555集成电路应用设计解析
555时基电路及其应用实验报告
555时基电路及其应用实验报告一、导言555时基电路是一种常用的集成电路,广泛应用于各种电子设备中。
本实验旨在通过对555时基电路的实验搭建和应用实验,探索其工作原理和应用特点。
二、实验设备和材料1. 555时基电路芯片2. 电阻、电容和电感元件3. 电源、示波器和信号发生器等实验仪器4. 连接线等实验辅助材料三、实验步骤1. 555时基电路搭建实验根据555时基电路的原理图,将实验设备和材料连接起来。
按照标准的接线顺序,将电源、电阻、电容和555芯片等元件逐一连接。
注意检查接线是否正确,以确保电路能够正常工作。
2. 555时基电路测试接下来,将示波器连接到555芯片的输出引脚上,调节示波器的参数,观察波形的变化。
通过改变电阻和电容的数值,可以调节输出波形的频率和占空比。
记录下不同参数下的波形特征,并进行分析和比较。
3. 555时基电路应用实验在实验中,可以将555时基电路应用于脉冲发生器、定时器、频率计等实际电子电路中。
通过改变电路的连接方式和参数设置,可以实现不同的应用功能。
例如,可以将555时基电路连接到脉冲发生器电路中,生成稳定的脉冲信号;也可以将555时基电路作为定时器,控制电路的工作时间。
四、实验结果与分析1. 555时基电路工作特点通过实验观察,我们发现555时基电路可以产生稳定的方波信号。
在输入电压为5V的情况下,根据电路参数的不同设置,可以得到不同频率和占空比的输出波形。
通过改变电阻和电容的数值,可以调节频率的范围。
而通过改变电路的连接方式,如添加电感元件,可以实现更丰富的波形变化。
2. 555时基电路的应用实验结果通过将555时基电路应用于脉冲发生器和定时器电路中,我们成功实现了不同功能的电路设计。
脉冲发生器可以产生稳定的脉冲信号,其频率和占空比可以通过调节电路参数来控制。
定时器电路可以在预设的时间段内控制其他电路的工作状态。
五、实验结论通过本次实验,我们了解了555时基电路的工作原理和应用特点。
NE555的原理及应用
NE555的原理及应用1. NE555简介NE555是一款经典的集成电路,拥有广泛的应用领域。
它是由赫尔公司(Harris)推出的一款定时器电路,在电子设计中被广泛使用。
NE555采用Bipolar工艺,具有稳定性高、可靠性好、成本低廉等优点,因此在各种电子设备中得到了广泛的应用。
2. NE555的原理NE555是一个外围元件较少的集成电路,其内部结构包括电压比较器、RS触发器、RS锁存器、两个电子开关及输出级等组成。
NE555的原理如下:1.电压比较器:NE555具有两个比较器(Comparator),通过与外部电阻和电容相连,产生能带时间特性的矩形波。
2.RS锁存器和RS触发器:根据电压比较器输出电平的不同,NE555的RS锁存器和RS触发器会切换状态。
3.输出级:NE555的输出级负责输出矩形波。
3. NE555的应用NE555因其简单可靠的特点,在各种电子设计中都有广泛的应用,下面列举了一些常见的应用场景。
3.1 时序电路NE555常被用作时序电路设计,可以实现各种精确的定时控制。
下面是一些常见的时序电路应用:•脉冲发生器:利用NE555的单稳态或多稳态脉冲发生特性,在需要定时输出脉冲的场合,如倒计时、测量、报警等。
•闪烁灯:利用NE555的多稳态性质,控制灯光或LED的闪烁频率,广泛应用于警示灯、广告灯、装饰灯等。
3.2 模拟电子电路•振荡电路:将NE555设置为振荡器,可以实现正弦波、方波等各种形式的振荡输出。
可以应用于音频发生器、计时器等。
•脉宽调制(PWM):利用NE555的饱和度和放电度控制器特性,模拟脉宽调制技术。
常用于调光器、电机速度控制器等。
3.3 控制电路•触发控制电路:NE555可以作为一个触发开关控制器,常用于自动开关、红外传感器触发等控制场景。
•电压监控器:NE555还常被用来实现电压监控电路,通过连续比较电压大小来输出监控信号,应用于过压、欠压保护等领域。
4. 总结NE555是一款经典的集成电路,具有简单可靠、成本低廉等优点。
关于555集成电路原理及应用
555集成电路及其应用一、555集成电路原理 (1)二、多用途水位控制器 (4)三、品名:JS-97A液位控制器 (5)四、555的应用 (7)一、555集成电路原理在数字系统中,为了使各部分在时间上协调动作,需要有一个统一的时间基准。
用来产生时间基准信号的电路称为时基电路。
时基集成电路555就是其中的一种。
它是一种由模拟电路与数字电路组合而成的多功能的中规模集成组件,只要配少量的外部器件,便可很方便的组成触发器、振荡器等多种功能电路。
因此其获得迅速发展和广泛应用。
555时基电路是一种将模拟功能与逻辑功能巧妙结合在同一硅片上的组合集成电路。
它设计新颖,构思奇巧,用途广泛,备受电子专业设计人员和电子爱好者的青睐,人们将其戏称为伟大的小IC。
1972年,美国西格尼蒂克斯公司(Signetics)研制出Tmer NE555双极型时基电路,设计原意是用来取代体积大,定时精度差的热延迟继电器等机械式延迟器。
但该器件投放市场后,人们发现这种电路的应用远远超出原设计的使用范围,用途之广几乎遍及电子应用的各个领域,需求量极大。
美国各大公司相继仿制这种电路1974年西格尼蒂克斯公司又在同一基片上将两个双极型555单元集成在一起,取名为NF556。
1978年美国英特锡尔公司(Intelsil)研制成功CMOS型时基电路ICM555 1CM556,后来又推出将四个时基电路集成在一个芯片上的四时基电路558 由于采用CMOS型工艺和高度集成,使时基电路的应用从民用扩展到火箭、导弹,卫星,航天等高科技领域。
在这期间,日本、西欧等各大公司和厂家也竞相仿制、生产。
尽管世界各大半导体或器件公司、厂家都在生产各自型号的555/556时基电路,但其内部电路大同小异,且都具有相同的引出功能端。
时基集成电路555工作原理如下:图a所示为555时基电路内部电路图。
管脚排列如图b所示。
整个电路包括分压器,比较器,基本RS触发器和放电开关四个部分。
555典型应用电路
555典型应用电路引言:555定时器是一种非常常用的集成电路,具有广泛的应用领域。
本文将针对555典型应用电路进行详细介绍,包括555定时器的原理、工作模式以及几个常见的应用电路。
一、555定时器的原理555定时器是由三个主要功能部分组成:比较器、RS触发器和放大器。
其中比较器用于比较输入电压与参考电压的大小关系,RS触发器用于存储输入信号的状态,而放大器则用于放大输出信号。
二、555定时器的工作模式1. 单稳态模式(Monostable Mode)单稳态模式下,当555定时器的引脚2(触发引脚)接收到一个负脉冲时,输出引脚(引脚3)会产生一个正脉冲,其宽度由外部电容和电阻决定。
2. 双稳态模式(Astable Mode)双稳态模式下,555定时器的引脚2和引脚6被连接在一起,形成一个电容充放电的闭环。
引脚2和引脚6会交替充放电,从而产生一个连续的方波输出。
3. 等宽脉冲模式(Bistable Mode)等宽脉冲模式下,555定时器的引脚2和引脚6分别作为输入引脚,引脚3作为输出引脚。
当引脚2接收到一个负脉冲时,引脚3会产生一个正脉冲,当引脚6接收到一个负脉冲时,引脚3会产生一个负脉冲。
三、555典型应用电路1. 时序产生器时序产生器是555定时器的一个经典应用,通过调节外部电容和电阻的数值,可以实现不同的时间间隔。
时序产生器广泛应用于计时、脉冲生成等领域。
2. 方波发生器方波发生器也是555定时器的常见应用之一,通过调节外部电容和电阻的数值,可以产生不同频率的方波信号。
方波信号在数字电路、通信系统等领域中具有重要作用。
3. 脉宽调制(PWM)电路脉宽调制电路利用555定时器的单稳态模式,通过调节电容和电阻的数值,生成具有可变脉宽的方波信号。
脉宽调制广泛应用于电源控制、马达控制等领域。
4. 频率计频率计是一种利用555定时器的双稳态模式实现的电路,通过测量输入信号的周期来计算频率。
频率计广泛应用于实验室测量、仪器仪表等领域。
_555_集成芯片及应用实例简介
监测检测Monitoring & Detection中国无线电 2007年第5期1 引言 “555”芯片是一种中规模集成电路,只要在外部配上适当阻容元件,就可以方便地构成脉冲产生和整形电路,在工业控制、定时、仿声、电子乐器、防盗报警等方面应用很广。
经过对“555”芯片功能的研究,我们用“555”集成芯片设计了干扰机和信号源的控制电路,分别用于无线电频率干扰和无线电监测技术演练。
2 “555”芯片与无稳态电路简介 “555”芯片是一个具有八脚的集成芯片。
它主要由三个分压器、两个高精度电压比较器、一个基本R S 触发器、一个放电管和输出驱动反向器电路组成。
实物如图1所示,内部电路如图2所示。
2.1 芯片结构简介 (1)RS触发器 RS触发器由两个与非门交叉耦合组成,R和S是信号输入端,Q为触发器的输出端。
其真值表如表1所示。
表1 “555”芯片RS触发器真值 (2)比较器 如图2所示,A1、A2是两个电压比较器,如果用U+和U-表示相应输入端上所加的电压,则当U+>U-时,其输出为高电平,U+<U-时,输出为低电平。
两个输入端基本上不向外电路索取电流,即输入电阻趋近于无穷大。
(3)分压器 三个阻值均为5k Ω的电阻串联起来构成分压器(“555” 芯片也因此而得名),为比较器A1和A2提供参考电压。
如图2所示,A1端“U-” =2VCC/3、A2端“U+”=VCC/3。
电压控制端5脚处如果另加控制电压,则可改变A1、A2的参考电压,工作中不使用控制端时,一般通过一个0.01μF的电容接地,以旁路高频干扰。
图1“555”芯片实物 图2 芯片内部结构2.2 无稳态电路 无稳态电路是“555”芯片应用的基本电路,是指电路没有稳定状态(即方波放生器)。
如图3所示,在加电状态下,由于电容C上电压不能突变,故“555”芯片处于置位状态,输出端Uo(3脚)为高电平,放电管T 休止(7脚与地断开)。
NE555原理及其应用
NE555原理及其应用
在单稳态模式下,当触发引脚(TRIG)的电压低于第2/3Vcc时,输
出引脚(OUT)将输出高电平脉冲,其宽度由外部电容和电阻决定。
当触
发引脚上升到第1/3Vcc时,输出脉冲结束。
在车距模式下,当控制引脚(CTRL)低于第1/3Vcc时,NE555的输
出引脚保持低电平,当控制引脚高于第2/3Vcc时,输出引脚保持高电平。
在连续性模式下,NE555的输出引脚会根据触发引脚和放大器比较输
入电压决定输出状态。
1.时钟电路:NE555可以用来产生精确的时钟脉冲,用于驱动显示器、计数器等电路。
2.脉冲宽度调制(PWM):通过改变外部电容和电阻,可以实现不同
脉冲宽度的PWM波形,用于控制电机、调光等应用。
3.电压控制振荡器(VCO):通过改变外部电容和电阻,可以调整
NE555的频率范围,用于实现可变频率的振荡器。
4.模拟转数字转换器(ADC):通过使用NE555的单稳态模式,可以
将一个输入电压转换为一个宽度可调的脉冲,再通过计数器等电路将其转
换为数字信号。
5.闪光灯电路:NE555可以用来控制LED或氙气灯的闪烁频率,用于
警示灯、摄影灯等应用。
总结起来,NE555是一款功能强大且灵活的定时器集成电路,可以广
泛应用于各种定时和脉冲控制应用中。
同时,它的设计简单,部件成本低廉,因此仍然被广泛应用在各种电子设备中。
555集成电路应用设计解析
比较器
电阻分压器
VCC
触发器 Rd
反相器
8
4
CV 5 TH 6
TL 2
2 3 V CC
+A1
+
?1
13VCC
+
A2
-
+
?1
?1
1
3 OUT
7 DIS
1
GND
555定时器电路框图
CV 5
?
2 22 3 ??V33VCVCCCCC
TH
6
?
1 3
?V1 3
VCCCC
TL 2
VCC
Rd 01
8
4
0
2 3 VCC
当555的3端输出为高电平时,通过VD2向C2充电;当3端输出为 低电平时,C2被VD2反偏截止,C2通过3端、1端和VD1向C3转移电 荷。
这样重复多次,C3上电压达到一个稳定的相对于地线的负电压。
工作原理
本电路可把正电源变成负电源输出,但输出电流仅有数十毫安。 1N4148并非高频整流二极管,其工作频率不高,555震荡频率较 高时,需用高频整流二极管替换。 由于二极管本身存在一定的管压降,电容也会存在一定的损耗, 因此,输出电压比工作电源电压低1.3~1.4伏左右。
H
?
1 3
VCC
H
?
1 3
VCC
H
OUT L L
保持
H
DIS 通 通
保持
断
清零 回差现象
工作原理
接通电源时,电容C1还来不及充电,2号引 脚为低电平, V2,V6<1/3VCC V3=高电平 发光二极管LED1截止,LED2点亮。
随着电源经R1、R2对C1充电,C1两端电压 逐渐升高,2/3VCC > V2,V6>1/3VCC V3=高电平 发光二极管LED1依然截止,LED2点亮。
555集成电路在物理实验中的应用
555集成电路在物理实验中的应用555集成电路是一种常用的电子元件,广泛应用于物理实验中。
它的特点是稳定性高、精度好、性能稳定、使用方便等。
本文将介绍在物理实验中555集成电路的应用。
一、基本原理555集成电路的基本原理是利用一个RC(电容电阻)网络来产生定时脉冲信号,产生的脉冲信号可以通过改变电容电阻值来控制频率和占空比。
555集成电路具有很好的多功能性,可以广泛地应用于定时器、脉冲发生器、调制解调器、计数器等电路中。
二、应用1、数字电子钟在数字电子钟中,使用555集成电路作为时钟信号发生器,控制LED的闪烁频率,从而显示时间。
通过改变电容电阻值,可调节电子钟的时间,实现精准计时功能。
2、脉冲出发器在物理实验中,经常使用脉冲出发器来控制实验的进程,例如进行波形观测、电容放电等实验。
555集成电路可以构成高稳定性的脉冲出发器,通过改变电容电阻值来控制脉冲宽度和频率,以满足实验需要。
3、电子警报在物理实验中,为了避免实验中出现危险,通常需要安装电子警报。
555集成电路可以作为音频震荡电路核心元件,控制鸣叫器的频率和音量大小,用于警报。
4、模拟模拟转换器模拟模数转换器是一种将模拟信号转换成数字信号的电路。
在模拟信号输入后,通过555集成电路构成的脉冲发生器产生脉冲信号,控制模数转换器进行采样。
通过信号的频率和宽度可将模拟信号转换成数字信号。
5、声音测量仪在声学实验中,需要测量声音的强度、频率等参数。
通过使用555集成电路作为声音测量仪的核心,可控制电容电阻的值,从而控制声音信号的频率和幅度,从而实现对声音的测量。
6、自动控制器在物理实验中,常常需要自动控制电路的启动、停止,例如运动物体的控制、计时器启动和停止等。
通过使用555集成电路进行定时控制和触发,可以实现电路的自动控制。
说明ne555集成电路的功能和结构
一、概述NE555是一种经典的集成电路元件,具有多种应用功能。
本文将介绍NE555集成电路的功能和结构,以便更好地理解其在电子领域中的应用。
二、NE555集成电路的功能1. 定时功能:NE555集成电路可以作为计时器或脉冲发生器使用,通过外部电路调节电子脉冲的频率和占空比。
2. 方波发生器:NE555集成电路可利用其内部的比较器和触发器实现方波信号的产生,并通过外接元器件调节方波的频率和占空比。
3. 脉冲宽度调制:NE555集成电路可以通过改变控制电压,实现对输出脉冲宽度的调制,在通信和遥控系统中有重要应用。
4. 脉冲测距:NE555集成电路结合超声波传感器,可实现简单的脉冲测距功能,广泛应用于测距仪器和避障装置中。
三、NE555集成电路的结构1. 基本结构:NE555集成电路由电压比较器、触发器、输出级、时基电路等部分组成。
2. 电压比较器:NE555集成电路内置一对比较器,用于将控制电压与内部参考电压进行比较,决定输出高低电平。
3. 触发器:NE555集成电路内置RS触发器,用于控制输出电平的变化,具有稳定的触发电平和复位电平。
4. 输出级:NE555集成电路通过输出晶体管控制输出端口的电平,可直接驱动负载电路。
5. 时基电路:NE555集成电路内置RC时基电路,通过外接电阻和电容器调节脉冲频率和占空比。
四、NE555集成电路的应用案例1. 方波信号发生器:将NE555作为方波信号发生器,通过外接电路调节输出信号频率和占空比,广泛应用于数字电路实验和信号调试。
2. 蜂鸣器驱动器:NE555集成电路与功放电路结合,可驱动蜂鸣器发出特定频率的脉冲信号,用于警报和提醒。
3. 脉冲测距仪:NE555集成电路与超声波传感器组合,构成简单的脉冲测距仪,用于测量距离并输出相应信号。
4. 脉冲宽度调制器:通过改变控制电压,NE555集成电路可以实现PWM信号的调制,用于马达控制等应用领域。
五、结论NE555集成电路作为一种通用的定时和脉冲控制元件,在电子领域具有广泛的应用。
555电路应用大全[整理版]
555电路应用大全[整理版]555电路运用大全利用555时基集成电路的基础电路可以设计、开发出许多电子小实验与科技制作。
下面介绍几种,供大家参考。
1(触摸延时“小灯”图5-43是它的电路,它将触摸开关发光二极管的实验中加入延时电路,调整可调电阻阻值和电容量达到延时效果。
要想增加延时的时间,就调换大容量的电容,如400μF、1000μF等。
如果作为夜间床头定时灯、楼道定时灯等,可拆去发光二极管和电阻,换一个6伏的小灯即可。
图5-432(触摸延时音乐门铃图5-44是它的电路图,与图5-45比较,将触摸延时“小灯”电路中拆去发光二极管,改为连接音乐片电路即可。
它可以当作门铃使用,也可安置在人手触摸处作为瞬间报警器。
图5-443(手控行车红绿灯指示器模型图5-45是它的电路图,先做一个红绿灯灯架,将红绿发光二极管固定在灯架上,按图连接后,只要向下按动按键,则红灯变为绿灯,手一离开便又成为红灯。
图5-454(可自动控制的行车红绿灯指示器模型图5-46是它的电路图,只将上图的手控改为磁控,再加上延时电路,就可以将上述模型改为路灯自动控制。
先制作一个街道模型和指示灯架,将干簧管设在指示灯前方的道路模型的下方。
在一辆模型汽车的底部粘一块磁铁。
当汽车行过干簧管上方时,电路导通,红灯变为绿灯,汽车继续向前行驶,由于延时电路作用,使绿灯亮一段时间,保证汽车驶过路口。
需要注意的是根据汽车模型的速度,调整干簧管的位置和电路延时的时间。
图5-465(灯塔模型先用硬纸做一个灯塔模型。
图5-47是它的电路图,它只取闪光电路的一部分——一个绿发光二极管作为塔灯。
最后调整好闪烁时间。
图5-476(夜间打灯光靶图5-48是它的电路图,它与闪光电路相比,集成电路的脚?是单独与负极连接,而电容与R却是经过干簧管与负极连接。
先按图14做一个一碰便可以翻5 倒的靶牌。
在靶子的底部固定一块磁铁,将电路中的干簧管固定在与磁铁相对应的支架底板上。
555时基集成电路原理及应用
555时基集成电路原理及应用1 555时基电路的特点555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。
图1 555集成电路内部结构图555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。
其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。
图2 555集成电路封装图我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:Q=1时DIS端接地,Q=0时DIS 端悬空。
另外还有复位端MR,控制电压端Vc,电源端VDD和地端GND。
这个特殊的触发器有两个特点:(1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s即触发端(TR)则要求低电乎;(2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当V c端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:而对TR(S)端来讲,>1/3VDD 是高电平1,<1/3VDD是低电平0。
关于555集成电路原理及应用
关于555集成电路原理及应用555集成电路是一种经典的通用定时器,也被广泛应用于各种电子设备中。
它由三个5K欧姆的电阻和两个电压比较器组成,并且在同一个芯片上集成了放大器、比较器、反相器和触发器等功能。
555集成电路有多种类型,每一种类型的应用领域都有所不同。
555集成电路主要有以下几种类型:1.555定时器:555定时器是555集成电路最常见的类型,能够通过改变电阻和电容的值来实现不同的定时功能。
它可以用作时钟发生器、频率分频器、脉冲宽度调制器、脉冲位置调制器等。
2.555脉宽调制器:555脉宽调制器被广泛应用于电子设备中的PWM 控制电路。
它可以通过调整电阻和电容的值来调节输出脉冲的占空比,从而实现对脉冲宽度的精确控制。
这种类型的555集成电路在电机控制、照明控制、通信设备等领域得到广泛应用。
3.555频率分频器:555频率分频器是一种将输入信号的频率分频为输出信号的频率的设备。
它可以通过改变电容和电阻的值来实现不同的分频比。
这种类型的555集成电路在通信设备、数字显示器等领域有着重要的应用。
4.555驱动器:555驱动器可以将输入信号转化为高电平或低电平的输出信号,并且具有较大的输出能力。
它可以用来驱动各种负载,如LED 灯、继电器、电机等。
这种类型的555集成电路在工控设备、自动化设备等领域得到广泛应用。
555集成电路的应用非常广泛,在电子设备中可以用于时钟电路、计时器、触发器、发生器、速度测量、调光控制、脉冲调制、频率测量、脉冲宽度测量等领域。
它具有稳定可靠、使用方便、性能优良的特点,因此被广泛应用于消费电子、通信设备、汽车电子、工业自动化等领域。
总之,555集成电路作为一种经典的通用定时器,具有多种类型和广泛的应用。
它在电子设备中扮演着重要的角色,对于实现各种定时、控制和驱动功能起到了至关重要的作用。
集成555定时器电路及其应用
集成555定时器电路及其应用555定时器电路,只要外部配接少数几个阻容元件便可组成施密特触发器、单稳态触发器、多谐振荡器等电路。
555定时器的电源电压范围宽,双极型555定时器为5~16V,CMOS555定时器为3~18V。
可以提供与TTL及CMOS数字电路兼容的接口电平。
555定时器还可输出一定的功率,可驱动微电机、指示灯、扬声器等。
它在脉冲波形的产生与变换、仪器与仪表、测量与控制、家用电气与电子玩具等领域都有着广泛的应用。
TTL单定时器型号的最后3位数字为555,双定时器的为556;CMOS单定时器的最后4位数为7555,双定时器的为7556。
它们的逻辑功能和外部引线排列完全相同。
1、555定时器的组成与功能如图所示为双极型5G555定时器的逻辑图。
两个电压比较器C1和C2的基准电压由UCC经3个5kΩ电阻分压后提供,因此,C1的基准电压UR1为,C2的基准电压UR2为;G1和G2组成基本RS触发器;V为集电极开路的放电管,在uO=0时导通;G3为输出缓冲级。
如图所示,555定时器为8脚DIP封装。
1脚接地;2脚为触发输入端;3脚为输出端;4脚为异步置0端,=0时输出uO=0,工作时一般接电源;5脚为控制电压输入端UCO,可以改变阈值电压;6脚TH为阈值输入端;7脚为放电端,uO=0时,与1脚接通;8脚接电源UCC。
2、555定时器的应用555定时器功能表555定时器功能表(1)555定时器组成施密特触发器如图所示,555定时器的6脚和2脚直接连在一起,作为触发信号输入端。
(2)555定时器组成的单稳态触发器(3)555定时器组成的多谐振荡器如图所示,555定时器外接定时元件R1、R2和C;其6脚TH端和2脚端并接,接在R2和C之间;放电端7脚接在R1和R2之间。
与单稳态触发器不同的仅仅是外接了定时元件,靠电容C的充放电产生输入信号,使两个暂稳态交替转换,产生自激振荡。
假设当电源接通后电路处于某一暂稳态,电容C上电压初始值为0,555输出高电平,即uO=1;此时V截止,电源UCC通过R1和R2给电容C充电。
555电路的应用与分析
基于EWB的电路设计与仿真―-555集成器电路部分前言在当今电子设计领域,EDA设计和仿真是一个十分重要的设计环节。
在众多的EDA设计和仿真软件中,EWB软件以其强大的仿真设计应用功能,在各高校电信类专业电子电路的仿真和设计中得到了较广泛的应用。
EWB软件及其相关库包的应用对提高学生的仿真设计能力,更新设计理念有较大的好处。
EWB(电子工作平台)软件,最突出的特点是用户界面友好,各类器件和集成芯片丰富,尤其是其直观的虚拟仪表是EWB软件的一大特色。
它采用直观的图形界面创建电路:在计算机屏幕上模仿真实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。
EWB软件所包含的虚拟仪表有:示波器,万用表,函数发生器,波特图图示仪,失真度分析仪,频谱分析仪,逻辑分析仪,网络分析仪等。
这些仪器的使用使仿真分析的操作更符合平时实验的习惯。
本次毕业设计主要是利用EWB软件对555集成电路的原理及其基本应用电路进行设计和仿真,并通过实验箱进行硬件调试实现。
1EWB软件的简介1.1 EWB软件的概述随着电子技术和计算机技术的发展,电子产品已与计算机紧密相连,电子产品的智能化日益完善,电路的集成度越来越高,而产品的更新周期却越来越短。
电子设计自动化(EDA)技术,使得电子线路的设计人员能在计算机上完成电路的功能设计、逻辑设计、性能分析、时序测试直至印刷电路板的自动设计。
EDA是在计算机辅助设计(CAD)技术的基础上发展起来的计算机设计软件系统。
与早期的CAD软件相比,EDA软件的自动化程度更高、功能更完善、运行速度更快,而且操作界面友善,有良好的数据开放性和互换性。
电子工作平台Electronics Workbench (EWB)(现称为MultiSim) 软件是加拿大Interactive Image Technologies公司于八十年代末、九十年代初推出的电子电路仿真的虚拟电子工作台软件,它具有这样一些特点:(1)软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果。
555时基集成电路原理与应用
555时基集成电路原理与应用555时基集成电路是一种常用的集成电路,被广泛应用于各种计时和触发器电路中。
由于其性能稳定可靠、经济实用、工作电压广泛等特点,555时基集成电路在电子电路设计、通信、自动化控制等领域具有重要的应用价值。
555时基集成电路的一个重要应用是作为计时器。
当555时基集成电路处于稳定工作状态时,输出端产生周期性的方波信号。
通过调整电阻和电容的值,可以控制方波的频率。
555计时器还可以实现定时触发功能,比如定时器中断、时间延迟等。
此外,555计时器还可以用于发生脉冲、频率分割、频率测量等功能。
另一个重要的应用是作为触发器。
555时基集成电路可以实现正沿触发、负沿触发、双边沿触发等触发方式。
通过改变电阻和电容的数值,可以调整触发的阈值和触发的时间。
这些功能使得555时基集成电路可以应用于触发器电路、触发延时电路、数字信号处理等领域。
除了以上的基本功能,555时基集成电路还可以通过与其他电路元件的组合实现更复杂的应用。
例如,可以将555计时器与显示器、驱动电路、存储器等进行组合,构成更复杂的计时和控制电路。
这些电路可以应用于电子钟、定时记录、数码显示等系统。
总之,555时基集成电路具有性能稳定可靠、经济实用、工作电压广泛等特点,被广泛应用于各种计时和触发器电路中。
无论是在电子电路设计、通信、自动化控制等领域,还是在日常生活中的电子产品中,555时基集成电路都扮演着重要的角色。
通过调整电阻和电容的值,可以实现不同的计时和触发器功能,满足各种应用需求。
555芯片的原理以及应用
555芯片的原理以及应用1. 555芯片的概述555芯片,也称为NE555,是一种经典的集成电路,由美国德克萨斯仪器公司(Texas Instruments)于1972年推出。
它是一种多功能定时器,广泛应用于电子电路中,以实现各种定时、延时、频率分割和脉冲调制等功能。
2. 555芯片的工作原理555芯片基于RC(电容-电阻)振荡器的工作原理。
它由比较器、内部参考电压源、RS触发器、RS触发器控制逻辑、输出驱动器等组成。
工作过程如下: - 初始状态下,触发端(TRIG)处于低电平,复位端(RST)处于高电平,输出端(OUT)处于低电平。
- 当触发端的电压低于1/3的Vcc (Vcc为芯片供电电压)时,换能器的输出状态反转,OUT端输出高电平。
- 当OUT端输出高电平时,电容开始充电,直到电压达到2/3的Vcc。
- 一旦电容电压达到2/3Vcc,RS触发器反转,OUT端输出低电平。
- 同时,内部比较器将触发端与控制端(CTRL)进行比较。
如果触发端电压低于控制端电压,RS触发器将再次反转,OUT端输出高电平,电容开始充电,循环往复。
3. 555芯片的应用555芯片在电子领域的应用非常广泛,下面列举了几个典型的应用案例:3.1 延时器由于555芯片有可调的RC周期,它常常被用作延时器。
通过调整电阻和电容的值,可以实现不同的延时时间。
基于此原理,555芯片在许多领域被用作延时触发器,例如摄影、闪光灯控制、舞台灯光控制等。
3.2 频率分割器555芯片也可以用作频率分割器,通过将输出连接到输入,实现部分频率的输出。
该功能常用于数码时钟、频率计等电路中。
3.3 方波发生器555芯片还可以用作方波发生器。
方波波形具有丰富的谐波分量,常用于音乐合成、脉冲调制等应用。
3.4 PWM(脉宽调制)控制器由于555芯片可以在一定频率下输出可调占空比的方波信号,它常常被用作PWM控制器。
例如,可以将555芯片用于电机速度控制、LED调光等应用中。
NE555内部结构及应用电路
555定时器及其应用555定时器是一种中规模的集成定时器,应用非常广泛。
通常只需外接几个阻容元件,就可以构成各种不同用途的脉冲电路,如多谐振荡器、单稳态触发器以及施密特触发器等。
555定时器有TTL集成定时器和CMOS集成定时器,它们的逻辑功能与外引线排列都完全相同。
TTL型号最后数码为555,CMOS 型号最后数码为7555。
一、555的结构组成和工作原理555定时器是一种模拟电路和数字电路相结合的器件,下图为其内部组成和引脚图。
内部电路原理图等效逻辑图引脚图由图知,电路由一个分压器,两个电压比较器,一个R-S触发器,一个功率输出级和一个放电晶体管组成。
比较器A1为上比较器,由BG1~BG8组成,它是由一个NPN管的复合结构做输出级的两级差分放大器。
上比较器的反相输入端固定设置在2/3V CC上,它的同相输入端⑥脚称作阈值端(或高触发端),常用来测外部时间常数回路电容上的电压。
比较器A2为下比较器,由BG9~BG13组成,它是由一个PNP管组成的复合输出级的差分放大器。
上比较器的同相输入端固定设置在1/3V CC上,反向入端②脚称作触发输入端,用来启动电路。
电路中的比较器的主要功能是对输入电压和分压器形成的基准电压进行比较,把比较的结果用高电平"1 "或低电平"0" 两种状态在其输出端表现出来。
555 电路中的R-S触发器是由两个与非门交叉连接,上图中是由BG14~BG18构成。
其中BG15和B G14的基极分别受上比较器和下比较器的输出端控制。
A1控制R端,A2控制S端。
为了使R-S 触发器直接置零,触发器还引出一个④端,只要在④端置入低电平"0",不管触发器原来处于什么状态,也不管它输入端加的是什么信号,触发器会立即置零,即Q=O=Uo所以④端也称为总复位端。
BG18~BG21构成功率输出级,③脚为输出端,能输出最大为200mA的电流,故课直接驱动小型电机、继电器、地租扬声器等功率负荷。
555定时器及其应用实验报告
555定时器及其应用实验报告引言:555定时器是一种集成电路,广泛应用于定时、脉冲、频率调制、频率分割和频率测量等领域。
本文将介绍555定时器的基本原理和实验过程,并探讨其在电子领域中的应用。
一、555定时器的基本原理555定时器是一种多功能集成电路,由比较器、RS触发器、RS锁存器和电压比较器等组成。
它的工作基于门电路的触发与复位过程,实现了不同的定时功能。
二、555定时器的工作模式555定时器有三种基本工作模式:单稳态、自由运行和串接。
在单稳态模式下,555定时器输出一个脉冲宽度可调的方波信号;在自由运行模式下,它输出一个连续变化的方波信号;在串接模式下,多个555定时器可以通过级联实现更复杂的定时功能。
三、实验过程为了验证555定时器的工作原理,我们进行了以下实验:1. 准备实验所需材料:555定时器芯片、电容、电阻等。
2. 连接电路:按照电路图将555定时器与其他元件连接起来。
3. 设置参数:根据实验要求调整电容和电阻的数值。
4. 运行实验:给电路通电,观察555定时器输出的信号波形。
5. 记录实验结果:记录实验过程中观察到的波形变化和参数调整情况。
四、实验结果与分析通过实验,我们观察到555定时器的输出信号波形随着电容和电阻数值的变化而改变。
通过调整电容和电阻的数值,我们可以控制输出信号的频率和占空比。
这证明了555定时器的可靠性和灵活性。
五、555定时器的应用555定时器在电子领域中有广泛的应用,以下是一些典型的应用场景:1. 脉冲生成:通过调整电容和电阻的数值,可以产生不同频率的脉冲信号,用于驱动其他电路或触发器件。
2. 方波发生器:通过在555定时器中添加元件,如电容和电阻,可以实现方波信号的产生和调节。
3. 时钟电路:555定时器可以用作时钟电路的基础元件,用于控制其他电子设备的定时功能。
4. 脉宽调制:通过调整电容和电阻的数值,可以实现脉宽调制功能,用于控制电子设备的输出功率。
555电路设计风扇调带电路
555电路设计风扇调带电路风扇调速电路是一种用来控制风扇转速的电路,通过调节电压或频率来改变风扇的转速。
这种电路常常用于电脑、空调等设备中,以满足不同环境下的散热需求。
本文将介绍一种常见的风扇调速电路——555电路。
555电路是一种非常常见的集成电路,它由三个功能相同的比较器、一个RS触发器和一个放大器组成。
它的特点是结构简单,使用方便,并且具有较高的稳定性。
因此,555电路常常被用于各种电子设备和电路中。
风扇调速电路的核心是利用555电路的PWM(脉宽调制)功能来控制风扇的转速。
PWM是一种通过改变信号的脉冲宽度来控制平均功率的技术,通过改变脉冲的宽度和周期,我们可以控制风扇的转速。
具体实现风扇调速的电路如下:我们将555电路的控制引脚(pin5)连接到一个可调电阻上,通过调节电阻的阻值,我们可以改变555电路输出的脉冲宽度。
然后,我们将555电路的输出引脚(pin3)连接到一个三极管的基极上,通过控制三极管的导通和截止,我们可以控制电流的大小,从而改变风扇的转速。
在这个电路中,三极管起到了放大信号的作用,当555电路输出高电平时,三极管导通,风扇转速较快;当555电路输出低电平时,三极管截止,风扇转速较慢。
通过调节可调电阻的阻值,我们可以改变555电路输出脉冲的宽度,从而实现对风扇转速的精确控制。
需要注意的是,在设计风扇调速电路时,我们需要根据风扇的额定电压和电流来选择合适的元件和参数。
此外,还需要考虑风扇的最小启动电压和最大工作电压,以避免损坏风扇或电路。
除了使用555电路,还有其他一些常见的风扇调速电路设计,比如使用可变电阻、PWM控制器等。
每种设计都有其优缺点,需要根据实际需求选择合适的方案。
风扇调速电路是一种常见的电路设计,通过控制电压或频率来改变风扇的转速。
其中,555电路是一种常用的集成电路,通过利用其PWM功能可以实现对风扇转速的精确控制。
在设计风扇调速电路时,需要考虑风扇的额定电压和电流,以及最小启动电压和最大工作电压等因素,以确保电路的稳定性和可靠性。
555电路功能介绍与应用设计
555电路功能介绍与应用设计555时基电路是一种将模拟功能与逻辑功能巧妙地结合在同一硅片上的组合集成电路。
该电路可以在最基本的典型应用方式的基础上,根据实际需要,经过参数配置和电路的重新组合,与外接少量的阻容元件就能构成不同的电路,因而555电路在波形的产生与变换、测量与控制、家用电器、电子玩具等许多领域中都得到了广泛应用。
(一)555时基电路的电路结构和逻辑功能1.电路结构及逻辑功能图1为555时基电路的电路结构和8脚双列直插式的引脚图,由图可知555电路由电阻分压器、电压比较器、基本RS触发器、放电管和输出缓冲器5个部分组成。
它的各个引脚功能如下:1脚:GND(或Vss)外接电源负端VSS或接地,一般情况下接地。
8脚:VCC(或VDD)外接电源VCC,双极型时基电路VCC的范围是4.5~16V,CMO S型时基电路VCC的范围为3~18V。
一般用5V。
3脚:OUT(或Vo)输出端。
2脚:TR低触发端。
6脚:TH高触发端。
4脚:R是直接清零端。
当R端接低电平,则时基电路不工作,此时不论TR、TH处于何电平,时基电路输出为“0”,该端不用时应接高电平。
5脚:CO(或VC)为控制电压端。
若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰。
7脚:D放电端。
该端与放电管集电极相连,用做定时器时电容的放电。
电阻分压器由三个5kΩ的等值电阻串联而成。
电阻分压器为比较器C1、C2提供参考电压,比较器C1的参考电压为2/3Vcc,加在同相输入端,比较器C2的参考电压为1/3Vcc,加在反相输入端。
比较器由两个结构相同的集成运放C1、C2组成。
高电平触发信号加在C1的反相输入端,与同相输入端的参考电压比较后,其结果作为基本RS触发器R端的输入信号;低电平触发信号加在C2的同相输入端,与反相输入端的参考电压比较后,其结果作为基本RS 触发器S端的输入信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.三倍压直流电源
知识点:
现象: 1. 接通电源,用直流电压表测量电路输出电压大小。 提问: 1. R1、R2、C1和555组成的多谐振荡器振荡频率多少? 工作原理: 当555的3端输出低电平时,电源通过VD1向C3充电,当3端输出高电 平时,使C3上已存储的电荷和3端的高电平叠加,再通过VD2对C4充 电,使C4得到电源电压的2倍电压。随着IC1输出脉冲的不断变化, 相继对C5、C6充电,使输出端电压达到电源电压的3倍左右。
3.三极管好坏判别器
知识点:
现象: 1. 使用NPN9013按对应连接端进行连接,观察灯的变化。 2. 使用PNP9012按对应连接端进行连接,观察灯的变化。 3. 断开B、C、E任意一端,观察灯的变化。 4. 短路BC或BE,观察灯的变化。 提问: 1. R2的作用? 2. 7端电压变化? 3. R1、C1的作用?
TH TL
1 VCC 3
Rd L H H H
OUT L L 保持 H
DIS 通 通 保持 断
1 VCC 3 1 VCC 3
课后作业
接出图中电路,描述其工作原理
2.触摸开关灯
知识点:
现象: 1. 用手分别触摸C1、C2的左侧金属端,观察实验效果。 2. 将C1拔掉,用手捏着C1一端,用示波器测量另一端观察示波器波 形,分析信号的幅度大小。 提问: 1. VD1、VD2的作用? 2. C1、C2的作用?
随着电源经R1、R2对C1充电,C1两端电压
逐渐升高, 2/3VCC > V2,V6>1/3VCC V3=高电平 发光二极管LED1依然截止,LED2点亮。 V2,V6>2/3VCC V3=低电平 发光二极管LED1点亮,LED2截止。
2 VCC 3 2 VCC 3
2 VCC 3
555 定时器功能表
工作原理
不接触C1、C2时, V2>1/3VCC ,V6<2/3VCC IC1处于保持,发光二极管LED1保持原状态。 手碰触C1, V2<1/3VCC ,V6<2/3VCC
IC1输出为高电平,发光二极管LED1点亮。
手碰触C2, V2>1/3VCC ,V6>2/3VCC IC1输出为低电平,发光二极管LED1熄灭。
555 定时器功能表
TH
2 VCC 3 2 VCC 3
2 VCC 3
TL
1 VCC 3
Rd L H H H
OUT L L 保持 H
DIS 通 通 保持 断
1 VCC 3 1 VCC 3
工作原理
uc
uo
PNP:
uO为高电平,V1导通,V7为高电平, LED2点亮;
uO为低电平,V1截止,V7为低电平, LED2熄灭;
f 1.44 /( RP1 C1 )
5.正负电源变换电路
知识点:
现象: 1. 接通电源,用直流电压表测量电路输出电压大小。
提问: 1. R1、R2、C1和555组成了什么电路?振荡频率多少?
2. VD1、VD2与C2、C3构成了什么电路?
工作原理
R1、R2、C1和555组成了约5kHz的多谐振荡器,VD1、VD2与 C2、C3构成了极性变换电路。 当555的3端输出为高电平时,通过VD2向C2充电;当3端输出为表
TH
2 VCC 3 2 VCC 3
2 VCC 3
TL
1 VCC 3
Rd L H H H
OUT L L 保持 H
DIS 通 通 保持 断
清零
1 VCC 3 1 VCC 3
回差现象
工作原理
接通电源时,电容C1还来不及充电,2号引 脚为低电平, V2,V6<1/3VCC V3=高电平 发光二极管LED1截止,LED2点亮。
555 定时器功能表
TH
2 VCC 3 2 VCC 3
2 VCC 3
TL
1 VCC 3
Rd L H H H
OUT L L 保持 H
DIS 通 通 保持 断
1 VCC 3 1 VCC 3
工作原理
NPN:
uc
uo
uO为低电平,V1截止,V7 为低电平,LED1点亮; uO为高电平,V1导通,V7 为高电平,LED1熄灭;
放电端
1
1
DIS
7 6 2 1
1
3 OUT
高触发端 低触发端
TH TL
输出端
5
TL 2
+ + -
1
DI 7 S
CV
电压控制端
GND
1
GN D
地
555定时器电路框图
555定时器符号图
555定时器主要由比较器、触发器、反相器和由三个 5k电阻组成的分压器等部分构成,电路如图所示。
比较器
VCC
触发器
TH
2 VCC 3 2 VCC 3
2 VCC 3
555 定时器功能表
TL
1 VCC 3
Rd L H H H
OUT L L 保持 H
DIS 通 通 保持 断
1 VCC 3 1 VCC 3
555双稳态触发电路
特点:有R和S两个输入,两输入阈值电压 不同,输入无C。 用途:比较器,电子开关,检测电路,家用 控制器等。 别名:双限比较器、锁存器
低电平时,C2被VD2反偏截止,C2通过3端、1端和VD1向C3转移电
荷。 这样重复多次,C3上电压达到一个稳定的相对于地线的负电压。
工作原理
本电路可把正电源变成负电源输出,但输出电流仅有数十毫安。 1N4148并非高频整流二极管,其工作频率不高,555震荡频率较 高时,需用高频整流二极管替换。
由于二极管本身存在一定的管压降,电容也会存在一定的损耗,
A1 + +
保持
0 1 0
1
0 1
保持
1
1 1 0
1
0 0 1
3 OUT
从第二行到第三行 真值表的第一行 真值表的第二行 从第四行返回 真值表的第四行 第三行
1 1 VV CC 3 3 CC
TL 2
1 VCC 3 + A2 + -
7 DIS
1
0 1 0
1 0
导通 截止
2 VCC 3
导通
Rd
4
反相器
电阻分压器
8
2 3 V CC
CV 5 TH 6
A1 + +
1 VCC 3
1
1
1
3 OUT
TL 2
+ A2 + -
7 DIS
1
1
GND
555定时器电路框图
VCC
8
Rd
4
0 1
0 1 0
2 3
2 2 2 V V V CC CC CC CC 3 3 3
V CC
CV 5 TH 6
第三章 555集成电路应用设计
1. 双色闪光灯 2. 触摸开关灯
3. 三极管好坏判别器
4. 占空比50%的方波发生器 5. 正负电源变换电路 6. 三倍压直流电源
1. 双色闪光灯
知识点:
现象: 1. 接通电源,观察两个LED灯的变 化?
2. 调节R1和C1的参数,观察LED灯
的变化? 提问: 1. R3、R4的作用? 2. LED的闪烁频率受谁影响? 3. C2的作用?
多谐振荡器
多谐振荡器又称为无稳态触发器,它没有稳定的输出状态,只有两个暂稳态。
在电路处于某一暂稳态后,经过一段时间可以自行触发翻转到另一暂稳态。
两个暂稳态自行相互转换而输出一系列矩形波。多谐振荡器可用作方波发生器。
4.占空比50%的方波发生器
知识点:
现象: 1. 接通电源,观察发光二极管的变化。 2. 用示波器观察3端输出波形。 提问: 1. V1、VD1的作用? 2. 输出波形频率受谁影响?
f 1.44 /( R1 2R2 )C1
555定时器
555定时器是一种用途广泛的模拟数字混合集成电路。 它可以构成单稳态触发器、多谐振荡器、压控振荡器等多 种应用电路。 555定时器的工作原理
VCC
8
2V 3 CC
电源端 清零端
VC C
Rd
Rd
4
8
4 3
uo
CV 5 TH 6
+ +
1 V 3 CC