八年级数学-函数概念及表示方法

合集下载

八年级数学《一次函数的图象》课件

八年级数学《一次函数的图象》课件

作一次函数 y=2x+1 的图象
解:列表: x … -1 -1/2 0 1/2 2 …
描点
y=2x+1

-1
0
1 0 5…
y y=2x+1
连线
注意:取数可以任 意取,但以计算方 便和便于描点为基 准。
3•
2• 1•
-3
-2

-1• •o
1 -1
2
3
x
-2
-3
函数的图象概念
把一个函数的自变量 x与应变量 y的值分别作为点的横坐标和纵坐 标,在直角坐标系内描出它的对应 点,所有这些点组成的图形叫做函 数的图象。
再次归 纳
作函数图象的一般步骤:
1、列表。列出自变量和函数的对应值 2、描点。根据上表的对应值描出点的位置
3、连线。根据描出的点的发展趋势,用光
滑的线把点连接起来
做一做
(1)作出一次函数 y= -2x+5的图象
(2)在所作的图象上取几个点,找出 它们的横坐标和纵坐标,并验证它
们是否都满足关系y=-2x+5?
作一次函数y=kx+b的图象只要确定 两个点,再过这两个点作直线就可 以了。
在同一直角坐标系内画出下列函
数图象:y=2x+1
y=-2x+1
解: x 0 -0.5 x 0 0.5 y1 0 y 1 0
y y=2x+1
y=-2x+1
•1
••
-2 -1
1
2x
-1
画出一次函数图象的关键是 选取适当的两点,然后连线 即可。为了描点方便,对于 一次函数y=kx+b(k,b是常 数,k≠0)通常选取

八年级上册函数知识点总结

八年级上册函数知识点总结

八年级上册函数知识点总结函数是数学中重要的基本概念之一。

学习函数不仅是数学学习的重点之一,而且在学习物理、化学、经济等科学中也具有重要作用。

函数的概念和应用是本章的重点内容。

下面就来一起回顾一下八年级上册主要的函数知识点。

一、函数的概念函数是一种对应关系,它把一个数集中的每个数都唯一地对应到另一个数集中的一个数上。

在函数中,我们通常用符号 y=f(x) 来表示,其中 x 称为自变量,y 称为因变量,f(x) 称为函数名。

二、函数的表示方法函数可以用图像、显式公式、隐式公式、数据表、文字语言等方式表示。

1. 图像表示法:函数图像是函数概念的直观反映,函数的图像通常在平面直角坐标系中表示,自变量通常在横轴上,因变量在纵轴上。

2. 显式公式:显式函数公式是指用已知的代数式或数式,直接表达出 y 与 x 之间的关系式。

例如:y=2x+3。

3. 隐式公式:隐式函数公式是指不用具体的公式把y 表达出来,而是通过给定的条件解出 y 与 x 之间的关系式。

例如:x^2+y^2=4。

4. 数据表:将函数的各种数值列成一张表格,其中自变量和函数值成对出现。

可以用表格的方式来表示函数。

5. 文字语言:对函数的描述可以用文字语言来表示,例如:函数 y=2x+3 表示一个自变量为 x 的函数,因变量 y 等于自变量 x 的两倍加上 3。

三、函数的性质和分类1. 单调性:函数单调增加表示随着自变量的增加,因变量也相应地增加;函数单调减少表示随着自变量的增加,因变量反而减少。

2. 奇偶性:当函数中自变量为 x 和 -x 时,如果有函数值f(x)=f(-x),那么函数具有偶对称性;如果有函数值 f(x)=-f(-x),那么函数具有奇对称性。

3. 周期性:如果一个函数 f(x+T)=f(x),其中 T>0,那么函数就具有周期性。

4. 分类:函数也可以根据函数名中的代数式或数式的特征分类。

例如,一次函数 f(x)=kx 、二次函数 f(x)=ax^2+bx+c、反比例函数f(x)=k/x、指数函数 f(x)=a^x、对数函数 f(x)=loga(x) 等。

北师大版八年级数学上册-第四章一次函数(同步+复习)精品讲义课件

北师大版八年级数学上册-第四章一次函数(同步+复习)精品讲义课件
① ② 一看式:y不能带平方或绝对值。 二看图:左右走时不回头,上下看时不. 判断下列各量之间的关系是否函数关系
① ② ③ ④ 圆的半径r=2 , 圆的面积S与半径r的关系。 长方形的宽一定时,其长与周长。 王成的年龄与身高。 汽车行驶过程中,路程一定,其速度与时间。
① ② 根据变化过程中变量的实际意义确定。 根据纯代数关系式确定:一看分母不为0;二看 根号内非负(开平方被开方数是非负数); 定义:对于自变量在可取值范围内每一个确定的 值a,函数有唯一确定的对应值,这个对应值称 为“当自变量等于a的函数值“。 函数值与自变量的取值是对应的、相互依赖的。 求法:有表查表;有式代入;有图看图。
2.
函数值:

② ③
【例4】做一做
1. 求当x=-2时,函数 y=x2-√x2的函数值. 3x 2. 函数y= —— 中,求自变量 x的取值范围。 √x-2 3. 当x取( 意义。 )时,函数y= ————有
√x -2 4x
五. (补充)函数的图象
1. 定义:把一个函数的自变量的每一个值与对应的函数值分别 做为点的横坐标与纵坐标,在平面直角坐标系中描出所有对 应的点,所有这些点组成的图形叫做该函数的图象。 作法:列表(选值计算画表);描点(对应值为点的坐标); 连线(平滑的直线或曲线)。画出的是近似图象。 作用(学会看图象):
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 一看对应:(变量互求:有关系式用关系式。) 二看趋势:(如何变化) 三看范围:(最大最小局部整体区别看) 四看增减;(上坡下坡) 五看快慢:(陡快缓慢平不变) 六解方程:(组)不等式( 交点-扫描-投影法) 七比大小:(两函数,比大小,找交点,横分段,看变化,求得 解) 八出方案:(寻求生活中最优选择最佳方案) 九取特值:(结合字母常量的几何意义确定常量之间的关系)。 十设坐标:(设横表纵——永远不变的真理)。

沪教版八年级数学第一学期18.1:函数的概念、正比例函数

沪教版八年级数学第一学期18.1:函数的概念、正比例函数

第七讲 函数的概念、正比例函数函数的概念 一、知识点 1. 变量与常量在问题研究过程中,可以取不同数值的量叫做变量,保持数值不变的量叫做常量. 2. 函数的定义在某个变化过程中有两个变量x 和y ,如果在x 的允许取值范围内,变量y 随着x 的变化而变化,它们存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量。

3. 函数的定义域与函数值函数的自变量允许取值的范围叫做这个函数的定义域. 如果y 是x 的函数,那么对于x 在定义域内取定的一个值a ,变量y 的对应值叫做当x a =时的函数值.符号“()y f x =”表示y 是x 的函数,f 表示y 随x 变化而变化的规律. 二、例题讲解例1 物体所受的重力与它的质量之间有如下的关系:G mg =,其中,m 表示质量,G 表示重力,9.8g =牛/千克,物体所受的重力G 是不是它的质量m 的函数?解:物体所受的重力G 随它的质量m 的变化而变化,由G mg =可知,这两个变量之间存在确定的依赖关系,所以物体所受的重力G 是它的质量m 的函数.例2 汽车的速度为50千米/时,写出汽车匀速运动时行驶的路程y (千米)关于时间x (时)的函数解析式及定义域.分析: 本题依据公式“路程=时间X速度”列出数量关系,因为时间为非负数,所以定义域为0x ≥. 解:函数解析式为50y x =,定义域为0x ≥. 例3 求下列函数的定义域:(1)23y x =+; (2)11y x =-; (3)y = 解:(1)对于整式23x +,无论x 取什么实数,它都有意义,所以函数23y x =+的定义域是一切实数;(2)对于分式11x -,当1x =时,它没有意义.所以函数11y x =-的定义域是1x ≠;(3,当12x ≥-时,它有意义,所以函数y = 域是12x ≥-.说明:求函数的定义域应该根据解析式的特征进行思考. 例4 已知()f x =12f ⎛⎫- ⎪⎝⎭的值. 分析:函数与函数值是不同的概念.函数是指两个变量之间的某种关系,而函数值指的是当自变量取某一数值时,函数的一个对应值.求12f ⎛⎫- ⎪⎝⎭的值,就是当12x =-时,求21y x =-+的值,只需要把12x =-代入后计算即可. 解:131322.241212f ⎛⎫⨯- ⎪⎛⎫⎝⎭-==- ⎪⎝⎭⎛⎫-⨯-+ ⎪⎝⎭例5 等腰三角形的周长等于20cm ,请写出这个等腰三角形的底边长()x cm 和腰长()y cm 之间的解析式. 分析 根据周长的定义,得220x y +=,整理得20220,2xy x y -=-=, 即 1102y x =-+.函数解析式就是一个等式,求函数解析式时,有时可以利用一些现成的等式或公式,比如周长公式、面积公式等等.答案:1102y x =-+ 说明:1. 变量2x +是不是变量x 的函数?解: 对于代数式2x +,给定x 的一个值,可以求出这个代数式的一个值.所以2x +与x 有着确定的依赖关系,可以把变量2x +看做y .由函数的概念:在某个变化过程中有两个变量x 和y ,如果在x 的允许取值范围内,变量y 随着x 的变化而变化,它们之间存在确定的依赖关系,那么变量y 叫做变量x 的2. 对于“”中的“f ”怎样理解?答:记号“()f x ”表示“y 是x 的函数”,这个记号比较抽象,“f ”并不是表示一个变量,()f x 也不是表示“f ”与“x ”的积,而是指明在变化过程中的自变量为x ,用f 表示变量y 随着x 的变化而变化的规律;在同时研究几个函数时,应选用不同字母表示不同函数变量间相互依赖的变化规律,如()()g x h x 、等,以免引起混乱.三、 巩固练习1. 说出下列变化过程中,哪些量是常量,哪些量是变量,变量之间是函数关系吗? (1)正方形的周长C 与它的边长a ;(2)银行一年定期存款的本金x 元与利息y 元; (3)等腰三角形顶角的度数x 与底角的度数y ; (4)长方形的宽一定时,其长与面积; (5)等腰三角形的底边长与面积;(6)关系式y x=中的y 与x .答案:(1)变量是周长C 与边长a ,是函数关系;(2)变量是本金x 元与利息y 元,是函数关系; (3)变量是顶角的度数x 与底角的度数y ,是函数关系;(4)变量是长方形的宽与面积,是函数关系; (5)变量是等腰三角形的底边长与面积,不是函数关系;(6)变量是y 与x ,不是函数关系. 2. 写出下列个函数的定义域;(1)2y x =-; (2)y =答案: 一切实数 答案:1x ≥- (3)234y x x =+-; (4)11y x =-;答案:一切实数 答案:1x ≠(5)1y x x =+; (6)y =答案:0x ≠ 答案:0x ≥≠且x 23. 在ABC 中,它的底边长是a ,底边上的高是h ,则三角形面积12S ah=,当a 为定长时,在此式子中( A ).A. S 、h 是变量,a 是常量B. ,,S h a 是变量,12是常量 C. ,a h 是变量,1,2S 是常量 D. S 是变量,1,,2a h是常量4. 下列函数中,自变量的取值范围是113x <<的是( D ).A.y =B.y =C.y = D.y = 5. 如果()f x =()3f =___6. 已知()234x f x x +=+,则()0f =___34____,f=____814_____. 7. 若12y x y -=+,则y 用x 的代数式表示为y =___211x x+-___.8. 设某种电报收费标准是每个字0.1元,写出电报费y (元)与字数x (个)之间的函数关系式,并求自变量x 的取值范围.答案:()0.10y x x x =≥且是整数 提高题1. 若函数2221x x y x --=-,则与函数值0y =对应的x 的值是( D ). A. 1x =-或2x =B. 1x =或2x =-C. 1x =-且2x =D. 2x = 2. 把一块边长为20厘米的正方形铁皮,四角各截去边长为x 厘米的小正方形后折成一个无盖盒子,则盒子的容积V (立方厘米)关于自变量x (厘米)的函数解析式为__()2202V x x =-__,定义域为_010x <<_. 3. 洗衣机在洗衣的过程中经历了进水、清洗、排水等过程.下图能反映洗衣机工作时的水量y (升)与时间x (分)之间关系的图像大致是( C )A.正比例函数 一、知识点1. 正比例函数的概念如果两个变量的每一组对应值的比值是一个非零常数,那么称两个变量成正比例.用数学符号语言记为yk x =或()0y kx k =≠.解析式形如()0y kx k =≠的函数叫做正比例函数,其中,常数k 叫做比例系数,正比例函数y kx =的定义域是一切实数.2. 正比例函数的图像和基本性质 XXX二、例题 例1 若函数()31m y m x -=-是正比例函数,则m =_________,函数的图像经过_________象限.分析 由正比例函数的解析式可知,31m -=,所以4m =.把4m =代入函数解析式,得3y x =,再由正比例函数的性质,得到它的图像经过第一、三象限. 解:4m =,图像经过第一、三象限. 例2 若y 与21x +成正比例,且函数图像经过点()3,1A -,求y 与x 的函数解析式. 分析 由y 与21x +成正比例,可以设()()210y k x k =+≠.再把点A 的坐标()3,1-代入函数解析式,即可求出k 的值,这种求函数解析式的方法叫做待定系数法.解:y 与21x +成正比例,∴ 设()()210y k x k =+≠.把点A()3,1-代入,得15k =-,()1215y x ∴=-+例3 已知点()11,x y 和()22,x y 在正比例函数()2y k x =-的图像上,当12x x >时,12y y <,那么k 的取值范围是多少? 分析 由条件当12x x >时,12y y <,联系正比例函数的图像和性质,可知函数值y 随着x 的值增大而减小,即比例系数小于零.解 :由题意,函数值y 的值随着x 的值增大而减小,0,2k k ∴<<例4 直角三角形的一条直角边是6,写出它的面积y 关于另一条直角边x 的函数关系式并画出这个函数的图像.解:由直角三角形的面积公式,得162x y ⨯=.()30y x x ∴=>说明:由于直角三角形的边长为正数,在画函数图像时要特别注意自变量x 的取值范围,因为定义域为X0x >,此时函数图像为一条射线,并且要除去端点.1. 如何理解正比例函数的性质:当0k >时,y 随着x 的值增大而逐渐增大,当0k <时,y 随着x 的值增大而逐渐减小?答:从解析式来看,当0k >时,若12x x <,由不等式的性质有12kx kx <,即12y y <;当0k <时,若12x x <由不等式的性质有12kx kx >,即12y y >;也可以结合正比例函数的图像去理解:当0k >时,从左往右看,直线上的点的横坐标从小到大逐渐变化,点的位置随着从低到高逐渐变化,说明此时函数值y 相应地从小到大逐渐变化.当0k <时类似.2. 学习函数的性质要掌握的一个重要数学思想是“数形结合”,学会利用函数的图像直观的研究函数的性质.三、 巩固练习 1. 填空:(1)如果正比例函数的图像过点(1,-2),那么它的解析式是_2y x =-__;函数的图像经过第__二、四__象限.(2)正比例函数2y x =-的图像上一点横坐标为2,纵坐标是__-4___, 函数值随x 的值增大而__减小___. (3)由图写直线PO 的解析式:___34y x =___. (4)某函数具有下列两条性质:① 它的图像是经过 原点(0,0)的一条直线;② y 的值随x 的值增大而增大.请你举出一个满足上述条件的函数:____2y x =_(答案不唯一)___. 2. 选择:(1)下列函数中,正比例函数的是( B )A.3y x =B. 32y x =- C.213x y += D. 2y x = (2)下列各点中,在直线2y x =上的点有( A ).A.21⎫-⎪⎪⎝⎭ B. (2,2 C. 5,10D. ()2,1-(3)函数y kx =的图像经过点(1,4),那么()2y k x=-的图像经过第( B )象限.P-3/2-20yXA. 一、三B. 二、四C. 一、二D. 三、四 3. 已知y 是x 的正比例函数,当2x =时,12y =(1)求y 与x 的函数解析式; (2)求当x =y 的值; (3)在直角坐标系内画出该函数的图像. 答案:(1)14y x =;(2)4y =;(3)略 4. 正比例函数2112y k x k ⎛⎫=++- ⎪⎝⎭的图像经过第二、四象限,求函数的解析式.答案:12y x =-5. 已知3y -与x 成正比例函数,且它的图像经过点(2,7) (1)求y 与x 的函数解析式; (2)求当4x =时,y 的值; (3)求当3y =-时,x 的值.答案:(1)23y x =+; (2)11; (3)-3 6. 如果28my mx -=是正比例函数,而且对于它的每一组非零的对应值(),x y ,有0xy <.求m 的值.答案:-37. 小明早上骑自行车离开家去学校,下图反映了小明离开家的距离y (米)与时间x (分)之间的关系.根据图像回答:(1) 小明家与学校的距离是___3000__米;(2) 小明骑自行车的平均速度是___200___米/分; (3) 写出小明汽车途中,离开家的距离y (米)与时间x (分)的函数关系式及定义域:___()200015y x x =≤≤提高题1. 正比例函数y kx =的图像上有一点A ,过点A 向x 轴作垂线,垂足为点B ,点B 的坐标为(2,0).若三角形OAB 的面积为6,试求k 的值. 答案:3或-32. 已知正比例函数的自变量x 减小2时,对应的函数值增加4.求该正比例函数的解析式. 答案:2y x =-3. 已知点()()122,,1,A y B y -是正比例函数y kx =的图像上的两个点.若12y y >,试判断k 的取值范围. 答案:0k <家庭作业一、 填空题: 1. 若()21m y m x=+是正比例函数,则m =___1___.2. 已知函数()g x =,则()2g =___3___. 3. 在直角坐标系中,若点(),4M x -和点()3,N y 关于x 轴对称,则x y +=_7__.4. 如果正比例函数3xy =的图像过点()6,k ,那么k =___2___. 5. 已知矩形的周长为12,若矩形一边长为x ,面积为y ,则y 与x 的函数关系式及定义域是__()2606y x x x =-+<<___.6. 若等腰三角形顶角的度数为y ,底角的度数为x ,则y 与x 的函数关系式及定义域是__()1802090y x x =-<<___.7. 若等腰三角形的周长是20cm ,腰长与底边长分别是ycm 和xcm ,那么y 与x 的函数关系式为__102xy =-__,定义域为__010x <<__. 8. 若()25y a x b =+-+是正比例函数,且其图像恰为第二、四象限的角平分线,则a b +=__2__. 9. 若等腰梯形的周长为20cm ,上底长ycm ,底角为30,腰长xcm ,则y 与x 的函数关系式为__2102y x +=-__.10. 若y 成正比例,且当4x =时,3y =-则当32x =时,y =__-___. 二、选择题11. 若()2,P x y 是1P 关于y 轴的对称点,而点1P 在第三象限内,则( A )A. 0,0x y >>B. 0,0x y ><C. 0,0x y <<D. 0,0x y <> 12. 若点()111,P x y 与()222,P x y 在同一个正比例函数的图像上,则( D )A. 1212x x y y +=+;B. 1212x x y y -=-;C.1212y y x x =; D. 1221x y x y =. 13. 平面直角坐标系中有点()4,3A -,那么点A 到x 轴的距离是( A )A. 3 ;B. -3 ;C. 4 ;D. -4. 14. 点()11,A x y 与()11,B y y 之间的距离是( A )A. 11x y -;11y - ;C.D. 15. 下列问题中,两个变量成正比例的是( D ) A. 三角形的面积一定,它的底边与底边上的高; B. 等边三角形的面积与它的高;C. 长方形的一边长确定,它的周长与另一边长;D. 商品的价格确定时,销售额与销售量;E. 点到横坐标的距离确定时,它的纵坐标与横坐标;F. 商品的价格确定时,利润与成本. 三、 简答题16. 求下列函数的定义域:(1)322612y x x x =--+; (2)y =;答案:一切实数 答案:72x ≥(3)6y x =-; (3)y =答案:126x x ≥-≠且 答案:143x <17. 已知()225f x x =-+,求()()5+13f f a f a ⎛⎫- ⎪⎝⎭、、.答案:5539f ⎛⎫-=-⎪⎝⎭;()225f a a =-+;2243a a --+ 18. 已知正比例函数23y x =-. (1) 当x 取何值时,3y >-; (2) 当x 取何值时,3y =-; (3) 当x 取何值时,3y <-;(4) 画出图像,并结合图像说明理由. 答案:(1)()()999;2;3(4)222x x x <=>略 四、综合题已知函数()0y kx k =≠的图像与函数34y x =的图像关于y 轴对称,依照要求画图,并完成以下各 (1) 在函数34y x =的图像上取一点A (横坐标为4),点A 的坐标是__()4,3__;设点A 关于y 轴对称的点为A ’,那么A ’的坐标是__()4,3-__;(2) 过原点和点A ’画直线OA ’,它与直线34y x =关于y 轴对称吗?___对称____; (3) 如果在函数34y x =的图像上选取另一点B ,点B 关于y 轴对称的点B ’在直线OA ’上吗? ________在_______;(4) 已知函数()0y kx k =≠的图像与函数34y x =的图像关于y 轴对称,那么k 的值是多少? _____34y x =-____.x(分)。

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点一次函数是中学数学中的重要内容之一,它在解决实际问题中有着广泛的应用。

在这篇文章中,我们将逐步介绍八年级下册数学中一次函数的基本概念、性质和解题方法。

一、一次函数的基本概念一次函数又称为线性函数,是指函数的表达式中只包含一次项和零次项,不含其他次数的项。

一次函数的一般形式可以表示为 y = kx + b,其中 k 和 b 是常数,且 k 不等于零。

在一次函数中,x 是自变量,y 是因变量。

k 表示函数的斜率,决定了函数图像的倾斜程度;b 表示函数的截距,决定了函数图像与 y 轴的交点位置。

二、一次函数的性质1.斜率 k 的含义和性质斜率 k 反映了函数图像的倾斜程度。

当 k 大于零时,函数图像逐渐上升;当 k小于零时,函数图像逐渐下降;当 k 等于零时,函数图像是水平的。

2.截距 b 的含义和性质截距 b 决定了函数图像与 y 轴的交点位置。

当 b 大于零时,函数图像与 y 轴的交点在 y 轴上方;当 b 小于零时,函数图像与 y 轴的交点在 y 轴下方;当 b 等于零时,函数图像与 y 轴的交点在原点上。

3.函数图像的性质一次函数的图像是一条直线,它可以通过斜率 k 和截距 b 来确定。

当斜率 k 不等于零时,函数图像是一条斜线;当斜率 k 等于零时,函数图像是一条水平线;当截距 b 不等于零时,函数图像与 y 轴有交点;当截距 b 等于零时,函数图像通过原点。

三、一次函数的解题方法1.求函数图像与坐标轴的交点要确定一次函数图像与 x 轴的交点,只需将函数表达式中的 y 置为零,解方程得到 x 的值。

同样地,要确定一次函数图像与 y 轴的交点,只需将函数表达式中的x 置为零,解方程得到 y 的值。

2.求函数图像的斜率函数图像的斜率可以通过任意选取两个点,计算它们的坐标变化量,然后利用斜率的定义公式Δy/Δx 来求得。

3.求函数的表达式已知函数图像通过两个点A(x₁, y₁) 和B(x₂, y₂) 时,可以利用斜率公式k = (y₂ - y₁) / (x₂ - x₁) 来求得斜率 k。

北师大版八年级数学上册 第四章 一次函数 4.1函数

北师大版八年级数学上册 第四章 一次函数 4.1函数

第四章:一次函数4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据. 自变量与另一个变量的对应关系若y 是x 的函数,当x 取不同的值时,y 的值不一定不同.如:y =x 2中,当x =2,或x =-2时,y 的值都是4. 函数的定义中包括三个要素 ① 自变量的取值范围;② 两个变量之间的对应关系;③ 后一个变量被唯一确定而形成的变化范围. 注意:①自变量可以用任意字母表示;②两个变量之间的关系必须是“唯一确定”的; ③函数不是数,而是一种特殊的对应关系.规律方法:判断两个变量是否存在函数关系,关键是看两个变量之间是否是一一对应,即给一个变量一个数值,另一个变量是否有唯一确定的值与之对应.【例1】下列图像给出了变量x 与y 之间的对应关系,其中y 不是x 的函数的是( )【例2】 下列关于变量x ,y 的关系式:①x -3y =1;②y =|x |;③2x -y 2=9.其中y 是x 的函数的是( ).A .①②③B .①②C .②③D .①②【例3】 已知y =2x 2+4,(1)求x 取12和-12时的函数值;(2)求y 取10时x 的值..函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式. 函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y =x +1是表示y 是x 的函数.若写成x =y -1就表示x 是y 的函数.也就是说:求y 与x 的函数关系式,必须是用只含变量x 的代数式表示y ,即得到的等式(解析式)左边只含一个变量y ,右边是含x 的代数式.【例4】 已知等腰三角形的周长为36,腰长为x ,底边上的高为6,若把面积y 看做腰长x 的函数,试写出它们的函数关系式.3.自变量的取值范围使函数有意义的自变量的全体取值叫做自变量的取值范围. 自变量的取值必须使含自变量的代数式都有意义。

北师大版八年级数学上册:4.1《函数》说课稿3

北师大版八年级数学上册:4.1《函数》说课稿3

北师大版八年级数学上册:4.1《函数》说课稿3一. 教材分析《函数》是北师大版八年级数学上册第4章的第1节内容。

本节内容是在学生已经掌握了有理数的运算、函数的概念和性质等知识的基础上进行学习的。

教材从实际问题出发,引导学生认识函数的概念,理解函数的性质,学会用函数的观点解决实际问题。

本节课的内容对于学生来说是比较抽象的,需要学生有一定的抽象思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于有理数的运算、函数的概念和性质等知识有一定的了解。

但是,由于函数的概念和性质比较抽象,学生可能存在一定的理解困难。

因此,在教学过程中,我需要注重引导学生从实际问题中认识函数,理解函数的性质,并用函数的观点解决实际问题。

三. 说教学目标1.知识与技能:让学生理解函数的概念,掌握函数的性质,能用函数的观点解决实际问题。

2.过程与方法:通过实际问题,引导学生认识函数的概念,理解函数的性质,培养学生的抽象思维能力。

3.情感态度与价值观:让学生体验数学与实际生活的联系,培养学生的数学应用意识。

四. 说教学重难点1.重点:函数的概念、函数的性质。

2.难点:函数的概念的理解,函数的性质的掌握。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生认识函数的概念。

例如:在一条直线上,对于每一个确定的x值,都有一个唯一的y值与之对应。

那么,我们可以称y是x的函数。

2.自主学习:让学生通过阅读教材,理解函数的性质。

例如:函数的性质有四个,分别是单调性、奇偶性、周期性和连续性。

3.合作交流:让学生通过小组合作学习,用函数的观点解决实际问题。

例如:某商店进行打折活动,原价100元的商品,打8折后的价格是多少?4.教师讲解:对学生的解答进行点评,讲解函数的概念和性质。

5.巩固练习:让学生完成教材后的练习题,巩固所学知识。

八年级上册数学3章知识点

八年级上册数学3章知识点

八年级上册数学3章知识点八年级的数学学科共有4章,第三章主要讲授的是函数的基本概念和运算,这也是八年级数学学科的难点内容,下面将为大家详细介绍第三章的知识点。

一、函数及其表示函数是一种常见的数学关系,它与自变量和因变量有关。

自变量是函数中独立变化的量,因变量是依赖自变量而变化的量。

函数可以用以下三种表示方法。

1.利用一般解析式表示函数,即y=f(x)。

2.利用表格表示函数,可将自变量和因变量的值分别列成表格,并标出对应关系。

3.利用图象表示函数,通常将x轴作为自变量轴,y轴作为因变量轴,函数的值可以用图象上的各点表示。

二、函数的运算函数之间可以进行四则运算,包括加、减、乘、除,下面将分别介绍。

1.函数的加减相同自变量下,两个函数进行加减运算,即将它们对应自变量的函数值进行相加减。

2.函数的乘法设函数f(x)和g(x)在x=a处有定值,则f(x)×g(x)在x=a处的函数值为f(a)×g(a)。

3.函数的除法设函数f(x)和g(x)在x=a处有定值,且g(a)≠0,则f(x)÷g(x)在x=a处的函数值为f(a)÷g(a)。

三、函数的性质函数在数学学科中有许多重要的性质,下面将介绍其中的四个重要性质。

1.奇偶性若对于任意实数x,有f(-x)=-f(x),则函数f(x)是奇函数。

若对于任意实数x,有f(-x)=f(x),则函数f(x)是偶函数。

2.单调性若对于任意的实数x1<x2,都有f(x1)<f(x2),则函数f(x)在区间[a,b]上单调递增;若对于任意的实数x1<x2,都有f(x1)>f(x2),则函数f(x)在区间[a,b]上单调递减。

3.最值若在区间[a,b]上,函数f(x)的值都小于等于一个定值M,则M为f(x)在区间[a,b]上的上确界,即函数f(x)在区间[a,b]上的最大值。

同理,若在区间[a,b]上,函数f(x)的值都大于等于一个定值m,则m为f(x)在区间[a,b]上的下确界,即函数f(x)在区间[a,b]上的最小值。

八年级函数基础知识点总结

八年级函数基础知识点总结

八年级函数基础知识点总结一、函数的概念1. 什么是函数?函数是一种特殊的数学关系,它将每个自变量(输入值)映射到唯一的因变量(输出值)。

通俗地讲,函数就是一个“机器”,它能够将一个数映射成另一个数。

2. 函数的表示方法函数可以用各种不同的表示方法来表达,比如代数式、图形、表格、文字描述等。

3. 函数的符号表示用数学符号表示函数的一般形式为:f(x) = y。

其中,f(x)表示函数名,x表示自变量,y 表示因变量。

二、函数的图象1. 函数的图象函数的图象是函数在平面直角坐标系中的几何表现,通常用曲线来表示。

横坐标表示自变量,纵坐标表示因变量。

2. 函数的性质函数的图象具有一些特定的性质,比如单调性、奇偶性、周期性等。

这些性质可以通过函数的图象来进行判断和分析。

三、函数的运算1. 函数的四则运算函数之间可以进行加、减、乘、除等四则运算,这些运算的结果仍然是一个函数。

2. 复合函数复合函数是指将一个函数的输出作为另一个函数的输入,进行组合运算得到一个新的函数。

3. 反函数如果函数f将x映射为y,那么反函数f^(-1)将y映射为x。

反函数是原函数的逆运算。

四、函数的性质1. 函数的值域和定义域函数的值域是函数所有可能的输出值的集合,定义域是函数所有可能的输入值的集合。

2. 奇偶性函数f(x)的奇偶性是指当x为某个数时,函数f(-x)与f(x)的关系。

如果f(-x) = f(x),则函数f(x)是偶函数;如果f(-x) = -f(x),则函数f(x)是奇函数。

3. 单调性如果函数在定义域上的任意两个数x1、x2,若有x1 < x2,则f(x1)与f(x2)的关系。

如果f(x1) < f(x2),则函数f(x)是增函数;如果f(x1) > f(x2),则函数f(x)是减函数。

4. 周期性函数f(x)的周期是一个正数T,如果对于任意x,f(x+T) = f(x)。

五、函数的应用1. 实际问题中的函数函数在各个行业和领域中有着广泛的应用,比如物理学中的运动学函数、经济学中的收益函数、生物学中的生长函数等。

函数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

函数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.1函数(知识梳理与考点分类讲解)【知识点1】函数的定义1.函数的定义一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.说明:(1)在函数中定义的两个变量x,y是有主次之分的,变量x的变化是主动的,称之为自变量,而变量y是随x的变化而变化的,是被动的,称之为因变量(即自变量的函数);(2)函数不是数,函数的实质是两个变量的对应关系.2.判断一个关系是否是函数关系的方法一看是否在一个变化过程中;二看是否存在两个变量;三看对于变量每取一个确定的值,另一个变量是否都有唯一确定的值与其对应,以上三者(简称“三要素”)缺一不可.特别提醒:函数的定义中包括了对应值的存在性唯一性两重薏思,即对自变量的每一个确定的值函数有且只有一个值与之对应对自变量x的不同值y的值可以相同,如函数2y x ,当x=1和x=-1时,y的对应值者是L 【知识点2】函数的三种表示方法1.函数的三种表示方法表示方法定义优点缺点列表示通过列出自变量的值与对应函数值的表格表示函数关系的方法叫做列表法一目了然,对表格中已有自变量的每一个值,可直接查出与它对应的函数值列出的对应值是有限的,而且在表格中也不容易看出自变量与函数的变化规律关系式法用数学式子表示函数关系的方法叫做关系式法.其中的等式叫做函数关系式能准确地反映整个变化过程中自变量与数值的对应关系从函数关系式很难直观看出函数的变化规律,而且有些函数不能用关系式法表示出来图象法用图象表示两个变量间的函数关系的方法叫做图象法直观、形象地反映出函数关系变化的趋势和某些性质从自变量的值常常难以找到对应函数的准确值2.列函数关系式根据实际问题列函数关系式的方法类似于列方程解应用题,只要找出自变量与函数值之间存在的等量关系,列出等式即可.但要整理成用含自变量的代数式表示函数值的形式.【考点一】利用函数的概念判断两变量的函数关系【例1】(2023·上海·八年级假期作业)下列各式中,y 是否是x 的函数?为什么?(1)23y x =;(2)23y x =.【答案】(1)是,理由见分析;(2)不是,理由见分析【分析】根据函数的概念进行求解即可:对于两个变量,对于其中一个变量x 的任意取值(取值范围内),另一个变量y 都有唯一的值与之对应,那么y 就是x 的函数.(1)解:∵在23y x =中,对于任意的x 的值,y 都有唯一的值与之对应,∴y 是x 的函数;(2)解:∵在23y x =中,对于任意一个正数x 的值,y 都有两个值与之对应,∴y 不是x 的函数;【点拨】本题主要考查了函数的定义,熟知函数的定义是解题的关键.【举一反三】【变式1】(2023秋·安徽合肥·八年级合肥38中校考阶段练习)下列各曲线中,能表示y 是x 的函数的是()A .B .C .D .【答案】D【分析】根据函数的概念即可解答.解:由函数的定义:在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数.则只有D 选项符合题意故选:D .【点拨】题主要考查了函数的概念,在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一本的值与其对应,那么就说y 是x 的函数.【变式2】(2023·山东德州·二模)下列关于两个变量关系的四种表述中,正确的是.(填序号即可)①圆的周长C 是半径r 的函数;②表达式y =y 是x 的函数;③如表中,n 是m 的函数;m 3-2-1-123n2-3-6-632④如图中,曲线表示y 是x 的函数.【答案】①②③【分析】根据函数的定义与函数的表示方法逐一分析即可得到答案.解:①圆的周长C 是半径r 的函数;表述正确,故①符合题意;②表达式y =y 是x 的函数;表述正确,故②符合题意;③由表格信息可得:对应m 的每一个值,n 都有唯一的值与之对应,故③符合题意;在④中的曲线,当0x >时的每一个值,y 都有两个值与之对应,故④不符合题意;故答案为:①②③【点拨】本题考查的是函数的定义,函数的表示方法,理解函数定义与表示方法是解本题的关键.【考点二】函数的解析式★★自变量★★因变量【例2】(2022秋·八年级课时练习)在一次实验中,老师把一根弹簧秤的上端固定,在其下端悬挂物体,测得弹簧秤的长度()cm y 随所挂物体的质量x ()kg 变化关系的图象如下:(1)根据图象信息补全表格:x /kg 012345y /cm810121416(2)写出所挂物体质量在0至5kg 时弹簧秤长度y ()cm 与所挂物体质量()kg x 的关系式;(3)结合图象,写出弹簧秤长度是怎样随悬挂物体质量的变化而变化的.【答案】(1)18;(2)=2+8y x ;(3)当0≤x ≤5时,所挂重物每增加1千克,弹簧增长2cm ;当挂重物不小于5千克时,弹簧的长度均为18cm .【分析】(1)根据表格可知,发现所挂重物每增加1千克,弹簧增长2cm ,据此解答即可;(2)根据弹簧的长度等于弹簧原来的长度+弹簧伸长的长度列出关系式;(3)结合图象解答即可.解:(1)由题意可知,当x =5时,y =16+2=18,故答案为:18;(2)根据表格可知:所挂重物每增加1千克,弹簧增长2cm ,根据弹簧的长度=弹簧原来的长度+弹簧伸长的长度可知当所挂物体的重量为x 千克时,弹簧长度y =2x +8(0≤x ≤5);(3)由图象可知,当0≤x ≤5时,所挂重物每增加1千克,弹簧增长2cm ;当挂重物不小于5千克时,弹簧的长度均为18cm .【点拨】本题主要考查得是列函数关系式,解答本题需要同学们明确弹簧的长度=弹簧原来的长度+弹簧伸长的长度,根据表格发现所挂重物每增加1千克,弹簧增长2cm 是解题的关键.【举一反三】【变式1】(2021春·海南海口·八年级北京大学附属中学海口学校校考期中)在函数y 变量x 的取值范围是()A .x ≥1B .x ≠2C .x ≥2D .x ≥1且x ≠2【答案】D【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解:根据二次根式的意义可知:x -1≥0,即x ≥1,根据分式的意义可知:x -2≠0,即x ≠2,∴x ≥1且x ≠2.故选:D .【点拨】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.【变式2】(2022春·河北邯郸·八年级校考阶段练习)如图,长为32米,宽为20米的长方形地面上,修筑宽度均为x 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与x (米)的函数关系式为(不要求写自变量的取值范围);(2)当3x =时,地砖的费用为元.【答案】2312060y x x =-8820【分析】(1)先求出小路的面积,然后根据买地砖需要的钱数=小路的面积⨯每平方米地砖的价格,进行计算即可解答;(2)把3x =代入(1)中所求的关系式进行计算即可解答.解:(1)由题意得:两条小路的面积为:223220(52)x x x x x +-=-米2,2260(52)312060y x x x x ∴=⨯-=-,故答案为:2312060y x x =-;(2)当3x =时,2312060312036098820x x -=⨯-⨯=(元),答:当3x =时,地砖的费用为8820元.【点拨】本题考查了函数关系式,根据题目的已知条件结合图形求出小路的面积是解题的关键.【考点三】利用函数的三种表达方式解决问题【例3】(2023春·山东烟台·六年级统考期末)在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,测得的弹簧长度(cm)y 随所挂物体的质量(kg)x 变化关系的图象如下:(1)上表反映的变化过程中的两个变量,哪个是自变量?哪个是因变量?(2)根据以上图象补全表格:所挂物体质量/kg x 012345弹簧长度/cmy 8101214(3)由图象可知,弹簧能承受的所挂物体的最大质量是多少千克?(4)在弹簧承受范围内,请直接用含有x 的代数式表示y .【答案】(1)图中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)16,18;(3)5千克;(4)()2805y x x =+≤≤【分析】(1)根据变量常量的定义结合题意进行判断即可;(2)根据图象填写表格即可;(3)根据图象得出结论;(4)根据图象可知所挂物体质量每增加1千克,弹簧伸长2厘米,据此解答即可.解:(1)图中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)由图象得:所挂物体质量/kg x 012345弹簧长度/cm y 81012141618故答案为:16,18;(3)由图象可知,弹簧能承受的所挂物体的最大质量是5千克.(4)∵所挂物体质量每增加1千克,弹簧伸长2厘米,∴()2805y x x =+≤≤.【点拨】本题考查函数的表示方法,理解表格中弹簧的长度随所挂物体质量之间的变化关系是正确判断的关键.【举一反三】【变式1】(2023春·四川达州·七年级统考期末)李强一家自驾车到离家500km 的九寨沟旅游,出发前将油箱加满油.下表记录了轿车行驶的路程(km)x 与油箱剩余油量(L)y 之间的部分数据:轿车行驶的路程/km x 0100200300400…油箱剩余油量/L y 5042342618…下列说法不正确的是()A .该车的油箱容量为50LB .该车每行驶100km 耗油8LC .油箱剩余油量(L)y 与行驶的路程(km)x 之间的关系式为508y x =-D .当李强一家到达九寨沟时,油箱中剩余10L 油【答案】C【分析】根据表格中信息逐一判断即可.解:A 、由表格知:行驶路程为0km 时,油箱余油量为50L ,故A 正确,不符合题意;B 、0100km -时,耗油量为-=50428L ;100——200km 时,耗油量为37298L -=;故B 正确,不符合题意;C 、有表格知:该车每行驶50km 耗油4L ,则45050y x =-,故C 错误,符合题意;D 、当500x =时,()45050010L 50y =-⨯=,故D 正确,不符合题意.故选:C .【点拨】本题主要考查了函数的表示方法,明确题意、正确从表格中获取信息是解题的关键.【变式2】(2020秋·八年级单元测试)等腰三角形ABC 周长为24,底边BC 长为y ,腰AB 长为x ,则y 关于x 的函数解析式及定义域是.【答案】()242612y x x =-<<【分析】根据三角形的周长为24可得出2x+y=24,变形后即可得出y=-2x+24;根据三角形的边长大于0以及两腰之和大于底边,即可得出关于x 的一元一次不等式组,解之即可得出自变量x 的取值范围.解:根据题意得:2x+y=24,∴y=-2x+24,∵x 、x 、y 为三角形的边,∴22242240x x x -+-+⎧⎨⎩>>,∴6<x <12.故答案为:()242612y x x =-<<.【点拨】本题考查了一次函数的应用、等腰三角形的性质、三角形三边关系以及三角形的周长,解题的关键是:(1)根据三角形的周长为20找出y 关于x 的函数解析式;(2)由三角形的边长为正值结合两腰之和大于底边,列出关于x 的一元一次不等式组.【考点四】实际问题中列函数的表达式【例4】(2023秋·全国·八年级专题练习)某超市最近销售蓝莓,根据以往的销售经验,每天的售价与销售量之间有如下关系:每千克售价(元)6059585756……30每天销售量(千克)5055606570……200(1)表格中的自变量是__________,因变量是__________.(2)设当售价从每千克60元下降了x 元时,每天销售量为y 千克,直接写出y 与x 之间的关系式;(3)如果周六的销售量是170千克,那这天的售价是每千克多少元?(4)如果蓝莓的成本价是30元/千克,某天的售价定为40元/千克,当天的销售利润是多少?【答案】(1)每千克售价,每天销量;(2)550y x =+;(3)36元;(4)1500元【分析】(1)根据表格内容可求解此题;(2)由題意根据每千克售价每下降1元每天销售量就增加5千克进行求解;(3)将170y =代入(2)题结果并进行计算;(4)根据当天的销售利润等于每千克的利润乘以销售的千克数进行代入计算.(1)解:由题意得,自变量是每千克售价,因变量是每天销量,故答案为:每千克售价,每天销量;(2)解:由题意得售价每下降1元销售量就增大5千克,∴当售价从每千克60元下降了x 元时,每天销售量为550y x =+即y 与x 之间的关系式为550y x =+;(3)解:当170y =时,170550x =+,解得:24x =,∴602436-=,即这天的售价是每千克36元;(4)解:由(2)题结果可得,当604020x =-=时,52050150y =⨯+=,∴()40301501500-⨯=(元)答:这天的销售利润是1500元.【点拨】此题考查了运用函数解决实际问题的能力,关键是能准确理解题目间数量关系,并运用函数知识进行求解.【举一反三】【变式1】(2023春·河北邯郸·八年级统考期末)已知两个变量x 和y ,它们之间的三组对应值如下表所示:x 2-02y311-那么y 关于x 的函数解析式可能是()A .1y x =-+B .21y x x =++C .y =13x +D .2y x=-【答案】A【分析】根据函数的定义以及函数图象上点的坐标特征逐项进行判断即可.解:A .表格中的三组x y 、的对应值均满足1y x =-+,因此选项A 符合题意;B .表格中01x y ==,满足21y x x =++,但23x y =-=,与21x y ==-,不满足21y x x =++,因此选项B 不符合题意;C .表格中的三组x y 、的对应值均不满足13y x =+,因此选项C 不符合题意;D .表格中的三组x y 、的对应值均不满足2y x =-,因此选项D 不符合题意;故选:A .【点拨】本题考查函数关系式,理解函数的定义以及函数图象上点的坐标特征是正确解答的前提.【变式2】(2023秋·全国·八年级专题练习)甲同学的饭卡原有208元,在学校消费为周一到周五,平均每天消费35元,他的卡内余额y (元)与在校天数()05x x ≤≤之间的关系式为.【答案】20835y x=-【分析】用208减去x 天内的消费,即可确定函数关系式.解:依题意,他的卡内余额y (元)与在校天数()05x x ≤≤之间的关系式为20835y x =-,故答案为:20835y x =-.【点拨】本题考查了函数关系式,理解题意列出关系式是解题的关键.【考点五】动点问题中列函数的表达式【例5】(2023春·湖南长沙·八年级统考期末)已知点()8,0A 及在第一象限的动点(),P x y ,且10x y +=.设OPA 的面积为S .(1)求S 关于x 的函数解析式;(2)求x 的取值范围,并根据x 的取值范围求出S 的取值范围;(3)当12S =时,求P 点坐标.【答案】(1)=-+S 4x 40;(2)010x <<,040S <<;(3)(7,3)【分析】(1)根据OPA ∆的面积S 等于1·2y OP P 可得出S 关于x 的函数解析式;(2)由点P 在第一象限,可得点P 的横纵坐标均大于0,则可得关于x 的不等式,解得x 的取值范围即可.(3)先根据(1)中S 关于x 的函数解析式及12S =,得出点P 的横坐标,再将其代入10x y +=,则可解得点P 的纵坐标.(1)解:由10x y +=得10y x =-,P 点在第一象限,点A 坐标(8,0),∴11·8(10)44022S OA Py x x ==⨯⨯-=-+,S ∴关于x 的函数解析式为=-+S 4x 40.(2)解:P 在第一象限,∴1000x x ->⎧⎨>⎩,x ∴的取值范围为010x <<.则S 的取值范围为040S <<.(3)解:440S x =-+ ,∴当12S =时,44012x -+=,7x ∴=,710y += ,3y ∴=,P ∴点的坐标为(7,3).【点拨】本题主要考查了求函数关系式,求自变量的取值范围,解题的关键是运用数形结合和三角形的面积公式进行计算.【举一反三】【变式1】(2023春·八年级课时练习)如图所示,在ABC 中,已知16BC =,高10AD =,动点Q 由C 点沿CB 向B 点移动(不与点B 重合).设CQ 的长为x ,ACQ 的面积为S ,则S 与x 之间的函数关系式为()A .805S x =-(016x <<)B .5S x =(016x <<)C .10S x =(016x <<)D .580S x =+(016x <<)【答案】B 【分析】根据三角形的面积公式即可得到S 与x 之间的函数关系式.解:∵12ACQ S CQ AD =⋅ ∴11052S x x =⨯=∴S 与x 之间的函数关系式为5S x =(016x <<).故选:B【点拨】本题考查列函数解析式,理解题意,列出函数解析式,写出自变量的取值范围是解题的关键.【变式2】(2022秋·辽宁沈阳·八年级沈阳市实验学校校考期中)如图,在正方形ABCD 中,4AB =,动点M 从点A 出发,以每秒1个单位长度的速度沿线段AB 运动,同时动点N 从点A 出发,以每秒2个单位长度的速度沿线段AD 运动,当点N 运动到点D 时,点M ,N 同时停止运动,设AMN 的面积为y ,运动时间为x (s ),请写出y 与x 之间函数关系式.【答案】()202y x x =<≤【分析】根据点N 的运动情况,写出y 和x 之间的函数关系式即可.解:当点N 在AD 运动时,∵4AB =,∴02x <≤,∵动点M 以每秒1个单位长度的速度沿线段AB 运动,动点N 以每秒2个单位长度的速度沿线段AD 运动,∴AM x =,2AN x =,∴2122y x x x =⋅=,故答案为:()202y x x =<≤.【点拨】本题是运动型综合题,考查了函数表达式、正方形的性质、三角形的面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.【考点六】分段函数的表达式【例6】(2022秋·黑龙江大庆·七年级校考开学考试)某市自来水公司为鼓励单位节约用水,额定某单位每月计划内用水3000吨.计划内用水每吨收费1.5元,超额部分按每吨2.4元收费.(1)写出这个单位每月消费y (元)与用水量x (吨)之间的函数关系式;(2)若该单位1、2月份分别用水3200吨和2800吨,水费各为多少?【答案】(1) 1.5(03000)2.42700(3000)x x y x x <≤⎧=⎨->⎩(2)该单位1、2月份分别用水3200吨和2800吨,水费分别为4980元和4200元【分析】(1)根据题意,分03000x <≤时,3000x >时,分别列出函数关系式,即可求解;(2)将3200,2800x =分别代入(1)的关系式,即可求解.解:(1)当03000x <≤时, 1.5y x =;当3000x >时,()3000 1.53000 2.4 2.42700y x x =⨯+-⨯=-,∴y 与x 之间的函数关系式为 1.5(03000)2.42700(3000)x x y x x <≤⎧=⎨->⎩;(2)∵32003000>,∴ 2.4320027004980y =⨯-=(元),∵28003000<∴ 1.528004200y =⨯=(元),答:该单位1、2月份分别用水3200吨和2800吨,水费分别为4980元和4200元.【点拨】本题考查了列函数关系式,求函数值,根据题意分别列出函数关系式解题的关键.【举一反三】【变式1】(2022秋·福建漳州·八年级校考期中)某商店11月11日举行促销优惠活动,当天到店购买商品,有以下两种优惠方案,方案一:用168元购买会员卡后,则购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9折优惠.已知小敏不是该商店的会员,设她所购买商品总价格为x 元,实际支付费用为y 元.(1)若小敏不购买会员卡,则y 与x 之间的函数关系式是________;若小敏购买会员卡,则y 与x 之间的函数关系式是________;(2)小敏准备购买的商品总价格为1080元,请问她选用哪种方案较为合算?【答案】(1)0.9y x =;0.8168y x =+;(2)选用方案一较为合算【分析】(1)根据所购买商品的价格和折扣直接计算出实际应付的钱;(2)分别求出两种不同方案的实际支付费用,再比较,即可.(1)解:小敏不购买会员卡,y 与x 之间的函数关系式是0.9y x =;小敏购买会员卡,y 与x 之间的函数关系式是0.8168y x =+;故答案为:0.9y x =;0.8168y x =+(2)解:方案一:实际支付费用为0.91080972y =⨯=元;方案二:实际支付费用为0.810801681032y =⨯+=元,∵1032972>,∴小敏选用方案一较为合算.【点拨】本题考查的是列函数关系式,明确题意,准确列出函数关系式是解题的关键.【变式2】(2023春·广东茂名·七年级校考阶段练习)小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本或少于10本按标价卖,10本以上,从第11本开始按标价的70%卖.乙超市的优惠条件是从第1本开始就按标价的85%卖.(1)当小明要买28本时,到哪家超市购买较省钱?(2)写出甲超市中,收款y 甲(元)与购买本数x (本)的关系式.(3)小明现有24元钱,最多可买多少本练习本?【答案】(1)甲家超市买收费省钱;(2)()100.73(10)x x y x x ⎧≤=⎨+>⎩甲;(3)拿24元钱最多可以买30本练习本(在甲超市购买)【分析】(1)根据甲超市所需要的费用=前10本的总费用+后18本的总费用70%⨯得出甲所需要的费用,根据乙超市所需要的费用=28本的总费用85%⨯得出乙所需要的费用,然后进行比较大小得出答案;(2)甲超市所需要的费用=前10本的总费用+超出10本的总费用70%⨯得出函数解析式;(3)首先求出乙的函数解析式,然后分别求出甲和乙超市分别能买到几本练习本,从而得出答案.(1)解:买28本时,在甲超市购买需用10118170%22.6⨯+⨯⨯=(元),在乙超市购买需用28185%23.8⨯⨯=(元),22.623.8<,所以买28本到甲家超市买收费省钱;(2)解:()10y x x =≤甲101(10)170%0.73(10)y x x x =⨯+-⨯⨯=+>甲;答:()100.73(10)x x y x x ⎧≤=⎨+>⎩甲;(3)解:由题知乙超市收款y 乙(元)与购买本数x (本)间的关系式为.17185%20乙=⨯⨯=y x x 所以当24y =甲时,240.73x =+甲,解得:30x =甲;当24y =乙时,172420x =乙,28x ≈乙.所以拿24元钱最多可以买30本练习本(在甲超市购买).【点拨】此题考查了一次函数关系式及一元一次方程等知识;求出总价y 甲与购买本数()10x x >的关系式是解题的关键.。

八年级上册数学函数

八年级上册数学函数

八年级上册数学函数一、函数的概念1.1 定义函数是数学中重要的概念,它描述了一种映射关系,将一个或多个输入值映射到唯一的输出值。

通常用 f(x) 表示函数,其中 x 为自变量,f(x) 为对应的因变量。

1.2 函数的表示方法函数可以用不同的方式表示,包括图像、方程、表格等。

•图像表示:通过绘制函数的曲线图,可以直观地表示函数的变化趋势和特性。

•方程表示:可以用一个数学表达式描述函数,例如f(x) = 2x + 1。

•表格表示:可以将自变量和对应的因变量值构成一个表格,反映函数的取值情况。

二、函数的性质2.1 定义域和值域•定义域:函数的定义域是指自变量的取值范围,限制了函数的输入。

•值域:函数的值域是指函数的所有可能输出值的集合,表示了函数的输出范围。

2.2 奇偶性•奇函数:对于任意 x,有 f(-x) = -f(x)。

•偶函数:对于任意 x,有 f(-x) = f(x)。

奇偶性可以通过函数的图像或方程推断出来。

2.3 单调性•单调递增:对于任意 x1 < x2,有 f(x1) < f(x2)。

•单调递减:对于任意 x1 < x2,有 f(x1) > f(x2)。

单调性可以通过函数的图像或方程判断。

2.4 周期性周期函数是指存在一个正数 T,使得对于任意 x,有 f(x + T) = f(x)。

周期函数的图像呈现出重复的规律。

三、函数的运算3.1 四则运算函数可以进行四则运算,即加法、减法、乘法和除法。

•加法:(f+g)(x) = f(x) + g(x)•减法:(f-g)(x) = f(x) - g(x)•乘法:(f g)(x) = f(x) g(x)•除法:(f/g)(x) = f(x) / g(x),其中g(x) ≠ 03.2 复合运算函数可以进行复合运算,即一个函数作为另一个函数的自变量。

•复合函数:设有函数 f(x) 和 g(x),则复合函数表示为(f∘g)(x) = f(g(x))。

人教版八年级上册数学《函数》

人教版八年级上册数学《函数》
(2)对于给定的时间t ,相 应的高度h确定吗?
情景二
唯一一个y值
对于罐给头定盒任等一圆层柱数形n,的相物应体的,物常体常总如数下y图确那定样吗堆?放有。几随个着y值层 和数它的对增应加?,物体的总数是如何变化的?
填写下表:
层数 n
1
2
3
4
5…
物体总数y
1
3
6 10 15 …
情景三
在平整的路面上,某型号汽车紧急刹车后仍将滑
滑行距离S是多少?
解:当v=50时,S v2 502 8.33 300 300 当v=60时, S v2 602 12 300 300 当v=100时,S v2 1002 33.33 300 300
(2)给定一个v值,相应的S值能确定吗?有几个S值和它
对应?
唯一一个S值
情景:
1.下图反映了摩天轮上的一点的高度h (m)2.罐头盒等圆柱形的物体常常如下图那样
注意:函数不是数,它是指某一变化过程中两个变量 之间的关系.而函数值是一个数,它是自变量确定时 对应的因变量的值.
四、常量与变量的概念 常量:在某一变化过程中,始终保持不变的量. 变量:在某一变化过程中,可以取不同数值的量.
当堂练习
1.设路程为s,时间为t,速度为v,当v=60时,路程和时间 的关系式为 s=60t ,这个关系式中, 60是常量, t和s是 变量, s 是 t 的函数.
2.油箱中有油30kg,油从管道中匀速流出,1h流完,则油箱
中剩余油量Q(kg)与流出时间t(min)之间的函数关系式

Q 30 1 t 2
,自变量t的取值范围是 0 t 60.
3.(哈尔滨·中考)小明的爸爸早晨出去散步,从家走了 20 min到达距离家800 m的公园,他在公园休息了10 min, 然后用30 min原路返回家中,那么小明的爸爸离家的距离s (单位:m)与离家的时间t(单位: min)之间的函数关系 图象大致是( D )

北师大版数学八年级上册第四章《一次函数》

北师大版数学八年级上册第四章《一次函数》

情景一:某弹簧的自然长度为3 cm,在弹性限度内,所 挂物体的质量x每增加1千克,弹簧长度y增加0.5 cm. (1) 计算所挂物体的质量分别为 1 kg, 2 kg, 3 kg, 4 kg,
5 kg 时的长度,并填入下表:
x/kg
01 2
3 45
y/cm 3 3.5 4 4.5 5 5.5
(2)你能写出y与x之间的关系吗? y=3+0.5x
即:如果y是x的函数,当x=a时,y=b,那 么b叫做当x=a时的函数值.
注意:函数不是数,它是指某一变化过程中两个变量 之间的关系.而函数值是一个数,它是自变量确定时 对应的因变量的值.
例3
已知函数
y 4x 2. x 1
(1)求当x=2,3,-3时,函数的值;
(2)求当x取什么值时,函数的值为0.
大家讨论一下,这 两个函数关系式 有什么关系?
若两个变量 x、y之间的关系可以表示成
y=kx+b(k,b为常数,k不等于0)的形式,则称 y是x 的一次函数.(x为自变量,y为因变量.)
当b=0时,称y是x的正比例函数.
练一练
下列关系式中,哪些是一次函数,哪些是正比例函数?
(1)y=-x-4; (2)y=5x2-6; (3)y=2πx;
2.油箱中有油30kg,油从管道中匀速流出,1h流完,
则油箱中剩余油量Q(kg)与流出时间t(min)之
间的函数关系式是
Q 30 1 t 2
,自变量t的取值范
围是 0 t 60 .
3.下列各表达式不是表示y是x的函数的是( C )
A. y 3x2
B. y 1
x
C. y x (x 0)

沪教版 八年级(上)数学 秋季课程 第10讲 函数的概念及表示法

沪教版 八年级(上)数学 秋季课程 第10讲 函数的概念及表示法

函数是描述变化过程中的数量关系的工具,我们本章将以研究数量问题为起点,以正比例函数和反比例函数为载体,学习函数的初步知识.本节课的主要内容是对函数和正比例函数的概念进行讲解,重点是函数及正比例的概念理解,难点是正比例函数的图象和性质.1、函数的概念(1)在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量;(2)在某个变化过程中有两个变量,设为x和y,如果在变量x允许的取值范围内,变量y随着x变化而变化,他们之间存在确定的依赖关系,那么变量y叫做变量x的函数,x叫做自变量.函数用记号()y f x=表示,()f a表示x a=时的函数值;(3)表示两个变量之间依赖关系的数学式子称为函数解析式.函数的概念正比例函数知识结构模块一:函数的概念知识精讲内容分析2.函数的定义域和函数值(1)函数自变量允许取值的范围,叫做这个函数的定义域.(2)函数自变量取遍定义中的所有值,对应的函数值的全体叫做这个函数的值域.【例1】 (1)在正方形的周长公式4l a =中,a 是自变量,_______是_________的函数,______是常量;(2)面积是2()S cm 的正方形地砖边长为a (cm ),S 与a 之间的函数关系式是_________, 其中自变量是____________.(3)圆的周长C 与半径r 之间的函数关系是______________,其中常量是__________,变量是____________.【例2】 在匀速运动中,若用s 表示路程,v 表示速度,t 表示时间,那么式子s vt =,下列说法中正确的是( )A .s 、v 、t 三个量都是变量B .s 与v 是变量,t 是常量C .v 与t 是变量,s 是常量D .s 与t 是变量,v 是常量【例3】 下列各式中,x 是自变量,y 表示对应的值,判断y 是否是x 的函数?为什么? (1)2y x =; (2)|3|y x =;(3) (4) (5)【例4】 下列各式中,不是函数关系式的是( )A .y x =B .y x =-例题解析x 1 2 3 4y1122y 1 2 3 4 x1122C .y =D .y【例5】 判断下列变量之间是不是函数关系,如果是,写出函数关系式,如果不是,说明理由:(1) 长方形的宽a (cm )固定,其面积S 与长b ; (2) 长方形的长a 固定,面积S 与周长c ;(3) 三角形一边上的高为4,三角形的面积y 与这边长x ; (4) 等腰三角形顶角的度数x 与底角的度数y .【例6】 填空:(1) 函数232y x =-+,当x =___________,函数y 的值等于0; (2) 若函数y =x 的取值范围是一切实数,则c 的取值范围是________.【例7】 求下列函数的定义域:(1)1||4y x =-(2)22x y x=;(3)y ; (4)y =【例8】 将2132y x y -=+写成()y f x =的形式,并求13(0)(3)()(0)2f f f a a a -≠≠,,,, 1(1)3f a a +≠-()的值. 【难度】★★【例9】 A 、B 两地路程为160千米,若汽车以50千米/小时的速度从A 地驶向B 地,写出汽车距离B 地的路程S (千米)与行驶的时间t (小时)之间的函数关系式. 【难度】★★【例10】 已知水池的容量为1003m ,每小时灌水量为Q 3m ,灌满水池所需时间t 小时,求t 关于Q 的函数关系式,当每小时的灌水量为53m 时,灌满水池需多少时间?【例11】 如图,△ABC 与正方形BDEF ,其中∠C =90°,AC=BC =BD =8,且BC 与BD 均在直线L 上,将△ABC 沿直线以2个单位/秒向右平移,设移动的时间为t ,△ABC 与正方形BDEF 在移动的过程中重叠部分的面积为s ,求s 与t 的函数关系式,并写出定义域?【例12】 已知等腰三角形周长为24cm ,(1) 若腰长为x ,底边长为y ,求y 关于x 的函数关系式及定义域; (2) 若底边长为x ,腰长为y ,求y 关于x 的函数关系式及定义域.ACBDEF【例13】 如图,在△ABC 中,BC = AC = 12,∠C = 90°,D 、E 分别是边BC 、BA 上的动点(不与端点重合),且DE ⊥BC ,设BD x =,将△BDE 沿DE 进行折叠后与梯形ACDE 重叠部分的面积是y :(1) 求y 和x 的函数关系式,并写出定义域;(2) 当x 为何值时,重叠部分的面积是△ABC 面积的14.1.正比例函数的概念(1)如果两个变量的每一组对应值的比值是一个常数(这个常数不等于零),那么就说这两个变量成正比例,用数学式子表示两个变量x 、y 成正比例,就是yk x =,或表示为y kx=(x 不等于0),k 是不等于零的常数.(2)解析式形如y kx =(k 是不等于零的常数)的函数叫做正比例函数,其中常数k 叫做比例系数.正比例函数y kx =的定义域是一切实数.确定了比例系数,就可以确定一个正比例函数的解析式知识精讲模块二 正比例函数ABCDEABC备用图A BC备用图A BC备用图2.正比例函数的图象(1)一般地,正比例函数y kx =(k 是常数, 0k ≠)的图象是经过(00),,(1)k ,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =;(2)图像画法:列表、描点、连线. 3.正比例函数的性质(1)当0k >时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值也随着逐渐增大.(2)当0k <时,正比例函数的图像经过第二、四象限;自变量x 的值逐渐增大时,y 的 值则随着逐渐减小.【例14】 下列各变量成正比例函数关系的是( )A .圆的面积与它的半径B .长方形的面积一定时,长与宽C .正方形的周长与边长D .三角形面积和高【例15】 下列函数中,是正比例函数的是( )A .3(0)y k k=≠ B .(2)(2)y k x k =+≠-C .1(0)y k kx=≠D .2(0)y kx k =≠【例16】 (1)已知函数23(2)my m x -=-是正比例函数,则m =_________;(2)当a _________时,函数(1)y a x =+是正比例函数.例题解析【例17】 (1)已知函数y 与x 成正比例关系,且当122x y =-=时,,当3x y ==时,_________;(2)已知13y x -与成正比例,且当14x y =-=时,,则y 与x 之间的函数关系式是__________.【例18】 (1)若点B (b ,-9)在函数 3y x =的图像上,则b = _________;(2)若将点P (5,3)向下平移1个单位后,落在直线(0)y kx k =≠的图像上, 则k =_________.【例19】 (1)如果正比例函数21xy m =-的图像经过第二、四象限,那么m 的取值范围是_________;(2)函数(1)y k x =-的图像经过第一、三象限,那么k 的取值范围_________.【例20】 (1)已知y 与x 之间的函数关系式是21y x =-,那么y 与x___________(填“是”或“不是”)正比例关系;(2)已知39y x =-,y 与_____________成正比例关系,k =___________.【例21】 (1)已知2345y x -+与 成正比例,且当115x y ==时,,求y 与x 的函数关系式; (2)已知2(2)6y k x k k =-++-为正比例函数,求k 的值及函数解析式.【例22】 若431(23)t y t x +=-是正比例函数,又2712y x =-,当x 取何值时12y y >.【例23】 已知y 是x 的正比例函数,且当3x =时,1y =-:(1) 求出这个函数的解析式;(2) 在直角坐标平面内,画出这个函数的图像; (3) 如果点P (a ,4)在这个函数图像上,求a 的值; (4) 试问:点(62)A -,关于原点对称的点B 是否在这个图像上?【例24】 已知正比例函数的图像过第四象限且过(23)a -,和(6)a -,两点,求此正比例函数的解析式.【例25】 点燃的蜡烛,缩短的长度按照与时间成正比例缩短,一支长15cm 的蜡烛,点燃3分钟后,缩短1.2cm ,设蜡烛点燃x 分钟后,剩余长度ycm ,求y 与x 的函数解析式及x 的取值范围 .【例26】 已知三角形ABC 的底边AB 的长为3,AB 边上的高为x ,面积为y ,(1) 写出y 和x 之间的函数关系式; (2) 画出函数的图像.【例27】 (1)已知直线y ax =在实数范围内有意义,求a 的取值范围;(2)已知函数(21)y m x =+的值随x 的增大而减小,且函数(13)y m x =-的值随着x 的增大而增大,求m 的取值范围.【例28】 正比例函数的解析式为2(1)y k x =-,(1) 当11k -<<时,y 的值随x 值的增大是增大还是减小? (2) 若正比例函数的图像经过第一、三象限,k 的取值范围是什么?【例29】 已知正比例函数的自变量增加4时,对应的函数值增加6,(1) 求这个函数解析式; (2) 当6x =时,求y 的值; (3) 当4y =时,求x 的值;(4) 当24x -≤≤时,求y 的取值范围; (5) 当66y -≤≤时,求x 的取值范围.【例30】 m 取何值时,y 关于x 的函数21(3)4m y m x x +=++是正比例函数.【例31】 已知直角三角形ABC 中,∠C =90°AC =6,AB =12,点D 、E 、F 分别在边BC 、AC 、AB 上(点E 、F 与三角形ABC 顶点不重合),AD 平分∠CAB ,EF ⊥AD ,垂足为点H ,设CE=x ,BF=y ,求y 与x 之间的函数关系式.【例32】 已知一正比例函数y mx =图像上的一点P 的纵坐标是3,作PQ ⊥y 轴,垂足为点Q ,三角形OPQ 的面积是12,求此正比例函数的解析式.x【例33】 如图,在直角坐标系中,OA = 6,OB =8,直线OP 与线段AB 相交于点P , (1) 若直线OP 将△ABO 的面积等分,求直线OP 的解析式;(2)若点P 是直线OP 与线段AB 的交点,是否存在点P ,使△AOP 与△BOP 中,一个面 积是另一个面积的3倍?若存在,求直线OP 的解析式;若不存在,请说明理由.【习题1】 下列图像中,是函数图像的是().【习题2】 在函数y x x =+-中,自变量x 的取值范围是().A .0x ≥B .0x ≤C .0x =D .任意实数【习题3】 下列各点,不在函数23y x =-图像上的是().A .(1,23-)B .(3,-2)C .(23-,13)D .(-6,4)【习题4】 (1)若函数22()m y m m x =-是正比例函数,则m 的值是_________________;(2)已知y kx =是正比例函数,且当x =2时y =3,则比例系数是_____________.随堂检测A B C D【习题5】 求下列函数的定义域:(1)23xy x =-;(2)y =(3)12y x =+(4)y =.【习题6】 若211y x y +=-,用含x 的式子表示y ;若()y f x =,试求(1)f ,(0)f ,(1)(3)f a a -≠,()(2)f x x -≠-的值.【习题7】 已知正比例函数23(1)ky k x -=-的值随自变量x 的增大而减小,求k 的值及函数解析式.【习题8】 (1)已知32y x -+与成正比例,当x =3时,y =7,求y =9时,x 的值;(2)正比例函数(0)y kx k =≠的图像过A (1,a )、B (a +1,6),求函数的解析式.【习题9】 已知122y y y =-,21y x 与成正比例,231y x +与成正比例.且当15x y ==时,当13x y =-=时,求y 关于x 的函数关系式.【习题10】 已知正比例函数的图像过点(323)-,. (1) 若点(2)a ,-,(3)b ,在图像上,求a 、b 的值;(2) 过图像上一点P 作y 轴 的垂线,垂足为Q (015),-,试求三角形OPQ 的面积.【习题11】 在直角三角形ABC 中,AC =12,BC =16,AB =20,∠ACB =90°,CD ⊥AB 于D ,在CD 上取一点P (不与C 、D 重合),设三角形APB 的面积是y ,CP 的长为x ,求y 和x 的函数关系式,并写出函数的定义域.PABCD【习题12】 如图,梯形ABCD 中,AD ∥BC ,CD =5,AD =7,BC =13,40ABCD S =梯,P 是一动点,沿AD 、DC 由A 经D 点向C 点移动,设P 点移动的路程是x .(1) 当P 在AD 上运动的时候,设PAB S y ∆=,求y 与x 之间的函数关系式及定义域,并画出函数图像;(2) 当点P 继续沿DC 向C 移动时,设PAB S y ∆=,求y 与x 之间的函数关系式.ABCDP【作业1】 三角形ABC 中∠A=90°,AB =4,BC =5,P 是AC 边上一动点,点P 不与A 、C重合,则该图中线段____________是常量,线段_______________是变量;若AP=x ,设BPC S y ∆=,写出y 关于x 的函数关系式______________,自变量x 的取值范围是______________.【作业2】 下列变量之间的变化是函数关系的是______________(只填序号).(1) 正方形的面积和它的周长; (2)长方形的面积和它的周长; (3)(0)y x x =±≥;(4)||y x =;(5)(0)y x x =<【作业3】 (1)已知()2(2)6f x x f a =-=,,则a 的值是_____________;(2)已知2231()21()2(1)()()42f x xg x x f g =-=-+-+=,,则___________.【作业4】 (1)函数|3|y x =+的定义域为______________;(2) 函数011x y x =--的定义域为______________;课后作业(3) 函数0(3)2x x y x --=-的定义域为________________.【作业5】 23y x -与成正比例,当x =2时,y =11,求y 与x 之间的函数关系.【作业6】 (1)已知直线22(3)9k y m x m =++-是正比例函数,求mk 的值;(2)已知2215(4)my m m x -=-是正比例函数,求m 的值;(3)已知直线2(2)5y k x k k =-+-经过原点,且y 的值随x 的值的增大而减小,求k 的值.【作业7】 等腰钝角三角形ABC 中,底边长为8,面积是S ,底边上高AD 为h ,试求出S与h 的函数关系式及函数的定义域,并画出函数的图像.ABCD【作业8】 (1)某同学用20元钱买水笔,其单价为3.5元,求买水笔余下的钱y 与买水笔的数量x 之间的函数关系式;(2)靠墙(墙长为18cm )的地方围成一个矩形的养鸡场,另三边用篱笆围成,如果竹篱笆总长为35cm ,求养鸡场的一边长为y (cm )与另一边长x (cm )之间的函数关系式,并写出函数的定义域.【作业9】 已知直线y kx =过点(12- ,3),A 为y kx =图像上的一点,过点A 向x 轴引垂线,垂足为点B ,5AOB S ∆= (1) 求函数的解析式;(2) 在平面直角坐标系内画出函数的图像; (3) 求点A 、B 的坐标.【作业10】 过正比例函数图像上的一点Q (35)a a --,在第二象限,(1)化简22441025a a a a -++-+的值;(2)若a 的值是整数,求正比例函数的解析式,并判断点()k k -,在不在函数图像上.xy墙【作业11】 已知正比例函数过点A (4,-2),点P 在正比例函数图像上,B (0,4)且10ABP S ∆=,求点P 的坐标.。

八年级数学函数的相关概念知识点总结

八年级数学函数的相关概念知识点总结

八年级数学函数的相关概念知识点总结一、函数的概念:1、函数的定义:一般地,如果在一个变化过程中有两个变量 x 和 y,并且对于变量 X 的每一个值,变量 y 都有唯一的值与它对应,那么我们称 y 是 x 的函数 (function),其中 x 是自变量。

例如某天的气温随时间变化的曲线如下图所示:从这条曲线可以看出温度是随时间变化的,也就是可以知道不同时间对应的温度和同一温度对应的未使用时间。

2、函数的表示法:可以用三种方法来表示函数: ① 图象法、② 列表法、③ 关系式法。

3、函数值:对于自变量在可取值范围内的一个确定的值 a , 函数有唯一确定的对应值,这个对应值称为当自变量等于 a 时的函数值。

二、理解函数概念时应注意的几点:① 在某一变化过程中有两个变量x与y;② 这两个变量互相联系,当变量x取一个确定的值时,变量y 的值就随之确定;③ 对于变量 x 的每一个值,变量 y 都有唯一的一个值与它对应。

如在关系式y^2 = x(x>0)中,当 x=9 时,y 对应的值为 3 或-3,不唯一 ,则 y不是 x的函数。

三、函数的应用:1、判别是否为函数关系;2、确定自变量的取值范围;3、确定实际背景下的函数关系式;4、由自变量的值求函数值;5.探究具体问题中的数量关系和变化规律。

四、典例讲解:例题1、下列各图像中,y 是 x 的函数的图像是( D )例题2、在函数变量为x , y,常量为 5 ,-3 ,自变量为x ,当 x = -1 时,函数值为 2 。

例题3、一名老师带领 x 名学生到动物园参观。

已知成人票每张 30 元,学生票每张 10 元。

若设门票的总费用为 y 元,则 y 与 x 的函数关系式为(A )例题4、下面的表格列出了一个实验的统计数据,给出的是皮球从高处落下时弹跳高度 b 与下降高度 d 的关系。

下列能表示这种关系的式子是( C)例题5、已知两个变量 x , y 满足 2x^2 - 3y + 5 = 0 , 试问:① y 是 x 的函数吗?② x 是 y 的函数吗?若是,写出 y 与 x 的关系式;若不是,请说明理由。

八年级上册数学函数知识点

八年级上册数学函数知识点

八年级上册数学函数知识点八班级上册数学函数学问点1一、变量与函数[变量和常量]在一个改变过程中,数值发生改变的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。

[函数]一般地,在一个改变过程中,假如有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。

假如当时,那么叫做当自变量的值为时的函数值。

[自变量取值范围确实定方法]1、自变量的取值范围必需使解析式有意义。

当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的全部实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的全部实数。

2、自变量的取值范围必需使实际问题有意义。

[函数的图像]一般来说,对于一个函数,假如把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

[描点法画函数图形的一般步骤]第一步:列表(表中给出一些自变量的值及其对应的函数值);其次步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(根据横坐标由小到大的挨次把所描出的各点用平滑曲线连接起来)。

[函数的表示方法]列表法:一目了然,使用起来便利,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简洁明白,能够精确地反映整个改变过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

[正比例函数]一般地,•形如y=•kx•(k•是常数, k ≠0 )的函数,•叫做正比例函数(proportional function),其中k叫做比例系数。

[正比例函数图象和性质]一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线。

我们称它为直线y=kx。

八年级函数知识点总结

八年级函数知识点总结

八年级函数知识点总结函数是数学中的一种重要概念,也是数学研究中的一个重要分支,十分重要。

函数是一些数之间的对应关系。

在初中数学中,函数是一个比较重要的知识点,通常在初中数学的后半年学习。

下面,我们来总结一下八年级函数的相关知识。

一、函数的定义函数是数学中一个广泛的概念,也是一种数学工具,它描述了一组值(输入)与另一组值(输出)之间的对应关系。

函数通常用f(x)或y来表示。

表示为f(x):x→y。

二、函数的概念1. 定义域:定义域是指所有可输入的实数的集合。

2. 值域:值域是指所有输出的实数的集合。

3. 对于每个输入,函数有唯一的输出。

4. 函数可以用图像来表示。

三、函数的表示方法1. 求解表达式中x的值,并求f(x)。

2. 给定x和f(x)的值,画出点来表示函数。

3. 求解函数的图像,通过图像来描述函数。

四、函数的性质1. 奇偶性:若f(-x) = -f(x),则函数为奇函数,如正弦函数;若f(-x) = f(x),则函数为偶函数,如余弦函数;若f(-x) != f(x),则函数为既非奇函数也不是偶函数,如二次函数。

2. 增减性:若f’(x) > 0,则函数是在区间上增加的;若f’(x) < 0,则函数是在区间上减少的;则函数是在区间上保持不变的。

3. 零点:函数在x=a处的零点是指f(a)=0的点。

五、函数的种类1. 常函数:常函数是一种特殊的函数,它的输出值不随输入值的变化而变化,如f(x) = c,其中c是一个常数。

2. 一次函数:一次函数是函数的一种,如f(x) = kx+b,其中k 是斜率,b是截距,直线的斜率为 k,截辅为 b。

3. 二次函数:二次函数是一种函数,如f(x) = ax²+bx+c。

其中a 不为零。

4. 三次函数:三次函数是一种函数,如f(x) = ax³+bx²+cx+d。

其中a不为零。

5. 绝对值函数:绝对值函数是一种函数,如f(x) =|x|,当x>0时,f(x) = x,当x<0时,f(x) = -x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章一次函数
一、函数相关概念及表示方式
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

例1:
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

注:确定函数自变量的取值范围有两点,第一是要使含有自变量的式子有意义,第二是要使实际问题有意义。

例2:
例3:
例4:
已知等腰三角形的周长为20,设底边长为y,腰长为x,则y与x的函数关系式为________,自变量的取值范围是_________
例5:
的取值范围是()
3、函数的三种表示法及其优缺点
(1)解析式法/关系式法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

例6:
用解析式表示下列函数关系.
(1)某种苹果的单价是1.6元/kg,当购买x(kg)苹果时,花费y(元),y(元)与x (kg)之间的函数关系.______;
(2)汽车的速度为20km/h,汽车所走的路程s(km)和时间t(h)之间的关系.______.例7:
均匀的向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图像是()
例8:
小明400米/分的速度匀速汽车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地,下列函数图像能表达这一过程的是()
例9:
小明骑自行车上学,开始以正常的速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误课,加快汽车速度,下面是小明离家后他到学校剩下的路程s 关于时间t的函数图像,那么符合小明行驶情况的图像大致是()
例10:
甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()
4、由函数解析式画其图像的一般步骤
a.列表:列表给出自变量与函数的一些对应值
b.描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
c.连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

注:三种表示方式的优缺点
解析法:自变量与因变量的关系一看就知道,但涉及到具体数量还要进行计算。

而且有些函数不能用关系式表达出来。

列表法:每个自变量对应的因变量一目了然,一看就知道结果,但变化规律不是很明显,不能或者不太好推出任意一个自变量时的因变量的值。

图像法:能够很直观的感受到整个函数的变化情况,但具体数值却不能一下子看出来。

例11:
面关于函数的三种表示方法叙述错误的是()
A. 用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B. 用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C. 用公式法表示函数关系,可以方便地计算函数值
D. 任何函数关系都可以用上述三种方法来表示。

相关文档
最新文档