培优锐角三角函数辅导专题训练及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)
1.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.
(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;
(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD时,求sin∠CAB的值;
②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)
【答案】(1)AE=CE;(2)①;②.
【解析】
试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于
AD=DC,根据垂直平分线的性质可得AE=CE;
(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得
∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得
sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.
试题解析:(1)AE=CE.理由:
连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,
∴AE=CE;
(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,
∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.
①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,
∴EC=DC,∴sin∠CAB=sin∠CED===;
②当CF=aCD(a>0)时,sin∠CAB=.
∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,
∴sin∠CAB=sin∠CED==.
考点:1.圆的综合题;2.探究型;3.存在型.
2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.
(1)求证:△MED∽△BCA;
(2)求证:△AMD≌△CMD;
(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=17
5
S1时,求cos∠ABC的
值.
【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .
【解析】【分析】
(1)易证∠DME=∠CBA ,∠ACB=∠MED=90°,从而可证明△MED ∽△BCA ; (2)由∠ACB=90°,点M 是斜边AB 的中点,可知MB=MC=AM ,从而可证明∠AMD=∠CMD ,从而可利用全等三角形的判定证明△AMD ≌△CMD ; (3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以
2
114
ACB S MD S
AB ⎛⎫== ⎪⎝⎭,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25
S 1,由于1EBD S ME S EB =,从而可知
52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=7
2,最后根据锐角三角函数的定义即可求出答案. 【详解】
(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;
(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,
∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,
∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,
MD MD AMD CMD AM CM =⎧⎪
∠=∠⎨⎪=⎩
, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,
由(1)可知:△MED ∽△BCA , ∴
2
114
ACB S MD S
AB ⎛⎫== ⎪⎝⎭,
∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =
1
2
S △ACB =2S 1,
∴S △EBD =S 2﹣S △MCB ﹣S 1=2
5
S 1, ∵
1EBD
S ME
S
EB
=
, ∴1125
S ME
EB S =
,
∴
5
2
ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,
∵
1
2MD ME AB BC ==, ∴BC=10x ,
∴cos ∠ABC=105
147
BC x AB x ==. 【点睛】
本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.
3.如图,等腰△ABC 中,AB=AC ,∠BAC=36°,BC=1,点D 在边AC 上且BD 平分∠ABC ,设CD=x .
(1)求证:△ABC ∽△BCD ; (2)求x 的值;
(3)求cos36°-cos72°的值.
【答案】(1)证明见解析;(2)15
2
-+;(3)5816.
【解析】
试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线求出∠DBC 的度数,得到∠DBC=∠A ,再由∠C 为公共角,利用两对角相等的三角形相似得