不锈钢的焊接工艺性及焊接工艺研究
给水用不锈钢管道焊接工艺及其性能的探讨
给水用不锈钢管道焊接工艺及其性能旳探讨自从上个世纪23年代不锈钢问世以来, 慢慢进入民用给水管道领域, 但当时都是厚壁不锈钢管, 采用丝接或焊接方式连接, 使得不锈钢管材料造价高, 因而限制了不锈钢管在民用建筑给水领域旳发展。
伴随不锈钢薄壁连接技术旳研发与应用, 越来越多旳薄壁不锈钢管已经开始作为给水材料。
一、仅仅用《国标》对不锈钢水管旳可靠性进行控制仍然是局限性旳。
由于《国标》中不能, 也不需要全面旳有效旳反应所有旳不锈钢管道加工旳关键工艺规定。
二、不锈钢水管和管件焊接加工有其特殊旳规定:如气体保护焊接、清除回火色、钝化、固溶处理等。
假如脱离了关键旳工艺规定, 不锈钢水管和管件旳可靠性将被大大地打了折扣。
三、薄壁不锈钢管道焊接工艺1.1.采用内外气体保护焊接(减少表面伤害)1.2.清除表面回火色等有害物质, 进行钝化工艺处理(表面回到钝化状态)1.3.采用固溶处理工艺, 改善焊缝内部材料组织构造(内部回到固溶状态)1.4、使用先进旳焊接工具, 脱离手工焊接保护气体气体保护盒1.2.1.回火色有什么危害:回火色实质上是一种氧化层。
有氧化层旳地方, 氧化膜就不能恢复, 回火色底下旳母金属中旳铬被损耗, 因此, 不锈钢耐腐蚀旳性能大幅度减少。
假如金属表面旳钝化膜不能恢复, 虽然母金属是耐腐蚀旳, 焊接接头也轻易出现腐蚀, 包括点腐蚀、缝隙腐蚀以及微生物腐蚀。
(微生物腐蚀往往发生在没有清除回火色旳焊缝处)。
1.2.2.回火色旳清理为了得到耐蚀性最佳旳不锈钢焊接接头, 缝隙、污染物, 至少所有比浅黄色深旳回火色必须采用机械清理进行清除, 然后进行酸洗。
在不能进行酸洗旳地方(诸如因环境旳原因), 当采用机械清理时, 经承包商同意, 可采用喷砂以及/尤其是研磨替代酸洗。
电清洗也可作为替代酸洗旳措施。
四、薄壁不锈钢管道焊接难点2.1.气体保护旳作用:在焊接过程中, 气体保护旳作用是防止不锈钢中旳铬和镍不被高温烧毁。
S32750双相不锈钢焊接工艺试验研究
S32750双相不锈钢焊接工艺试验研究一、引言双相不锈钢是一种性能优异的材料,被广泛应用于化工、海洋工程、石油和天然气工业等领域。
S32750双相不锈钢具有良好的耐腐蚀性和强度,因此在许多领域都有着重要的应用价值。
S32750双相不锈钢的焊接工艺一直是研究的热点之一,因为焊接过程中易产生焊接裂纹和热影响区软化等问题,严重影响了焊接接头的性能。
本文旨在通过焊接工艺试验研究,得出S32750双相不锈钢的最佳焊接工艺参数,提高焊接接头的质量和性能。
二、S32750双相不锈钢的特点及焊接工艺难点S32750双相不锈钢具有较高的强度和韧性,具有优异的耐蚀性和耐热性,因此在高温、高压、腐蚀性环境下有着广泛的应用。
S32750双相不锈钢的焊接工艺存在一些难点,主要包括以下几点:1. 焊接裂纹:在焊接S32750双相不锈钢时,容易出现热裂纹、固态相变裂纹和冷裂纹等裂纹缺陷,严重影响焊接接头的质量和性能。
2. 热影响区软化:S32750双相不锈钢在焊接过程中易产生热影响区软化现象,导致焊接接头的强度和韧性降低,影响其耐久性能。
3. 残余应力:焊接后会在焊接接头和热影响区产生残余应力,如果不能有效控制残余应力,容易导致焊接接头开裂或失效。
以上问题都需要通过合理的焊接工艺来解决,因此研究S32750双相不锈钢的最佳焊接工艺参数对提高焊接接头的质量和性能至关重要。
三、S32750双相不锈钢焊接工艺试验研究1. 实验材料和设备本次焊接工艺试验研究选用了S32750双相不锈钢板材作为实验材料,板厚为8mm。
实验设备主要包括氩弧焊接机、数控火焰切割机、电气万用表、焊接试验台等。
2. 实验方案本次实验通过正交试验设计,选取焊接电流、焊接电压、焊接速度、焊接气体流量等因素,建立不同水平的试验方案,共设计了16组试验方案。
采用金相显微镜、扫描电镜等测试设备对焊缝的组织结构、断口形貌等进行分析,同时进行力学性能测试,对焊接接头的强度和韧性进行评估。
12Cr13马氏体不锈钢的焊接工艺研究
12Cr13马氏体不锈钢的焊接工艺研究戚祥健(常州宝菱重工机械有限公司,江苏 常州 213019)摘 要:结合12Cr13马氏体不锈钢的焊接问题,本文对该种不锈钢的焊接工艺改善问题展开了研究。
从工艺试验结果来看,通过加强预热温度、电弧电压等参数的控制,得到的焊件力学性能较好,焊缝无任何缺陷,拥有较好内部质量,强度、塑性、韧性等均能满足产品使用要求。
关键词:12Cr13不锈钢;焊接工艺;马氏体中图分类号:TG457.11 文献标识码:A 文章编号:11-5004(2018)05-0156-2在生产实践中,12Cr13马氏体不锈钢的焊接性较差,需要采取科学的焊接工艺才能得到高质量产品。
因此,还应加强对12Cr13马氏体不锈钢的焊接工艺研究,以便更好的进行产品焊接。
1 12Cr13马氏体不锈钢的焊接问题12Cr13马氏体不锈钢在焊接的过程中将体现一定特性,关系到不锈钢的焊接质量。
从焊缝和热影响区常温组织表现形式来看,12Cr13不锈钢为马氏体组织,带有硬脆的特点,导热性较差,拥有较大的焊接残余应力。
在焊接接头刚度大或焊接过程氢含量高的情况下,容易导致氢致裂纹的产生。
而焊接后直接从高温冷却到100℃以下,也容易导致裂纹的产生。
分析焊接过程发生的相变可以发现,加热到奥氏体相区域的热影响区金属和熔池金属,在焊接后由奥氏体转变为马氏体。
而伴随着金属的凝固,会有铁素体产生,即马氏体的焊缝组织。
经过热加工轧制后,沿着轧制方向,马氏体和铁素体区域可以得到均匀有序排列。
在不受厚度方向拉力影响的情况下,应力可以得到均匀分布。
然而,焊缝中存在的铁素体则呈现出凌乱分布的特点,表面受到的应力导致应力集中于某个区域,继而引发了低应变断裂的产生[1]。
此外,受12Cr13马氏体不锈钢焊接性能差的影响,在不锈钢焊接冷却期间会出现面心立奥氏体向体心立方马氏体转变的情况,伴随着熔碳能力快速恶化和体积不断改变,导致不锈钢塑性降低而硬度增加,出现淬硬问题。
S32750双相不锈钢焊接工艺试验研究
S32750双相不锈钢焊接工艺试验研究【摘要】本文旨在研究S32750双相不锈钢的焊接工艺,通过对其特性和焊接工艺的分析来探讨最佳的焊接工艺参数。
首先对S32750双相不锈钢的特性进行了分析,然后对焊接工艺进行了深入探讨。
接着设计了焊接工艺试验,并对试验结果进行了详细分析。
最后对焊接接头的性能进行了评价。
结论部分提出了S32750双相不锈钢焊接工艺的优化建议,并对研究成果进行了总结。
通过本研究,可以为S32750双相不锈钢的焊接工艺提供参考,提高焊接接头的质量和性能。
【关键词】S32750双相不锈钢,焊接工艺,试验研究,特性分析,优化建议,焊接接头性能,研究成果总结1. 引言1.1 研究背景S32750双相不锈钢是一种具有优异耐腐蚀性能和高强度的材料,在石油化工、海洋工程、化工和食品加工等领域得到广泛应用。
S32750双相不锈钢的焊接工艺存在一定的难度和挑战,影响了其应用范围和性能表现。
针对这一问题,需要深入探讨S32750双相不锈钢的焊接工艺特点和优化方法,以提高焊接接头的质量和性能。
目前国内外对S32750双相不锈钢焊接工艺的研究仍较为有限,尚未形成系统的工艺规范和优化方案。
开展S32750双相不锈钢焊接工艺试验研究,探索适合其特性的焊接工艺参数和技术路线,具有重要的理论和实际意义。
本研究旨在通过系统实验,对S32750双相不锈钢的焊接工艺进行深入分析和研究,为该材料的应用提供可靠的焊接工艺支持和技术保障。
1.2 研究目的本次研究的目的是对S32750双相不锈钢焊接工艺进行试验研究,旨在探索最适合该材料的焊接方法,提高焊接接头的质量和性能。
通过对S32750双相不锈钢特性的分析和对焊接工艺的深入研究,我们旨在找到最佳的焊接参数和工艺,以确保焊接接头具有良好的强度、韧性和耐蚀性。
我们也希望通过本次研究为S32750双相不锈钢焊接工艺提供一定的参考和指导,为相关领域的工程实践提供支持。
通过本次试验研究,我们希望能够为S32750双相不锈钢焊接工艺的优化提供一些有力的建议,并总结出一些实用的成果,为相关领域的研究和生产工作提供有益的帮助和指导。
我国不锈钢焊接工艺研究现状及进展
我国不锈钢焊接工艺研究现状及进展
我国不锈钢焊接工艺的研究现状及进展如下:
1. 研究现状:
我国在不锈钢焊接工艺方面已经取得了一定的研究成果。
目前,我国的不锈钢焊接工艺已经涵盖了多种类型的不锈钢材料,包括奥氏体不锈钢、双相不锈钢、超级双相不锈钢等。
同时,我国的不锈钢焊接工艺也涵盖了多种焊接方法,如钨极氩弧焊、熔化极氩弧焊、激光焊等。
2. 进展:
近年来,我国在不锈钢焊接工艺方面取得了以下进展:
(1)激光焊接技术:激光功率密度达到2000W/mm2以上,可将不锈钢薄板压焊在一起,接头强度可与母材相媲美。
(2)激光-MIG复合焊接技术:该技术结合了激光功率密度高和MIG焊接熔化效率高的特点,实现了高效、高质量的不锈钢焊接。
(3)等离子焊接技术:等离子焊接是一种高效、高质量的焊接方法,可用于焊接各种类型的不锈钢材料。
(4)机器人焊接技术:随着机器人技术的不断发展,机器人焊接已经成为一种高效、高质量的焊接方法,可用于各种复杂形状的不锈钢结构件的焊接。
总之,我国在不锈钢焊接工艺方面已经取得了一定的研究成果和进展,但仍然需要不断改进和创新,以提高产品质量和生产
效率,降低成本。
S32750双相不锈钢焊接工艺试验研究
S32750双相不锈钢焊接工艺试验研究S32750双相不锈钢是一种具有优良耐蚀性和强度的不锈钢材料,广泛应用于化工、海洋工程、石油和天然气开采等领域。
由于其特殊的化学成分和组织结构,S32750双相不锈钢的焊接工艺一直是工程技术中的难点之一。
本文旨在通过对S32750双相不锈钢焊接工艺的试验研究,探讨其焊接特性、影响因素和优化方法,为工程实践提供参考。
一、S32750双相不锈钢的特性及应用S32750双相不锈钢是一种具有超高强度和耐蚀性的不锈钢材料,其主要成分包括铬、镍、钼、氮和铁等元素,具有较高的抗拉强度和良好的耐蚀性,广泛应用于化工设备、海洋工程、石油和天然气开采等领域。
二、S32750双相不锈钢焊接工艺的难点S32750双相不锈钢的焊接工艺一直是工程技术中的难点之一,主要表现在以下几个方面:1. 焊接变形和裂纹:S32750双相不锈钢具有较高的强度和硬度,容易在焊接过程中产生变形和裂纹。
2. 焊接气孔和夹杂:S32750双相不锈钢的氮含量较高,易在焊接过程中产生气孔和夹杂。
3. 金相组织不稳定:S32750双相不锈钢在焊接后易出现相变和析出相,影响焊缝和热影响区的性能。
三、S32750双相不锈钢焊接工艺试验研究为了解决S32750双相不锈钢焊接工艺中的难点,我们进行了一系列的焊接工艺试验研究,主要包括焊接材料的选择、焊接工艺参数的优化和焊接接头的设计等方面。
3. 焊接接头的设计针对S32750双相不锈钢的特性和难点,我们设计了不同类型的焊接接头结构,包括对接接头、搭接接头和角接头等。
通过对不同接头结构的试验比对,找到了适合S32750双相不锈钢的焊接接头结构。
四、S32750双相不锈钢焊接工艺试验研究的结果与分析通过焊接工艺试验研究,我们得到了一系列关于S32750双相不锈钢焊接工艺的重要结果和分析:1. 焊接材料的选择:选择了适合S32750双相不锈钢的焊接材料,包括焊条、焊丝和焊剂等。
304管焊接工艺
304管焊接工艺一、引言304不锈钢是一种常用的不锈钢材料,具有良好的耐腐蚀性、机械性能和加工性能,广泛应用于化工、食品、制药等领域。
在实际应用中,由于管道的连接需求,需要进行管焊接工艺。
本文将对304管焊接工艺进行全面详细、完整且深入的介绍。
二、304不锈钢管焊接方法304不锈钢管焊接主要有手工电弧焊、氩弧焊、等离子焊和激光焊等方法。
下面将对这几种方法进行详细介绍。
1. 手工电弧焊手工电弧焊是一种常见的焊接方法,适用于小型和简单的焊接工作。
它的原理是利用电弧加热和熔化焊条和工件,形成焊缝。
手工电弧焊的优点是设备简单、成本低,缺点是焊接质量相对较低,焊接速度较慢。
2. 氩弧焊氩弧焊是一种常用的焊接方法,适用于对焊接质量要求较高的场合。
氩弧焊使用惰性气体(如氩气)保护电弧和熔化焊条,避免氧气和其他杂质的侵入。
氩弧焊的优点是焊接质量高、焊缝美观,缺点是设备复杂、成本较高。
3. 等离子焊等离子焊是一种高能量密度焊接方法,适用于焊接较厚的不锈钢管。
等离子焊使用高频交流电产生等离子体,将焊条和工件加热至熔化状态。
等离子焊的优点是焊接速度快、焊缝质量高,缺点是设备复杂、成本高。
4. 激光焊激光焊是一种高精度、高效率的焊接方法,适用于对焊接质量和外观要求较高的场合。
激光焊使用激光束将焊条和工件加热至熔化状态,形成焊缝。
激光焊的优点是焊接速度快、焊缝质量高,缺点是设备复杂、成本极高。
三、304不锈钢管焊接工艺304不锈钢管焊接工艺包括焊接前的准备工作、焊接参数的选择和焊接过程的控制。
下面将对这些内容进行详细介绍。
1. 焊接前的准备工作焊接前的准备工作非常重要,可以保证焊接质量和工作安全。
准备工作包括清洁管道表面、刷除氧化皮、去除污染物等。
同时,还需要检查管道的尺寸和形状是否满足要求,确保焊接过程中的准确性和稳定性。
2. 焊接参数的选择焊接参数的选择对焊接质量起着决定性的作用。
焊接参数包括焊接电流、焊接电压、焊接速度等。
铁素体不锈钢和奥氏体不锈钢的焊接
铁素体不锈钢和奥氏体不锈钢的焊接一、引言铁素体不锈钢和奥氏体不锈钢是常用的两种不锈钢材料,它们具有不锈蚀性能好、耐热性能高等优点,因此在工业生产和日常生活中得到广泛应用。
然而,由于两种不锈钢材料的化学成分和晶体结构的差异,其焊接性能也存在差异。
本文将从焊接工艺、焊接性能以及焊接后的材料组织变化等方面进行探讨。
二、焊接工艺1. 铁素体不锈钢的焊接工艺铁素体不锈钢是一种以铁素体为基础的不锈钢材料,其焊接工艺相对简单。
常用的焊接方法包括手工电弧焊、氩弧焊和激光焊等。
在焊接过程中,应注意保持适当的焊接温度和焊接速度,避免产生过多的热影响区和晶间腐蚀敏感区。
2. 奥氏体不锈钢的焊接工艺奥氏体不锈钢是一种以奥氏体为基础的不锈钢材料,其焊接工艺相对复杂。
常用的焊接方法包括手工电弧焊、氩弧焊、等离子焊和激光焊等。
在焊接过程中,应注意控制焊接温度和焊接速度,避免产生过高的温度梯度和残余应力,以防止焊接接头发生变形和裂纹。
三、焊接性能1. 铁素体不锈钢的焊接性能铁素体不锈钢具有良好的可焊性,焊接接头强度高,焊缝的耐蚀性能也较好。
然而,由于焊接过程中产生的热影响区和晶间腐蚀敏感区的存在,焊接接头易受到应力腐蚀开裂的影响。
因此,在焊接铁素体不锈钢时,应选择适当的焊接材料和焊接工艺,以降低应力腐蚀开裂的风险。
2. 奥氏体不锈钢的焊接性能奥氏体不锈钢的焊接性能较铁素体不锈钢复杂,焊接接头容易产生裂纹和变形。
这是由于奥氏体不锈钢在焊接过程中容易形成固溶相和相分离现象,导致焊接接头的组织和性能发生变化。
为了解决这个问题,可以采用预热、后热处理等措施,以提高焊接接头的强度和耐腐蚀性能。
四、焊接后的材料组织变化1. 铁素体不锈钢的焊接后材料组织变化铁素体不锈钢在焊接后,焊缝区的晶体结构往往发生变化,由晶界凝固转变为晶内凝固。
焊缝中常常出现铁素体晶粒的增大和晶界的减少现象,这可能会影响焊接接头的力学性能和耐蚀性能。
2. 奥氏体不锈钢的焊接后材料组织变化奥氏体不锈钢在焊接后,焊缝区的组织变化较为复杂。
金属材焊接工艺不锈钢及焊接工艺.pptx
能力知识点1 不锈钢的类型
3.奥氏体不锈钢 室温组织为奥氏体,是在高铬不锈钢中加入适当的镍
(wNi为8%~25%)而形成的。 奥氏体不锈钢是以Cr18Ni9铁基合金为基础,在此基础上
随着用途的不同,发展了六大系列奥氏体不锈钢: 1)在0Cr18Ni9的基础上降低碳的质量分数,获得00 Cr19Ni10 等超低碳不锈钢,耐蚀性提高;在此基础上加入Mo、Cu、Ti, 获得00 Cr17Ni14Mo2、00 Cr18Ni14Mo2Cu2Ti等,抗还原性 酸的能力提高; 2)在0Cr18Ni9的基础上增加碳的质量分数,获得1Cr18Ni9等, 强度提高;
多元化高铬钢1Cr12MoWV 第5页/共104页
能力知识点1 不锈钢的类型
按组织分
奥氏体-铁素体双相不锈钢
第6页/共104页
能力知识点1 不锈钢的类型
1.铁素体不锈钢 室温组织为铁素体,铬的质量分数wCr在11.5
%~32.0%的范围内。随wCr增加,其耐酸性能提高; 加入钼后,则可以提高耐酸腐蚀性和抗应力腐蚀的能 力。
铬镍不锈钢:ωCr=12%~30%, ωNi=6%~12% 基本类型为Cr18Ni9
成
分
分 类
铬锰氮不锈钢:节镍型奥氏体不锈钢, 基本类型为1Cr18Mn8Ni5N
第4页/共104页
能力知识点1 不锈钢的类型
不锈钢:习惯含义,如高铬钢类1Cr13、 2Cr13
低碳超低碳铬镍钢1Cr18Ni9Ti、00Cr25Ni22Mo2
M不锈钢在退火状态下,硬度最低,可通过淬火硬化,正 常使用时回火状态的硬度又稍有下降。
F不锈钢的特点是常温塑性低。当在高温长时间加热时, 可能导致475℃脆化,σ脆性相产生或晶粒粗大等,使力学性 能进一步恶化。
奥氏体不锈钢焊接性分析与焊接工艺评定毕业论文
工业学院毕业设计(论文)题目0Cr18Ni9(304)奥氏体不锈钢焊接性分析与焊接工艺评定系别材料工程系专业焊接技术与自动化班级焊接技术与自动化11-2姓名何旺学号3指导教师(职称)胡春霞讲师日期 2014年3月工业学院毕业设计(论文)任务书材料工程系2014届焊接技术与自动化专业毕业设计(论文)任务书注:本任务书要求一式两份,一份系部留存,一份报教务处实践教学科。
摘要钢是我们现代社会中不可缺少的一种材料,它可以看作一个国家工业化水平的标志。
钢的产量越高就代表这个国家的工业化水平越高。
不锈钢是钢中非常重要的的一种,由于不锈钢具有特殊的使用性能和力学性能,在现代的各行各业中已经被越来越多的使用。
在不锈钢中奥氏体不锈钢又是其中非常重要的一种,在发达国家每年消耗的的钢有70%的是不锈钢,在我国也达到了65%左右。
因此开发和使用好奥氏体不锈钢对我国的工业化来说越来越重要了。
0Cr18Ni9就是奥氏体不锈钢,我做的这个课题就是探讨0Cr18Ni9在低温贮罐制造中的性能。
低温贮罐是用来储存液N液Ar液态的CO2等低温液体的容器,液态介质中的特殊性能就决定了制造材料需要特殊性能,而奥氏体不锈钢0Cr18Ni9就具有这样的性能。
低温贮罐在现代生活、生产中使用已越来越广泛,因此对0Cr18Ni9的探讨就显得越来越重要。
在这篇论文中我会着重为大家阐述0Cr18Ni9在低温压力容器制造中的焊接性能、力学性能、使用性能和焊接工艺。
在这篇论文中我会通过一个焊接性试验来探讨0Cr18Ni9在低温压力容器中的各项性能我的这个实验就是规格为8×50×100mm的两块0Cr18Ni9板水平对接焊接方法就是手工电弧焊。
针对这个实验做出完确的焊接工艺评定,并且根据评定要求对试样做相应的无损检验和力学性能的试验,从而来判定0Cr18Ni9的各项性能。
关键词:焊接性能 ;力学性能 ;使用性能 ;焊接工艺AbstractSteel our modern society is indispensable to a material,it can be seen as a sign of the level of industrialized countries.The higher the output of steel on behalf of this country the higher the level of industrialization .Stainless steel is a very important one,because of the use of stainless steel with special performance and mechanical properties,in all walks of life in the present have been increasingly used.Austenitic stainless steel in the stainless steel is a very important one,in the developed world consumption of stainless annually in 70% of the stainless steel is,I have also reached about percent.Thus the development and use of austenitic stainless steel good to me over the words of the the industry has become increasingly important.0Cr18Ni9 is austenitic stainless steel,I do on this subject is 0Cr18Ni9 in low-temperature storge tank manufacturer in the performance.Cryogenic storge tank is used to storge liquid N liquid Ar of liquid CO2 and other low-temperature liquid containers,liquid medium decision on the special properties of the material needs of a special performance and austenitic stainless steel 0Cr18Ni9 on with this performance.Cryogenic storge tank in the present life,has been used in the production of more extensive,therefore 0Cr18Ni9 of it is becoming increasingly important.In this paper I will focus on as we set out in the cold 0Cr18Ni9 pressure vessel manufacture of welding performance,mechanical properties,the use of performance and welding technology.In this paper I will pass a welding test to explore 0Cr18Ni9 in low-temperature pressure vessel in the performance.This is my test specifications for the 8×50×100mm two 0Cr18Ni9 pull the butt welding method is the level of manual are welding.For the pilot to complete the welding technology assessment and assessed in accordance with the requirements of the design accordingly mechanical properties of non-destructive testing and inspection,to determine 0Cr18Ni9 the performance.Key word: Welding performance ;Mechanics performance ;Welding craft Operational performance目录1、绪论01.1 奥氏体不锈钢化学成分01.2奥氏体不锈钢的性能21.2.1奥氏体不锈钢的物理性能 (2)1.2.2奥氏体不锈钢的化学性能 (3)1.2.3奥氏体不锈钢的腐蚀性能 (4)1.3奥氏体不锈钢的焊接性61.3.1焊接热裂纹 (6)1.3.2焊接接头的晶间腐蚀 (8)1.3.3应力腐蚀开裂 (11)1.4奥氏体不锈钢的焊接 (12)1.4.1奥氏体不锈钢的焊接工艺 (12)1.4.2焊接顺序 (13)2、实验过程142.1 实验材料与工艺设备142.2实验方案与检测方法162.3金相实验 (17)2.4金相组织分析 (22)结论 (25)致 (26)参考文献 (27)英文文献 (27)1、绪论在金属加工工艺领域中,焊接属于连接方法之一。
不锈钢薄板焊接方法及工艺设计
不锈钢薄板焊接方法及工艺设计一、不锈钢薄板焊接方法1.电弧焊接法:电弧焊接是一种常用的不锈钢薄板焊接方法。
通过放电产生弧光,将两个焊件连接在一起。
对于不锈钢薄板的焊接,一般采用手工电弧焊、埋弧焊和氩弧焊等方法。
2.气体焊接法:气体焊接也是一种常用的不锈钢薄板焊接方法。
其中,氧乙炔焊接是一种常用的气体焊接方法。
氧乙炔焊接的原理是通过气体燃烧产生高温火焰,使工件熔化并进行连接。
3.激光焊接法:激光焊接是一种高精度的不锈钢薄板焊接方法。
利用激光束对焊接接头进行高热能的照射,使焊接接头快速熔化并连接在一起。
激光焊接可以实现高速、高精度的焊接,适用于对焊接质量要求较高的场合。
4.点焊法:点焊是一种不锈钢薄板焊接方法。
利用电流通过两个电极,将焊件间的接触面加热至熔化。
点焊适用于不锈钢薄板的小面积焊接。
二、不锈钢薄板焊接工艺设计1.材料选择:根据实际应用需求选择合适的不锈钢薄板材料。
常用的不锈钢薄板材料有304、316等。
在选择材料时,需要考虑不锈钢的耐腐蚀性能、强度和韧性等因素。
2.清洁处理:对焊接接头进行清洁处理,去除表面的氧化物和污物,以提高焊接接头的质量。
3.设计焊接接头形式:根据不同的应用需求,设计合适的焊接接头形式。
常见的接头形式有对接接头、搭接接头、角接头等。
4.冷却措施:为了避免焊接时产生过大的热影响区和变形,可以采取适当的冷却措施。
比如,可以在焊接接头附近放置冷却器进行冷却,以减少热变形。
5.焊接参数选择:根据材料的厚度、焊接接头形式等因素,选择合适的焊接参数。
焊接参数包括焊接电流、电压、焊接速度等。
6.检测和评价:焊接完成后,需要进行焊接接头的检测和评价。
常用的检测方法有目视检查、涡流检测、X射线检测等。
以上是关于不锈钢薄板焊接方法及工艺设计的详细介绍。
在进行不锈钢薄板焊接时,需要注意材料选择、清洁处理、冷却措施等因素,并选择合适的焊接方法和参数。
只有合理设计和正确操作,才能保证焊接接头的质量和稳定性。
T4003铁素体不锈钢T形接头MAG焊工艺研究
T4003铁素体不锈钢T形接头MAG焊工艺研究T4003铁素体不锈钢是一种低碳铁素体不锈钢,具有良好的耐腐蚀性能、焊接性能和机械性能,广泛应用于化工、石化、制药、食品等领域。
本文主要研究T4003铁素体不锈钢T形接头的MAG焊接工艺。
一、研究材料及其性能1.材料成分及物理性能T4003铁素体不锈钢的化学成分为:C≤0.03,Si≤1.00,Mn≤1.00,P≤0.035,S≤0.030,Cr为11.5~14.5,Ni为0.50~1.50,其余为铁和杂质。
其密度为7.9g/cm3,线膨胀系数为(0~100℃)14.7×10-6/K,导热系数为15.2W/(m·K),电阻率为0.73Ω·mm2/m。
2.性能测试及评价采用电子万能试验机测试焊接接头的拉伸强度和延伸率,采用金相显微镜观察焊缝的组织结构,并采用扫描电镜分析其裂纹形貌和金属间化合物的形态和分布。
二、MAG焊接工艺参数设计1.设备选择推荐采用普及型MAG焊接设备,具有稳定的电弧、优良的焊缝外观和高效率的焊接效果。
2.焊接枪选型选择CO2/MAG焊接枪,有较好的适应性、大电压调整范围、电流输出稳定性高等优点。
3.气体保护选择Ar+CO2混合气体进行保护,比例为80%Ar+20%CO2,Ar气体用于保护焊接区域,CO2气体可提高弧稳定性和焊缝外观。
4.焊接电流根据板厚大小和焊接要求选择合适的焊接电流,一般在100~200A之间。
同时,焊缝厚度较大时可采用多道焊接,焊道之间需做好间隔控制。
5.焊接速度焊接速度过快会导致焊缝韧性降低,过慢则会影响焊接效率。
根据板厚和焊缝尺寸选择适当的焊接速度,一般在15~30cm/min之间。
三、焊接试验及评价进行了一系列的MAG焊接试验,通过金相显微镜观察焊缝的组织结构,拉伸试验和扫描电镜分析焊接接头的开裂原因,评价MAG焊接工艺的可行性和焊接接头的性能。
1.试验结果通过试验发现,MAG焊接工艺可以得到良好的焊接接头,焊缝牢固,外观美观。
12cr13马氏体不锈钢的焊接工艺
12cr13马氏体不锈钢的焊接工艺12Cr13马氏体不锈钢是一种常用的不锈钢材料,广泛应用于制造机械设备、化工设备、船舶、汽车等领域。
然而,由于其焊接性能不稳定,导致在焊接过程中易产生裂纹、变形等问题,影响焊接质量。
因此,研究12Cr13马氏体不锈钢的焊接工艺具有重要意义。
一、12Cr13马氏体不锈钢的特性及应用12Cr13马氏体不锈钢是一种低碳铬不锈钢,其化学成分为C≤0.15,Cr:12.0-14.0,Ni≤1.0,Si≤1.0,Mn≤1.0,S≤0.030,P ≤0.035。
该材料具有较高的硬度、耐磨性和抗腐蚀性能,同时具有较好的可加工性和热处理性能,广泛应用于制造机械设备、化工设备、船舶、汽车等领域。
二、12Cr13马氏体不锈钢的焊接工艺12Cr13马氏体不锈钢的焊接工艺主要包括手工电弧焊、氩弧焊、等离子焊、激光焊等。
其中,氩弧焊是最常用的焊接工艺之一。
1.手工电弧焊手工电弧焊是最基本的焊接方法之一,适用于焊接不锈钢薄板和小型构件。
但是,由于手工电弧焊的热输入较大,易导致焊缝变形、裂纹等问题,因此不适用于对焊接质量要求较高的场合。
2.氩弧焊氩弧焊是一种低热输入、高质量的焊接方法,适用于焊接不锈钢厚板和大型构件。
在氩弧焊中,氩气作为保护气体,可以有效保护焊缝不受氧化和污染。
此外,氩弧焊还可以采用交流或直流电源,根据不同的焊接要求进行选择。
3.等离子焊等离子焊是一种高能量密度的焊接方法,适用于焊接不锈钢薄板和小型构件。
在等离子焊中,等离子体作为热源,可以快速加热并融化焊接材料,从而实现高质量的焊接效果。
但是,等离子焊的设备成本较高,适用范围较窄。
4.激光焊激光焊是一种高能量密度、高精度的焊接方法,适用于焊接不锈钢薄板和小型构件。
在激光焊中,激光束作为热源,可以快速加热并融化焊接材料,从而实现高精度、高质量的焊接效果。
但是,激光焊的设备成本较高,适用范围较窄。
三、12Cr13马氏体不锈钢的焊接注意事项在焊接12Cr13马氏体不锈钢时,需要注意以下几点:1.选择合适的焊接方法和焊接参数,避免热输入过大或过小,以免影响焊接质量。
关于超级304(不锈钢)焊接工艺研究
关于超级 304(不锈钢)焊接工艺研究摘要:超级不锈钢焊接的时候,由于焊接过程受到多种因素的影响,对不锈钢的使用造成很大影响。
在这种情况下,笔者分析了不锈钢焊接过程中存在的问题,同时针对当前的焊接工艺,分别进行简要分析,阐述不锈钢焊接在当前的发展现状。
立足时代发展的基础上,笔者还分析了304不锈钢焊接工艺未来的发展状况。
从当前实际情况来看,304不锈钢的焊接工艺有氩弧焊、等离子弧焊等。
关键词:超级不锈钢;焊接工艺;焊接质量;发展超级不锈钢有优良的品质,如耐腐蚀性、耐热性、生物相容性等,在生活生产的各个方面都有详细的运用。
不锈钢还运用在石油化工、船舶、核能、食品机械等各个行业内,除了耐腐蚀优点之外,还可以在低温状态下具备良好的韧性。
但是不锈钢在使用过程中出现导热系数小、线胀系数大等特征,导致在焊接的时候存在残余应力,在焊接接头位置有腐蚀和析出脆化等现象。
1.不锈钢焊接的研究现状国内针对304不锈钢焊接方面的问题进行了大量研究,但是我国属于发展中国家,工业发展和发达国家相比还有差距。
不锈钢焊接质量的研究和国外相比也属于落后状态,在不锈钢焊接结构中接头处出现腐蚀和析出脆化现象,不仅仅影响了不锈钢构件的安全使用,严重的情况下还会造成巨大损失。
究其本质与焊接质量有直接的关系。
焊接性是指同质材料或者是异质材料在工艺的运用下焊接成完整接头,满足某个结构件或者是工业领域的运用,达到预器的要求。
这个原理包含了两个方面,首先是材料的结合性能,材料在焊接的时候会形成焊接的敏感性;其次是使用性能,在一定条件下满足实用功能[1]。
不锈钢具有良好的使用功能,焊接的最终质量与多种杂质、元素含量有直接的关系。
2.不锈钢焊接的特质分析2.1腐蚀不锈钢存在的腐蚀主要包括两种,其一,晶间腐蚀,这种腐蚀是焊接接头在特定的腐蚀介质中,在有晶粒存在的边界发生的腐蚀现象。
一般情况下认为腐蚀机理是贫铬。
不锈钢接头的焊缝位置、热影响敏化区域两个位置很容易发生晶间腐蚀现象,出现晶间腐蚀现象的接头和晶粒之间已经失去了联系,在遭受应力的时候,接头完全失去强度,这种现象会造成不锈钢结构件突发性的破坏,给人们造成难以预料的灾难。
不锈钢焊接工艺技术要点及焊接工艺规程
不锈钢焊接工艺技术要点及焊接工艺规程
一、不锈钢焊接工艺技术要点:
1.熟悉基本焊接原理:包括电弧高温、金属熔融、气体保护等。
2.熟悉不锈钢材料特性:不锈钢具有高温氧化、腐蚀抗性好的特点,需要注意熔敏性和热应力等问题。
3.选择合适的焊接方法:包括TIG焊、MIG焊、电弧焊等,根据实际需求选择最合适的焊接方法。
4.控制合适的焊接参数:包括电流、电压、焊接速度等,根据材料厚度和焊缝要求等,确定最佳的焊接参数。
5.执行严格的质量检测:焊后需要进行非破坏性和破坏性检测,包括外观检查、尺寸检查、金相组织检查等。
二、不锈钢焊接工艺规程:
1.准备工作:清理焊接区域,去除油脂、灰尘等杂质,确保焊缝区域干净。
2.选择焊接材料:根据实际要求选择合适的焊丝、焊材,确保焊接质量。
3.确定焊接位置:根据焊缝要求,确定焊接位置、角度和距离。
4.调试焊机:根据焊接参数表,调整焊机电流、电压、焊接速度等参数。
5.进行试焊:根据实际情况进行试焊,根据试纸判断焊缝质量。
6.开始焊接:根据试焊结果,调整焊接参数,开始进行正式焊接。
7.完成焊接后,进行必要的质量检测:包括外观检查、尺寸测量、金
相组织分析等。
8.对焊接缺陷进行修补:如有焊接缺陷,进行修补,确保焊缝质量。
9.进行焊后热处理:对焊缝进行焊后热处理,消除焊接应力,提高焊
缝强度。
10.预防焊接变色:在焊接结束后,及时进行焊接变色的清理和处理,避免影响美观和耐腐蚀性。
11.形成完整的焊接记录:包括焊接工艺规程、焊接参数记录、检测
报告等文件,方便后续质量追溯。
不锈钢管焊接工艺及检验
不锈钢管焊接工艺及检验一、引言不锈钢管是一种广泛应用于工业领域的管材,其焊接工艺及检验对于保证管道质量和安全具有重要意义。
本文将从焊接工艺和检验两个方面进行介绍和分析。
二、不锈钢管焊接工艺1. 焊接方法不锈钢管的焊接方法主要包括手工电弧焊、氩弧焊和等离子焊。
其中,手工电弧焊是常用的焊接方法,适用于小口径、低压力的管道焊接;氩弧焊适用于对焊缝质量要求较高的场合;等离子焊适用于大口径、厚壁不锈钢管的焊接。
2. 焊接参数在不锈钢管的焊接过程中,焊接参数的选择对于焊缝质量具有重要影响。
焊接参数包括焊接电压、电流、焊接速度等。
合理选择焊接参数可以保证焊接质量,避免焊接缺陷的产生。
3. 焊接材料不锈钢管的焊接材料通常是与管材相同或相似的不锈钢焊条。
选择合适的焊接材料可以保证焊缝的耐腐蚀性和力学性能与管材一致。
4. 焊接工艺控制在不锈钢管的焊接过程中,需要控制好工艺参数,避免焊接缺陷的产生。
例如,在焊接过程中要控制好焊接电流、焊接速度和焊接温度,避免过热或过冷引起的焊接缺陷。
三、不锈钢管焊接检验1. 可视检验可视检验是不锈钢管焊接工艺中常用的一种检验方法。
通过对焊缝外观的观察,可以判断焊缝是否存在裂纹、气孔、夹渣等缺陷。
2. 射线检测射线检测是一种常用的无损检测方法,可以用于检测不锈钢管焊缝内部的缺陷。
通过将射线通过焊缝,利用射线的吸收和散射情况来判断焊缝是否存在缺陷。
3. 超声波检测超声波检测是一种常用的无损检测方法,可以用于检测不锈钢管焊缝的内部和表面缺陷。
通过超声波的传播和反射情况来判断焊缝是否存在缺陷。
4. 磁粉检测磁粉检测是一种常用的表面缺陷检测方法,适用于检测不锈钢管焊缝表面的裂纹、夹渣等缺陷。
通过在焊缝表面涂上磁粉,利用磁粉的吸附和聚集情况来判断焊缝是否存在缺陷。
四、结论不锈钢管的焊接工艺及检验对于保证管道质量和安全具有重要意义。
合理选择焊接方法、控制焊接参数和选择合适的焊接材料可以保证焊接质量;可视检验、射线检测、超声波检测和磁粉检测是常用的焊接检验方法,可以有效地检测焊缝的质量和缺陷。
不锈钢焊接工艺介绍
不锈钢焊接工艺介绍目前,不锈钢焊接已成为现代制造业中非常重要的焊接方法之一、不锈钢具有抗腐蚀性能较强、机械强度高等优点,因此被广泛应用于船舶、化工、食品加工、医疗设备等领域。
为了确保焊接接头的质量和性能,需要选择合适的焊接工艺和参数。
本篇文章将介绍不锈钢焊接的工艺及其特点。
1.TIG焊接工艺TIG焊接是一种常用的不锈钢焊接技术,其特点是熔化金属池由非消耗型钨电极提供热能,焊接过程中不添加填充材料。
TIG焊接适用于焊接薄板和薄壁管材,能够焊接各种不锈钢单面焊缝和双面焊缝。
TIG焊接的优点是焊缝成型美观,气体保护下对焊缝金属污染小,焊缝质量高。
但TIG焊接的工艺复杂,技术要求高,操作难度大。
2.MIG焊接工艺MIG焊接是一种半自动或全自动的不锈钢焊接技术,其特点是通过电弧熔化金属池,并用惰性气体或混合气体保护焊缝。
MIG焊接的优点是焊接速度快,操作简单,能够焊接较厚的不锈钢板材。
3.纤维激光焊接工艺纤维激光焊接是一种新型的不锈钢焊接工艺,其特点是通过高能密度的激光束直接熔化金属材料。
纤维激光焊接的优点是焊接速度快、热影响区小,适用于焊接较薄的不锈钢板材。
4.电弧焊工艺电弧焊是一种传统的不锈钢焊接技术,其特点是使用电弧将两个待焊接的金属件熔化并形成焊缝。
电弧焊适用于修补较大的焊缝和进行长时间的连续焊接。
尽管电弧焊成本较低,设备简单,但焊缝质量相对较低,气体保护不够完全,易受环境氧气污染。
总结:以上介绍了几种常用的不锈钢焊接工艺,包括TIG焊接、MIG 焊接、纤维激光焊接和电弧焊。
每种工艺都有其独特的特点和适用范围,需要根据具体焊接要求选择适当的工艺及参数。
在实际操作中,需要注意焊接设备和气体保护的选择,熟练掌握焊接技术,才能确保焊接接头的质量和性能。
不锈钢的焊接工艺性及焊接工艺
发展绿色焊接工艺,减少对环境的负面影响。例如,采用无 害的钎料、减少废弃物的产生、回收利用废料等措施,推动 不锈钢焊接工艺的可持续发展。
感谢您的观看
THANKS
电子束焊接技术具有高能量密度、深穿透力等优点,适合于不锈钢等高熔点材料的焊接。 通过优化工艺参数,可以获得优质的焊接接头。
加强不锈钢焊接工艺的环保和可持续发展
减少污染排放
不锈钢焊接过程中会产生烟尘、废气等污染物,对环境和工 人健康产生影响。因此,需要采取有效的污染防治措施,例 如使用烟尘处理设备、环保焊丝等,减少污染排放。
汽车工业
汽车工业中,不锈钢焊接 工艺在制造油箱、水箱等 汽车配件中也有广泛应用 。
航空航天
航空航天领域中,不锈钢 焊接工艺在制造各种容器 和管道系统中都有广泛应 用。
05
不锈钢焊接工艺的发展趋 势与展望
提高焊接效率和降低成本的需求
01 02
自动化与机器人焊接
随着技术的发展,越来越多的不锈钢焊接过程开始采用自动化和机器人 焊接技术,以提高生产效率,减少人工操作成本,并确保焊接质量的稳 定性。
随着不锈钢材料的不断发展,新型的不锈钢焊接材料也不断涌现。这些新型材料具有更好 的焊接性能和更高的耐腐蚀性,能够满足不同环境和用途的需求。
激光焊接技术
激光焊接技术以其高效、高质量的焊接特点,在不锈钢焊接中得到广泛应用。通过选择合 适的激光功率和扫描速度,可以获得良好的焊缝成型和高的接头强度。
电子束焊接技术
02
不锈钢的焊接工艺性
焊接工艺性的概念及影响因素
01
焊接工艺性是指材料在焊接过程中及焊后冷却后,其组织和性 能是否满足要求的能力。
02
不锈钢的焊接工艺性受到多个因素的影响,包括化学成分、熔
不锈钢tig焊工艺实验报告
不锈钢tig焊工艺实验报告
实验目的:研究不锈钢TIG焊接工艺参数对焊接质量的影响。
实验步骤:
1.选择不锈钢作为焊接材料,准备相应的焊接设备和工具。
2.根据焊接材料的规格选择适当的工艺参数,包括电极直径、电流、焊速等。
3.通过试验对比不同工艺参数下的焊接质量,比较焊缝的外观、尺寸、硬度、耐腐蚀性能等指标。
实验结果:
经过试验,得出以下结论:
1.不同工艺参数下,焊缝外观呈现出不同的质量,一般而言电流增大会使焊缝宽度变宽,而焊速增大则会让焊缝形成狭长形。
2.对于不锈钢材料而言,焊接质量受到焊缝的形状和尺寸以及硬度等因素的影响,不可忽视。
3.选用适当的工艺参数可以提高焊缝的稳定性和焊接效率,同时也能够提升焊缝的质量。
总之,通过实验可以得出不同工艺参数对不锈钢TIG焊的影响规律和最佳参数组合,为实际工程应用提供参考。
s22053双相不锈钢焊接性及焊接技术研究
2.4
8
8-12
10-15
10.2
鹄极气体保护焊厚度:12mm板对接立焊
DC EN
2.4
8
8-12
10-15
12.3
DC EN
2.4
8
8-12
10-15
10.2
DC EN
2.4
8
8-12
10-15
10.2
DC EN
2.4
8
8-12
10-15
10.2
DC EN
2.4
8
8-12
10-15
10.2
曲试验、低温冲击等试验,各项试验指标都达到了技术条件
0.49
1.08
0.002
0.024
22.25
5.74
3.16
0.15
0.05
/
ER2209
0.023
0.47
1.50
0.001
0.022
23.05
8.50
3.00
0.165
0.16
/
E2209 - 15
0.032
0.27
1.20
0.005
0.023
22.68
8.68
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 绪论随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。
为此,冶金工作者进行了大量研究,研制出奥氏体—铁素体型不锈钢,即双相不锈钢。
传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。
双相不锈钢是近二十年来开发的新钢种。
通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50%,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。
所谓双相不锈钢是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。
在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。
有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。
该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。
与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。
双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。
由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。
上世纪30年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、Uranus50等),但是双相不锈钢真正产业化还是在上世纪60年代以后,其发展经历了3代历程。
1.1 我国双相不锈钢的应用双相不锈钢是根据石油化工中强酸强碱造成的局部点蚀、应力腐蚀以及孔穴式腐蚀现象,一般不锈钢难以胜任的容器、管道以及零部件等而研制的,但由于双相不锈钢除具有很强的各类抗腐蚀性能之外,还具有很好的强度和韧性,为此,在一般民用工程和能源交通方面也逐步得到越来越多的应用,如桥梁、飞机、船舶、汽车以及沿海城市和化工区的装饰建筑等。
1.1.1石油和天然气工业这是国外应用双相不锈钢的主要领域之一,目前铺设的油气输送管线已有1000km。
国内只有南海油田少量使用,全部进口。
另外,西气东输工程西起塔里木盆地的集气管线考虑要用双相不锈钢焊管,国内已有条件生产和制造。
炼油工业是最早使用国产双相不锈钢的部门,在XX,镇海,XX,XX等炼化公司多集中用在常减压蒸馏塔的塔顶衬里(或复合板)、塔内构件、空冷器和水冷器等,最长的已使用20年。
镇海炼化公司是我国最大的炼油基地,加工能力为1600万t,进入世界百强,冷凝冷却系统中多套设备使用双相不锈钢。
这一领域涉及的X围很宽,工况情况复杂,介质多种多样,也是使用双相不锈钢较早和较多的领域。
甲醇是重要的能源化工原料,2002年国内产量210万t,进口量与此相当,国产缺口很大,当然也有少量(数千吨)出口韩国,目前20万t的大型和多套10万t以下的中小型的甲醇合成反应器的触媒管都是采用双相不锈钢,大中型装置采用2205钢管,使用进口管较多,小型装置多采用18-5Mo型国产钢管。
齐鲁石化公司氯乙烯装置的氧氯化反应器中的冷却蛇管的介质条件(HCI,水蒸气)苛刻,目前已使用进口的2205双相不锈钢,使用结果有待观察。
XX石化公司乙烯装置的催化剂再生冷却器采用国产类似DP3钢的00C25Ni7Mo3WCuN双相不锈钢做海水冷却器管,海水出口温度40℃,至今已间歇使用15年,效果很好。
XX煤化工厂的粉煤气化装置的数台冷却器都是采用进口2205钢管制造。
1.1.2 化肥工业尿素工业也是最早使用国产双相不锈钢的部门,装置中含氯离子水的换热设备使用得较多,例如尿素装置中CO2压缩机三段冷却器原使用304L奥氏体不锈钢管束,l个月后即因应力腐蚀破裂而泄漏,双相不锈钢可用5年以上,随后一、二段冷却器也都换用了18-5Mo或2205双相不锈钢。
由于双相不锈钢在尿素介质中有良好的抗腐蚀疲劳性能,很适合制造尿素生产的关键设备——甲按泵泵体。
国产的00Cr25Ni6Mo2N钢可以通过Huey法的晶间腐蚀倾向检验,己用于XX化肥厂、洞庭氮肥厂(五柱塞式)等大型化肥厂。
国内中小化肥厂的甲按泵泵体基本上采用18-5Mo钢制造,也有数十家采用的是高铬含铅双相不锈钢。
此外这种钢的泵阀锻件通过了日本JIS G0573、G0591硝酸法和硫酸法的检验,批量出口日本,价格要比日本当地生产的便宜。
此外,采用国产OCr25Ni6Mo3CuN时效强化双相不锈钢,利用其耐磨损腐蚀性能,用于尿素装置主工艺管路多种规格的高压截止阀的内件等,效果不错。
1.1.3 运输业最近几年海上化学品运输船行业是国外最大的双相不锈钢用户,消费量约占热轧板的50%。
化学品船装载的液体货物多种多样,包括化学和石化产品,食品等,要求船舱材料既能耐腐蚀,又有高的强度。
如今2205双相不锈钢已代替316L 和317L奥氏体不锈钢,成为海上化学品船的标准用材。
国内在这方面刚刚起步,中国长江航运集团青山船厂采用欧洲建造标准,使用进口的2205钢板,自行制造成功第一艘18500t化学品船,钢板消耗量约1200t,己出口比利时。
实现了我国用双相不锈钢建造化学品船零的突破,该厂已形成规模生产能力。
1.1.4 造纸和制盐轻工业由于双相不锈钢在中性氯化物溶液中有较好的耐孔蚀和缝隙腐蚀的能力,利用这一特点,国内开发了该钢在真空制盐和盐硝联产装置上的应用,20万-30万t 制盐厂的大型盐水和芒硝蒸发罐采用了双相不锈钢的衬里和复合板,解决了设备结盐垢和腐蚀问题,最长的已有10年的使用历史。
双相不锈钢用于大型真空制盐装置,国内已有成熟的经验。
在制纸浆和造纸业领域,国内几乎是空白,硫酸盐蒸煮法仍多采用低碳钢制造的蒸煮锅,而国外早已普及使用双相不锈钢的蒸煮、漂白等设备,目前国内也有引进,但数量极少。
综上所述,可以看出国内双相不锈钢的使用是有一定局限性的,像国外大量使用双相不锈钢的诸如纸浆和造纸工业、油气工业、运输业、甚至建筑业几个大的领域我们涉及得不多,有的还只是刚刚开始。
根据国情,利用双相不锈钢的性能优势,今后除继续扩大在化工和石化等领域的应用外,结合纸浆和造纸工业的技术改造需要开发在这一领域中的应用,至于油气管线目前很难推广,双相不锈钢的价格是太高了但是制造有关油气田需要的耐氯离子和硫化氢的装置像集气管线和换热设备等还是可以采用双相不锈钢,甚至超级双相不锈钢的。
海上运输业的发展,化学品船制造业方兴未艾,需要大量大X的钢板,这一缺口有待填平补齐。
至于在建筑业方面的应用,至今还完全未涉及,其实滨海的城市雕塑景观和开发2304钢用于民用热水器方面完全可代替304和316奥氏体不锈钢。
1.2双相不锈钢的优势及应用1.2.1 与奥氏体不锈钢相比,双相不锈钢的优势如下:1)屈服强度比普通奥氏体不锈钢高一倍多,且具有成型需要的足够的塑韧性。
采用双相不锈钢制造储罐或压力容器的壁厚要比常用的奥氏体减少30-50%,有利于降低成本。
表1-2部分双相不锈钢的牌号及化学成分(质量分数%)2)具有优异的耐应力腐蚀破裂的能力,即使是含合金量最低的双相不锈钢也有比奥氏体不锈钢更高的耐应力腐蚀破裂的能力,尤其在含氯离子的环境中。
应力腐蚀是普通奥氏体不锈钢难以解决的突出问题。
3)在许多介质中应用最普遍的2205双相不锈钢的耐腐蚀性优于普通的316L奥氏体不锈钢,而超级双相不锈钢具有极高的耐腐蚀性,再一些介质中,如醋酸,甲酸等甚至可以取代高合金奥氏体不锈钢,乃至耐蚀合金。
4)具有良好的耐局部腐蚀性能,与合金含量相当的奥氏体不锈钢相比,它的耐磨损腐蚀和疲劳腐蚀性能都优于奥氏体不锈钢。
5)比奥氏体不锈钢的线膨胀系数低,和碳钢接近,适合与碳钢连接,具有重要的工程意义,如生产复合板或衬里等。
6)不论在动载或静载条件下,比奥氏体不锈钢具有更高的能量吸收能力,这对结构件应付突发事故如冲撞,爆炸等,双相不锈钢优势明显,有实际应用价值。
1.2.2 与铁素体不锈钢相比,双相不锈钢的优势如下1)综合力学性尤其是塑韧性,不象铁素体不锈钢那样对脆性敏感。
2)除耐应力腐蚀性能外,其他耐局部腐蚀性能都优于铁素体不锈钢。
3)冷加工工艺性能和冷成型性能远优于铁素体不锈钢。
4)焊接性能也远优于铁素体不锈钢,一般焊前不需预热,焊后不需热处理。
5)应用X围较铁素体不锈钢宽。
2 SAF2205双相钢接头的基本要求及达到要求的措施2.1基本要求焊接接头不存在超过质量标准规定的缺陷,同时力学性能满足焊接结构预期的使用性能要求。
不出现焊接热裂纹和冷裂纹,应力腐蚀,点蚀,δ相脆化现象的出现2.2防止措施1)双相不锈钢具有良好的焊接性,一般选用与母材成分相同或相近的焊接材料,由于含碳量对抗腐蚀性有很大的影响,因此熔敷金属含碳量不用高于母材。
腐蚀性弱或仅为避免锈蚀污染的设备,可选用含Ti或Nb等稳定化元素或超低碳焊接材料。
对于耐酸腐蚀性能较高的工件,常选用含Mo的焊接材料。
选用适合的焊接材料不会发生焊接热裂纹和冷裂纹,如选用焊条型号E309MoL-16焊条牌号A042氩弧焊焊丝H00Cr18Ni14Mo2。
2)合理设计焊接接头。
避免腐蚀介质在焊接接头部位聚集,降低或消除应力集中,消除或降低焊接接头残余应力,用常用工艺措施,加热温度在800-900℃之间才可得到比较理想的消除应力效果;结构设计时要尽量采用对接接头,避免十字交叉焊缝,单V形坡口改用Y形坡口。
3)采用小的热输入,即小电流,大的焊接速度,减少横向摆动,待前一道焊缝冷却到预热温度后,再焊下一道焊缝,焊后进行750-800℃退火处理,退火后应快冷,防止出现δ相和475℃脆化。
3.1SAF2205双相钢的焊接性3.1.1SAF2205双相钢的性能特点1)含钼双相不锈钢在低应力下有良好的耐氯化物应力腐蚀性能。
一般18-8型奥氏体不锈钢在600℃以上中性氯化物溶液中容易发生应力腐蚀断裂,在微量氯化物及硫化氢工业介质中用这类不锈钢制造的热交换器、蒸发器等设备都存在着产生应力腐蚀断裂的倾向,而双相不锈钢却有良好的抵抗能力。
2)含钼双相不锈钢有良好的耐孔蚀性能。
在具有相同的孔蚀抗力当量值(PREN=Cr%+3.3Mo%+16N%)时,双相不锈钢与奥氏体不锈钢的临界孔蚀电位相仿。
双相不锈钢与奥氏体不锈钢耐孔蚀性能与AISI 316L相当。
含25%Cr的,尤其是含氮的高铬双相不锈钢的耐孔蚀和缝隙腐蚀性能超过了AISI 316L。