工程水文课程设计-天福庙水库防洪复核计算.doc

合集下载

水库现状水位复核计算

水库现状水位复核计算

2水文2.1基本资料采用1:10000航测图对下际水库流域面积、主河道长度、比降进行复核,具体见表2.1。

表2.1水库流域特征参数复核成果对比表根据实测库区地形图,计算水位、库容关系,具体见表2.2。

表2.2水库水位、库容关系成果表2.2设计暴雨采用江西省水文总站2010年出版的《江西省暴雨洪水查算手册》(以下简称《手册》)中的暴雨等值线图进行查算分析。

表2.3水库各时段面暴雨值成果表2.3设计洪水水库流域内无水文观测站,参照有关规范,对于该种难以获得流量资料的小型水库可采用雨量资料来推求洪水,考虑设计流域集雨面积小于30km2,即选定采用《手册》提供的推理公式法来推算设计洪水。

2.3.1产汇流计算及洪水成果(1)设计暴雨时程分配设计暴雨采用2.2节分析的成果,考虑流域面积较小,因此采用控制时段△t=1小时的暴雨雨型分配过程,求得各频率下的时段暴雨分配量,见表2.3.1。

表2.3.1水库设计暴雨时程分配表(2)设计24小时净雨计算由产流分区附图3-1可知,该工程位于产流Ⅴ区,查《手册》附表3-2,流域最大蓄水量Im =100mm ,前期土壤含水量Pa =70mm ,24小时平均暴雨强度采用公式I =H 24/24计算,地下稳渗率根据公式fc=1.96I 计算,扣除初损及稳渗,计算出各频率下24小时净雨过程,见表2.3.2。

表2.3.2水库设计净雨成果表(3)设计洪水及洪水过程线推求据推理公式计算分区图,该工程位于Ⅴ区,根据θ=L/J 1/3=3.15,利用该区经验公式:m=0.221×θ0.286计算汇流参数m ,经计算为0.30,利用公式Q τ=[(0.278×θ)/(m ×τ)]4计算Q τ~τ关系。

按推求的设计净雨及公式Q t =0.278×F ×Σh t /t 计算Q t ~t 关系线,点绘Q t ~t 、Q τ~τ关系线,两曲线的交点即为所求的地面设计洪峰流量和汇流时间,地面流量过程线由概化五点折腰多边形过程线推求,各转折点的值由相应的百分数确定。

(完整版)水文水利计算课程设计

(完整版)水文水利计算课程设计

目录第一章设计水库概况 (1)1.1流域概况 (1)1。

2工程概况 (1)第二章年径流分析计算 (4)2.1 径流资料来源 (4)2。

2 年径流资料的审查 (4)2.2.1 资料可靠性审查 (4)2。

2.2 资料一致性审查 (4)2.2.3 资料代表性审查 (4)2.3 设计年径流分析计算 (4)2。

3。

1 水利年划分 (4)2。

3。

2 绘制年径流频率曲线 (4)2。

3。

2。

1 频率曲线线型选择 (4)2.3。

2.2 经验频率计算 (5)2。

3。

2。

3 频率曲线参数估计 (5)2。

3。

2。

4 绘制频率曲线 (5)2.3。

3 计算成果 (7)2。

3.4成果合理性分析 (7)2。

4 设计代表年径流分析计算 (7)2。

4。

1 代表年的选择应用实测径流资料选择代表年的原则: (7)2。

4.2 设计代表年径流年内分配计算 (7)2.4。

3 代表年内径流分配成果 (7)第三章设计洪水分析 (9)3.1 洪水资料的审查 (9)3.1.1 洪水资料可靠性审查 (9)3.1.2 洪水资料一致性审查 (9)3.1。

3 洪水资料代表性审查 (9)3.2 特大洪水的处理 (9)3。

3 设计洪水分析计算 (9)3.3.1 频率曲线线型选择 (9)3。

3。

2 经验频率计算 (9)3.3。

3 频率曲线参数估计 (10)3。

3.4 绘制频率曲线 (10)3.3.5 成果合理性分析 (13)3。

3。

6 计算成果 (13)3.4 设计洪水过程线 (13)3。

4。

1 典型洪水过程线的选取 (13)3。

4。

2 推求设计洪水过程线方法 (13)3.4.3 计算成果 (14)3。

4.4 设计洪水过程线的绘制 (14)第四章兴利调节 (16)4.1 兴利调节计算的方法 (16)4.2 兴利调节计算 (16)4。

2。

1 来水量的确定 (16)4.2。

2 用水量的确定 (16)4.2.2。

1 灌溉用水量的确定 (16)4。

2.2。

2 城镇生活供水 (16)4。

天福庙水库防洪复核计算课程设计

天福庙水库防洪复核计算课程设计

天福庙水库防洪复核计算课程设计一、课程设计目的与意义天福庙水库是我国典型的中型水库,位于内江市隆昌县天福庙镇境内,是当地的主要水源之一、为了确保水库的安全性与防洪能力,必须进行相关的复核计算。

本课程设计旨在培养学生掌握水库防洪复核计算的基本原理和方法,提高学生的工程实践能力,为他们未来从事水利工程相关工作打下坚实的基础。

二、课程设计内容及要求2.介绍水库防洪复核计算的基本原理和方法,包括计算步骤、相关参数的确定方法、计算公式的推导与应用等。

要求学生能够熟练掌握计算过程,并理解各个步骤的意义。

3.指导学生进行水库防洪复核计算的实际操作。

教师可以提供实际水库的设计数据和计算需求,要求学生独立完成复核计算,并分析计算结果的合理性和可行性。

4.学生完成计算后,要求他们对计算结果进行总结与分析,指出存在的问题和改进的空间,并提出相应的建议。

同时要求他们撰写一份实验报告,详细记录整个计算过程和分析过程,并附上计算结果和结论。

5.要求学生在课程设计最后进行汇报,展示他们的实验报告和计算结果,帮助他们提高表达能力和沟通能力。

三、课程设计的教学方法与手段1.理论与实践相结合。

通过理论教学和实际操作相结合的方式,提高学生的实践能力和动手能力。

2.定向探究。

教师在指导学生进行实际计算操作时,要引导学生主动参与,提出问题,探索解决方法,培养学生的独立思考和解决问题的能力。

3.多媒体辅助。

在讲解水库基本情况和防洪复核计算原理时,可以借助多媒体教学手段,使用幻灯片、视频等辅助工具,提高教学效果。

四、课程设计的评价方法1.实验报告评分。

根据学生提交的实验报告,评价其对水库防洪复核计算的理解与把握程度、计算结果的准确性、分析能力和解决问题的能力,给出相应的成绩评定。

2.汇报评分。

根据学生的汇报内容、表达水平、与听众的互动等方面进行评价,给出相应的成绩评定。

3.实际计算评分。

根据学生在实际计算中的实际操作能力、计算结果的准确性和可行性等方面进行评价。

水库洪水计算

水库洪水计算
20
4.43 0.96
3.47
9
4.90 1.43 3.47
21
4.43 0.96
3.47
(3)①计算汇流参数m值
F=
1.5 km2
L=
1.62 km
J=
124.36 0‰
θ =L/J^(1/3 )*F^(1/4) m=0.063* θ^0.384
0.293 <1.5 0.039
(4)计算地表洪峰流量
20
5.70 1.34
4.36
9
6.30 1.94 4.36
21
5.70 1.34
4.36
5
2.33 0.00 2.30
17
11.00 7.53
3.47
6
2.33 0.00 2.30
18
11.00 7.53
3.47
7
4.90 1.43 3.47
19
4.43 0.96
3.47
8
4.90 1.43 3.47
5.95
2
3.00 0.00 3.00
14
26.50 22.14
4.36
156.00 150.05
5.95
3
3.00 0.00 3.00
15
109.00 104.64
4.36
p=10%分割地表,地下净流
时段
1
雨量
2.33
地表
0.00
地下
2.30
时段
13
雨量 地表
19.50 16.03
地下
3.47
2
2.33 0.00 2.30
H1(最大 1小时点 雨量均 值)
CV1(最大1小 时点雨量变 差系数)

工程水文课程设计-天福庙水库防洪复核计算.doc

工程水文课程设计-天福庙水库防洪复核计算.doc

0.6237
0.208
0.7821
0.557
0.1516
0.8518
0.555
0.15
0.858
0.5489 0.1453
0.8598
0.5248 0.1275
0.9968
2.8094 0.7824
0.3727
0.042
0.0664
0.288
0.0145
0.138
0.2832 0.0133
0.1023
170
126 42
613
121 43
471
64
44
19132
均值 Cv
510.5 0.81
文档从网络中收集,已重新整理排版.word 版本可编辑.欢迎下载支持.
16.38% 18.64% 20.90% 23.16% 25.42% 27.68% 29.94% 32.20% 34.46% 36.72% 38.98% 41.24% 43.50% 45.76% 48.02% 50.28% 52.54% 54.80% 57.06% 59.32% 61.58% 63.84% 66.10% 68.36% 70.62% 72.88% 75.14% 77.40% 79.66% 81.92% 84.18% 86.44% 88.70% 90.96% 93.22% 95.48% 97.74%
3.分乡站历史洪水。根据 1982 年省雨洪办对宜昌市历史洪水调查成果的审定结果, 分乡站洪水的排位为 1935 年、1984 年、1826 年、1930 年、1958 年,资料可靠,可直接 采用。经审定认为,分乡站 1935 年洪水 1826 年以来的第 1 位,重现期为 176 年,1984 年洪水于 1826 年、1930 年洪水相当,分别确定为 1826 年以来的地 2-4 位,1958 年洪水 为 1826 年以来的地 5 位。分乡站历史洪水成果见表 KS1—1。

2020年整理工程水文及水利计算课程设计天福庙水库防洪复核计算.doc

2020年整理工程水文及水利计算课程设计天福庙水库防洪复核计算.doc

天福庙水库防洪复核计算一.设计任务天福庙水库位于湖北省远安县黄柏河东支的天福庙村,大坝以上流域面积553.62km河长58.2km,河道比降1.06%,总库容6367万,是一座以灌溉为主,结合防洪、发电、拦沙、养殖等综合利用的水利工程。

天福庙水库于1974年冬开工建设,1978年建设成,已运行近30年。

1975年技术设计时,水文系列年限仅20年,系列太短,也缺乏大洪水的资料。

本次课程设计的任务,是在延长基本资料的基础上,按现行规范要求对水库的防洪标准进行复核,其具体任务是:1.选择水库防洪标准。

2.历史洪水调查分析及洪量插补。

3.设计洪水和校核洪水的计算。

4.调洪计算。

5.坝顶高程复核。

二.流域自然地理概况,流域水文气象特性(一)流域及工程概况天福庙水库位于湖北省远安县黄柏河东支的天赋庙村,大坝以上流域面积553.6,河长58.2km,河道比降10.6‰,总库容6367万,是一座以灌溉为主,结合防洪、发电、拦沙、养殖等综合利用的水利工程。

天福庙水库于1974年冬开工建设,1978年建设成,大坝为浆砌石双曲拱坝,坝前河底高程348m,坝高63.3m,电站总装机6040kw。

水库死水位378m,死库容714万m3,正常蓄水位409m,相应库容6032万。

设计洪水位(P=2%)409.28m,校核(P=0.2%)洪水位409.28m,坝顶高程410.3m,防浪墙顶高程411.3m。

库区吹程1000m。

(二)水文气象资料1.气象特征。

天福庙流域地处亚热带季风区,四季分明,夏季炎热多雨,冬季低温少雨,秋温高于春温,春雨多于秋雨,气温年内变化较大,无霜期长。

多年平均气温16.8℃,历年最高气温达40℃,最低气温-12℃,平均风速1.2m/s,多年平均最大风速15.5m/s,风向多为NE。

流域多年平均降水量1036.3mm,流域暴雨频繁,洪水多发,4-10月为汛期,汛期降雨量占全年降雨量的86.7%左右,尤其以7月最大,占全年的1.3%。

防洪堤结构设计分析与复核计算

防洪堤结构设计分析与复核计算

防洪堤结构设计分析与复核计算每年,许多建造在大江大河旁的因为防洪涝工作没有实施或者做好,一到了雨水多的时期就会容易遭到洪涝灾害的摧残。

这严重影响了人们的学习工作还有生命财产安全,已经成为了设计工作人员急需解决的问题。

下面以某县城防洪堤结构设计和复核对如何做好这项工作进行讨论。

1 堤防设计概况某期防洪堤设计堤型采用重力式防洪堤,堤身材料为浆砌块石。

堤顶宽3m,最大堤高30.267m,最大底宽20.675m。

防洪堤迎水面设置1:0.1坡度,堤背面设置1:0.15坡度。

在308及297高程分别设有4m×3m 的休息平台,防洪堤中间标准断面在304m高程设有8m宽的临江看台。

此外,在某期防洪堤的两端均设有4m宽的梯步下至304m高程临江看台,并设4m宽的下河梯步至河边。

防洪堤基础与基岩接触面为500mm 厚C15砼垫层。

防洪堤后为广场,系原冲沟设一排水涵洞后回填土石所建成,到目前为止回填时间不到一年。

防洪堤堤身设排水孔,间排距为3m,呈梅花型布置,堤背回填土石料并设置塑料排水盲沟和堤背碎石层的排水系统。

2 复核断面选取及复核工况2.1 复核断面的选取复核断面选取时,兼顾堤高、堤底宽、堤背倾斜(或铅直)、堤背填土高度及堤的断面大小,根据防洪堤实际开挖和回填断面图以及防洪堤实际施工的标准断面图,选取以下6个有代表性的实际施工标准断面,作为本次复核所用标准断面。

2.2 复核工况的确定根据防洪堤的运行条件,计算工况按极端情况考虑,分为枯水位和设计洪水位两种工况,具体如下:1)非常运用条件。

外江水位升高至设计洪水位312.0m(P=5%),相应的荷载组合为:堤背土压力(含人群荷载引起的)+堤背填土压重+堤背水压力+基底扬压力+堤自重+外江静水压力+外江水压重2)正常运用条件。

外江水位骤降,并降至河床常年水位293.0m,相应的荷载组合为:堤背土压力(含人群荷载引起的)+堤背填土压重+堤背水压力+基底扬压力+堤自重+外江静水压力3 施工完成后防洪堤结构复核3.1 复核计算内容及公式3.1.1 计算内容防洪堤的抗滑稳定安全系数Kc、抗倾稳定安全系数K0、基底最大压应力σmax和最小压应力σmin等参数。

水库设计洪水计算及防洪安全复核讲义(PDF 38页)

水库设计洪水计算及防洪安全复核讲义(PDF 38页)

历时(t)为 2、3……5h:Htp=H24p*4-N3p*6-N2p*tN2p
历时(t)为 7、8……23h:Htp= H24p*24-N3p*tN3p
式中 N2p、N3p 为设计暴雨的递增指数。 24 小时的雨量计算值与设计值一致,而 1、6 小时略有差别。 表(3)
N2p
N3p
P=0.5% P=1% P=2% P=5% P=10% P=0.5% P=1% P=2% P=5% P=10%
目录 1 工程概况....................................................................................................................1
1.1 概述.................................................................................................................1 1.3 安全评价的重要性.........................................................................................2 2 设计暴雨计算............................................................................................................2 2.1 各种频率设计暴雨量............................................................................................2 2.2 设计暴雨量递增指数值..................................................................................3 2.3 计算 24h 到 1h 的设计面雨量........................................................................4 2.4 对各种历时雨量进行排序..............................................................................7 3 产流计算....................................................................................................................7 3.1 确定产流参数值..............................................................................................7 3.2 计算 1h 逐时段净雨量....................................................................................7

水利计算课程设计

水利计算课程设计

.课程设计(综合实验)报告( 2012 -- 2013 年度第一学期)名称:课程或实验名称题目:天福庙水库防洪复核计算院系:可再生能源学院班级:学号:学生姓名:指导教师:设计周数:2周成绩:日期:2013年1月8日目录一.课程设计的目的与要求 (1)1......................................................................................................................................... 设计任务 (1)二.设计正文 (1)1......................................................................................................................................... 流域自然地理概况,流域水文气象特性 (1)2......................................................................................................................................... 防洪标准选择 (2)3......................................................................................................................................... 峰量选样及历史洪水调查 (3)4......................................................................................................................................... 设计洪水计算 (4)5......................................................................................................................................... 设计洪水调洪计算 (7)6......................................................................................................................................... 坝顶高程复核计算 (8)三.课程设计总结 (9)四.附录 (10)1. 分乡站历史洪水成果(附录1) (10)2. 天福庙水库洪峰、洪量系列表(附录2) (10)3. 典型洪水过程线(1984.7.26—28)(附录3) (11)4. 天福庙水库库容曲线和泄洪建筑物泄流曲线(附录4) (11)5. 混凝土拱坝安全超高hc (附录5) (12)6. 水利水电枢纽工程的等级(附录6) (13)7.水工建筑物的级别(附录7) (13)8.水库工程建筑物防洪标准(附录8) (13)9.天福庙1978-2001年峰量系列1d洪量与洪峰关系(附录9) (14)10.天福庙1978-2001年峰量系列3d洪量与洪峰关系(附录10) (15)11.天福庙历史洪水成果(附录11) (16)12.天福庙峰量频率计算表(附录12) (17)13.洪峰频率曲线配线过程(附录13) (19)14.1d洪量频率曲线配线过程(附录14) (20)15.3d洪量频率曲线配线过程(附录15) (21)16.P=2%典型洪水过程线(1984.7.26—28)(附录16) (22)17.P=0.2%典型洪水过程线(1984.7.26—28)(附录17) (25)18.Z-V关系图(附录18) (28)19.q-V关系图(附录19) (29)20.泄流过程试算编程代码(利用MATLAB编程)(附录20) (31)21.设计洪水调洪计算(附录21) (32)22.校核洪水调洪计算(附录22) (35)天福庙水库洪峰、洪量系列表(附录2)1974 240 0.0813 0.1589 1996 487 0.2341 0.4334 1975 848 0.1483 0.248 1997 544 0.1383 0.3186 1976 272 0.0931 0.138 1998 974 0.2262 0.4135 1977 162 0.0915 0.1795 1999 170 0.0734 0.1686 1978 299 0.1525 0.2812 2000 613 0.2113 0.3157 1979 634 0.288 0.5393 2001 471 0.1913 0.2986典型洪水过程线(1984.7.26—28)(附录3)时段( 流量时段( 流量时段( 流量时段( 流量(m3/s)(m3/s)(m3/s)(m3/s)0 96.6 19 216.3 38 43.5 57 23.51 572 20 183.5 39 41.7 58 22.82 1085 21 156 40 40 59 22.13 1345 22 138 41 38.3 60 21.54 1568 23 121 42 36.6 61 20.65 1791 24 103.9 43 34.8 62 19.36 2090 25 108.4 44 33.1 63 18.27 2389 26 91.5 45 32.2 64 17.38 2138.7 27 83.5 46 31.3 65 16.19 1465.5 28 68.6 47 30.4 66 15.310 1005.1 29 53.3 48 29.5 67 14.411 768.8 30 40.9 49 28.7 68 13.512 494.3 31 51 50 27.8 69 12.613 584.9 32 61 51 27.2 70 11.814 421.2 33 54.8 52 26.6 71 1115 358.7 34 48.5 53 26 72 10.616 344.8 35 46.3 54 35.417 313.7 36 45.2 55 24.818 232.5 37 44.2 56 24.2天福庙水库库容曲线和泄洪建筑物泄流曲线(附录4)库容左岸溢洪道q1 坝顶溢洪道q2 合计泄洪量q库水位(×104m3)(m3/s)(m3/s)(m3/s)398 3460 0 0 0399 3670 37 0 37400 3890 107 0 107401 4100 216 0 216402 4325 365 0 365混凝土拱坝安全超高h c(附录5)单位:m防洪标准选择水工建筑物的级别(附录7)水库工程建筑物防洪标准(附录8)物的类别混凝土坝、浆砌石坝及其他水工建筑土坝、堆石坝一1000~500 5000~2000 可能最大洪水(PFM)或10000~5000300~100 2000~1000二500~100 2000~1000 5000~2000 100~50 1000~300 三100~50 1000~500 2000~1000 50~20 300~100 四50~30 500~200 1000~300 20~10 100~50 五30~20 200~100 3000~200 10 50~20 天福庙1978-2001年峰量系列1d洪量与洪峰关系(附录9)天福庙1978-2001年峰量系列3d洪量与洪峰关系(附录10)序号年份洪峰流量(m3/s)1d洪量(×108m3)3d洪量(×108m3)1 1935 2995.2 0.6826 1.02762 1984 2389 0.5489 0.85183 1826 2390.4 0.5591 0.84724 1930 2387.2 0.5584 0.84625 1958 1803 0.6237 0.9968天福庙峰量频率计算表(附录12)序号洪峰Qm(m3/s)1d洪量W1()3d洪量W3()PM(%) Pm(%)M mI 2995.2 0.6826 1.0276 0.56II 2390.4 0.6237 0.9968 1.13III 2389 0.5591 0.8518 1.69IV 2387.2 0.5584 0.8472 2.26V 1803 0.5489 0.8462 2.821 1036 0.3727 0.6594 5.082 974 0.288 0.5725 7.343 851 0.2832 0.5393 9.604 848 0.2635 0.4334 11.865 838 0.2341 0.4135 14.126 804 0.2334 0.3288 16.387 774 0.2262 0.3223 18.64洪峰频率曲线配线过程(附录13)频率第一次配线第二次配线P(%) Q=510.56,Cv=0.81,Cs=3.0Cv=2.43 Q=510.56,Cv=0.81,Cs=3.5Cv=2.835Kp Qp Kp Qp0.2 5.63 5.5603 2838.866768 6.01 5.8681 2996.0171361 3.81 4.0861 2086.199216 3.97 4.2157 2152.3677922 3.02 3.4462 1759.491872 3.11 3.5191 1796.7116965 2.01 2.6281 1341.802736 2.01 2.6281 1341.80273610 1.26 2.0206 1031.637536 1.21 1.9801 1010.95985620 0.54 1.4374 733.878944 0.46 1.3726 700.79465630 0.13 1.1053 564.321968 0.06 1.0486 535.37321640 -0.15 0.8785 448.52696 -0.2 0.838 427.8492850 -0.35 0.7165 365.81624 -0.38 0.6922 353.40963260 -0.51 0.5869 299.647664 -0.51 0.5869 299.64766475 -0.68 0.4492 229.343552 -0.64 0.4816 245.88569690 -0.795 0.35605 181.784888 -0.702 0.43138 220.245372895 -0.82 0.3358 171.446048 -0.71 0.4249 216.936944 1d洪量频率曲线配线过程(附录14)频率第一次配线第二次配线P(%) w1=0.1686,Cv=0.61,Cs=3.0Cv=1.83 w1=0.1686,Cv=0.61,Cs=3.5Cv=2.135Kp wp Kp wp0.2 5.01 4.0561 0.68385846 5.33 4.2513 0.716769181 3.5 3.135 0.528561 3.66 3.2326 0.545016362 2.85 2.7385 0.4617111 2.93 2.7873 0.469938785 1.98 2.2078 0.37223508 2 2.22 0.37429210 1.32 1.8052 0.30435672 1.29 1.7869 0.3012713420 0.64 1.3904 0.23442144 0.59 1.3599 0.2292791430 0.24 1.1464 0.19328304 0.19 1.1159 0.1881407440 -0.05 0.9695 0.1634577 -0.1 0.939 0.158315450 -0.28 0.8292 0.13980312 -0.32 0.8048 0.1356892860 -0.48 0.7072 0.11923392 -0.49 0.7011 0.1182054675 -0.72 0.5608 0.09455088 -0.71 0.5669 0.0955793490 -0.94 0.4266 0.07192476 -0.869 0.46991 0.07922682695 -1.02 0.3778 0.06369708 -0.911 0.44429 0.074907294 3d洪量频率曲线配线过程(附录15)频率P(%)第一次配线第二次配线w3=0.2736,Cv=0.61,Cs=3.0Cv=1.83 w3=0.2736,Cv=0.61,Cs=3.5Cv=2.135 Kp wp Kp wp0.2 5.01 4.0561 1.10974896 5.33 4.2513 1.163155681 3.5 3.135 0.857736 3.66 3.2326 0.884439362 2.85 2.7385 0.7492536 2.93 2.7873 0.762605285 1.98 2.2078 0.60405408 2 2.22 0.60739210 1.32 1.8052 0.49390272 1.29 1.7869 0.4888958420 0.64 1.3904 0.38041344 0.59 1.3599 0.3720686430 0.24 1.1464 0.31365504 0.19 1.1159 0.3053102440 -0.05 0.9695 0.2652552 -0.1 0.939 0.256910450 -0.28 0.8292 0.22686912 -0.32 0.8048 0.2201932860 -0.48 0.7072 0.19348992 -0.49 0.7011 0.1918209675 -0.72 0.5608 0.15343488 -0.71 0.5669 0.1551038490 -0.94 0.4266 0.11671776 -0.869 0.46991 0.12856737695 -1.02 0.3778 0.10336608 -0.911 0.44429 0.121557744P=2%典型洪水过程线(1984.7.26—28)(附录16)时段()典型流量(m3/s)放大倍比放大流量修匀流量0 96.6 4.7058 454.6 454.60 96.6 0.6565 63.4 454.61 572 0.6565 375.5 375.52 1085 0.6565 712.3 712.33 1345 0.6565 883.0 883.04 1568 0.6565 1029.4 1029.45 1791 0.6565 1175.8 1175.86 2090 0.6565 1372.1 1372.17 2389 0.6565 1568.4 1796.87 2389 0.7521 1796.8 1796.8P=0.2%典型洪水过程线(1984.7.26—28)(附录17)时段() 典型流量(m3/s)放大倍比放大流量修匀流量0 96.6 7.1768/1.001 693.3/96.7 693.31 572 1.001 572.6 572.62 1085 1.001 1086.1 1086.13 1345 1.001 1346.3 1346.34 1568 1.001 1569.6 1569.65 1791 1.001 1792.8 1792.86 2090 1.001 2092.1 2092.17 2389 1.001/1.3 2391.4/3105.7 3105.78 2138.7 1.001 2140.8 2140.89 1465.5 1.001 1467.0 1467.010 1005.1 1.001 1006.1 1006.111 768.8 1.001 769.6 769.612 494.3 1.001 494.8 494.813 584.9 1.001 585.5 585.514 421.2 1.001 421.6 421.615 358.7 1.001 359.1 359.116 344.8 1.001 345.1 345.117 313.7 1.001 314.0 314.018 232.5 1.001 232.7 232.719 216.3 1.001 216.5 216.520 183.5 1.001 183.7 183.721 156 1.001 156.2 156.222 138 1.001 138.1 138.123 121 1.001 121.1 121.124 103.9 1.001/7.2768 104.0/745.7 745.725 108.4 7.1768 778.0 778.026 91.5 7.1768 656.7 656.727 83.5 7.1768 599.3 599.328 68.6 7.1768 492.3 492.329 53.3 7.1768 382.5 382.530 40.9 7.1768 293.5 293.531 51 7.1768 366.0 366.032 61 7.1768 437.8 437.833 54.8 7.1768 393.3 393.334 48.5 7.1768 348.1 348.135 46.3 7.1768 332.3 332.336 45.2 7.1768 324.4 324.4Z-V关系图(附录18)q-V关系图(h>402.4m)(附录19)q-V关系图(398m<h<402.4m)泄流过程试算编程代码(利用MATLAB编程)(附录20)a=[......];V1=6045;q1=0;for m=1:72q2=2000;q=0;n=q2-q;while abs(n)>0.0001q2=(q+q2)/2;V2=(a(m)*10^4-(q1+q2)*1800)*10^-4+V1;while V2<0q2=q2-10;V2=(a(m)*10^4-(q1+q2)*1800)*10^-4+V1;endif V2<4430.5q=-1.263*10^(-9)*V2^3+0.000403*V2^2-2.657*V2+4423; elseq=-1.7*10^(-8)*V2^3+0.0005317*V2^2-2.606*V2+3011;endif q>=0n=q2-q;endendif V2<6045V2=6045;q2=(a(m)*10^4-(V2-V1)*10^4)/1800-q1;endif q2<0q2=0;V2=(a(m)*10^4-(q1+q2)*1800)*10^-4+V1;endb(m)=q2;V1=V2;q1=q2;endc=b';注:a[…..]矩阵中值为(Q1+Q2)*△t/2。

工程水文及水利计算课程设计备课讲稿

工程水文及水利计算课程设计备课讲稿

工程水文及水利计算课程设计工程水文及水利计算课程设计题目:天福庙水库防洪复核计算学院:水利学院年级:2014级学号: 2014313177姓名:陈永顺目录1. 设计任务.....................................................................2. 流域自然地理概况,流域水文气象特征.....................................................................3. 防洪标准选择.....................................................................4. 峰、量选样及历史洪水调查.....................................................................5. 设计洪水计6. 设计洪水调洪计7. 坝顶高程复核计一、设计任务天福庙水库位于湖北省远安县黄柏河东支的天福庙村,大坝以上流域面积553.6km2,河长58.2km,河道比降10.6 %。

,总库容6367万m,是一座以灌溉为主,结合防洪、发电、拦沙、养殖等综合利用的水利工程。

天福庙水库于1974年冬开工建设,1978年建设成,已运行近30年。

1975年技术设计时,水文系列年限仅20年,系列太短,也缺乏大洪水的资料。

本次课程设计的任务,是在延长基本资料的基础上,按现行规范要求对水库的防洪标准进行复核,其具体任务是:1 . 选择水库防洪标准。

2 . 历史洪水调查分析及洪量插补。

3 . 设计洪水和校核洪水的计算。

4 . 调洪计算。

5 .坝顶高程复核。

二、流域自然地理概况,流域水文气象特征天福庙水库位于湖北省远安县黄柏河东支的天赋庙村,大坝以上流域面积553.6km2,河长58.2km,河道比降10.6%。

,总库容6367万m2,是一座以灌溉为主,结合防洪、发电、拦沙、养殖等综合利用的水利工程。

水文学 案例分析

水文学 案例分析

水wen 学案例分析12-1青年水库为年调节水库,以下述资料用时历法(计入损失),试求水库兴利库容、设计蓄水位及其蓄水、弃水过程。

1)坝址断面设计苦水年(P=90%)流量过程见表12-15.设计枯水流量过程表12-15 月份 2 3 4 5 6 7 8 9 10 11 121 流量s m /39.87 11.98 10.80 30.90 6.19 5.90 16.34 6.79 5.19 1.71 0.69 4.16 (2)用水部门设计枯水年需水要求见表12-16。

设计枯水年需水过程表12-16月份 23 4 5 6 7 8 9 10 11 12 1灌溉用水0 0.17 2.13 0.91 4.38 3.10 0.07 0.82 0 0 0 发电用水6.62 6.62 6.62 6.62 6.62 6.62 6.62 6.62 6.62 6.62 6.62 6.62 共计 6.62 6.62 6.79 8.757.53 11.00 9.72 6.69 7.44 6.62 6.62 6.62(3)水库水位~面积,水位~容积曲线见表12-17。

水库水位~容积、水位~面积关系表12-17水位(m )95 100 102 104 106 108 111 112 114 水面面积(2810m ) 0.0560.075 0.084 0.088 0.096 0.103 0.113 0.112 0.133水库容积(2810m )0.45 0.78 0.95 1.10 1.28 1.48 1.71 1.94 2.20(4)蒸发损失标准见表12-18。

水库蒸发损失标准表12-18月份 12 3 4 5 6 7 8 9 10 11 12 蒸发损失1.09 1.65 5.10 7.33 6.10 9.70 17.5 7.70 10.60 5.452.85 2.06(5)水库每月渗漏损失按月平均蓄水量的1%计。

(6)水库设计死水位m Z 102=死。

水库设计洪水计算及防洪安全复核讲义

水库设计洪水计算及防洪安全复核讲义

水库设计洪水计算及防洪安全复核讲义一、洪水计算1. 水库设计洪水计算的目的- 确保水库能够安全承载设计范围内的洪水流量,保障水库的防洪安全;- 设计合理的泄洪工程,以便在洪水期间有效减轻洪水压力,保护周边地区和人民生命财产安全。

2. 洪水计算的方法- 根据当地历史洪水数据和气象条件,采用常规水文计算方法或者先进的洪水模型技术进行计算;- 考虑不同频率的设计洪水情景,如50年一遇、100年一遇等,以保证水库在不同洪水情况下的安全性。

3. 水库设计洪水计算的核心内容- 洪水频率分析,确定不同频率的设计洪水;- 洪水过程模拟,根据不同设计洪水情景模拟水库的洪水过程;- 洪水风险评估,分析水库承载设计洪水的可靠性和安全性。

二、防洪安全复核1. 防洪安全复核的意义- 对已建成水库进行防洪安全性能的复核,评估现有工程的洪水防御能力;- 根据复核结果,及时修缮弥补水库可能存在的安全隐患,提高水库的防洪能力。

2. 防洪安全复核的内容- 对水库堤坝、泄洪设施、泄洪通道等主要防洪设施进行全面检查,评估其结构稳定性和功能完整性;- 根据洪水预警系统和水文气象预报数据,评估水库对不同频率洪水的防御能力;- 对水库周边地区的洪水风险进行分析,制定应急预案和演练预案。

3. 防洪安全复核的实施- 由专业水利工程师和科研人员组成复核小组,进行现场实地考察和数据分析;- 结合国家相关标准和技术规范,对水库的防洪设施、管理制度和应急预案进行评估,并提出改进建议;- 定期进行防洪安全复核,保证水库的防洪安全性能持续稳定。

以上就是水库设计洪水计算及防洪安全复核讲义的相关内容,希望对大家有所帮助。

4. 防洪安全复核的关键问题- 水库防洪设施的完整性和稳定性,包括堤坝、闸门、泄洪渠等;- 水库泄洪设计的合理性和有效性,考察不同频率洪水下的泄洪效果;- 水库预警系统和应急响应能力的可靠性,包括对洪水预测的准确性和应急预案的有效性;- 水库周边地区的洪水风险分析,考虑洪水对周边村镇、农田和交通设施的影响程度。

防洪计算课程设计

防洪计算课程设计

防洪计算课程设计一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。

知识目标要求学生掌握防洪的基本原理、方法和计算技巧;技能目标要求学生能够运用所学的知识进行防洪计算和设计;情感态度价值观目标要求学生增强对防洪工作的重视,提高社会责任感和职业道德素养。

通过对本章的学习,学生应该能够:1.描述防洪的基本原理和方法。

2.运用数学模型进行洪水计算。

3.分析和评估不同的防洪措施。

4.设计简单的防洪工程。

5.认识防洪工作的重要性,增强社会责任感。

二、教学内容本章的教学内容主要包括防洪原理、洪水计算、防洪措施和防洪工程设计。

1.防洪原理:介绍防洪的基本概念、原则和方法,包括防洪标准、防洪区域和防洪体系。

2.洪水计算:讲解洪水的基本特性,洪水计算的数学模型和方法,包括频率分析、洪水演进和洪水位计算。

3.防洪措施:介绍不同的防洪措施,包括防洪堤、蓄洪区、洪水调度和防洪预警系统。

4.防洪工程设计:讲解防洪工程设计的基本原则和方法,包括防洪堤设计、蓄洪区规划和洪水调度策略。

三、教学方法本章的教学方法包括讲授法、案例分析法和实验法。

1.讲授法:通过教师的讲解,让学生掌握防洪的基本原理和方法,了解洪水计算的数学模型和防洪措施的实施方法。

2.案例分析法:通过分析具体的防洪工程案例,让学生了解防洪工程的实际应用,提高学生分析和解决问题的能力。

3.实验法:通过防洪实验,让学生亲身参与防洪工程的设计和实施,提高学生的实践能力和创新思维。

四、教学资源本章的教学资源包括教材、参考书、多媒体资料和实验设备。

1.教材:提供防洪计算的基本理论和方法,为学生提供学习的基础。

2.参考书:提供更多的防洪工程案例和实践经验,为学生提供深入学习的参考。

3.多媒体资料:通过视频、图片等形式,展示防洪工程的实际情况,提高学生的学习兴趣和理解能力。

4.实验设备:提供防洪实验所需的设备,让学生能够亲身参与实验,提高学生的实践能力。

五、教学评估本章的教学评估主要包括平时表现、作业和考试三个部分,以全面客观地评价学生的学习成果。

【方案总结】工程复核计算分析报告

【方案总结】工程复核计算分析报告

3 防洪标准防洪标准主要复核闸顶高程和防浪墙高程,其中闸顶高程为4.80m ,防浪墙顶高程为7.0m ,原设计水闸闸门允许越浪,所以仅复核防浪墙高程。

防洪高程等于水闸设计洪水水位加波浪计算高度与相应安全超高值之和。

波浪爬高采用莆田试验站公式计算, 首先计算波浪要素,影响波浪要素计算的重要参数为风速、风区长度。

(1)平均波高m h 、平均波周期m T 可按下列公式(3-1)、(3-2)计算:0.450.720220.700200.00180.130.70.130.7m mm gD gh gH th th gH th υυυυ⎧⎫⎛⎫⎪⎪ ⎪⎡⎤⎪⎪⎛⎫⎪⎪⎝⎭⎢⎥=⎨⎬ ⎪⎡⎤⎢⎥⎝⎭⎛⎫⎪⎪⎣⎦⎢⎥ ⎪⎪⎪⎢⎥⎝⎭⎪⎪⎣⎦⎭⎩(3-1) 5.02009.13⎪⎪⎭⎫ ⎝⎛=υυmmgh gT (3-2)式中:0υ为计算风速(m/s );D 为风区长度(m );m H 为水域的平均水深(m ),与相应计算工况下的静水位一致。

根据《水闸设计规范》之“附录E 浪压力计算”中表E.0.1-1规定:2级水闸的波列累积频率p =2(%),根据波高m h 与平均水深m H 的比值、波列累积频率可查得相应于波列累积频率的波高p h 与波高m h 的比值。

(2)平均波长m L 、和波浪中心线超出计算水位的高度z h 按式(3-3)、(3-4)计算:mm m L HthgT L ππ222= (3-3) mmpz L HcthL h h ππ22=(3-4) 式中:H 为闸前水深(m )。

(3)波浪爬高hz p h h h += (3-5)根据最新的太湖流域防洪规划(2003年),百年一遇的设计防洪水位为4.80m ,计算风速参与基本组合时采用50年一遇的年最大风速,0υ取20s m /,风区长度D取太湖平均宽度为35.7km ,当太湖水位为2.99m 时,平均水深为1.89m ,类推设计洪水水位工况的的水域的平均水深m H 取3.7m 。

天福庙课程设计 e

天福庙课程设计  e

天福庙水库防洪复核设计一、设计任务天福庙水库水库位于湖北省远安县黄柏河东支的天福庙村,大把以上流域面积553.6km2,河长58.2km,河道比降1.06%,总库容6367万m3,是一座以灌溉为主,结合防洪、发电、拦沙、养殖等综合利用的水利工程。

天福庙水库于1974年冬开工建设,1978年建设成,已运行近30年。

1975年技术设计时,水文系列年限仅20年,系列太短,也缺乏大洪水的资料。

本次课程设计的任务,是在延长基本资料的基础上,按现行规范要求对水库的防洪标准进行复核,其具体任务是:1.选择水库防洪标准。

2.历史洪水调查分析及洪量插补。

3.设计洪水和校核洪水的计算。

4.调洪计算。

5.坝顶高程复核。

二、流域自然地理概况,流域水文气象特性。

(一)流域及工程概况天福庙水库位于湖北省远安县黄柏河东支的天赋庙村,大坝以上流域面积553.6km2,河长58.2km,河道比降10.6‰,总库容6367万m2,是一座以灌溉为主,结合防洪、发电、拦沙、养殖等综合利用的水利工程。

天福庙水库于1974年冬开工建设,1978年建设成,大坝为浆砌石双曲拱坝,坝前河底高程348m,坝高63.3m,电站总装机6040kw。

水库死水位378m,死库容714万m3,正常蓄水位409m,相应库容6032万m3。

设计洪水位(P=2%)409.28m,校核(P=0.2%)洪水位409.28m,坝顶高程410.3m,防浪墙顶高程411.3m。

库区吹成1000m。

(二)水文气象资料1.气象特征。

天福庙流域位地处亚热带季风区,四季分明,夏季炎热多雨,冬季低温少雨,秋温高于春温,春雨多于秋雨,气温年内变化较大,无霜期长。

多年平均气温16.8℃,历年最高气温达40℃,最低气温-12℃,平均风速1.2m/s,多年平均最大风速15.5m/s,风向多为NE。

流域多年平均降水量1036.3mm,流域暴雨频繁,洪水多发,4~10月为汛期,汛期降雨量占全年降雨量的86.7%左右,尤其以7月最大,占全年的19.5%。

水库洪水计算

水库洪水计算

p=0.33%时
H3P 239
p=3.3%时
162
p=10%时
125
(5)计各种历时面雨量
本水库流域面积为1.5km2小于10km,直接采用点雨量 代表面雨量
(6)据附表3计算24小时设计雨量的时程分配
P=0.33%(H24P=445,H6P=313,H3P=239,H1P=156)
时段
1
2
3
4
雨量
p=10%
稳定入渗率 FC=3.47
(2)用Fc值分割时段的地表净雨和地下净雨
p=0.33%时分割地表,地下净流
时段
1
2
3
4
雨量
4.40
4.40 4.40 4.40
地表
0.00
0.00 0.00 0.00
地下
4.40
4.40 4.40 4.40
5
6
7
8
9
4.40
4.40 9.24 9.24 9.24
2.3
4.9
4.9
4.9
17
18
19
20
21
11.0
11.0
4.4
4.4
4.4
3、用推理公式法设计洪水
(1)计算净雨平均强度
净雨平均 强度
p=0.33%
单位:mm/ 小时
18.54
p=3.3%
12.46
p=10%
9.50
查附图7
稳定入渗率 p=0.33% FC=5.95
p=3.3%
稳定入渗率 FC=4.36
156 0.43
55
1.99
109
55
1.57
86

工程水文课程设计(华北电力大学)

工程水文课程设计(华北电力大学)

图 4.1
5
工程水文课设
图 4.2
根据以上峰、量关系计算历史洪水的 1d、3d 洪量:
1935 年:由 Qm=4680 m s W1=0.0002042*Qm+0.07096=1.0266×10 m W3= 0.0002983*Qm+0.1341=1.5301×10 m
8 8 3
3/
3
再根据分乡站与天福庙的换算公式,(4—1)、(4-2)、(4—3)换算至天福庙,
分乡站历史洪水成果(KSI—1)
序号 1 2 3 4 5 年份 1935 1984 1826 1930 1958 2820 1.2201 1.9500 洪峰流量 (m s)
3/
1d 洪量 (×108m3)
3d 洪量 (×108m3)
重现期 176
备注
4680 3739 1.0738 1.6664
不能定量 不能定量
1d 洪量 W1
(×10 m )
8 3
3d 洪量 W3
(×10 m )
8 3
1803 131 266 200 640 1036 452 519 189 774 838 428 598 389 64 445 240 848 272 162 299 634
0.6237 0.0434 0.0921 0.0664 0.1999 0.3727 0.1314 0.1452 0.0817 0.1876 0.2832 0.1514 0.2233 0.1681 0.0363 0.1457 0.0813 0.1483 0.0931 0.0915 0.1525 0.2880
工程水文课设
天福庙水库防洪复核设计
一、 设计任务
天福庙水库水库位于湖北省远安县黄柏河东支的天福庙村,大 把以上流域面积 553.6km2,河长 58.2km,河道比降 1.06%,总库容 6367 万 m3,是一座以灌溉为主,结合防洪、发电、拦沙、养殖等 综合利用的水利工程。天福庙水库于 1974 年冬开工建设,1978 年 建设成,已运行近 30 年。1975 年技术设计时,水文系列年限仅 20 年,系列太短,也缺乏大洪水的资料。本次课程设计的任务,是在 延长基本资料的基础上,按现行规范要求对水库的防洪标准进行复 核,其具体任务是: 1. 选择水库防洪标准。 2. 历史洪水调查分析及洪量插补。 3. 设计洪水和校核洪水的计算。 4. 调洪计算。 5. 坝顶高程复核。

工程水文设计洪水计算

工程水文设计洪水计算
3.4
100
B水电站附近无实测洪水资料,但其下游D水文站具有39年实测洪水资料,且有一场特大洪水,另外通过查阅调查历史洪水资料,得知D站150年间有2次特大洪水,为5100m3/s,4800 m3/s经分析考证,可以断定150年来没有遗漏比3410m3/s更大的洪水,洪水资料见表4。另外,B水电站和D水文站自然气象条件接近,同属一个降雨区,因此B水电站站址处设计洪峰可由D水文站参证站间接计算。
11.5
19
17.9
14.5
9.1
8.5
4.3
2.6
2.7
2.5
4
3.4
100
平水代表年月分配百分比%(50%)
10.2
19.8
16.8
13.1
8.7
8.6
5.9
4.5
3.2
1.2
2.5
5.5
100
枯水代表年月分配百分比%(75%)
10.9
18.8
14.3
13.3
11.5
9.8
5.1
4
2.7
2.4
3.8
2.气象
工程所在区域属暖温带山地季风气候区,一年四季分明,光照充足。由于山高谷深,地形复杂,气温垂直变化较大。据气象站资料统计:该地区年最高气温38℃,最低气温-12℃,多年平均气温14.5℃,无霜期165天,平均日照2960小时。根据该地雨量站C统计资料,该区降雨量年内分配不均,6~9月份降雨量占全年的70%左右,暴雨多出现在7~9月份,冬季降雨量偏少,仅占8~10%。年径流变化规律与降水量一致。区内夏季盛行偏东风,冬季则多西北风,年平均风速1.5米/秒,最大风速12米/秒。
12.6
12.2
12.1

水力计算课程设计结论与建议

水力计算课程设计结论与建议

八、结论与建议:
结论:根据上述设计洪水过程的成果和一些设计标准,可知复核结果满足要求。

建议:在进行水库的防洪计算之前要要求我们同学们要尽量的掌握进行复核计算的水库流域的自然地理状况,所以要求我们广泛的搜集有关水文气象资料,只有这样我们才可以熟练的掌握各种流域,做到忙而不乱。

必须严格的遵守国家的相关规定来选择合适的防洪标准,可参考依据的相关标准有《防洪标准》、《水利水电工程等级划分及洪水标准》等有关规定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表 KS1—1 分乡站历史洪水成果:
年份
1 1935 2 1984 3 1826 4 1930 5 1958
洪峰流量 (m3/s)
4683 3739
2820
1d 洪量 (×108m3)
1.0738
1.2201
3d 洪量 (×108m3)
1.6664
1.9500
重现期 176
备注
不能定量 不能定量
三、峰、量选样及历史洪水调查
年份
1980 1981
洪峰 Qm(m3/s)
571 126
1d 洪量 W1(108m3)
0.1725 0.0841
3d 洪
1960
266
0.0921
0.1380
1982
582
0.2127
1961
200
0.0664
0.1023
1983
437
0.2124
1962
640
0.1999
0.2924
1984
2389
Q Q =2390m3/s,
=2380 m3/s
天1926
天1930
4、天福庙水库洪峰、洪量系列:见 KS1-1。
表:4-1 天福庙水库洪峰、洪量系列
年份
1958 1959
洪峰 Qm(m3/s)
1803 131
1d 洪量 W1(108m3)
0.6237 0.0434
3d 洪量 W3(108m3)
0.9968 0.0664
0.5489
1963
1036
0.3727
0.572519851210 Nhomakorabea0613
1964
452
1965
519
0.1314 0.1452
0.1314
1986
218
0.2300
1987
438
0.0979 0.1677
1966
189
0.0817
3.分乡站历史洪水。根据 1982 年省雨洪办对宜昌市历史洪水调查成果的审定结果, 分乡站洪水的排位为 1935 年、1984 年、1826 年、1930 年、1958 年,资料可靠,可直接 采用。经审定认为,分乡站 1935 年洪水 1826 年以来的第 1 位,重现期为 176 年,1984 年洪水于 1826 年、1930 年洪水相当,分别确定为 1826 年以来的地 2-4 位,1958 年洪水 为 1826 年以来的地 5 位。分乡站历史洪水成果见表 KS1—1。
2word 版本可编辑.欢迎下载支持.
文档从网络中收集,已重新整理排版.word 版本可编辑.欢迎下载支持.
汛期降雨量占全年降雨量的 86.7%左右,尤其以 7 月最大,占全年的 19.5%。月降雨量最 少是 12 月,仅占全年的 1.3%。
2.水文测站。黄柏河干流上 1958 年设立池湾河水文站,1971 年设立小溪塔水文站, 1961 年在东支设立分乡水文站。天福庙水库建成后,先后开展了降雨、水位、泄流观测, 有比较完整的运行资料。分乡水文站是重要的参证站,控制流域面积 1083.0km2。
文档从网络中收集,已重新整理排版.word 版本可编辑.欢迎下载支持.
工程水文及水利计算
天福庙水库防洪复核计算
学 院: 水利水电与建筑学院 学 号: 姓 名:
1word 版本可编辑.欢迎下载支持.
文档从网络中收集,已重新整理排版.word 版本可编辑.欢迎下载支持.
天福庙水库防洪复核设计
一、设计任务
1. 选择水库防洪标准。 2. 历史洪水调查分析及洪量插补。 3. 设计洪水和校核洪水的计算。 4. 调洪计算。 5. 坝顶高程复核。
二、流域自然地理概况,流域水文气象特性
(一) 流域及工程概况 天福庙水库位于湖北省远安县黄柏河东支的天赋庙村,大坝以上流域面积 553.6km2, 河长 58.2km,河道比降 10.6‰,总库容 6367 万 m2,是一座以灌溉为主,结合防洪、发 电、拦沙、养殖等综合利用的水利工程。 天福庙水库于 1974 年冬开工建设,1978 年建设成,大坝为浆砌石双曲拱坝,坝前河 底高程 348m,坝高 63.3m,电站总装机 6040kw。水库死水位 378m,死库容 714 万 m3,正 常蓄水位 409m,相应库容 6032 万 m3。设计洪水位(P=2%)409.28m,校核(P=0.2%)洪水 位 409.28m,坝顶高程 410.3m,防浪墙顶高程 411.3m。库区吹程 1000m。 (二) 水文气象资料 1.气象特征。天福庙流域地处亚热带季风区,四季分明,夏季炎热多雨,冬季低温少 雨,秋温高于春温,春雨多于秋雨,气温年内变化较大,无霜期长。多年平均气温 16.8℃, 历年最高气温达 40℃,最低气温-12℃,平均风速 1.2m/s,多年平均最大风速 15.5m/s, 风向多为 NE。流域多年平均降水量 1036.3mm,流域暴雨频繁,洪水多发,4-10 月为汛期,
天福庙水库位于湖北省远安县黄柏河东支的天福庙村,大坝以上流域面积 553.6km2, 河长 58.2km,河道比降 1.06%,总库容 6367 万 m3,是一座以灌溉为主,结合防洪、发电、 拦沙、养殖等综合利用的水利工程。天福庙水库于 1974 年冬开工建设,1978 年建设成, 已运行近 30 年。1975 年技术设计时,水文系列年限仅 20 年,系列太短,也缺乏大洪水 的资料。本次课程设计的任务,是在延长基本资料的基础上,按现行规范要求对水库的 防洪标准进行复核,其具体任务是:
=
天福庙
分乡站
分1d =0.51117
分1d
W W W = F 天3d 天福庙 F 分乡站
分3d =0.51117
分3d
3word 版本可编辑.欢迎下载支持.
文档从网络中收集,已重新整理排版.word 版本可编辑.欢迎下载支持.
2、天福庙坝址 1978—2001 峰、量系列直接采用天福庙入库洪水计算。 3、分乡站历史洪,并按公式换算天福庙水库峰量 根据 1978—2001 年峰量关系得 1d,3d 洪量 由于 1984 年洪水于 1826 年、1930 年洪水相当,且为 1826 年以来的地 2~4 位,故设
1、天福庙水库坝址 1959—1977 年峰、量系列更具分乡站资料换算得到,洪峰按面积 比指数的 2/3 次方换算,洪量按面积的一次方换算。即:
Q F = 天福庙 F
天福庙 分乡站
2
2
3 Q分乡站 =(553.6/1083.0)
Q 3 分乡站
=0.63931 Q分乡站
W W W FF 天1d
相关文档
最新文档