强调制型光纤传感器
调制型光纤传感器的工作原理
![调制型光纤传感器的工作原理](https://img.taocdn.com/s3/m/9edae675e418964bcf84b9d528ea81c758f52e20.png)
调制型光纤传感器的工作原理调制型光纤传感器是一种利用光纤作为传感元件的传感器,它通过调制光纤中的光信号来实现对外界物理量的测量。
它的工作原理主要包括光纤传输、光调制和光检测三个部分。
光纤传输是调制型光纤传感器的基础。
光纤是一种具有非常低损耗的传输介质,其内部由一个或多个纤维芯和包围在外的包层组成。
通过光纤,光信号可以在纤芯中以全内反射的方式进行传输。
光纤的纤径一般非常小,通常为几个微米至几十个微米,因此可以方便地安装在不同的环境中。
光调制是调制型光纤传感器的关键步骤。
光调制是指通过改变光信号的某些特性来实现对外界物理量的测量。
常用的光调制方式有幅度调制、相位调制和频率调制等。
其中,幅度调制是最常用的方式,它通过改变光信号的强度来传递传感器所测量的物理量信息。
相位调制则是通过改变光信号的相位来传递信息,频率调制则是通过改变光信号的频率来传递信息。
这些调制方式可以根据具体的应用需求来选择。
光检测是调制型光纤传感器的最后一步。
光检测是指通过光电探测器将调制后的光信号转换为电信号,以便进一步处理和分析。
常用的光电探测器有光电二极管(PD)和光电倍增管(PMT)等。
光电探测器可以将光信号的强度、相位或频率等信息转换为电流或电压信号,进而实现对外界物理量的测量。
调制型光纤传感器的工作原理可以通过一个简单的温度测量实例来说明。
假设我们需要测量一个物体的温度,可以将一个光纤传感器安装在物体表面附近。
当物体的温度发生变化时,光纤传感器会受到温度的影响而发生形变,从而改变光纤中的传输特性。
例如,温度升高会导致光纤的折射率发生改变,进而改变光信号的传输速度。
通过对这种速度变化进行测量和分析,就可以得到物体的温度信息。
调制型光纤传感器通过调制光纤中的光信号来实现对外界物理量的测量。
它的工作原理主要包括光纤传输、光调制和光检测三个部分。
通过合理选择光调制方式和光电探测器,可以实现对各种物理量的测量,例如温度、压力、形变等。
什么是光纤传感器_光纤传感器分类
![什么是光纤传感器_光纤传感器分类](https://img.taocdn.com/s3/m/92485b45fad6195f302ba612.png)
什么是光纤传感器_光纤传感器分类
光纤传感器简介光纤最早是应用于光的传输,适合长距离传递信息,是现代信息社会光纤通信的基石。
光波在光纤中传播的特征参量会因外界因素的作用而间接或直接地发生变化,由此光纤传感器就能分析探测这些物理量、化学量和生物量的变化。
光纤传感器由光源、入射光纤、出射光纤、光调制器、光探测器以及解调制器组成。
其基本原理是将光源的光经入射光纤送入调制区,光在调制区内与外界被测参数相互作用,使入射光的某些光学性质(如强度、波长、频率、相位、偏正态等)发生变化而成为被调制的信号光,再经出射光纤送入光探测器、解调器而获得被测参数。
光纤传感器的分类光纤传感器按结构类型可分两大类:一类是功能型(传感型)传感器;另一类是非功能性(传光型)传感器。
(1)功能型光纤传感器利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)作为传感元件,对光纤内传输的光进行调制,使传输的光的强度、相位、频率或偏振态等特性发生变化,再通过被调制过的信号进行解调,从而得出被测信号。
光纤在其中不仅是导光媒质,而且也是敏感元件,多采用多模光纤。
优点:结构紧凑,灵敏度高。
缺点:须用特殊光纤,成本高。
典型应用:光纤陀螺、光纤水听器等。
(2)非功能型传感器是利用其它敏感元件感受被测量的变化,光纤仅作为信息的传输介质,常采用单模光纤。
光纤在其中仅起导光作用,光照在光纤型敏感元件上被测量调制。
优点:无需特殊光纤及其他特殊技术,比较容易实现,成本低。
缺点:灵敏度较低。
实用化的大都是非功能型的光纤传感器根据被调制的光波的性质参数不同,这两类光纤传。
传感器原理及应用期末考试试题库含答案
![传感器原理及应用期末考试试题库含答案](https://img.taocdn.com/s3/m/a2c6f0c833d4b14e8524686d.png)
一:填空题(每空1分)1.依据传感器的工作原理,传感器分敏感元件,转换元件,测量电路三个部分组成。
2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。
3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为外光电效应,内光电效应,热释电效应三种。
4.光电流与暗电流之差称为光电流。
5.光电管的工作点应选在光电流与阳极电压无关的饱和区域内。
6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计和箔式应变计结构。
7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与距离的平方成反比关系。
8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器。
9.画出达林顿光电三极管内部接线方式:U10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。
其定义为:传感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。
11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一种度量。
按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。
最常用的是最小二乘法线性度。
12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。
13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。
14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、计算机补偿法、应变计补偿法、热敏电阻补偿法。
15. 应变式传感器一般是由 电阻应变片 和 测量电路 两部分组成。
16. 传感器的静态特性有 灵敏度 、线性度、灵敏度界限、迟滞差 和稳定性。
17. 在光照射下,电子逸出物体表面向外发射的现象称为 外光电效应 ,入射光强改变物质导电率的物理现象称为 内光电效应 。
18. 光电管是一个装有光电 阴极 和 阳极 的真空玻璃管。
19. 光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。
光纤传感原理及应用技术课件
![光纤传感原理及应用技术课件](https://img.taocdn.com/s3/m/0b31c06e4a35eefdc8d376eeaeaad1f34793117a.png)
8 A 0c
1
2
光纤耦合器
光纤陀螺是近20年来发展起来的一门新技术,除了在航空航天技术中用于导 航、制导、定位外,也可用于石油钻井中跟踪钻头位置、机器人控制、汽车 以及在其他测量角度的系统中应用。与传统的机电陀螺相比,光纤陀螺具有 启动快、体积小、成本低等优光纤点传,感原因理此及应它用更技具术课有件竞争力。
B-两束光波在相遇点的光程差不能太大。
光纤传感原理及应用技术课件
光纤传感原理 与应用技术
2.2 四种常见的光纤干涉仪 (1)迈克尔逊(Michelson)光纤干涉仪
LD 分光镜
固定反射镜
可移动 反射镜
光探测器
LD 光探测器
固定反射镜 3dB
可动端S(t)
2k0L
光纤干涉仪与普通的光学干涉仪相比,优点在于: (1)容易准直; (2)可以通过增加光纤长度来增加光程,以提高干涉仪的灵敏度; (3)封闭式的光路,不受外界干扰; (4)测量的动态范围大。
Fiber
Fiber
图3 光纤传感器传感探头具体的结构形式 Fig.3 Diagram of the fiber-optic temperature sensor probe
图416 光吸收系数强度调制辐射量传感器
射线辐射会使光纤材料的吸收损耗 增加,使光纤的输出功率降低,从 而构成强度调制辐射量传感器光。纤传感原理及应用技术课件
光纤传感原理 与应用技术
2.2 四种常见的光纤干涉仪 (4)法布里珀罗(FabryPerot)光纤干涉仪
(c)
光纤传感原理及应用技术课件
光纤传感原理 与应用技术
3、偏振调制型光纤传感器技术
光纤传感器分为几大类
![光纤传感器分为几大类](https://img.taocdn.com/s3/m/4bd0d176767f5acfa1c7cdfa.png)
光纤传感器分为几大类
光纤传感器分类
根据光纤在传感器中的作用分
1、功能型(全光纤型)光纤传感器
利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)作传感元件,将“传”和“感”合为一体的传感器。
光纤不仅起传光作用,而且还利用光纤在外界因素(弯曲、相变)的作用下,其光学特性(光强、相位、偏振态等)的变化来实现“传”和“感”的功能。
因此,传感器中光纤是连续的。
由于光纤连续,增加其长度,可提高灵敏度。
2、非功能型(或称传光型)光纤传感器
光纤仅起导光作用,只“传”不“感”,对外界信息的“感觉”功能依靠其他物理性质的功能元件完成。
光纤不连续。
此类光纤传感器无需特殊光纤及其他特殊技术,比较容易实现,成本低。
但灵敏度也较低,用于对灵敏度要求不太高的场合。
光纤传感技术课件:强度调制型光纤传感器
![光纤传感技术课件:强度调制型光纤传感器](https://img.taocdn.com/s3/m/4a005a6be3bd960590c69ec3d5bbfd0a7856d563.png)
强度调制型光纤传感器
2. 透射式光桥补偿结构采用分光棱镜耦合的方法, 将一束 通过传感头的入射光分成两束差动光, 实现对光源光功率和 入射光纤损耗的补偿; 将另一束光耦合进两根接收光纤, 实 现对两根接收光纤损耗和探测器响应度的补偿, 成功地设计 出一种双光路、 双探测器的新型光桥补偿结构, 达到较好的 补偿效果。
6
强度调制型光纤传感器
3.2.1
1. 光桥平衡法是基于具有两个输入和两个输出的四端网络传 感头结构, 两个输入端分别接两个相同的发光二极管光源, 两个输出端分别接两个相同的光电探测器, 两个发光二极管 光源采用时分调制或频率划分调制工作方式。 1985年由英国 CulShaw首先提出的光桥补偿结构如图3-2所示。
23
强度调制型光纤传感器
图3-5 采用反射式光桥补偿结构的测量精度
24
强度调制型光纤传感器
图3-6 采用反射式光桥补偿结构的长期稳定性
25
强度调制型光纤传感器
光桥平衡补偿法是保证强度调制型光纤传感系统稳定可靠 工作的有效途径之一。 本节对其进行了较详细的分析, 介绍 了透射式和反射式两种光桥补偿结构。 反射式光桥补偿结构 存在突出优点: 一是采用单光源分时发光的工作方式, 弥补 了双光源发光特性不一致造成的不利影响; 二是传感探头采 用反射式补偿光路, 不仅结构简单、 紧凑, 而且使传感系统 的灵敏度提高了一倍; 三是分时工作的两路光都通过传感探 头部分, 从而系统输出不仅对光源发光功率的波动、 光纤传 输损耗的变化和光电探测器响应度漂移因素进行了补偿, 同 时对传感探头分光棱镜分光比、 光学元件传输损耗的变化也 进行了补偿。
18
强度调制型光纤传感器
3. 为了进一步提高系统的稳定性, 简化系统的结构, 减小 传感头的体积, 降低造价, 使系统更趋于实用化, 人们又设 计出了一种反射式光桥补偿结构, 该结构如图3-4所示。
第四章-强度调制型光纤传感器11
![第四章-强度调制型光纤传感器11](https://img.taocdn.com/s3/m/1a539bb9afaad1f34693daef5ef7ba0d4a736d89.png)
第四章 强度调制型光纤传感器
4.2 反射式强度调制
反射面
LD
Emitting Fiber x
发射光纤像
yo
z
a
2r
PIN
Receiving Fiber
位移方向
d
确定传感器的响应(发射光纤-平面镜-接收光纤的光 路耦合)等效于计算虚光纤与接收光纤之间的耦合
假设发射光纤与接收光纤的间距为d,且都具有阶跃型折射 率分布,芯径为2r,光纤数值孔径为NA,且T tan(sin1 NA)
第四章 强度调制型光纤传感器
➢等芯错位式
4.2 反射式强度调制
✓ TF 与RF1、RF2均相同,芯径为r1、包层厚度为t1, 包层之间无间隙;
✓ TF反射端面与RF1、RF2的接收端面间错位量分 别为b1和b2。
第四章 强度调制型光纤传感器
➢等芯错位式
4.2 反射式强度调制
✓ 可抑制光源功率波动、反射率变化的影响,但对 特性曲线的线性范围、灵敏度改善不明显。
第四章 强度调制型光纤传感器
➢等芯不等间距式
4.2 反射式强度调制
✓ 光强调制特性本质上没有区别。 ✓ Ⅰ式由于光纤之间紧密排列,因而光轴间距容
易准确确定,仅由光纤芯径和包层决定;Ⅱ式 由于光纤包层之间存在间隙,因此光纤的间距 不容易准确给定,容易引入测量误差;
实际应用中采用Ⅰ式结构
第四章 强度调制型光纤传感器
第四章 强度调制型光纤传感器
4.2 反射式强度调制
第四章 强度调制型光纤传感器
4.2 反射式强度调制
第四章 强度调制型光纤传感器
4.2 反射式强度调制
发射光纤 接收光纤
反射式光纤传感器的基本结构
强度调制型光纤液体浓度检测传感器研究
![强度调制型光纤液体浓度检测传感器研究](https://img.taocdn.com/s3/m/0d0d530079563c1ec5da71c4.png)
Ke r s ywo d :Co c n rt n o ou in Pr cpeo oa e lc i Frs e o mua n e t i fs lt ao o i il f tI f t n t r e on e n I r l f L mb r- er w Opia ir e s r a e Be ’ l t sa t l b es n o c f
2 光 纤传感 原理
2 1 折 射 损 失 .
强度调制型光纤传感器 的调制原理如 图 1 所示 。
计测量含糖液体的浓度 。 n t[提 出用光纤来传送 Miao ] 。
光 信 号 的 透 射 式 盐 度 传感 器 。 r ma [ 】 Be g n 制作 光 纤
探头来检测各种液体的盐度。 o gi[在 1 L nt n】 个矩形单
不毛 | 斜 2 0 第2卷 第1 0年 1 9 期
S nh n r mn lSe e h ga Evo ea c c a i in t i s n
强度调制型光纤液体浓度检测传感器研究
D v lp n f I e st d ltd Op ia Fbe S n o o eem i t n e eo me t o n n i Mo uae t l ir e s r fr D tr n i t y c ao
o S u in f olt CO c n rtO o n e ta in
焦 佳 尤 学一 ( 天津大学环境 科学与工程 学院, 天津 3 0 7 ) 0 0 2
J o i Y u uy (co l f n i n etl c ne n n i e n , i j nvri , i a o ei Sh o o vr m na Si c d g er g Ta i U ie t a J X E o e a E n i nn sy Taj 002 ini 307) n
第7讲+强度调制型光纤传感器
![第7讲+强度调制型光纤传感器](https://img.taocdn.com/s3/m/c86c1b0252d380eb62946d13.png)
透过率(0~50%)
中国科学院大学 材料科学与光电技术学院
16
中国科学院大学 材料科学与光电技术学院
4
在光纤端面上增加吸收光栅可以进一步提高透射传感器的灵敏度。如图
带吸收光栅径向位移传感器 光纤旋转传感器
透射传感器还可以在光路上和其他光学材料连接使光强成为环境因素的 函数。如果在光路上的材料透过率随环境改变突然发生改变,就可以实 开 功能,液晶就 作为 度和压强 开 现开关功能,液晶就可作为温度和压强的开关。
光纤位移式:被测位移、压力、温度和振动等物理量作用于动光纤,使 输入、输出光纤的轴线发生相对位移,改变耦合效率。
输出与探头距离的关系曲线
动纤调制模型 13
光强随光纤轴间偏离的变化曲线
中国科学院大学 材料科学与光电技术学院
14
中国科学院大学 材料科学与光电技术学院
遮光屏式:
不同类型的遮光屏
1.遮光屏截断光路来实现透射式光 强调制 :采用了一个双透镜系统 使入射光纤在出射光纤上聚焦成像, 遮光屏在垂直于两透镜之间的光传 播方向上下移动。分辨率/r的1% 2.改进:遮光屏由两块完全相同的 光栅组成,其中一支为固定光栅, 另一支为可移动光栅。 可以提高该类型传感器的灵敏度。 分辨率在光栅条纹间距(10-6)数量级。
r
2
2dT a r
输出光纤接收的入射光功率百分数为: P0 F r Pi r 2dT
2r=200m,NA=0.5,a=100m 固有分辨率<1nm
检测到的光强取决于反射体和探头的距离
最大斜率处——灵敏度
9
中国科学院大学 材料科学与光电技术学院
16.03 三、光纤传感器的调制形式
![16.03 三、光纤传感器的调制形式](https://img.taocdn.com/s3/m/7f04cf92b307e87101f696f9.png)
强度调制型
波长(颜色)调制型
(a)波长调制原理(b)热变色溶液光强与温度关系曲线
热色物质波长调制原理图
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺) 频率调制型
基于多普勒效应的频率调制原理
(可以用来测量血液流速)
相位调制型
(a)迈克尔逊干涉仪(b)马赫-泽德干涉仪
(c)赛格纳克干涉仪(d)法布里-珀罗干涉仪
偏振态调制型
功能型光纤传感器
法拉第磁光效应:平面偏振光通过带磁性的物体时,其偏振光面将发生偏转。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)
法拉第磁光效应实验装置
磁场
偏振光片
磁光材料
L
θ
检偏片
光源
光弹效应:在垂直于光波传播方向施加压力,材料将会产生双折射现象,其强弱正比于应力。
偏振光的相位变化:
2λπϕ/kpl =式中k ——物质光弹性系数;
P ——施加在物体上的压强;l ——光波通过的材料长度。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)
应变材料F
检偏器
光源
F
起偏器补偿器
光弹效应实验装置
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺) 传光型光纤传感器
光转换元件检测量
液晶温度、压力、振动
半导体膜温度等
波克尔斯元件电场、电压
法拉第元件磁场、电流
光弹性元件压力、温度、应变、音响
荧光物质放射线等
遮光光路位移、振动、旋转等
电子电路电磁场、其它。
光纤传感器
![光纤传感器](https://img.taocdn.com/s3/m/45dacfd22af90242a995e5d1.png)
fs fi1c vco1sco2s
P L
θ1 Θ2
v
O
4、相位调制传感器
被测对象导致光的相位变化,然后用干涉仪来检测这种相位变化而得到被测对象的信息。 利用光弹效应的声、压力或振动传感器; 利用磁致伸缩效应的电流、磁场传感器; 利用电致伸缩的电场、电压传感器
利用Sagnac效应的旋转角速度传感器(光纤陀螺) 优点:灵敏度很高, 缺点:特殊光纤及高精度检测系统,成本高。
损 耗 / ( d-B )1·k m
10 0 50
10
5
实验
红外
吸收
1
0.5
瑞 利 散射
紫 外 吸收 0.1
0.05
波 导 缺陷
0.01 0.8
1.0
1.2
1.4
1.6
波 长 / m
散射损耗主要由材料微观密度不均匀引起的 瑞利散射和由光纤结构缺陷(如气泡)引起的散射 产生的。 结构缺陷散射产生的损耗与波长无关。
材料色散是材料的折射率随频率变化引起的色散,因此材料色散引起的脉冲展宽与光源谱宽成正比。对于多 模渐变型光纤,如果采用激光器(LD)作光源,其谱宽一般为1-2nm,故可忽略材料色散。此时,脉冲展宽主要 由模间色散决定。但是,当光源为发光二级管(LED)时,由于其谱宽大约为30—50nm,故增加了材料色散的 影响。这时,材料色散和模问色散相比不可忽略。
光纤传感器
一、基础知识
光纤传感器
光纤传感器(FOS Fiber Optical Sensor)是20世纪70年代中期发展起来的一种基于光导纤维的新型传感 器。它是光纤和光通信技术迅速发展的产物,它与以电为基础的传感器有本质区别。光纤传感器用光作为敏感 信息的载体,用光纤作为传递敏感信息的媒质。因此,它同时具有光纤及光学测量的特点。
光纤传感器介绍
![光纤传感器介绍](https://img.taocdn.com/s3/m/b7c2984e83d049649a66589b.png)
流量传感器 转动、转速传感器 光开关
光强度调制型光纤传感器——光纤压力传感器
在压力作用下光纤产生微弯变形导致 光强度变化,从而引起光纤传输损耗 的改变,并由吸收、发射或折射率变 化来调制发射光,可制成微弯效应的 光纤压力传感器 。
由于齿板的作用,在沿光纤光轴的垂直方向上加有压力时,光纤产生 微弯变形,光波导方式改变,传输损耗增加。
光纤传感器的分类——相位调制型
相位调制型光纤传感器:
是利用被测对象对敏感元件的作用,使敏感元件的折射率或传播常数发生变化,而导致 光的相位变化,使两束单色光所产生的干涉条纹发生变化,通过检测干涉条纹的变化量来确 定光的相位变化量,从而得到被测对象的信息。
通常有利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器; 利用电致伸缩的电场、电压传感器以及利用光纤赛格纳克(Sagnac)效应的旋转角速度传感 器(光纤陀螺)等。
①电绝缘性能好。 ②抗电磁干扰能力强。 ③非侵入性。 ④高灵敏度。 ⑤容易实现对被测信号的远距离监控。
光纤传感器可测量位移、速度、加速度、液位、应变、压力、流量、振动、温度、电流、电压、 磁场等物理量
光纤传感器的基本原理
光纤传感器的基本原理:光导纤维不仅可以作为光波的传播介质,而且光波在光纤中传 播时表征光波的特征参量(振幅、相位、偏振态、波长等)因外界因素(如温度、压力、 磁场、电场、位移、转动等)的作用而间接或直接地发生变化,从而可将光纤用作传感 元件来探测各种物理量。
这种传感器的优点是有极高的灵敏度,主要用 于光纤陀螺、光纤水听器、动态压力和应变测 量、机械振动测量等方面 。
激光器的点光源光束扩散为平行波, 经分光器分为两路,一为基准光路, 另一为测量光路。外界温度(或压 力、振动等)引起光纤长度的变化 和相位的光相位变化,从而产生不 同数量的干涉条纹,对它的模向移 动进行计数,就可测量温度或压力 等。
反射式光纤传感器
![反射式光纤传感器](https://img.taocdn.com/s3/m/da517424192e45361066f578.png)
系统经实验能够测量油罐内液位0~ 精度± 系统经实验能够测量油罐内液位 ~3m,精度±1% 精度
实例三
采用了两圈接收光纤围绕一根 发射光纤的结构, 、 都是接收 发射光纤的结构,R1、R2都是接收 光纤, 光纤,由于距离信息被多根光纤平 且果取IR2/IR1,此值仅与测量 均,且果取 , 距离有关,这样降低了信号噪声, 距离有关,这样降低了信号噪声, 可测范围o~ 可测范围 ~1000tun,分辨率超过 , 0.1um。 。 最大测量距离可以通过调整两圈 接收光纤之间的距离来调节
反射面偏转检测法
由弹性膜片直接作为反射面, 由弹性膜片直接作为反射面,膜片的变形只是带动一个专门的反射 表而产生偏转, 表而产生偏转,从而使接收光强发生变化这种工作方式的最大优点是能 获得很高的灵敏度。但是高频性能往往要降低。 获得很高的灵敏度。但是高频性能往往要降低。
实验测试结果表明, 测量精度达1. 实验测试结果表明 测量精度达 5%FS
实例二
选取大芯径200µm的多模光 的多模光 选取大芯径 按照图示排列,L1、 为两组 纤,按照图示排列 、L2为两组 按照图示排列 探测器发光光路;PD1、PD2 为接 探测器发光光路 、 收器接收反射光光路; 收器接收反射光光路 中间三根为 定位光纤。 定位光纤。
反射式强度调制型光纤传感器
反射式强度调制型光纤传感器,简称 反射式强度调制型光纤传感器,简称RIM-FOS,具有 , 结构简单、性能可靠、设计灵活、价格低廉等优点 等优点, 结构简单、性能可靠、设计灵活、价格低廉等优点,而 且可适用于位移 转角、应变、压力、振动、温度、 位移、 且可适用于位移、转角、应变、压力、振动、温度、表 等多种物理量的测量。 面粗糙度等多种物理量的测量 面粗糙度等多种物理量的测量。 最早提出RIM-FOS结构并申请专利的是美国的 结构并申请专利的是美国的 最早提出 W.E.Frank和C.D.Kissinger等人和 等人和R.O.Cook等人,他 等人, 和 等人和 等人 们对该类传感器的频率响应 动态范围、线性区间、 频率响应、 们对该类传感器的频率响应、动态范围、线性区间、工 等重要问题取得了具有权威性的研究成果。 作距离等重要问题取得了具有权威性的研究成果 作距离等重要问题取得了具有权威性的研究成果。 国内从二十世纪八十年代始, 国内从二十世纪八十年代始,不少学者也开始关注 RIM-FOS,并进行了广泛而深入的研究。 ,并进行了广泛而深入的研究。
光纤传感器的分类及其应用原理
![光纤传感器的分类及其应用原理](https://img.taocdn.com/s3/m/0d1f5045591b6bd97f192279168884868662b813.png)
光纤传感器的分类及其应用原理一、本文概述光纤传感器是一种基于光纤技术的高精度、高灵敏度的测量装置,具有广泛的应用前景。
本文旨在全面介绍光纤传感器的分类及其应用原理。
我们将首先概述光纤传感器的基本概念和分类,然后深入探讨各类光纤传感器的应用原理,以及它们在不同领域中的实际应用。
通过阅读本文,读者将能够更深入地理解光纤传感器的工作原理和应用领域,为相关研究和应用提供有益的参考。
在本文中,我们将重点关注光纤传感器的分类,包括基于干涉原理的传感器、基于光强调制的传感器、基于偏振态的传感器等。
每种类型的光纤传感器都有其独特的工作原理和应用场景。
我们将逐一分析这些传感器的工作原理,以及它们在通信、环境监测、医疗健康、军事等领域中的应用实例。
我们还将关注光纤传感器的优势与挑战。
光纤传感器具有抗电磁干扰、灵敏度高、传输距离远等优点,但同时也面临着成本、可靠性等方面的挑战。
我们将对这些问题进行深入探讨,以期为读者提供全面的光纤传感器知识。
本文旨在全面介绍光纤传感器的分类及其应用原理,帮助读者更好地理解和应用光纤传感器技术。
我们希望通过本文的阐述,能够激发读者对光纤传感器技术的兴趣,推动相关研究和应用的发展。
二、光纤传感器的分类光纤传感器按照其工作原理和传感机制的不同,大致可以分为以下几类:强度调制型光纤传感器:这类传感器主要利用光强的变化来感知外界的物理量,如温度、压力、位移等。
当外界物理量作用于光纤时,会导致光纤中的光强发生变化,通过测量这种变化,就可以实现对物理量的测量。
相位调制型光纤传感器:相位调制型光纤传感器主要利用外界物理量对光纤中光的相位进行调制。
当外界物理量作用于光纤时,会导致光的相位发生变化,通过测量相位变化,可以实现对物理量的测量。
这类传感器具有较高的灵敏度和精度。
偏振调制型光纤传感器:偏振调制型光纤传感器主要利用外界物理量对光纤中光的偏振状态进行调制。
当外界物理量作用于光纤时,会导致光的偏振状态发生变化,通过测量偏振状态的变化,可以实现对物理量的测量。
五类光纤传感器基本原理和优点简介
![五类光纤传感器基本原理和优点简介](https://img.taocdn.com/s3/m/fd2414c44afe04a1b071de94.png)
五类光纤传感器基本原理和优点简介来源:与非网根据被调制的光波的性质参数不同,这两类光纤传感器都可再分为强度调制光纤传感器、相位调制光纤传感器、频率调制光纤传感器、偏振态调制光纤传感器和波长调制光纤传感器。
1)强度调制型光纤传感器基本原理是待测物理量引起光纤中传输光光强的变化,通过检测光强的变化实现对待测量的测量。
恒定光源发出的强度为I的光注入传感头,在传感头内,光在被测信号的作用下其强度发生了变化,即受到了外场的调制,使得输出光强的包络线与被测信号的形状一样,光电探测器测出的输出电流也作同样的调制,信号处理电路再检测出调制信号,就得到了被测信号。
这类传感器的优点是结构简单、成本低、容易实现,因此开发应用的比较早,现在已经成功的应用在位移、压力、表面粗糙度、加速度、间隙、力、液位、振动、辐射等的测量。
强度调制的方式很多,大致可分为反射式强度调制、透射式强度调制、光模式强度调制以及折射率和吸收系数强度调制等等。
一般反射式强度调制、透射式强度调制、折射率强度调制称为外调制式,光模式称为内调制式。
但是由于原理的限制,它易受光源波动和连接器损耗变化等的影响,因此这种传感器只能用于干扰源较小的场合。
2)相位调制型光纤传感器基本原理是:在被测能量场的作用下,光纤内的光波的相位发生变化,再用干涉测量技术将相位的变化转换成光强的变化,从而检测到待测的物理量。
相位调制型光纤传感器的优点是具有极高的灵敏度,动态测量范围大,同时响应速度也快,其缺点是对光源要求比较高同时对检测系统的精密度要求也比较高,因此成本相应较高。
目前主要的应用领域为:利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器;利用电致伸缩的电场、电压传感器;利用赛格纳克效应的旋转角速度传感器(光纤陀螺)等。
3)频率调制型光纤传感器基本原理是利用运动物体反射或散射光的多普勒频移效应来检测其运动速度,即光频率与光接收器和光源间运动状态有关。
强调制型光纤传感器
![强调制型光纤传感器](https://img.taocdn.com/s3/m/107cdacd227916888586d77f.png)
第四章 强度调制型光纤传感器
光纤
光纤 气室单元
光
信号预处
纤
理单元
激光器
激光器 控制单元
波形 发生器
温度控制
同步
锁相放大
显示与报警
数据处理 及显示
激光驱动与控制单元
信号处理与 显示单元
可调谐激光吸收光谱的光纤气体监测仪原理
第四章 强度调制型光纤传感器
4.4 光模式强度调制
1
2
恶劣环境适应能 力强,可克服背 景气体、粉尘等 吸收干扰,测量 分辨力与精度高;
分类:
利用光纤折射率的变化引起传输波损耗变化的强 度调制;
利用光纤折射率的变化引起渐逝波耦合度变化的 强度调制;
利用光纤折射率的变化引起光纤光强反射系数改 变的透射光强调制;
第四章 强度调制型光纤传感器
折射率强度调制
4.5 折射率强度调制
利用光纤折射率的变化引起传输波损耗变 化的强度调制;
利用光纤折射率的变化引起渐逝波耦合度 变化的强度调制;
第四章 强度调制型光纤传感器
4.4 光模式强度调制
➢反射式强度调制 ➢透射式强度调制 ➢光模式强度调制 ➢折射率强度调制 ➢光吸收系数强度
调制等
➢外调型
(传光型或非功能型)
➢内调型
(传感型或功能型)
4.5 折射率强度调制
第四章 强度调制型光纤传感器
折射率强度调制
4.5 折射率强度调制
物理量引起光纤折射率的变化实现光强调制的方式
第四章 强度调制型光纤传感器
✓ 转动的金属盘 上穿有透光孔。 当孔与光纤对 齐时,在光纤 输出端就有光 脉冲输出,这 是通过孔位的 变化对光强进 行调制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调制等
➢外调型
(传光型或非功能型)
➢内调型
(传感型或功能型)
4.3 透射式强度调制
第四章 强度调制型光纤传感器
➢调制原理:遮光 ➢调制方法
4.3 透射式强度调制
光强调制特性曲线
第四章 强度调制型光纤传感器
4.3 透射式强度调制
通常发送光纤不动, 而接收光纤可以作横向 位移、纵向位移或转动, 实现对发射光纤与接受 光纤之间偶和效率的调 制,改变光电探测器所 接受的光强度,从而实 现对位移(或角位移)、 压力、振动、温度等物 理量的测量。
第四章 强度调制型光纤传感器
4.3 透射式强度调制
➢优点:结构简单 ➢不足:灵敏度低、动态范围小
x 2
(
y
do
)2
/
2
(
zd
)]
P2
P(x,
y, do )
P0rR2
2 (zd
)
exp[ x2
(y
do )2
/ 2 (zd
)]
PD P1 P2
第四章 强度调制型光纤传感器
4.4 光模式强度调制
第四章 强度调制型光纤传感器
4.4 光模式强度调制
灵敏度提高108%
第四章 强度调制型光纤传感器
可调谐激光吸收光谱的光纤气体监测仪原理
第四章 强度调制型光纤传感器
4.4 光模式强度调制
1
2
恶劣环境适应能 力强,可克服背 景气体、粉尘等 吸收干扰,测量 分辨力与精度高;
不需采样预处理 系统,节省了样 气预处理的时间 和样气在管道内 的传输时间,响 应速度快,可实 现工业过程实时 在线管理;
3
利用光纤实现远 程在线高灵敏监 测,本质安全, 能耗低,抗电磁 干扰,便于复用 成网,并可与已 有监测网络联网。
第四章 强度调制型光纤传感器
4.4 光模式强度调制
组成
发射光纤、受待测量控制的可动光闸和接收光纤
调制原理
在发送光纤和接收光纤之间加入一定形式的受待 测量控制的可动光闸,对进入接收光纤的光束产 生一定程度的遮挡,产生光强度调制,进而实现 测量。
光闸形式
固体材料、液体、遮光片、光栅、码盘、待测 物体本身等。
I I0 expLC
式中,I为光强, 为摩尔分子吸收系数,C为气体浓度,
L光和气体的作用长度。
第四章 强度调制型光纤传感器
4.4 光模式强度调制
光纤
光纤 气室单元
光
信号预处
纤
理单元
激光器
激光器 控制单元
波形 发生器
温度控制
同步
锁相ห้องสมุดไป่ตู้大
显示与报警
数据处理 及显示
激光驱动与控制单元
信号处理与 显示单元
第四章 强度调制型光纤传感器
4.4 光模式强度调制
入射光 接收光
I (r, z) P0 exp[r2 / 2 (z)] 2 (z)
(
z)
rE
[1
(
z rE
)
tan(arcsinNA)]
P(
x,
y,
do
)
P0rR2
2 (zd
)
exp
x2 ( y do )2 / 2 (zd )
第四章 强度调制型光纤传感器
4.4 光模式强度调制
遮光屏是由等宽度、交替排列的透明区和非透明区 的光栅组成,其中一支为固定光栅,另一支为可移 动光栅。在此遮光屏的空间周期内,光的透过率, 从50%(两屏完全重叠)变到零(两屏完全交叠)。
光栅遮光屏透射式强度调制原理
第四章 强度调制型光纤传感器
4.4 光模式强度调制
在此周期性结构范围内,光的输出强度 是周期性的。而且它的分辨率在光珊条纹间 距的10-6数量级以内,是构成高灵敏度、简单、 可靠的位移传感器的基础。
第四章 强度调制型光纤传感器
4.4 光模式强度调制
第四章 强度调制型光纤传感器
4.4 光模式强度调制
不用透镜的两光 纤直接耦合系统,结 构虽然简单。只是接 收光纤端面只占发射 光纤发出的光锥底面 的一部分,使光耦合 系数减小,灵敏度也
降低一个数量级。
a. 带透镜结构 b. 不带透镜结构
第四章 强度调制型光纤传感器
4.4 光模式强度调制
接收光纤接收端面相对于照明光纤出射端面存在偏移量 时,传感器光强调制特性曲线相对于没有偏移量时的特 性曲线在形状上并没有改变,只是产生一定的相移。
第四章 强度调制型光纤传感器
4.4 光模式强度调制
接收光纤1 接收光纤2 差动输出
P1
P(x,
y,
do
)
P0rR2
2 (zd
)
exp[
甲烷与燃烧和推进联系非常紧密,其浓度测量直接与 对燃烧效率以及推进过程的分析有关。
Integrating … 为了预防与控制事故的发生,最大限度地减少人员伤亡,提高监控
能力,研究实时在线高灵敏甲烷浓度的监测仪是十分必要的。
第四章 强度调制型光纤传感器
4.4 光模式强度调制
理论基础:Lambert-Beer(郎伯-比尔 )定律
4.4 光模式强度调制
采用差动方式处理接收光强信号,可达到提高系统灵敏度、 抑制光源等光强波动以及探测器和后续电路产生的电子噪 声影响的目的
利用响应误差信号的双极性特点可准确判断角位移方向,并 通过响应误差信号的线性关系实现角位移的直接测量;
利用响应误差信号的过零点作为绝对零点触发,可实现测微 和绝对跟踪能力,进而实现待测物的自动调整。
油库、机库、动力室等大量使用的汽油等石油产品极 易挥发甲烷等气体。
Integrating … 当空气中的甲烷浓度约为5.3%到15%时,遇火源就会爆炸;在无火源 情况下,当空气中的甲烷浓度达到50%,能使人因缺氧而窒息死亡。
第四章 强度调制型光纤传感器
4.4 光模式强度调制
甲烷被认为是温室效应最主要的气体之一,其吸收红 外线能力是二氧化碳的15-30倍,占据整个温室气体 贡献量的15%,直接关系到人类健康生活。
第四章 强度调制型光纤传感器
4.4 光模式强度调制
第四章 强度调制型光纤传感器
4.4 光模式强度调制
第四章 强度调制型光纤传感器
4.4 光模式强度调制
第四章 强度调制型光纤传感器
4.4 光模式强度调制
瓦斯爆炸是影响煤矿安全重大威胁之一。据统计,我 国煤矿爆炸事故近80%是由瓦斯气体爆炸引起的。瓦 斯的主要成分是甲烷,约占瓦斯气体的83%~89%。
第四章 强度调制型光纤传感器
4.4 光模式强度调制
工业过程气体分析仪器应用领域及2010 年需求量
第四章 强度调制型光纤传感器
4.4 光模式强度调制
利用双金属热变形的遮光式光纤温度计。当温度升高 时,双金属片的变形量增大,带动遮光板在垂直方向 产生位移从而使输出光强发生变化。这种形式的光纤 温度计能测量10℃~50℃的温度。检测精度约为0.5℃。