为模型的概率问题又是高考的经典题型,故押此题.。

2015届高考数学总复习第十一章计数原理、随机变量及分布列第3课时二项式定理教学案(含最新模拟试题改编)

2015届高考数学总复习第十一章计数原理、随机变量及分布列第3课时二项式定理教学案(含最新模拟试题改编)

第十一章 计数原理、随机变量及分布列第3课时 二项式定理(对应学生用书(理)169~170页)1. (选修23P 32练习5改编)在(x -3)10的展开式中,x 6的系数是________. 答案:1 890解析:T r +1=C r 10x 10-r (-3)r ,令10-r =6,r =4,T 5=9C 410x 6=1 890x 6.2. (选修23P 32练习6改编)⎝⎛⎭⎫x -1x 212的展开式的常数项是________. 答案:495解析:展开式中,T r +1=C r 12x 12-r ·⎝⎛⎭⎫-1x 2r =(-1)r C r 12x 12-3r ,当r =4时,T 5=C 412=495为常数项.3. (选修23P 35习题2改编)若C 23+C 24+C 25+…+C 2n =363,则自然数n =________. 答案:13解析:C 33+C 23+C 24+C 25+…+C 2n =363+1,C 34+C 24+C 25+…+C 2n =364,C 35+C 25+…+C 2n =…=C 3n +1=364,n =13.4. (选修23P 36习题12改编)已知(1-2x)7=a 0+a 1x +a 2x 2+…+a 7x 7,那么a 1+a 2+…+a 7=________.答案:-2解析:设f(x)=(1-2x)7,令x =1,得a 0+a 1+a 2+…+a 7=(1-2)7=-1,令x =0,得a 0=1,a 1+a 2+…+a 7=-1-a 0=-2.5. (选修23P 35习题10改编)在(x +y)n 的展开式中,若第七项系数最大,则n 的值可能为________.答案:11,12,13解析:分三种情况:① 若仅T 7系数最大,则共有13项,n =12;② 若T 7与T 6系数相等且最大,则共有12项,n =11;③ 若T 7与T 8系数相等且最大,则共有14项,n =13,所以n 的值可能等于11,12,13.1. 二项式定理(a +b)n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n(n ∈N ).这个公式所表示的定理叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中的系数C r n(r=0,1,2,…,n)叫做第r+1项的二项式系数.式中的C r n a n-r b r叫做二项式展开式的第r+1项(通项),用T r+1表示,即展开式的第r+1项;T r+1=C r n a-b.2. 二项展开式形式上的特点(1) 项数为n+1.(2) 各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3) 字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.,C n n.(4) 二项式的系数从C0n,C1n,一直到C n-1n3. 二项式系数的性质(1) 在二项展开式中,与首末两端“等距离”的两项的二项式系数相等.(2) 如果二项式的幂指数是偶数,中间项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.(3) 二项式系数的和等于2n,即C0n+C1n+…+C n n=2n.(4) 二项式展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,C0n+C2n+…=C1n+C3n+…=2n-1.[备课札记]题型1 二项式展开式的特定项例1 如果⎝⎛⎭⎫x 2-1x 3n 的展开式中,第四项和第七项的二项式系数相等,求: (1) 展开式的中间项;(2) ⎝⎛⎭⎪⎫x -124x n -1展开式中所有的有理项. 解:(1) ⎝⎛⎭⎫x 2-1x 3n展开式中,第四项和第七项的二项式系数分别是C 3n ,C 6n ,由C 3n =C 6n ,得n =9,所以⎝⎛⎭⎫x 2-1x 39展开式的中间项为第5项和第6项,即T 5=(-1)4C 49(x -3)4(x 2)5=126x 2,T 6=(-1)5C 59(x -3)5(x 2)4=-126x7. (2) 通项为T r +1=C r 8(x)8-r⎝ ⎛⎭⎪⎫-124x r =⎝⎛⎭⎫-12r C r 8x 16-3r 4(r =0,1,2,…,8),为使T r +1为有理项,必须r 是4的倍数,所以r =0,4,8,共有三个有理项,分别是T 1=⎝⎛⎭⎫-120C 08x 4=x 4,T 5=⎝⎛⎭⎫-124C 48x =358x ,T 9=⎝⎛⎭⎫-128C 88x -2=1256x 2. 变式训练(1) 若(1+x)n 的展开式中,x 3的系数是x 的系数的7倍,求n ; (2) 已知(ax +1)7(a ≠0)的展开式中,x 3的系数是x 2的系数与x 4的系数的等差中项,求a ; (3) 已知(2x +x lgx )8的展开式中,二项式系数最大的项的值等于1 120,求x.解:(1) C 3n =7C 1n ,n (n -1)(n -2)6=7n ,即n 2-3n -40=0. 由n ∈N *,得n =8.(2) C 57a 2+C 37a 4=2C 47a 3,21a 2+35a 4=70a 3,a ≠0,得5a 2-10a +3=0a =1±105. (3) C 48(2x)4(x lgx )4=1 120,x4(1+lgx)=1,所以x =1,或lgx =-1,x =110.题型2 二项式系数例2 已知(x 23+3x 2)n 的展开式中,各项系数和比它的二项式系数和大992,求: (1) 展开式中二项式系数最大的项; (2) 展开式中系数最大的项.解:令x =1,则展开式中各项系数和为(1+3)n =22n . 又展开式中二项式系数和为2n , ∴ 22n -2n =992,n =5.(1) ∵ n =5,展开式共6项,二项式系数最大的项为第3、4两项,∴ T 3=C 25(x 23)3(3x 2)2=90x6,T 4=C 35(x 23)2(3x 2)3=270x223.(2) 设展开式中第r +1项系数最大, 则T r +1=C r5(x 23)5-r (3x 2)r =3r C r 5x10+4r 3, ∴ ⎩⎪⎨⎪⎧3r C r 5≥3r -1C r -15,3r C r 5≥3r +1C r +15,72≤r ≤92,∴ r =4, 即展开式中第5项系数最大,T 5=C 45(x 23)(3x 2)4=405x263.备选变式(教师专享)已知⎝⎛⎭⎫x +12n 的展开式中前三项的系数成等差数列.设⎝⎛⎭⎫x +12n =a 0+a 1x +a 2x 2+…+a n x n .求:(1) a 5的值;(2) a 0-a 1+a 2-a 3+…+(-1)n a n 的值; (3) a i (i =0,1,2,…,n)的最大值.解:(1) 由题设,得C 0n +14×C 2n =2×12×C 1n , 即n 2-9n +8=0,解得n =8,n =1(舍).T r +1=C r 8x 8-r ⎝⎛⎭⎫12r, 令8-r =5r =3,所以a 5=7.(2) 在等式的两边取x =-1,得a 0-a 1+a 2-a 3+…+a 8=1256 .(3) 设第r +1的系数最大,则⎩⎨⎧12r C r 8≥12r +1C r +18,12r C r 8≥12r -1C r -18,即⎩⎨⎧18-r ≥12(r +1),12r ≥19-r,解得r =2或r =3.所以a i 系数最大值为7.题型3 二项式定理的综合应用例3 已知⎝⎛⎭⎫x 2-1x n 展开式中的二项式系数的和比(3a +2b)7展开式的二项式系数的和大128,求⎝⎛⎭⎫x 2-1x n 展开式中的系数最大的项和系数最小的项. 解:2n -27=128,n =8,⎝⎛⎭⎫x 2-1x 8的通项T r +1=C r 8(x 2)8-r ⎝⎛⎭⎫-1x r =(-1)r C r 8x 16-3r, 当r =4时,展开式中的系数最大,即T 5=70x 4为展开式中的系数最大的项;当r =3,或5时,展开式中的系数最小,即T 4=-56x 7,T 6=-56x 为展开式中的系数最小的项.备选变式(教师专享) 已知(2-3x)50=a 0+a 1x +a 2x 2+…+a 50x 50,其中a 0,a 1,a 2…,a 50是常数,计算(a 0+a 2+a 4+…+a 50)2-(a 1+a 3+a 5+…+a 49)2.解:设f(x)=(2-3x)50,令x =1,得a 0+a 1+a 2+…+a 50=(2-3)50, 令x =-1,得a 0-a 1+a 2-…+a 50=(2+3)50, (a 0+a 2+a 4+…+a 50)2-(a 1+a 3+a 5+…+a 49)2 =(a 0+a 1+a 2+…+a 50)(a 0-a 1+a 2-…+a 50) =(2-3)50(2+3)50=1.1. (2013·新课标Ⅱ)已知(1+ax)(1+x)5的展开式中x 2的系数为5,则a =________. 答案:-1解析:已知(1+ax)(1+x)5的展开式中x 2的系数为C 25+a·C 15=5,解得a =-1. 2. (2013·天津理)⎝⎛⎭⎫x -1x 6的二项展开式中的常数项为________. 答案:15解析:展开式的通项公式为T k +1=C k 6x 6-k ·⎝⎛⎭⎫-1x k =C k 6x6-32k(-1)k.由6-32k =0,得k =4.所以常数项为T 4+1=C 46(-1)4=15.3. (2013·大纲版理)(1+x)3(1+y)4的展开式中x 2y 2的系数是________. 答案:18解析:(x +1)3的展开式的通项为T r +1=C r 3x r,令r =2得到展开式中x 2的系数是C 23=3.(1+y)4的展开式的通项为T r +1=C r 4y r ,令r =2得到展开式中y 2的系数是C 24=6,(1+x)3(1+y)4的展开式中x 2y 2的系数是3×6=18.4. (2013·辽宁理)使得⎝⎛⎭⎫3x +1x x n(n ∈N +)的展开式中含有的常数项最小的n 为________.答案:5解析:展开式的通项公式为T k +1=C kn (3x)n -k ·⎝⎛⎭⎫1x x k =C k n 3n -kxn -5k 2.由n -5k 2=0,得n=5k2,所以当k =2时,n 有最小值5.1. 若n 是奇数,则7n +C 1n 7n -1+C 2n 7n -2+…+C n -1n 7被9除的余数是________. 答案:7解析:原式=(7+1)n -1=(9-1)n -1=9k -2=9k′+7(k 和k ′均为正整数). 2. 0.9915的近似值是___________.(精确到0.001) 答案:0.956解析:0.9915=(1-0.009)5=1-5×0.009+10×(0.009)2-…≈1-0.045+0.00081≈0.956.3. 用二次项定理证明32n +2-8n -9能被64整除(n ∈N ).证明:32n +2-8n -9=9n +1-8n -9=(8+1)n +1-8n -9=C 0n +18n +1+C 1n +18n +…+C n -1n +182+C n n +18+C n +1n +1-8n -9=64(C 0n +18n -1+C 1n +18n -2+…+C n -1n +1)+8(n +1)+1-8n -9 =M ×64(记M =C 0n +18n -1+C 1n +18n -2+…+C n -1n +1). ∵ M 为整数,∴ 64M 能被64整除.4. (1) 在(1+x)n 的展开式中,若第3项与第6项系数相等,则n 等于多少?(2) ⎝⎛⎭⎪⎫x x +13x n 的展开式奇数项的二项式系数之和为128,求展开式中二项式系数最大项.解:(1) 由已知得C 2n =C 5nn =7. (2) 由已知得C 0n +C 2n +C 4n +…=128,2n -1=128,n =8, 而展开式中二项式系数最大项是T 4+1=C 48(xx)4⎝ ⎛⎭⎪⎫13x 4=70x 43x 2.一般地,对于多项式g(x)=(px +q)n =a 0+a 1x +a 2x 2+…+a n x n ,则有: (1) g(x)的常数项的系数为g(0); (2) g(x)的各项的系数和为g(1);(3) g(x)的奇数项的系数和为12[g(1)+g(-1)];(4) g(x)的偶数项的系数和为12[g(1)-g(-1)].请使用课时训练(A )第3课时(见活页).[备课札记]。

湖北省荆州市沙市第五中学高三数学二轮总复习第二讲概率、随机变量及其分布列学案

湖北省荆州市沙市第五中学高三数学二轮总复习第二讲概率、随机变量及其分布列学案

第二讲概率、随机变量及其分布列主干考点梳理1.概率加法公式的应用1.若事件A与事件B互斥,则P(A∪B)=____________.2.若事件A与事件B互为对立事件,则P(A∪B)=________,即P(A)=________.2.古典概型与几何概型问题1.古典概型的概率公式.对于古典概型,任何事件的概率为:P(A)=________________.2.几何概型的概率公式.在几何概型中,事件A的概率计算公式为:P(A)=_________________________________.3.条件概率一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=________为在事件A发生的条件下,事件B发生的条件概率.特别地,对于古典概型,由于组成事件A的各个基本事件发生的概率相等,因此其条件概率也可表示为:4.独立事件与独立重复实验1.事件A与事件B相互独立.设A,B为两个事件,如果P(AB)=________,则称事件A与事件B相互独立,如果事件A 与B相互独立,那么A与与与B也都相互独立.2.独立重复试验.在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=_________________,k=0,1,2,…,n.5.离散型随机变量及其分布与二项分布一、离散型随机变量及其分布列1.离散型随机变量的分布列.设离散型随机变量X可能取的值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则随机变量X的分布列为:有时为了表达简单,也用等式________________________表示X的分布列.2.离散型随机变量X的分布列的性质.(1)p i____0,i=1,2,…,n;(2) i =1npi =________.二、二项分布在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p .那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=____________,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记作_____________. 三、离散型随机变量的均值与方差 1.均值. (1)均值的定义.若离散型随机变量X 的分布列为:则随机变量X 的均值EX =__________________________. (2)几个常见的均值. ①E (aX +b )=aEX +b ;②若X 服从两点分布,则EX =______; ③若X ~B (n ,p ),则EX =_________. 2.方差. (1)方差的定义.若离散型随机变量X 的分布列为:则随机变量X 的方差DX =__________. (2)几个常见的方差. ①D (aX +b )=a 2DX ;②若X 服从两点分布,则DX =________; ③若X ~B (n ,p ),则DX =________. 考点自测1.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A.5216B.25216C.31216D.91216 解析:由于至少出现一次6点的对立事件是:三次均不出现6点,由对立事件公式易求得.选D.答案:D2.(2013年福建卷)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.3.某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的动物,问:它能活到25岁的概率是多少?4.某战士射击中靶的概率为0.99.若连续射击两次(精确到0.000 1),求: (1)至多有一次中靶的概率; (2)两次都中靶的概率; (3)至少有一次中靶的概率.(1)0.019 9 (2)0.980 1 (3)0.999 9 5.已知离散型随机变量X 的分布列如下表:若EX =0,DX =1,则a =________,b =________.解析:选择区间长度为测度求解几何概型.由题意知0≤a ≤1.事件“3a -1>0”发生时,a >13且a ≤1,取区间长度为测度,由几何概型的概率公式得其概率P =1-131=23. 答案:23解析:由题知a +b +c =1112,-a +c +16=0,12×a +12×c +22×112=1,解得a =512,b =14.答案:512 14高考热点突破突破点1 古典概型的概率例1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )思路点拨:(1)本题可以用直接法求解:和为奇数,则两个数为1奇1偶,有 种取法.(2)本题也可以用间接法求解,和为偶数的情况只有两种1和3,2和4.解析:解法一:设A 表示“2张卡片上的数字之和为奇数”,则基本事件的总数为24C ,事件A 包含的基本事件数为1122CC,故P (A )=C 12C 12 C 24=23.解法二:设A 表示“2张卡片的数字之和为奇数”,则A 表示“2张卡片的数字之和为偶数”,事件A 包含的基本事件数为2,则P (A )=2 C 24=13,∴P (A )=1-P (A )=23.答案:C规律方法:(1)有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件个数,这常常用到排列、组合的有关知识. (2)对于较复杂的题目要注意正确分类,分类时应不重不漏. 跟踪训练1. 现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为______.解析:从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3 m 的事件数为2,分别是:2.5和2.8,2.6和2.9,则所求概率为0.2.答案:0.2例2. 在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为________.思路点拨:本题是几何概型问题,可以先计算出试验的全部结果构成的区域面积和所求事件构成的区域面积,然后根据几何概型的概率公式求解.解析:如下图所示,区域D 表示边长为4的正方形的内部(含边界),区域E 表示单位圆及其内部,用M 表示“向D 中随机投一点,则落入E 中”这一事件,则P (M )=π×124×4=π16.答案:π16规律方法:(1)当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑利用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域. 跟踪训练2.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.解析:如下页图可设AB =1,则AB ′=1,根据几何概率可知其整体事件是其周长3,则其概率是23.答案 :23例3. 已知:男人中有5%患色盲,女人中有0.25%患色盲.从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.思路点拨:(1)此人患色盲即为此人是男人且患色盲或此人是女人且患色盲. (2)利用条件概率求解第(2)问解析:(1)此人患色盲的概率为P =100200×5100+100200×0.25100=5.25200=21800. (2)设事件A 表示“从100个男人和100个女人中任选一人,此人患色盲”;事件B 表示“从100个男人和100个女人中任选一人,此人是男人”.则P (A )=21800,P (AB )=5200,故P (B |A )=P AB P A =2021.规律方法:(1)利用公式P (B |A )=P ABP A是求条件概率最基本的方法.这种方法的关键是分别求出P (A )和P (AB ),其中P (AB )是指事件A 和B 同时发生的概率.(2)在求P (AB )时,要判断事件A 与事件B 之间的关系,以便采用不同的方法求P (AB ).其中,若B ⊂A ,则P (AB )=P (B ),从而P (B |A )=P BP A. 跟踪训练3.一个盒子里装有4件产品,其中有3件一等品,1件二等品.从中取产品两次,每次任取1件,作不放回抽样.试求在第一次取到一等品的条件下第二次又取到一等品的概率.解析:设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则所求概率为P (B |A ).由于P (A )=34,P (AB )=A23A24=12,所以由条件概率计算公式得P (B |A )=P ABP A =1234=23,即在第一次取到一等品的条件下第二次又取到一等品的概率是23.突破点4相互独立事件和独立重复实验问题例4.甲、乙两人各射击一次,击中目标的概率分别是 假设两人射击是否击中目标,相互之间没有影响,每人各次射击是否击中目标,相互之间也没有影响. (1)求甲射击3次,至少1次未击中目标的概率.(2)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击4次后,被停止射击的概率是多少?(3)设甲连续射击3次,用ξ表示甲击中目标时射击的次数,求ξ的数学期望.解析:(1)记“甲连续射击3次,至少1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1- P (A 1)=1-⎝ ⎛⎭⎪⎫233=1927. (2) 记“乙恰好射击4次后,被停止射击”为事件A 2,由于各事件相互独立, 故P (A 2)=34×34×14×14+14×34×14×14=364.(3)解法一:根据题意ξ服从二项分布,E ξ=3×23=2.解法二:P (ξ=0)=C 03·⎝ ⎛⎭⎪⎫133=127,P (ξ=1)=C 13·⎝ ⎛⎭⎪⎫231·⎝ ⎛⎭⎪⎫132=627, P (ξ=2)=C 23·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫131=1227,P (ξ=3)=C 33·⎝ ⎛⎭⎪⎫233·⎝ ⎛⎭⎪⎫130=827.∴ξ的分布列为:E ξ=0×127+1×627+2×1227+3×827=2. 规律方法:(1)注意区分互斥事件和相互独立事件.互斥事件是在同一试验中不可能同时发生的情况;相互独立事件是指几个事件的发生与否互不影响,当然可以同时发生.(2)一个事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”、“至多”等问题往往用这种方法求解.) 跟踪训练4.某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是 .若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:(1)该公司的资助总额为零的概率; (2)该公司的资助总额超过15万元的概率.解析:(1)设A 表示资助总额为零这个事件,则P (A )=⎝ ⎛⎭⎪⎫126=164.(2)设B 表示资助总额超过15万元这个事件,则P (B )=C 26×⎝ ⎛⎭⎪⎫126+C 16×⎝ ⎛⎭⎪⎫126+⎝ ⎛⎭⎪⎫126=1132. 突破点5 随机变量的分布列及有关问题例5.一个盒子里装有4张大小形状完全相同的卡片,分别标有数字2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数字3,4,5,6.现从一个盒子中任取一张卡片,其上面的数记为x ;再从另一盒子里任取一张卡片,其上面的数记为y ,记随机变量η=x +y ,求η的分布列和数学期望.解析:依题意,可分别取η=5,6,…,11,则有P (η=5)=14×4=116,P (η=6)=216,P (η=7)=316,P (η=8)=416,P (η=9)=316,P (η=10)=216,P (η=11)=116.∴η的分布列为:规律方法:(1)求分布列的关键是正确求得随机变量的每一个取值和取每个值的概率. (2)求随机变量的均值和方差的关键是正确求出随机变量的分布列. 跟踪训练5.下届奥运会乒乓球比赛将产生男子单打、女子单打、男子团体、女子团体共四块金牌,保守估计中国乒乓球男队获得每块金牌的概率均为 ,中国乒乓球女队获得每块金牌的概率均为 .(1)求按此估计中国乒乓球女队比中国乒乓球男队多获得一块金牌的概率;(2)记中国乒乓球队获得金牌数为ξ,求按此估计ξ的分布列和数学期望E ξ(结果均用分数表示).解析:(1)记“中国乒乓球男队获0块金牌,女队获1块金牌”为事件A ,“中国乒乓球男队获1块金牌,女队获2块金牌”为事件B ,那么P (A +B )=P (A )+P (B )=C 12⎝⎛⎭⎪⎫1-342·⎝ ⎛⎭⎪⎫45·⎝⎛⎭⎪⎫1-45+ C 12⎝ ⎛⎭⎪⎫34·⎝⎛⎭⎪⎫1-34·⎝ ⎛⎭⎪⎫452=1350. 故估计中国乒乓球女队比男队多获一块金牌的概率为1350. (2)根据题意,中国乒乓球队获得金牌数ξ的所有可能取值为0,1,2,3,4.则P (ξ=0)=⎝ ⎛⎭⎪⎫1-342·⎝ ⎛⎭⎪⎫1-452=1400; P (ξ=1)=C 12⎝⎛⎭⎪⎫1-34·⎝ ⎛⎭⎪⎫34·⎝⎛⎭⎪⎫1-452+C 12⎝⎛⎭⎪⎫1-342·⎝ ⎛⎭⎪⎫45·⎝ ⎛⎭⎪⎫1-45=7200; P (ξ=2)=C 12C 12⎝⎛⎭⎪⎫1-34·⎝ ⎛⎭⎪⎫34·⎝⎛⎭⎪⎫1-45·⎝ ⎛⎭⎪⎫45+⎝ ⎛⎭⎪⎫1-342·⎝ ⎛⎭⎪⎫452+ ⎝ ⎛⎭⎪⎫342·⎝⎛⎭⎪⎫1-452=73400; P (ξ=3)=C 12⎝ ⎛⎭⎪⎫1-34·⎝ ⎛⎭⎪⎫34·⎝ ⎛⎭⎪⎫452+C 12⎝ ⎛⎭⎪⎫342·⎝ ⎛⎭⎪⎫45·⎝ ⎛⎭⎪⎫1-45=2150; P (ξ=4)=⎝ ⎛⎭⎪⎫342·⎝ ⎛⎭⎪⎫452=925.Eη=5×116+6×216+7×316+8×416+9×316+10×216+11×116=8.则概率分布列为:则所获金牌数的数学期望E ξ=0×1400+1×7200+2×73400+3×2150+4×925=3110. 故中国乒乓球队获得金牌数的数学期望为3110块.小结反思1.在使用概率公式运算时,要写明使用的条件.如:使用概率加法公式求概率时,要判断并写明事件是互斥事件;用乘法公式求事件概率时,要先判断并写明事件是相互独立事件等. 2.对二项分布、独立重复实验等重要知识点要熟练掌握,相关公式与结论要应用自如. 3.要准确计算离散型随机变量的均值与方差,要记清公式,要在会推导的基础上记忆结论,避免解题时耽误时间.。

数学高考复习名师精品教案:第90课时:第十章 排列、组合和概率-随机变量的分布列、期望和方差

数学高考复习名师精品教案:第90课时:第十章  排列、组合和概率-随机变量的分布列、期望和方差

数学高考复习名师精品教案第90课时:第十章排列、组合和概率——随机变量的分布列、期望和方差课题:随机变量的分布列、期望和方差教学目的:1.通过本课的教学,对本单元知识内容进行梳理,加深有关概念的理解,在综合运用知识能力上提高一步。

2.通过对几道例题的讲解、讨论和进一步的练习,提高学生灵活运用本单元知识解决问题的能力。

教学重点、难点:对于离散型随机变量,我们关心的是它会取哪些值、取这些值的概率、取值的平均值、稳定性等.这部分内容的实用性较强,教学过程中,要重点引导学生分析、解决一些实际问题,提高学生综合运用知识解决实际问题的能力.教学过程:1.通览基础知识2.提出随机变量ξ的分布列的概念,总结任一离散型随机变量的分布列具有的两个简单性质在分析和研究上述例子的基础上,概括出:一般地,设离散型随机变量ξ可能取的值为x1, x2, …,x i,…,ξ取每一个值x i (I=1,2,…)的概率为P(ξ= x i)=P i,则称表为随机变量ξ的概率分布,简称ξ的分布列。

离散型随机变量的分布列的两个简单性质:(1) P i≥0,I=1,2,…;(2) P1 +P2 + (1)3.讲参考例题例1 一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球的一半,现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中随机取出一球所得分数ξ的分布列。

解:设黄球的个数为n ,依题意知道绿球个数为2n ,红球个数为4n ,盒中球的总数为7n 。

71n 7n )0(P ,72n 7n 2)1(P ,74n 7n 4)1(P ===ξ==-=ξ===ξ∴ 则从该盒中随机取出一球所得分数ξ的分布列为例2 一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止。

设分裂n 次终止的概率是)(⋯=,3,2,1n 21n 。

记ξ为原物体在分裂终止后所生成的子块数目。

高考数学复习知识点讲解教案第64讲 离散型随机变量的分布列、数字特征

高考数学复习知识点讲解教案第64讲 离散型随机变量的分布列、数字特征
= 1 − = 0 = 0.2,
所以ቊ
解得 = 1 = 0.6.
= 1 + = 0 = 1,
(2)
设随机变量的分布列为 = =

+1
= 1,2,3,4,5 ,则
3
3
7
10
< < =____.
2
2
[解析] ∵ 随机变量的分布列为 = =
)
2
,故选C.
3
2
,进而
3
(2)
若随机变量的分布列如下表所示,则当 < = 0.3时,实数的取
值范围是(
A.[−3,2]
B
)

−3
−2
0
1
2

0.2
0.1
0.2
0.1
0.4
B.(−2,0]
C.(0,1]
D.(1,2]
[思路点拨](2)根据分布列中的数据计算出 ≤ −2 , ≤ 0 的值,然
4
.故选ABD.
3
例3
某校为激发学生对天文、航天、数字科技三类相关知识的兴趣,举行了一
次知识竞赛(竞赛试题中天文、航天、数字科技三类相关知识题量占比分别为
40%,40%,20%).某同学回答天文、航天、数字科技这三类问题中每个题的正
2 1 1
确率分别为 , , .
3 2 3
(1)
若该同学在题库中任选一题作答,求他回答正确的概率;
则 = 0 −
+1 2
3
1
3
0++1
3
× + −
=
+1 2
3

【高三数学】二轮复习:专题五 第2讲 概率、随机变量及其分布

【高三数学】二轮复习:专题五 第2讲 概率、随机变量及其分布
有 A 到过疫区,B 确定是受 A 感染的.对于 C 因为难以判定是受 A 还是受 B
1
感染的,于是假定他受 A 和 B 感染的概率都是2.同样也假定 D 受 A,B 和 C
1
感染的概率都是3.在这种假定下,B,C,D 中恰有两人直接受 A 感染的概率是
(
)
1
A.6
1
B.3
1
C.2
2
D.3
(2)(2021·河北张家口一模)某大学进行“羽毛球”“美术”“音乐”三个社团选拔.
三局.若甲抽到的三张扑克牌分别是A1,A2,A3,乙抽到的三张扑克牌分别是
B1,B2,B3,且这六张扑克牌的大小顺序为A1>B1>B2>A2>A3>B3,则三局比赛
结束后甲得4分的概率为(
1
6
A.
1
3
B.
)
1
2
C.
2
3
D.
(2)(2021·山东泰安三模)已知大于3的素数只分布在{6n-1}和{6n+1}两数
[例2-4](2021·江苏苏州中学园区校月考)甲、乙两队进行篮球决赛,采取七
场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,
甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,
客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概
率是
.
1
次的概率为2,现有一个该型号的充电宝已经循环充电超过 500 次,则其能够
循环充电超过 1 000 次的概率是(
3
A.4
2
B.3
)
1
C.2
1
D.3

2020版高考数学二轮复习第2部分专题3概率与统计第1讲概率、随机变量及其分布教案理(最新整理)

2020版高考数学二轮复习第2部分专题3概率与统计第1讲概率、随机变量及其分布教案理(最新整理)

第1讲概率、随机变量及其分布[做小题——激活思维]1.若随机变量X的分布列如表所示,E(X)=1。

6,则a-b=( )X0123P0。

1a b0。

1A.0.2C.0。

8 D.-0。

8B[由0。

1+a+b+0.1=1,得a+b=0。

8,又由E(X)=0×0.1+1×a+2×b+3×0。

1=1。

6,得a+2b=1.3,解得a=0。

3,b=0.5,则a-b=-0。

2.]2.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0。

5,两个路口连续遇到红灯的概率为0。

4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )A.0。

6 B.0.7C.0.8 D.0。

9C[记“第一个路口遇到红灯"为事件A,“第二个路口遇到红灯”为事件B,则P(A)=0.5,P(AB)=0。

4,则P(B|A)=错误!=0.8,故选C。

]3.两个实习生每人加工一个零件,加工为一等品的概率分别为错误!和错误!,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A。

错误!B。

错误!C。

14D。

错误!B[设事件A:甲实习生加工的零件为一等品;事件B:乙实习生加工的零件为一等品,且A,B相互独立,则P(A)=错误!,P(B)=错误!,所以这两个零件中恰有一个一等品的概率为P(A错误!)+P(错误!B)=P(A)P(错误!)+P(错误!)P(B)=错误!×错误!+错误!×错误!=错误!。

]4.设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)=错误!,则P(Y≥1)=( )A.错误!B。

错误!C。

错误!D.1C[∵X~B(2,p),∴P(X≥1)=1-P(X=0)=1-C错误!(1-p)2=错误!,解得p=错误!,∴P(Y≥1)=1-P(Y=0)=1-C0,4(1-p)4=1-错误!=错误!,故选C.]5.罐中有6个红球和4个白球,从中任取1球,记住颜色后再放回,连续取4次,设X为取得红球的次数,则X的方差D(X)的值为________.错误![因为是有放回地取球,所以每次取球(试验)取得红球(成功)的概率均为错误!,连续取4次(做4次试验),X为取得红球(成功)的次数,则X~B错误!,∴D(X)=4×错误!×错误!=错误!.]6.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为________.(附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)=0。

高中数学高考二轮复习随机变量及其分布列教案(全国专用)

高中数学高考二轮复习随机变量及其分布列教案(全国专用)

1.(2014·课标Ⅱ,5,易)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.451.A设“一天的空气质量为优良”为事件A,“连续两天为优良”为事件AB,则已知某天的空气质量为优良,随后一天的空气质量为优良的概率为P(B|A).由条件概率可知,P(B|A)=P(AB)P(A)=0.60.75=45=0.8,故选A.2.(2015·湖南,18,12分,中)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X .求X 的分布列和数学期望.2.解:(1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球}, B 1={顾客抽奖1次获一等奖}, B 2={顾客抽奖1次获二等奖}, C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2) =25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15. 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.3.(2014·山东,18,12分,中)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.3.解:记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.(1)记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,得 P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3)=12×15+13×15+16×35+16×15=310,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+15×16=215, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (ξ=6)=P (A 3B 3)=12×15=110. 可得随机变量ξ的分布列为所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.4.(2013·课标Ⅰ,19,12分,中)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 4.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=416×116+116×12=364.(2)X可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X的分布列为E(X)=400×1116+500×116+800×14=506.25.相互独立事件的概率是高考的常考考点,是解决复杂问题的基础,一般情况下,一些较为复杂的事件可以拆分为一些相对简单事件的和或积,这样就可以利用概率公式转化为互斥事件和独立事件的组合,通常以解答题出现,与数学期望等知识结合,难度中等.1(2015·北京,16,13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16;B组:12,13,15,16,17,14,a.假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)(1)甲的康复时间不少于14天→甲是A组的第5人或第6人或第7人→每人康复时间互斥→互斥事件概率加法公式 (2)甲康复时间比乙长→相互独立事件同时发生→列举每种情况→互斥事件加法求解【解析】 设事件A i 为“甲是A 组的第i 个人”,事件B j 为“乙是B 组的第j 个人”,i ,j =1,2, (7)由题意可知P (A i )=P (B j )=17,i ,j =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知,C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6. 因为P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049. (3)a =11或a =18.(2014·大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2, B 表示事件:甲需使用设备, C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C , P (B )=0.6,P (C )=0.4, P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1BC +A 2B +A 2B -C )=P (A 1BC )+P (A 2B )+P (A 2B -C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C ) =0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -)=P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4) =0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4) =1-0.06-0.25-0.25-0.06 =0.38, X 的分布列为数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.相互独立事件概率的求法(1)首先要搞清事件间的关系(是否彼此互斥、是否相互独立、是否对立),正确区分“互斥事件”与“对立事件”.当且仅当事件A 和事件B 相互独立时,才有P (AB )=P (A )·P (B ).(2)A ,B 中至少有一个发生:A ∪B .①若A ,B 互斥:P (A ∪B )=P (A )+P (B ),否则不成立.②若A ,B 相互独立(不互斥),则概率的求法:方法一:P (A ∪B )=P (AB )+P (AB -)+P (A -B );方法二:P (A ∪B )=P (A )+P (B )-P (AB )=1-P (A -)P (B -).(3)某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高准确率.要注意“至多”“至少”等题型的转化.条件概率在高考中经常作为解答题的一小问,或以选择题、填空题出现,难度较小,一般以直接考查公式的应用为主,分值约为5分.2(2015·湖北荆门模拟,20,12分)某工厂生产了一批产品共有20件,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件.求: (1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.【解析】 设“第一次抽到次品”为事件A ,“第二次抽到次品”为事件B ,事件A 和事件B 相互独立.依题意得:(1)第一次抽到次品的概率为P (A )=520=14. (2)第一次和第二次都抽到次品的概率为P (AB )=520×419=119.(3)方法一:在第一次抽到次品的条件下,第二次抽到次品的概率为P (B |A )=P (AB )P (A )=119÷14=419.方法二:第一次抽到次品后,还剩余产品19件,其中次品4件,故第二次抽到次品的概率为P (B )=419.(2015·湖北荆州质检,13)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 【解析】 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37. 【答案】 37,条件概率的求法(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).注意:事件A 与事件B 有时是相互独立事件,有时不是相互独立事件,要弄清P (AB )的求法.(2)当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ).1.(2016·湖北荆门一模,6)把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.181.A 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·河北石家庄质检,9)小明准备参加电工资格考试,先后进行理论考试和操作考试两个环节,每个环节各有两次考试机会,在理论考试环节,若第一次考试通过,则直接进入操作考试;若第一次未通过,则进行第二次考试,若第二次考试通过则进入操作考试环节,第二次未通过则直接被淘汰.在操作考试环节,若第一次考试通过,则直接获得证书;若第一次未通过,则进行第二次考试,若第二次考试通过则获得证书,第二次未通过则被淘汰.若小明每次理论考试通过的概率为34,每次操作考试通过的概率为23,并且每次考试相互独立,则小明本次电工考试中共参加3次考试的概率是( ) A.13 B.38 C.23 D.342.B 设小明本次电工考试中共参加3次考试为事件A ,小明本次电工考试中第一次理论考试没通过,第二次理论考试通过,第一次操作考试通过为事件B ,小明本次电工考试中第一次理论考试通过,第一次操作考试没通过为事件C ,则P (A )=P (B ∪C )=P (B )+P (C ),又P (B )=⎝ ⎛⎭⎪⎫1-34×34×23=18,P (C )=34×⎝ ⎛⎭⎪⎫1-23=14,所以P (A )=18+14=38.3.(2015·河南郑州一模,10)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是( ) A.1127 B.1124 C.1627 D.9243.A 方法一:记事件A :从2号箱中取出的是红球;事件B :从1号箱中取出的是红球,则根据古典概型和对立事件的概率和为1,可知:P (B )=42+4=23,P (B -)=1-23=13;由条件概率公式知P (A |B )=3+18+1=49,P (A |B -)=38+1=39.从而P (A )=P (AB )+P (AB -)=P (A |B )·P (B )+P (A |B -)·P (B -)=1127,选A.方法二:根据题意,分两种情况讨论:①从1号箱中取出白球,其概率为26=13,此时2号箱中有6个白球和3个红球,从2号箱中取出红球的概率为13,则这种情况下的概率为13×13=19.②从1号箱中取出红球,其概率为23.此时2号箱中有5个白球和4个红球,从2号箱中取出红球的概率为49,则这种情况下的概率为23×49=827.则从2号箱中取出红球的概率是19+827=1127.4.(2016·江苏扬州一模,4)在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为________.4.【解析】 方法一:不妨设甲先抽奖,设甲中奖记为事件A ,乙中奖记为事件B ,两人都中奖的概率为P ,则P =P (AB )=23×12=13.方法二:甲乙从三张奖券中抽两张的方法有A 23=6种,两人都中奖的可能有2种,设两人都中奖的概率为P ,则P =26=13. 【答案】 135.(2016·江苏盐城二模,10)如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.5.【解析】 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件AB -C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (AB -C )=P (A )P (B -)P (C )=12×12×12=18.【答案】 186.(2016·湖南常德一模,18,12分)某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相等的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望. 6.解:(1)甲、乙所付费用可以为10元、20元、30元, 甲、乙两人所付费用都是10元的概率为P 1=13×12=16. 甲、乙两人所付费用都是20元的概率为P 2=12×13=16.甲、乙两人所付费用都是30元的概率为P 3=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故甲、乙两人所付费用相等的概率为P =P 1+P 2+P 3=1336. (2)随机变量ξ的取值可以为20,30,40,50,60. P (ξ=20)=12×13=16. P (ξ=30)=13×13+12×12=1336.P (ξ=40)=12×13+⎝ ⎛⎭⎪⎫1-12-13×13+⎝ ⎛⎭⎪⎫1-13-12×12=1136.P (ξ=50)=12×⎝ ⎛⎭⎪⎫1-12-13+⎝ ⎛⎭⎪⎫1-13-12×13=536. P (ξ=60)=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故ξ的分布列为∴ξ的数学期望是Eξ=20×16+30×1336+40×1136+50×536+60×136=35. 7.(2016·山东德州一模,18,12分)某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不同类型的实验A ,B ,C ,若A ,B ,C 实验成功的概率分别为45,34,23.(1)对A ,B ,C 实验各进行一次,求至少有一次实验成功的概率;(2)该项目要求实验A ,B 各做两次,实验C 做三次,如果A 实验两次都成功则进行实验B 并获奖励10 000元,两次B 实验都成功则进行实验C 并获奖励30 000元,三次实验C 只要有两次成功,则项目研发成功并获奖励60 000元(不重复得奖).且每次实验相互独立,用X 表示技术人员所获奖励的数值,写出X 的分布列及数学期望.7.解:(1)设A ,B ,C 实验成功分别记为事件A ,B ,C 且相互独立,A ,B ,C 至少有一次实验成功为事件D .则P (D )=1-P (A -B -C -)=1-P (A -)P (B -)P (C -)=1-15×14×13=5960.(2)X 的取值为0,10 000,30 000,60 000.则P (X =0)=15+45×15=925.P (X =10 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫14+34×14=725.P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫233-C 23⎝ ⎛⎭⎪⎫232×13=775.或P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫133+23×⎝ ⎛⎭⎪⎫132+13×23×13=775. P (X =60 000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233+C 23⎝ ⎛⎭⎪⎫232×13=415.∴X 的分布列为∴X 的数学期望是 E (X )=0×925+10 000×725+30 000×775+60 000×415=21 600(元).1.(2015·湖北,4,易)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D.对任意正数t,P(X≥t)≥P(Y≥t)1.C由正态分布密度曲线可得,μ1<μ2,σ1<σ2.结合正态曲线的概率的几何意义,对于A,∵μ1<μ2,∴P(Y≥μ2)<P(Y≥μ1);对于B,∵σ1<σ2,∴P(X≤σ2)>P(X≤σ1);对于C,D,结合图象可知,C正确.2.(2015·课标Ⅰ,4,中)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3122.A记A i={投中i次},其中i=1,2,3,B表示该同学通过测试,故P(B)=P(A2∪A3)=P(A2)+P(A3)=C23×0.62×0.4+C33×0.63=0.648.3.(2015·湖南,7,中)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.A.2 386 B.2 718C.3 413 D.4 7723.C由于曲线C为正态分布N(0,1)的密度曲线,则阴影部分面积为S=0.682 62=0.341 3,∴落入阴影部分的点的个数为10 000×0.341 31=3 413.故选C.4.(2016·四川,12,易)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是________.4.【解析】 由题可知:在一次试验中成功的概率P =1-14=34,而该试验是一个2次的独立重复试验,成功次数X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫2,34,∴E (X )=2×34=32.【答案】 325.(2015·广东,13,中)已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =________.5.【解析】 由E (X )=np ,D (X )=np (1-p ),得⎩⎨⎧np =30,np (1-p )=20,解得p =13.【答案】 136.(2012·课标全国,15,中)某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.6.【解析】 由题意知每个电子元件使用寿命超过1 000小时的概率均为12,元件1或元件2正常工作的概率为1-12×12=34,所以该部件的使用寿命超过1 000小时的概率为12×34=38.【答案】 387.(2013·山东,19,12分,中)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果相互独立. (1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分,求乙队得分X 的分布列及数学期望.7.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故 P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827, P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427.所以,甲队以3∶0胜利、以3∶1胜利的概率为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=19, 故乙队得分X 的分布列为数学期望E (X )=0×1627+1×427+2×427+3×19=79.二项分布是一种重要的概率模型,在高考中经常出现,选择题、填空题、解答题都可能出现,解答题出现频率更高,一般会综合相互独立、互斥或对立事件等知识进行考查,难度中等.1(2014·辽宁,18,12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).【解析】(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能的取值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,所以X的分布列为因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.(1)读图→计算小矩形面积,得相应概率→利用独立事件的概率公式求解(2)确定X的所有可能值→运用n次独立重复试验计算公式,得相应概率→列出分布列→利用二项分布求出期望和方差(2012·天津,16,13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).解:依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i. (1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231+C 44⎝ ⎛⎭⎪⎫134=19.所以这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781. 所以ξ的分布列为故E (ξ)=0×827+2×4081+4×1781=14881.n 次独立重复试验中事件A 恰好发生k 次的概率n 次独立重复试验中事件A 恰好发生k 次可看作是C k n 个互斥事件的和,其中每一个事件都可看作是k 个A 事件与n -k 个A -事件同时发生,只是发生的次序不同,其发生的概率都是p k (1-p )n -k .因此n 次独立重复试验中事件A 恰好发生k 次的概率为C k n p k (1-p )n -k.判断某随机变量是否服从二项分布的方法(1)在每一次试验中,事件发生的概率相同. (2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.正态分布及其应用在近几年新课标高考中时常出现,主要考查正态曲线的性质(特别是对称性),常以选择题、填空题的形式出现,难度较小;有时也会与概率与统计结合,在解答题中考查.2(1)(2015·辽宁十校联考,7)设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ22)(σ2>0)的密度函数图象如图所示,则( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2(2)(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ <μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 【解析】 (1)由正态分布N (μ,σ2)的性质知,x =μ为正态分布密度函数图象的对称轴,故μ1<μ2;又σ越小,图象越高瘦,故σ1<σ2.(2)由正态分布的概率公式知P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,故P(3<ξ<6)=12[] P(-6<ξ<6)-P(-3<ξ<3)=12(95.44%-68.26%)=13.59%.【答案】(1)A(2)B1.(2015·广东佛山一模,7)已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)=()A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 51.B由正态曲线性质知,其图象关于直线x=3对称,∴P(X>4)=1-P(2≤X≤4)2=0.5-12×0.682 6=0.158 7,故选B.2.(2016·江西八校联考,6)在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.22.B由题意得,P(80<ξ<100)=P(100<ξ<120)=0.4,P(0<ξ<100)=0.5,∴P(0<ξ<80)=0.1.,利用正态曲线的对称性求概率的方法(1)解题的关键是利用对称轴x=μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时,可借助图形判断.(2)对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:①对任意的a,有P(X<μ-a)=P(X>μ+a);②P(X<x0)=1-P(X≥x0);③P(a<X<b)=P(X<b)-P(X≤a).(3)对于特殊区间求概率一定要掌握服从N(μ,σ2)的随机变量X在三个特殊区间的取值概率,将所求问题向P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)转化,然后利用特定值求出相应概率.同时,要充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质.1.(2016·贵州八校联考,3)设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()A .1 B.53 C .5 D .91.B 因为P (ξ>a +2)=P (ξ<2a -3),所以由正态分布的对称性知,(a +2)+(2a -3)2=2,解得a =53.2.(2015·河南郑州二模,9)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.429 D.2272.A 由独立重复试验的概率公式,知所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49. 3.(2015·福建福州模拟,5)已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.9773.C ∵μ=0,正态曲线关于μ=0对称, ∴P (ξ>2)=P (ξ<-2)=0.023,∴P (-2≤ξ≤2)=1-2×0.023=0.954,故选C.4.(2015·豫北六校联考,10)设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=454,则n 与p 的值分别为( ) A .60,34 B .60,14 C .50,34 D .50,144.B 由ξ~B (n ,p ),得E (ξ)=np =15,D (ξ)=np (1-p )=454,则p =14,n =60. 5.(2016·山西四校联考,14)设随机变量X ~N (3,σ2),若P (X >m )=0.3,则P (X >6-m )=________.5.【解析】 因为P (X >m )=0.3,X ~N (3,σ2),所以m >3,P (X <6-m )=P (X <3-(m -3))=P (X >m )=0.3,所以P (X >6-m )=1-P (X <6-m )=0.7.【答案】 0.76.(2016·河北唐山一模,18,12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(1)若小王发放5元的红包2个,求甲恰得1个的概率;(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X (单位:元),求X 的分布列和期望.6.解:(1)设“甲恰得1个红包”为事件A ,则P (A )=C 12×13×23=49. (2)X 的所有可能取值为0,5,10,15,20. P (X =0)=⎝ ⎛⎭⎪⎫233=827,P (X =5)=C 12×13×⎝ ⎛⎭⎪⎫232=827,P (X =10)=⎝ ⎛⎭⎪⎫132×23+⎝ ⎛⎭⎪⎫232×13=627=29.P (X =15)=C 12×⎝ ⎛⎭⎪⎫132×23=427, P (X =20)=⎝ ⎛⎭⎪⎫133=127.所以X 的分布列为E (X )=0×827+5×827+10×29+15×427+20×127=203(元).7.(2016·江西南昌一模,18,12分)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2)(满分为100分),已知P (X <75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取三位同学.(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]各有一位同学的概率;(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.7.解:(1)P(80≤X<85)=P(75<X≤80)=0.5-P(X≤75)=0.2,P(85≤X<95)=0.5-0.2-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=C13×0.4×0.62=0.432,P(ξ=2)=C23×0.42×0.6=0.288,P(ξ=3)=0.43=0.064,所以随机变量ξ的分布列是E(ξ)=3×0.4=1.2(人).1.(2013·广东,4,易)已知离散型随机变量X的分布列为则X的数学期望E(X)=()A.32B.2 C.52D.31.A由数学期望公式得E(X)=1×35+2×310+3×110=32.2.(2014·浙江,9,难)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n 个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(1)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(2)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2) 2.A 随机变量ξ1,ξ2的分布列如下:所以E (ξ1)=n m +n +2m m +n =2m +nm +n, E (ξ2)=C 2n C 2m +n +2C 1m C 1n C 2m +n +3C 2mC 2m +n =3m +n m +n,所以E (ξ1)<E (ξ2).因为p 1=m m +n +n m +n ·12=2m +n 2(m +n ),p 2=C 2m C 2m +n +C 1m C 1n C 2m +n ·23+C 2nC 2m +n ·13=3m +n 3(m +n ),p 1-p 2=n 6(m +n )>0,所以p 1>p 2.思路点拨:列出随机变量ξ1,ξ2的分布列,计算期望值并比较大小;利用分步计数原理计算p 1,p 2并比较大小.3.(2014·浙江,12,易)随机变量ξ的取值为0,1,2,若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.3.【解析】 设ξ=1时的概率为p ,则E (ξ)=0×15+1×p +2×⎝ ⎛⎭⎪⎫1-p -15=1,解得p =35,故D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.【答案】 254.(2016·课标Ⅰ,19,12分,中)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需要更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?4.解:由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.5.(2016·天津,16,13分,中)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.5.解:(1)由已知,得P(A)=C13C14+C23C210=13.所以,事件A发生的概率为1 3.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以,随机变量X的分布列为随机变量X的数学期望EX=0×415+1×715+2×415=1.6.(2016·山东,19,12分,中)甲、乙两人组成“星队”参加猜成语活动,每轮。

数学:第二章《随机变量及其分布》教案(1)(新人教A版选修2-3)

数学:第二章《随机变量及其分布》教案(1)(新人教A版选修2-3)

2.1.1离散型随机变量知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题教学过程:一、复习引入:展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y,ξ,η,…表示.思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….思考3:电灯的寿命X 是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量三、讲解范例例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果 (1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η 解:(1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)η可取0,1,…,n ,…η=i ,表示被呼叫i 次,其中i=0,1,2,…例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟? 解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2 (2)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟. 四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ其中的ξ是连续型随机变量的是( ) A .①; B .②; C .③; D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( ) A .3n =; B .4n =; C .10n =; D .不能确定 3.抛掷两次骰子,两个点的和不等于8的概率为( ) A .1112; B .3136; C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型随机变量的概念随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量 六、课后作业: 七、板书设计(略)八、教学反思:1、怎样防止所谓新课程理念流于形式,如何合理选择值得讨论的问题,实现学生实质意义的参与.2、防止过于追求教学的情境化倾向,怎样把握一个度.2.1.2离散型随机变量的分布列教学目标:知识与技能:会求出某些简单的离散型随机变量的概率分布。

2015届高考数学总复习第十一章计数原理、随机变量及分布列第5课时独立性及二项分布教学案(含最新模拟)

2015届高考数学总复习第十一章计数原理、随机变量及分布列第5课时独立性及二项分布教学案(含最新模拟)

第十一章 计数原理、随机变量及分布列第5课时 独立性及二项分布(对应学生用书(理)174~176页)1. (选修23P 59练习2改编)省工商局于2003年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x 饮料的合格率为80%,现有甲、乙、丙3人聚会,选用6瓶x 饮料,并限定每人喝2瓶.则甲喝2瓶合格的x 饮料的概率是________.答案:0.64解析:记“第一瓶x 饮料合格”为事件A 1,“第二瓶x 饮料合格”为事件A 2,A 1与A 2是相互独立事件,“甲喝2瓶x 饮料都合格就是事件A 1、A 2同时发生,根据相互独立事件的概率乘法公式得P(A 1·A 2)=P(A 1)·P(A 2)=0.8×0.8=0.64.2. (选修23P 63练习2改编)某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为________.答案:54125解析:本题符合独立重复试验,是二项分布问题,所以此人恰有两次击中目标的概率为C 23(0.6)2·(1-0.6)=54125.3. 甲、乙两地都位于长江下游,根据天气预报记录知,一年中下雨天甲市占20%,乙市占18%,假定在这段时间内两市是否降雨相互之间没有影响,则甲、乙两市同时下雨的概率为________.答案:0.036解析:设甲市下雨为事件A ,乙市下雨为事件B ,由题设知,事件A 与B 相互独立,且P(A)=0.2,P(B)=0.18,则P(AB)=P(A)P(B)=0.2×0.18=0.036.4. (选修23P 63练习2改编)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.答案:49解析:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.3个景区都有部门选择可能出现的结果数为C 24·3!(从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C 24=6种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为P(A 1)=C 24·3!34=49.5. 在4次独立试验中,事件A 出现的概率相同,若事件A 至少发生1次的概率是6581,则事件A 在一次试验中出现的概率是________.答案:13解析:设A 发生概率为P ,1-(1-P)4=6581,P =13.1. 相互独立事件(1) 对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 相互独立. (2) 若A 与B 相互独立,则P(AB)=P(A)P(B).(3) 若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4) 若P(AB)=P(A)P(B),则A 、B 相互独立. 2. 二项分布如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P(X =k)=C k n p k q n -k,其中k =0,1,2,3,…,n ,q =1-p.于是得到随机变量X 的概率分布如下:由于Cn pq 恰好是二项展开式(p +q)=C n p q +C n p q +…+C k n p q +…+C n n p n q 0中的第k +1项(k =0,1,2,…,n)中的值,故称随机变量X 为二项分布,记作X ~B(n ,p).3. “互斥”与“相互独立”的区别与联系题型1 相互独立事件例1 A 高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A 高校自主招生考试,已知该生在每道程序中通过的概率均为34,每道程序中得优、良、中的概率分别为p 1、12、p 2.(1) 求学生甲不能通过A 高校自主招生考试的概率;(2) 设ξ为学生甲在三道程序中获优的次数,求ξ的分布列.解:由题意,得11213,241,2p p p ìïï+=ïïíïï+=ïïïî解得p 1=p 2=14.(1) 设事件A 为学生甲不能通过A 高校自主招生考试,则P(A)=14+34×14+34×34×14=3764.答:学生甲不能通过A 高校自主招生考试的概率为3764.(2) 由题意知:ξ=0,1,2,3.P(ξ=0)=14+12×14+12×12×14+12×12×12=916,P(ξ=2)=14×14×14+14×14×12+14×12×14+12×14×14=764,P(ξ=3)=14×14×14=164,∵i =03P (ξ=i)=1,∴P(ξ=1)=1-P(ξ=0)-P(ξ=2)-P(ξ=3)=516.故ξ的分布列为变式训练有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n =1,2,3)关时,需要抛掷n 次骰子,当n 次骰子面朝下的点数之和大于n 2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.(1) 求仅闯过第一关的概率;(2) 记成功闯过的关数为ξ,求ξ的分布列.解:(1) 记“仅闯过第一关的概率”这一事件为A ,则P(A)=34·616=932.(2) 由题意得,ξ的取值有0,1,2,3,且P(ξ=0)=14,P(ξ=1)=932,P(ξ=2)=34·1016·5464=4051 024,P(ξ=3)=34·1016·1064=751 024,即随机变量ξ的概率分布列为题型2 例2 设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1) 求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (2) 求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3) 记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.解:记A 表示事件:进入商场的1位顾客购买甲种商品;记B 表示事件:进入商场的1位顾客购买乙种商品;记C 表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种;记D 表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种.(1) C =A·B +A·B ,P(C)=P(A·B +A·B)=P(A·B)+P(A·B)=P(A)·P(B)+P(A -)·P(B)=0.5×0.4+0.5×0.6=0.5.(2) D =A·B , P(D)=P(A·B)=P(A)·P(B)=0.5×0.4=0.2, P(D)=1-P(D)=0.8.(3) ξ~B(3,0.8),故ξ的分布列 P(ξ=0)=0.23=0.008;P(ξ=1)=C 13×0.8×0.22=0.096;P(ξ=2)=C 23×0.82×0.2=0.384; P(ξ=3)=0.83=0.512.某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同.(1) 求3个学生选择了3门不同的选修课的概率;(2) 求恰有2门选修课这3个学生都没有选择的概率;(3) 设随机变量X 为甲、乙、丙这三个学生选修数学史这门课的人数,求X 的分布列.解:(1) 3个学生选择了3门不同的选修课的概率:P 1 =A 3443=38.(2) 恰有2门选修课这3个学生都没有选择的概率:P 2=C 24·C 23·A 2243=916. (3) X =0,1,2,3,则有P (ξ= 0 ) =3343=2764;P (X = 1) =C 13·3243=2764;P (X = 2 ) =C 23·343=964;464∴ X 的概率分布表为:题型3 例3 某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(1) 求一次抽奖中奖的概率;(2) 若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布.解:(1) 设“一次抽奖中奖”为事件A ,则P(A)=C 12C 24+C 22C 14C 36=1620=45. 答:一次抽奖中奖的概率为45.(2) X 可取0,10,20,P(X =0)=(0.2)2=0.04,P(X =10)=C 12×0.8×0.2=0.32,P(X =20)=(0.8)2=0.64. X 的概率分布列为备选变式(教师专享)甲、乙、丙三名射击运动员射中目标的概率分别为12、a 、a(0<a <1),三人各射击一次,击中目标的次数记为ξ.(1) 求ξ的分布列及数学期望;(2) 在概率P(ξ=i)(i =0、1、2、3)中,若P(ξ=1)的值最大,求实数a 的取值范围. 解:(1) P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.P(ξ=0)=C 01⎝⎛⎭⎫1-12C 02(1-a)2=12(1-a)2; P(ξ=1)=C 11·12C 02(1-a)2+C 01⎝⎛⎭⎫1-12C 12a(1-a) =12(1-a 2); P(ξ=2)=C 11·12C 12a(1-a)+C 01⎝⎛⎭⎫1-12C 22a 2 =12(2a -a 2);1222所以ξ的分布列为ξ的数学期望为E(ξ)=0×12(1-a)2+1×12(1-a 2)+2×12(2a -a 2)+3×a 22=4a +12.(2) P(ξ=1)-P(ξ=0)=12[(1-a 2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=12[(1-a 2)-(2a -a 2)]=1-2a 2;P(ξ=1)-P(ξ=3)=12[(1-a 2)-a2]=1-2a 22.由2(1)0,120,21202a a a a ìïïï- ïïïï-ï³íïïïï-ï³ïïïî和0<a <1,得0<a ≤12, 即a 的取值范围是⎝⎛⎦⎤0,12.1. (2013·福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品. 若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率.解:由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分X ≤3”的事件为A ,则A 事件的对立事件为“X =5”,∵ P(X =5)=23×25=415,∴ P(A)=1-P(X =5)=1115.∴ 这两人的累计得分X ≤3的概率为1115.2. (2013·山东理)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(1) 分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2) 若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X 的分布列.解:(1) 记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P(A 1)=⎝⎛⎭⎫233=827,P(A 2)=C 23⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×23=827,P(A 3)=C 24⎝⎛⎭⎫232×⎝⎛⎭⎫1-232×12=427. 所以,甲队以3∶0、3∶1、3∶2胜利的概率分别是827、827、427;(2) 设“乙队以3∶2胜利”为事件A 4,由题意,各局比赛结果相互独立,所以P(A 4)=C 24⎝⎛⎭⎫1-232×⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427.由题意,随机变量X 的所有可能的取值为0,1,2,3,根据事件的互斥性得 P(X =0)=P(A 1+A 2)=P(A 1)+P(A 2)=1627,P(X =1)=P(A 3)=427,P(X =2)=P(A 4)=427,P(X =3)=1-P(X =0)-P(X =1)-P(X =2)=327.故X 的分布列为3. (2013·陕西理)名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2) X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列. 解:(1) 设事件A 表示:观众甲选中3号歌手且观众乙未选中3号歌手.观众甲选中3号歌手的概率为23,观众乙未选中3号歌手的概率为1-35.所以P(A)=23·⎝⎛⎭⎫1-35=415.因此,观众甲选中3号歌手且观众乙未选中3号歌手的概率为415.(2) X 表示3号歌手得到观众甲、乙、丙的票数之和,则X 可取0,1,2,3. 观众甲选中3号歌手的概率为23,观众乙选中3号歌手的概率为35.当观众甲、乙、丙均未选中3号歌手时,这时X =0,P(X =0)=⎝⎛⎭⎫1-23·⎝⎛⎭⎫1-352=475. 当观众甲、乙、丙中只有1人选中3号歌手时,这时X =1,P(X =1)=23·⎝⎛⎭⎫1-352+⎝⎛⎭⎫1-23·35·⎝⎛⎭⎫1-35+⎝⎛⎭⎫1-23·⎝⎛⎭⎫1-35·35=8+6+675=2075.当观众甲、乙、丙中只有2人选中3号歌手时,这时X =2,P(X =2)=23·35·⎝⎛⎭⎫1-35+⎝⎛⎭⎫1-23·35·35+23·⎝⎛⎭⎫1-35·35=12+9+1275=3375.当观众甲、乙、丙均选中3号歌手时,这时X =3,P(X =3)=23·⎝⎛⎭⎫352=1875.X 的分布列如下表:4. (2013·南京市、盐城市一模)某射击小组有甲、乙两名射手,甲的命中率为P 1=23,乙的命中率为P 2,在射击比赛活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中数相等且都不少于一发,则称该射击小组为“先进和谐组”.(1) 若P 2=12,求该小组在一次检测中荣获“先进和谐组”的概率;(2) 计划在2013年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E(ξ)≥5,求P 2的取值范围.解:(1) 可得P =⎝⎛⎭⎫C 12×23×13(C 12×12×12)+⎝⎛⎭⎫23×23⎝⎛⎭⎫12×12=13. (2) 该小组在一次检测中荣获“先进和谐组”的概率为P =⎝⎛⎭⎫C 12×23×13[C 12×P 2×(1-P 2)]+⎝⎛⎭⎫23×23P 22=89P 2-49P 22,而ξ~B(12,P),所以E(ξ)=12P ,由E(ξ)≥5,知(89P 2-49P 22)×12≥5,解得34≤P 2≤1.1. 为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.(1) 求4人恰好选择了同一家公园的概率;(2) 设选择甲公园的志愿者的人数为X ,试求X 的分布列. 解:(1) 设“4人恰好选择了同一家公园”为事件A.每名志愿者都有3种选择,4名志愿者的选择共有34种等可能的情况. 事件A 所包含的等可能事件的个数为3,∴ P(A)=334=127.即4人恰好选择了同一家公园的概率为127.(2) 设“一名志愿者选择甲公园”为事件C ,则P(C)=13.4人中选择甲公园的人数X 可看作4次独立重复试验中事件C 发生的次数, 因此,随机变量X 服从二项分布.X 可取的值为0,1,2,3,4. P(X =i)=C i 4⎝⎛⎭⎫13i ⎝⎛⎭⎫234-i, i =0,1,2,3,4. X 的分布列为:2. 甲、现决定各派5名队员,每人射一点球决定胜负,设甲、乙两队每个队员的点球命中率均为0.5.(1) 不考虑乙队,求甲队仅有3名队员点球命中,且其中恰有2名队员连续命中的概率; (2) 求甲、乙两队各射完5个点球后,再次出现平局的概率.解:(1) 甲队3名队员射中,恰有2名队员连续命中的情形有A 23种,故所求的概率为P 1=A 23×0.53×(1-0.5)2=316. (2) 再次出现平局包括0∶0,1∶1,…,5∶5等6种可能性,故其概率为P 2=[C 05×0.50×(1-0.5)5]2+[C 15×0.51×(1-0.5)4]2+…+[C 55×0.55×(1-0.5)0]2=36256. 3. 有一批数量很大的环形灯管,其次品率为20%,对这批产品进行抽查,每次抽出一件,如果抽出次品,则抽查中止,否则继续抽查,直到抽出次品,但抽查次数最多不超过5次.求抽查次数ξ的分布列.解:抽查次数ξ取1~5的整数,从这批数量很大的产品中每次抽取一件检查的试验可以认为是彼此独立的,取出次品的概率为0.2,取出正品的概率为0.8,前(k -1)次取出正品而第k 次(k =1,2,3,4)取出次品的概率:P(ξ=k)=0.8k -1×0.2,k =1,2,3,4. P(ξ=5)=0.84×0.2+0.85=0.4096. 所以ξ的概率分布列为:4. 电视台综艺频道组织的闯关游戏,游戏规定前两关至少过一关才有资格闯第三关,闯关者闯第一关成功得3分,闯第二关成功得3分,闯第三关成功得4分.现有一位参加游戏者单独闯第一关、第二关、第三关成功的概率分别为12、13、14,记该参加者闯三关所得总分为ξ.(1) 求该参加者有资格闯第三关的概率; (2) 求ξ的分布列和数学期望.解:(1) 设该参加者单独闯第一关、第二关、第三关成功的概率分别为 p 1=12,p 2=13,p 3=14,该参加者有资格闯第三关为事件A.则P(A)=p 1(1-p 2)+(1-p 1)p 2+p 1p 2=23.(2) 由题意可知,ξ的可能取值为0,3,6,7,10, P(ξ=0)=(1-p 1)(1-p 2)=13,P(ξ=3)=p 1(1-p 2)(1-p 3)+(1-p 1)p 2(1-p 3)=14+18=38,P(ξ=6)=p 1p 2(1-p 3)=18,P(ξ=7)=p 1(1-p 2)p 3+(1-p 1)p 2p 3=112+124=18,P(ξ=10)=p 1p 2p 3=124,∴ ξ的分布列为事件的独立性中的注意问题:(1) 事件A 与B 独立是相互的,表明事件A(事件B)的发生对事件B(事件A)的发生没有产生影响.(2) 若事件A 、B 相互独立,则A 与B -,A -与B ,A -与B -也是相互独立的.(3) 两个事件的独立性可以推广到n(n>2)个事件的独立性,且若事件A 1、A 2、…、A n相互独立,则这n 个事件同时发生的概率P(A 1A 2…A n )=P(A 1)P(A 2)…P(A n ).(4) 注意辨别两个事件互斥与两个事件独立的区别.请使用课时训练(A )第5课时(见活页).。

2013年高考二轮复习:第19讲离散型随机变量及其分布列

2013年高考二轮复习:第19讲离散型随机变量及其分布列

例 3 [2012· 课程标准卷] 某花店每天以每枝 5 元的价格从 农场购进若干枝玫瑰花,然后以每枝 10 元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理. (1)若花店一天购进 16 枝玫瑰花,求当天的利润 y(单位: 元)关于当天需求量 n(单位:枝,n∈N)的函数解析式; (2)花店记录了 100 天玫瑰花的日需求量(单位:枝),整理 得下表: 日需求量 n 14 15 16 17 18 19 20 频数 10 20 16 16 15 13 10
[思考流程] (条件)无放回取球三次 ⇨ (目标)X 的分布 列与数学期望 ⇨ (方法)按照取球中白球、 黑球的个数确定 X 的取值,并根据古典概型的计算方法求出其对应的概率值, 得出 X 的分布列和数学期望.
随机变量的分布列、均值与方差问题 解:(1)由题意得 X 取 3,4,5,6,且 C3 5 5 P(X=3)= 3= ,(1 分) C9 42 C1· 2 10 4 C5 P(X=4)= 3 = ,(2 分) C9 21 C2· 1 5 4 C5 P(X=5)= 3 = ,(3 分) C9 14 C3 1 4 P(X=6)= 3= .(4 分) C9 21
P(X=2)=P(-C-+--D)=P(-C-)+P(--D) B D BC B D BC 3 2 2 3 2 2 =1-4× ×1-3+1-4×1-3× 3 3 1 = , 9 P(X=3)=P(BC-+B-D)=P(BC-)+P(B-D) D C D C 3 2 2 3 2 2 = × ×1-3+ ×1-3× 4 3 4 3 1 = , 3 P(X=4)=P(-CD) B 3 2 2 =1-4× × 3 3 1 = , 9
②答案一: 花店一天购进 17 枝玫瑰花,Y 表示当天的利润(单元:元),那 么 Y 的分布列为 Y 55 65 75 85 P 0.1 0.2 0.16 0.54 Y 的数学期望为 E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4. Y 的方差为 D(Y)=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16 +(85-76.4)2×0.54=112.04. 由以上的计算结果看出,D(X)<D(Y),即购进 16 枝玫瑰花时利 润波动相对较小. 另外,虽然 E(X)<E(Y),但两者相差不大.故花店一天应购进 16 枝玫瑰花.

2014届高三数学总复习 11.4离散型随机变量及分布列、超几何分布教案 新人教A版

2014届高三数学总复习 11.4离散型随机变量及分布列、超几何分布教案 新人教A版

2014届高三数学总复习 11.4离散型随机变量及分布列、超几何分布教案 新人教A 版1. (选修23P 52习题1改编)下列问题属于超几何分布的有________.(填序号) ① 抛掷三枚骰子,所得向上的数是6的骰子的个数记为X ,求X 的概率分布列; ② 有一批种子的发芽率为70%,现任取10颗种子做发芽实验,把实验中发芽的种子的个数记为X ,求X 的概率分布列;③ 一盒子中有红球3只,黄球4只,蓝球5只,现任取3只球,把不是红色的球的个数记为X ,求X 的概率分布列;④ 某班级有男生25人,女生20人,现选派4名学生参加学校组织的活动,班长必须参加,其中女生人数记为X ,求X 的概率分布列.答案:③④解析:注意超几何分布的特征,其中涉及三个参量,①、②属于独立重复试验问题.2. (选修23P 47例题3改编)设随机变量X 的分布列为P(X =k)=k15(k =1,2,3,4,5),则P ⎝ ⎛⎭⎪⎫12<X<52=________. 答案:15解析:P ⎝ ⎛⎭⎪⎫12<X<52=P(X =1)+P(X =2)=115+215=15. 3. (选修23P 52习题4改编)口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1.若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是________.答案:1363解析:数字之和小于2或大于3的对立事件为数字之和为2或者3,发生的概率为2·C 25C 35C 510,所以数字之和小于2或大于3的概率为1-2·C 25C 35C 10=1363.4. (选修23P 51练习2改编)设50件商品中有15件一等品,其余为二等品.现从中随机选购2件,则所购2件商品中恰有一件一等品的概率为________.答案:37解析:N =50,M =15,n =2,r =1,P(X =1)=H(1,2,15,50)=C 115C 135C 250=37.5. (选修23P 50例1改编)某班级有男生12人、女生10人,现选举4名学生分别担任班长、副班长、团支部书记和体育班委,则至少两名男生当选的概率为________.答案:103133解析:把选出的4人中男生的人数记为X ,显然随机变量X 满足超几何分布,所求事件的概率可以表示为P(X≥2).有P(X≥2)=P(X =2)+P(X =3)+P(X =4)=C 212C 210C 422+C 312C 110C 422+C 412C 010C 422=103133.1. 离散型随机变量的分布列(1) 如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量;按一定次序一一列出,这样的随机变量叫做离散型随机变量.(2) 设离散型随机变量X 可能取的值为x 1,x 2,…x n ,X 取每一个值x i (i =1,2,…,n)的概率P(X =x i )=p i ,则称表为随机变量X 的概率分布,具有性质: ①p i ≥0,i =1,2,…,n ; ②p 1+p 2+…+p i +…+p n =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 2. 如果随机变量X 的分布列为其中0<p<1,q =1-p p 的01分布(或两点分布). 3. 超几何分布列在含有M 件次品数的N 件产品中,任取n 件,其中含有X 件次品数,则事件{X =r}发生的概率为P(X =r)=C rM ·C n -rN -MC nN (r =0,1,2,…,l),其中l =min{n ,M},且n≤N,M ≤N ,n 、M 、N∈N ,称分布列为超几何分布列.记为X ~H(n ,M ,N),并将P(X =r)=C rM ·C n -rN -MC nN 记为H(r ;n ,M ,N).[备课札记]题型1 离散型随机变量的概率分布例1 随机地将编号为1,2,3的三个小球放入编号为1,2,3的三个盒子中,每个盒子放入一个小球,当球的编号与盒子的编号相同时叫做“放对球”,否则叫做“放错球”,设放对球的个数为ξ.求ξ的分布列.解:ξ的分布列为变式训练在0,1,2,3,…,9这十个自然数中,任取三个不同的数字.将取出的三个数字按从小到大的顺序排列,设ξ为三个数字中相邻自然数的组数(例如:若取出的三个数字为0,1,2,则相邻的组为0,1和1,2,此时ξ的值是2),求随机变量ξ的分布列.解:随机变量ξ的取值为0、1、2,ξ的分布列为题型2 超几何分布例2 已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2只正品,每次取一个,取出后不放回,直到取出2个正品为止.设X 为取出的次数,求X 的概率分布列.解:P(X =2)=810·79=2845,P(X =3)=810·29·78+210·89·78=1445,P(X =4)=1-P(X =2)-P(X =3)=115,所以X 的概率分布列如下表一盒中有9个正品和3个次品零件,每次取一个零件,如果取出的是次品不再放回,求在取得正品前已取出的次品数X 的概率分布,并求P ⎝ ⎛⎭⎪⎫12≤X≤52.解:易知X 的可能取值为0、1、2、3这四个数字,而X =k 表示,共取了k +1次零件,前k 次取得的都是次品,第k +1次才取得正品,其中k =0、1、2、3.故X 的分布列为P ⎝ ⎛⎭⎪⎫12≤X≤52=P(X =1)+P(X =2)=944+9220=27110.题型3 实际问题例3 已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1) 求取出的4个球均为黑球的概率;(2) 求取出的4个球中恰有1个红球的概率;(3) 设ξ为取出的4个球中红球的个数,求ξ的分布列. 解:(1) 设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B.由于事件A 、B 相互独立,且P(A)=C 23C 24=12,P(B)=C 24C 26=25.故取出的4个球均为黑球的概率为P(A·B)=P(A)·P(B)=12×25=15.(2) 设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D.由于事件C 、D 互斥,且P(C)=C 23C 24·C 12·C 14C 26=415,P(D)=C 13C 24·C 24C 26=15.故取出的4个球中恰有1个红球的概率为P(C +D)=P(C)+P(D)=415+15=715.(3) ξ可能的取值为0,1,2,3.由(1),(2)得P(ξ=0)=15,P(ξ=1)=715,P(ξ=3)=C 13C 24·1C 26=130.从而P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=310.ξ的分布列为备选变式(教师专享)黄山旅游公司为了体现尊师重教,在每年暑假期间对来黄山旅游的全国各地教师和学生,凭教师证和学生证实行购买门票优惠.某旅游公司组织有22名游客的旅游团到黄山旅游,其中有14名教师和8名学生.但是只有10名教师带了教师证,6名学生带了学生证.(1) 在该旅游团中随机采访3名游客,求恰有1人持有教师证且持有学生证者最多1人的概率;(2) 在该团中随机采访3名学生,设其中持有学生证的人数为随机变量ξ,求ξ的分布列.解:(1) 记事件A 为“采访3名游客中,恰有1人持有教师证且持有学生证者最多1人”,则该事件分为两个事件A 1和A 2,A 1为“1名教师有教师证,1名学生有学生证”; A 2为“1名教师有教师证,0名学生有学生证”.P(A)=P(A 1)+P(A 2)=C 110·C 16·C 16C 322+C 110·C 26C 322=1877+15154=51154, ∴ 在随机采访3人,恰有1人持有教师证且持有学生证者最多1人的概率为51154.(2) 由于8名学生中有6名学生有学生证,∴ ξ的可能取值为1,2,3 , 则P(ξ=1)=C 16C 22C 38=328,P(ξ=2)=C 26C 12C 38=1528,P(ξ=3)=C 36C 38=514,∴ ξ的分布列为1. (2012·广东理)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是________.答案:19解析:两位数共有90个,其中个位数与十位数之和为奇数的两位数有45个,个位数为0的有5个,所以概率为545=19.2. (2013·新课标Ⅱ)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.答案:8解析:从n 个正整数1,2,…,n 中任意取出两个不同的数,取出的两数之和等于5的情况有:(1,4),(2,3)共2种情况;从n 个正整数1,2,…,n 中任意取出两个不同的数的所有不同取法种数为C 2n ,由古典概型概率计算公式,得从n 个正整数1,2,…,n 中任意取出两个不同的数,取出的两数之和等于5的概率为P =2C 2n .所以C 2n =28,即n (n -1)2=28,解得n =8.3. (2013·江苏)现在某类病毒记作X m Y n ,其中正整数m ,n (m≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.答案:2063解析:m 可以取的值有:1,2,3,4,5,6,7共7个,n 可以取的值有:1,2,3,4,5,6,7,8,9共9个,所以总共有7×9=63种可能,符合题意的m 可以取1,3,5,7共4个,符合题意的n 可以取1,3,5,7,9共5个,所以总共有4×5=20种可能符合题意,所以符合题意的概率为2063.4. 如图,从A 1(1,0,0)、A 2(2,0,0)、B 1(0,1,0)、B 2(0,2,0)、C 1(0,0,1)、C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).(1) 求V =0的概率;(2) 求V 的分布列及数学期望E(V).解:(1) 从6个点中随机选取3个点总共有C 36=20种取法,选取的3个点与原点在同一个平面内的取法有C 13C 34=12种,因此V =0的概率为P(V =0)=1220=35.(2) V 的所有可能取值为0、16、13、23、43,因此V 的分布列为则V 的数学期望E(V)=0×35+16×120+13×320+23×320+43×120=940.1. 现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是______.答案:35解析:∵ 以1为首项,-3为公比的等比数列的10个数为1,-3,9,-27,…,其中有5个负数,1个正数1计6个数小于8,∴ 从这10个数中随机抽取一个数,它小于8的概率是610=35.2. 在一次面试中,每位考生从4道题a 、b 、c 、d 中任抽两题做,假设每位考生抽到各题的可能性相等,且考生相互之间没有影响.(1) 若甲考生抽到a 、b 题,求乙考生与甲考生恰好有一题相同的概率; (2) 设某两位考生抽到的题中恰好有X 道相同,求随机变量X 的概率分布.解:(1) P =C 12·C 12C 24=23.(2) X 的可能取值为0、1、2,P(X =0)=C 24·C 22C 24·C 24=16,P(X =2)=C 24·1C 24·C 24=16,P(X =1)=1-P(X =0)-P(X =2)=23,所以随机变量X 的概率分布为3. 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1) 求袋中原有白球的个数; (2) 求随机变量ξ的概率分布; (3) 求甲取到白球的概率.解:(1) 设袋中原有n 个白球,由题意知17=C 2n C 27=n (n -1)27×62=n (n -1)7×6,∴n(n -1)=6,得n =3或n =-2(舍去),即袋中原有3个白球. (2) 由题意,ξ的可能取值为1、2、3、4、5. P(ξ=1)=37; P(ξ=2)=4×37×6=27;P(ξ=3)=4×3×37×6×5=635; P(ξ=4)=4×3×2×37×6×5×4=335;P(ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为:(3) 因为甲先取,所以甲只有可能在第1次、第3次和第5次取球,记“甲取到白球”为事件A ,则P(A)=P(“ξ=1”,或“ξ=3”,或“ξ=5”).∵事件“ξ=1”,或“ξ=3”,或“ξ=5”两两互斥,∴P(A)=P(ξ=1)+P(ξ=3)+P(ξ=5)=2235.4. 老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1) 抽到他能背诵的课文的数量的分布列; (2) 他能及格的概率.解:(1) 设随机抽出的3篇课文中该同学能背诵的篇数为X ,则X 是一个随机变量,它可能的取值为0、1、2、3,且X 服从超几何分布,分布列如下:即(2) 该同学能及格表示他能背出2或3篇,故他能及格的概率为P(X≥2)=P(X =2)+P(X =3)=12+16=23≈0.667.超几何分布中的注意问题:(1) 超几何分布常应用在产品合格问题、球盒取球(两色)问题、男女生选举问题上,这类问题有一个共同特征,就是对每一个个体而言,只研究其相对的两种性质而不涉及其他性质,如产品的“合格”与“不合格”,球的“红色”与“非红色”,学生的“男生”与“女生”等.(2) 超几何分布问题涉及四个参数,学习中要多注意它们的特征和顺序.如产品问题中,H(r ;n ,M ,N)的意义是“超几何分布(取出产品中不合格品数;取出产品数,所有产品中不合格品数,所有产品数)”;再如取球问题中,H(r ;n ,M ,N)的意义是“超几何分布(取出球中红色球数;取出的球数,所有球中红色球数,所有球数)”.(3) 公式的记忆要联系组合数的意义,超几何分布问题中事件的意义,掌握公式中每个式子的意义,这样记起来就事半功倍了.请使用课时训练(B )第4课时(见活页).[备课札记]。

人教版高中数学《离散型随机变量的分布列》教学设计(全国一等奖)

人教版高中数学《离散型随机变量的分布列》教学设计(全国一等奖)

《离散型随机变量的分布列》教学设计一、教材分析《离散型随机变量的分布列》是人教A版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第二课时,主要内容是学习分布列的定义、性质、应用和两点分布模型。

离散型随机变量的分布列是高中阶段的重点内容,它作为概率与统计的桥梁与纽带,既是概率的延伸,也是学习统计学的理论基础,起到承上启下的作用,是本章的关键知识之一,也是后续第三节离散型随机变量的均值和方差的基础。

从近几年的高考观察,这部分内容有加强命题的趋势。

一般以实际情境为主,需要学生具备一定的建模能力,建立合适的分布列,通过均值和方差解释实际问题。

二、学情分析在必修三的教材中,学生已经学习了有关统计概率的基本知识,在本书的第一章中也全面学习了排列组合的有关内容,有了知识上的准备; 并且通过古典概率的学习,基本掌握了离散型随机变量取某些值时对应的概率, 有了方法上的准备, 但并未系统化。

处于这一阶段的学生,思维活跃,已初步具备自主探究的能力,动手能力运算能力尚佳,但基础薄弱,对数学图形、符号、文字三种语言的相互转化,以及处理抽象问题的能力,还有待于提高。

三、教学策略分析学生是教学的主体,本节课要给学生提供各种参与机会。

本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。

注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,通过设计抽奖方案,让学生感受“从特殊到一般,再从一般到特殊”的抽象思维过程,应用类比、归纳、转化的思想方法,得到分布列的三种表示方法及分布列的性质,培养学生分析问题、解决问题的能力。

四、目标分析1.理解核心概念——离散型随机变量分布列及两点分布模型,掌握分布列的性质,会求离散型随机变量的分布列,并能解决实际问题;2. 在对抽奖问题的分析中经历数学建模过程,通过与函数的类比使学生理解离散型随机变量的分布列的函数属性,通过对抽奖方案的分析得出特殊的离散型随机变量的分布列,再从特殊的离散型随机变量的分布列归纳出一般的离散型随机变量的分布列,再通过对例题的抽奖方案的分析得出两点分布模型,让学生感知从特殊到一般再从一般到特殊的认知过程;3. 通过情境导入使学生在具体情境中认识分布列对于刻画随机现象的重要性,体会数学来源于生活,又应用于生活的本质。

高考数学《概率,随机变量及分布列》复习

高考数学《概率,随机变量及分布列》复习
P( A) 这是通用的求条件概率的方法.
(2)借助古典概型概率公式,先求事件 A 包含的基本事件数 n A , 再在事件 A 发生的条件下求事件 B 包含的基本事件数,即 n AB , 得 P B | A= n( AB) .
n( A)
1.从分别写有 1,2,3,4,5,6 的 6 张卡片中无放回随机抽取 2 张,则抽到的 2 张卡片上的
(3)在一次试验中,对立事件 A 和 A 不会同时发生,但一定有一个发生,因此有 P( A)= 1-P(A).
2.相互独立事件同时发生的概率
若 A,B 为相互独立事件,则 P AB=P(A)P(B).
3.独立重复试验 如果事件 A 在一次试验中发生的概率是 p,那么它在 n 次独立重复试验中恰好发生 k 次的概
解题技巧
2.间接法 当复杂事件正面情况比较多,反面情况较少,则可利用其对立事件进行求解. 对于“至少”“至多”等问题往往也用这种方法求解. 3.注意点 注意辨别独立重复试验的基本特征: ①在每次试验中,试验结果只有发生与不发生两种情况; ②在每次试验中,事件发生的概率相同.
1.围棋盒子中有多粒黑子和多粒白子,已知从中取出 2 粒都是黑子的概率为 1 ,从中取出 2
.故选
C.
(二)核心知识整合
考点 2:互斥事件,对立事件及独立事件 1.互斥事件与对立事件 (1)对立事件是互斥事件,互斥事件未必是对立事件. (2)如果事件 A,B 互斥,那么事件 A B 发生(即 A,B 中有一个发生)的概率,等于事件 A,
B 分别发生的概率的和,即 P(A B)=P A+PB .这个公式称为互斥事件的概率加法公式.
其中恰有 1 件一等品的取法有 (1,4),(1,5),(2,4),(2,5),(3,4),(3,5) ,

题组21 随机变量分布列(教案)

题组21 随机变量分布列(教案)

题组21 随机变量分布列(教案)一、考法解法命题特点分析结合事件的互斥性、对立性、独立性以及古典概型,主要以解答题的方式考查离散型随机变量分布列、期望和方差的求解及其实际应用.解题方法荟萃本部分复习要从整体上,知识的相关关系上进行.离散型随机变量问题的核心是概率计算,而概率计算又以事件的独立性、互斥性、对立性为核心,在解题中要充分分析事件之间的关系:1、在解含有相互独立事件的概率题时,首先把所求的随机事件分拆成若干个互斥事件的和,其次将分拆后的每个事件分拆为若干个相互独立事件的乘积,这两个事情做好了,问题的思路就清晰了,接下来就是按照相关的概率值进行计算的问题了,如果某些相互独立事件符合独立重复试验概型,就把这部分归结为用独立重复试验概型,用独立重复试验概型的概率计算公式解答.2、相当一类概率应用题都是由掷硬币、掷骰子、摸球等概率模型赋予实际背景后得出来的,我们在解题时就要把实际问题再还原为我们常见的一些概率模型,这就要根据问题的具体情况去分析,对照常见的概率模型,把不影响问题本质的因素去除,抓住问题的本质.3、求解一般的随机变量的期望和方差的基本方法是:先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出分布列,根据数学期望和方差的公式计算.二、真题剖析【2019•全国2卷理科•19】经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以x (单位:150100,≤≤x t )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (1)将T 表示为x 的函数;(2)根据直方图估计利润T 不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[)110,100∈x )则取105=x ,且105=x 的概率等于需求量落入[)110,100的频率,求T 的数学期望. 【答案】详见解析【解析】(1)由题意得,当[)130,100∈x 时,()39000800130300500-=--=x x x T . 当[)150,130∈x 时,65000130500=⨯=T ,(2)由(1)知,利润T 不少于57000元,当且仅当150120≤≤x .由直方图知需求量[]150,120∈x 的频率为0.7,所以下一个销售季度的利润T 不少于57000元的概率的估计值为0.7. (3)依题意可得T 的分布列如图,所以ET =45000×0.1+53000×0.2+61000×0.3+65000×0.4=59400.三、高考圈题1. 【题干】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3=n ,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4=n ,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为%50,即取出的产品是优质品的概率都为21,且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 【圈题理由】本题考查互斥时间及条件概率,为高考难点,学生总是在条件概率上出错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2014·课标Ⅱ,5,易)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.451.A设“一天的空气质量为优良”为事件A,“连续两天为优良”为事件AB,则已知某天的空气质量为优良,随后一天的空气质量为优良的概率为P(B|A).由条件概率可知,P(B|A)=P(AB)P(A)=0.60.75=45=0.8,故选A.2.(2015·湖南,18,12分,中)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X .求X 的分布列和数学期望.2.解:(1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球}, B 1={顾客抽奖1次获一等奖}, B 2={顾客抽奖1次获二等奖}, C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2) =25×12=15, P (B 2)=P (A 1A -2+A -1A 2) =P (A 1A -2)+P (A -1A 2) =P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125, P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.3.(2014·山东,18,12分,中)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.3.解:记A i为事件“小明对落点在A上的来球回球的得分为i分”(i=0,1,3),则P(A3)=12,P(A1)=13,P(A0)=1-12-13=16;记B i为事件“小明对落点在B上的来球回球的得分为i分”(i=0,1,3),则P(B3)=15,P(B1)=35,P(B0)=1-15-35=15.(1)记D为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D=A3B0+A1B0+A0B1+A0B3,由事件的独立性和互斥性,得P(D)=P(A3B0+A1B0+A0B1+A0B3)=P(A3B0)+P(A1B0)+P(A0B1)+P(A0B3)=P(A3)P(B0)+P(A1)P(B0)+P(A0)·P(B1)+P(A0)P(B3)=1 2×15+13×15+16×35+16×15=310,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6,由事件的独立性和互斥性,得P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+15×16=215, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (ξ=6)=P (A 3B 3)=12×15=110. 可得随机变量ξ的分布列为所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.4.(2013·课标Ⅰ,19,12分,中)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 4.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=416×116+116×12=364.(2)X可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X的分布列为X 400500800P 111611614E(X)=400×1116+500×116+800×14=506.25.相互独立事件的概率是高考的常考考点,是解决复杂问题的基础,一般情况下,一些较为复杂的事件可以拆分为一些相对简单事件的和或积,这样就可以利用概率公式转化为互斥事件和独立事件的组合,通常以解答题出现,与数学期望等知识结合,难度中等.1(2015·北京,16,13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16;B组:12,13,15,16,17,14,a.假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)(1)甲的康复时间不少于14天→甲是A组的第5人或第6人或第7人→每人康复时间互斥→互斥事件概率加法公式(2)甲康复时间比乙长→相互独立事件同时发生→列举每种情况→互斥事件加法求解【解析】设事件A i为“甲是A组的第i个人”,事件B j为“乙是B组的第j个人”,i,j=1,2, (7)由题意可知P(A i)=P(B j)=17,i,j=1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=37.(2)设事件C为“甲的康复时间比乙的康复时间长”.由题意知,C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6.因为P(C)=P(A4B1)+P(A5B1)+P(A6B1)+P(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=10 49.(3)a=11或a=18.(2014·大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2, B 表示事件:甲需使用设备, C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C ,P (B )=0.6,P (C )=0.4, P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1BC +A 2B +A 2B -C ) =P (A 1BC )+P (A 2B )+P (A 2B -C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C ) =0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -) =P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4) =0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4) =1-0.06-0.25-0.25-0.06 =0.38, X 的分布列为数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.相互独立事件概率的求法(1)首先要搞清事件间的关系(是否彼此互斥、是否相互独立、是否对立),正确区分“互斥事件”与“对立事件”.当且仅当事件A 和事件B 相互独立时,才有P (AB )=P (A )·P (B ).(2)A ,B 中至少有一个发生:A ∪B .①若A ,B 互斥:P (A ∪B )=P (A )+P (B ),否则不成立. ②若A ,B 相互独立(不互斥),则概率的求法:方法一:P (A ∪B )=P (AB )+P (AB -)+P (A -B );方法二:P (A ∪B )=P (A )+P (B )-P (AB )=1-P (A -)P (B -).(3)某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高准确率.要注意“至多”“至少”等题型的转化.条件概率在高考中经常作为解答题的一小问,或以选择题、填空题出现,难度较小,一般以直接考查公式的应用为主,分值约为5分.2(2015·湖北荆门模拟,20,12分)某工厂生产了一批产品共有20件,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件.求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.【解析】设“第一次抽到次品”为事件A,“第二次抽到次品”为事件B,事件A和事件B相互独立.依题意得:(1)第一次抽到次品的概率为P(A)=520=1 4.(2)第一次和第二次都抽到次品的概率为P(AB)=520×419=119.(3)方法一:在第一次抽到次品的条件下,第二次抽到次品的概率为P(B|A)=P(AB)P(A)=119÷14=419.方法二:第一次抽到次品后,还剩余产品19件,其中次品4件,故第二次抽到次品的概率为P(B)=419.(2015·湖北荆州质检,13)把一枚硬币任意抛掷三次,事件A=“至少一次出现反面”,事件B=“恰有一次出现正面”,则P(B|A)=________.【解析】由题意知,P(AB)=323=38,P(A)=1-123=78,所以P(B|A)=P(AB)P(A)=38 7 8=3 7.【答案】3 7,条件概率的求法(1)利用定义,分别求P(A)和P(AB),得P(B|A)=P(AB)P(A).注意:事件A与事件B有时是相互独立事件,有时不是相互独立事件,要弄清P(AB)的求法.(2)当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n(A),再在事件A发生的条件下求事件B包含的基本事件数,即n(AB),得P(B|A)=n(AB)n(A).1.(2016·湖北荆门一模,6)把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.181.A 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·河北石家庄质检,9)小明准备参加电工资格考试,先后进行理论考试和操作考试两个环节,每个环节各有两次考试机会,在理论考试环节,若第一次考试通过,则直接进入操作考试;若第一次未通过,则进行第二次考试,若第二次考试通过则进入操作考试环节,第二次未通过则直接被淘汰.在操作考试环节,若第一次考试通过,则直接获得证书;若第一次未通过,则进行第二次考试,若第二次考试通过则获得证书,第二次未通过则被淘汰.若小明每次理论考试通过的概率为34,每次操作考试通过的概率为23,并且每次考试相互独立,则小明本次电工考试中共参加3次考试的概率是( ) A.13 B.38 C.23 D.342.B 设小明本次电工考试中共参加3次考试为事件A ,小明本次电工考试中第一次理论考试没通过,第二次理论考试通过,第一次操作考试通过为事件B ,小明本次电工考试中第一次理论考试通过,第一次操作考试没通过为事件C ,则P (A )=P (B ∪C )=P (B )+P (C ),又P (B )=⎝ ⎛⎭⎪⎫1-34×34×23=18,P (C )=34×⎝ ⎛⎭⎪⎫1-23=14,所以P (A )=18+14=38.3.(2015·河南郑州一模,10)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是( ) A.1127 B.1124 C.1627 D.9243.A 方法一:记事件A :从2号箱中取出的是红球;事件B :从1号箱中取出的是红球,则根据古典概型和对立事件的概率和为1,可知:P (B )=42+4=23,P (B -)=1-23=13;由条件概率公式知P (A |B )=3+18+1=49,P (A |B -)=38+1=39.从而P (A )=P (AB )+P (AB -)=P (A |B )·P (B )+P (A |B -)·P (B -)=1127,选A.方法二:根据题意,分两种情况讨论:①从1号箱中取出白球,其概率为26=13,此时2号箱中有6个白球和3个红球,从2号箱中取出红球的概率为13,则这种情况下的概率为13×13=19.②从1号箱中取出红球,其概率为23.此时2号箱中有5个白球和4个红球,从2号箱中取出红球的概率为49,则这种情况下的概率为23×49=827.则从2号箱中取出红球的概率是19+827=1127.4.(2016·江苏扬州一模,4)在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为________.4.【解析】 方法一:不妨设甲先抽奖,设甲中奖记为事件A ,乙中奖记为事件B ,两人都中奖的概率为P ,则P =P (AB )=23×12=13.方法二:甲乙从三张奖券中抽两张的方法有A 23=6种,两人都中奖的可能有2种,设两人都中奖的概率为P ,则P =26=13. 【答案】 135.(2016·江苏盐城二模,10)如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.5.【解析】 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件AB -C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (AB -C )=P (A )P (B -)P (C )=12×12×12=18.【答案】 186.(2016·湖南常德一模,18,12分)某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相等的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望. 6.解:(1)甲、乙所付费用可以为10元、20元、30元,甲、乙两人所付费用都是10元的概率为P 1=13×12=16.甲、乙两人所付费用都是20元的概率为P 2=12×13=16.甲、乙两人所付费用都是30元的概率为P 3=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故甲、乙两人所付费用相等的概率为P =P 1+P 2+P 3=1336. (2)随机变量ξ的取值可以为20,30,40,50,60. P (ξ=20)=12×13=16.P (ξ=30)=13×13+12×12=1336.P (ξ=40)=12×13+⎝ ⎛⎭⎪⎫1-12-13×13+⎝ ⎛⎭⎪⎫1-13-12×12=1136.P (ξ=50)=12×⎝ ⎛⎭⎪⎫1-12-13+⎝ ⎛⎭⎪⎫1-13-12×13=536.P (ξ=60)=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136. 故ξ的分布列为∴ξ的数学期望是Eξ=20×16+30×1336+40×1136+50×536+60×136=35.7.(2016·山东德州一模,18,12分)某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不同类型的实验A ,B ,C ,若A ,B ,C 实验成功的概率分别为45,34,23.(1)对A ,B ,C 实验各进行一次,求至少有一次实验成功的概率;(2)该项目要求实验A ,B 各做两次,实验C 做三次,如果A 实验两次都成功则进行实验B 并获奖励10 000元,两次B 实验都成功则进行实验C 并获奖励30 000元,三次实验C 只要有两次成功,则项目研发成功并获奖励60 000元(不重复得奖).且每次实验相互独立,用X 表示技术人员所获奖励的数值,写出X 的分布列及数学期望.7.解:(1)设A ,B ,C 实验成功分别记为事件A ,B ,C 且相互独立,A ,B ,C 至少有一次实验成功为事件D .则P (D )=1-P (A - B - C -)=1-P (A -)P (B -)P (C -)=1-15×14×13=5960.(2)X 的取值为0,10 000,30 000,60 000.则P (X =0)=15+45×15=925.P (X =10 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫14+34×14=725.P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫233-C 23⎝ ⎛⎭⎪⎫232×13=775. 或P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫133+23×⎝ ⎛⎭⎪⎫132+13×23×13=775. P (X =60 000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233+C 23⎝ ⎛⎭⎪⎫232×13=415.∴X 的分布列为X 0 10 000 30 000 60 000 P925725775415∴X 的数学期望是E (X )=0×925+10 000×725+30 000×775+60 000×415=21 600(元).1.(2015·湖北,4,易)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)1.C由正态分布密度曲线可得,μ1<μ2,σ1<σ2.结合正态曲线的概率的几何意义,对于A,∵μ1<μ2,∴P(Y≥μ2)<P(Y≥μ1);对于B,∵σ1<σ2,∴P(X≤σ2)>P(X≤σ1);对于C,D,结合图象可知,C正确.2.(2015·课标Ⅰ,4,中)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3122.A记A i={投中i次},其中i=1,2,3,B表示该同学通过测试,故P(B)=P(A2∪A3)=P(A2)+P(A3)=C23×0.62×0.4+C33×0.63=0.648.3.(2015·湖南,7,中)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则 P (μ-σ<X ≤μ+σ)=0.682 6, P (μ-2σ<X ≤μ+2σ)=0.954 4. A .2 386 B .2 718 C .3 413 D .4 7723.C 由于曲线C 为正态分布N (0,1)的密度曲线,则阴影部分面积为S =0.682 62=0.341 3,∴落入阴影部分的点的个数为 10 000×0.341 31=3 413.故选C.4.(2016·四川,12,易)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________. 4.【解析】 由题可知:在一次试验中成功的概率P =1-14=34,而该试验是一个2次的独立重复试验,成功次数X 服从二项分布X ~B ⎝⎛⎭⎪⎫2,34,∴E (X )=2×34=32. 【答案】 325.(2015·广东,13,中)已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =________.5.【解析】 由E (X )=np ,D (X )=np (1-p ),得⎩⎪⎨⎪⎧np =30,np (1-p )=20,解得p =13. 【答案】 136.(2012·课标全国,15,中)某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.6.【解析】 由题意知每个电子元件使用寿命超过1 000小时的概率均为12,元件1或元件2正常工作的概率为1-12×12=34,所以该部件的使用寿命超过1 000小时的概率为12×34=38.【答案】 387.(2013·山东,19,12分,中)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果相互独立. (1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分,求乙队得分X 的分布列及数学期望.7.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3, 由题意,各局比赛结果相互独立,故 P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827,P (A 3)=C 24⎝⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427.所以,甲队以3∶0胜利、以3∶1胜利的概率为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, P (X =1)=P (A 3)=427,P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=19, 故乙队得分X 的分布列为数学期望E (X )=0×1627+1×427+2×427+3×19=79.二项分布是一种重要的概率模型,在高考中经常出现,选择题、填空题、解答题都可能出现,解答题出现频率更高,一般会综合相互独立、互斥或对立事件等知识进行考查,难度中等.1(2014·辽宁,18,12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).【解析】(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能的取值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,所以X的分布列为X 0123P 0.0640.2880.4320.216因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.(1)读图→计算小矩形面积,得相应概率→利用独立事件的概率公式求解(2)确定X的所有可能值→运用n次独立重复试验计算公式,得相应概率→列出分布列→利用二项分布求出期望和方差(2012·天津,16,13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).解:依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4⎝⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231+C 44⎝ ⎛⎭⎪⎫134=19.所以这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781. 所以ξ的分布列为故E (ξ)=0×827+2×4081+4×1781=14881.n 次独立重复试验中事件A 恰好发生k 次的概率n 次独立重复试验中事件A 恰好发生k 次可看作是C k n 个互斥事件的和,其中每一个事件都可看作是k 个A 事件与n -k 个A -事件同时发生,只是发生的次序不同,其发生的概率都是p k (1-p )n -k .因此n 次独立重复试验中事件A 恰好发生k 次的概率为C k n p k (1-p )n -k .判断某随机变量是否服从二项分布的方法(1)在每一次试验中,事件发生的概率相同. (2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.正态分布及其应用在近几年新课标高考中时常出现,主要考查正态曲线的性质(特别是对称性),常以选择题、填空题的形式出现,难度较小;有时也会与概率与统计结合,在解答题中考查.2(1)(2015·辽宁十校联考,7)设两个正态分布N(μ1,σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数图象如图所示,则()A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2(2)(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74% 【解析】(1)由正态分布N(μ,σ2)的性质知,x=μ为正态分布密度函数图象的对称轴,故μ1<μ2;又σ越小,图象越高瘦,故σ1<σ2.(2)由正态分布的概率公式知P(-3<ξ<3)=68.26%,P(-6<ξ<6)=95.44%,故P(3<ξ<6)=12[] P(-6<ξ<6)-P(-3<ξ<3)=12(95.44%-68.26%)=13.59%.【答案】(1)A(2)B1.(2015·广东佛山一模,7)已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)=() A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 51.B由正态曲线性质知,其图象关于直线x=3对称,∴P(X>4)=1-P(2≤X≤4)2=0.5-12×0.682 6=0.158 7,故选B.2.(2016·江西八校联考,6)在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.22.B由题意得,P(80<ξ<100)=P(100<ξ<120)=0.4,P(0<ξ<100)=0.5,∴P(0<ξ<80)=0.1.,利用正态曲线的对称性求概率的方法(1)解题的关键是利用对称轴x=μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时,可借助图形判断.(2)对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:①对任意的a,有P(X<μ-a)=P(X>μ+a);②P(X<x0)=1-P(X≥x0);③P(a<X<b)=P(X<b)-P(X≤a).(3)对于特殊区间求概率一定要掌握服从N(μ,σ2)的随机变量X在三个特殊区间的取值概率,将所求问题向P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)转化,然后利用特定值求出相应概率.同时,要充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质.1.(2016·贵州八校联考,3)设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()A.1 B.5 3C.5 D.91.B因为P(ξ>a+2)=P(ξ<2a-3),所以由正态分布的对称性知,(a+2)+(2a-3)2=2,解得a=5 3.2.(2015·河南郑州二模,9)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是()A.49B.29C.429D.2272.A 由独立重复试验的概率公式,知所求概率P =C 13·⎝⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49. 3.(2015·福建福州模拟,5)已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.9773.C ∵μ=0,正态曲线关于μ=0对称, ∴P (ξ>2)=P (ξ<-2)=0.023,∴P (-2≤ξ≤2)=1-2×0.023=0.954,故选C.4.(2015·豫北六校联考,10)设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=454,则n 与p 的值分别为( ) A .60,34 B .60,14 C .50,34 D .50,144.B 由ξ~B (n ,p ),得E (ξ)=np =15,D (ξ)=np (1-p )=454,则p =14,n =60. 5.(2016·山西四校联考,14)设随机变量X ~N (3,σ2),若P (X >m )=0.3,则P (X >6-m )=________.5.【解析】 因为P (X >m )=0.3,X ~N (3,σ2),所以m >3,P (X <6-m )=P (X <3-(m -3))=P (X >m )=0.3,所以P (X >6-m )=1-P (X <6-m )=0.7. 【答案】 0.76.(2016·河北唐山一模,18,12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(1)若小王发放5元的红包2个,求甲恰得1个的概率;(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X (单位:元),求X 的分布列和期望.6.解:(1)设“甲恰得1个红包”为事件A ,则P (A )=C 12×13×23=49. (2)X 的所有可能取值为0,5,10,15,20. P (X =0)=⎝ ⎛⎭⎪⎫233=827,P (X =5)=C 12×13×⎝⎛⎭⎪⎫232=827,P (X =10)=⎝ ⎛⎭⎪⎫132×23+⎝ ⎛⎭⎪⎫232×13=627=29.P (X =15)=C 12×⎝⎛⎭⎪⎫132×23=427,P (X =20)=⎝ ⎛⎭⎪⎫133=127.所以X 的分布列为E (X )=0×827+5×827+10×29+15×427+20×127=203(元).7.(2016·江西南昌一模,18,12分)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2)(满分为100分),已知P (X <75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取三位同学.(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]各有一位同学的概率;(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.7.解:(1)P (80≤X <85)=P (75<X ≤80)=0.5-P (X ≤75)=0.2, P (85≤X <95)=0.5-0.2-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=C13×0.4×0.62=0.432,P(ξ=2)=C23×0.42×0.6=0.288,P(ξ=3)=0.43=0.064,所以随机变量ξ的分布列是ξ012 3P 0.2160.4320.2880.064 E(ξ)=3×0.4=1.2(人).1.(2013·广东,4,易)已知离散型随机变量X的分布列为X 12 3P 35310110则X 的数学期望E (X )=( ) A.32 B .2 C.52 D .31.A 由数学期望公式得E (X )=1×35+2×310+3×110=32.2.(2014·浙江,9,难)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中. (1)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(2)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2). 则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2) 2.A 随机变量ξ1,ξ2的分布列如下:所以E (ξ1)=n m +n +2m m +n =2m +nm +n, E (ξ2)=C 2n C 2m +n +2C 1m C 1n C 2m +n +3C 2mC 2m +n =3m +n m +n,所以E (ξ1)<E (ξ2).因为p 1=m m +n +n m +n ·12=2m +n 2(m +n ),p 2=C 2m C 2m +n +C 1m C 1n C 2m +n ·23+C 2nC 2m +n ·13=3m +n 3(m +n ),p 1-p 2=n 6(m +n )>0,所以p 1>p 2.思路点拨:列出随机变量ξ1,ξ2的分布列,计算期望值并比较大小;利用分步计数原理计算p1,p2并比较大小.3.(2014·浙江,12,易)随机变量ξ的取值为0,1,2,若P(ξ=0)=15,E(ξ)=1,则D(ξ)=________.3.【解析】设ξ=1时的概率为p,则E(ξ)=0×15+1×p+2×⎝⎛⎭⎪⎫1-p-15=1,解得p=35,故D(ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.【答案】2 54.(2016·课标Ⅰ,19,12分,中)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需要更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?4.解:由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.5.(2016·天津,16,13分,中)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.5.解:(1)由已知,得P (A )=C 13C 14+C 23C 210=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以,随机变量X 的分布列为随机变量X 的数学期望EX =0×415+1×715+2×415=1.6.(2016·山东,19,12分,中)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .6.解:(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件。

相关文档
最新文档