九年级三角函数测试题

合集下载

九年级三角函数测试题(供参考)

九年级三角函数测试题(供参考)

九年级上数学第四章锐角三角函数测试题一、 选择题(此题共10小题,每题3分,共30分) 1、 sin30°的值等于( )。

A 、21B 、22C 、23D 、1二、在直角三角形中,各边都扩大2倍,那么锐角A 的正弦值、余弦值都( )。

A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确信 3、已知sin α=23,且α为锐角,那么α=( )。

A 、75° B 、60° C 、45° D 、30°4、有一个角是30°的直角三角形,斜边为1cm ,那么斜边上的高为( )。

A 、41cm B 、21C 、43D 、235 . 三角形在方格纸中的位置如下图,那么αcos 的值是( ) A.43 B.34 C.53 D.546. 在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,那么tan A 的值为 ( ) A .55 B .255 C .12D .2 7. 在Rt ABC ∆中,∠C=90°,假设125tan =A ,那么B sin 的值是( ) A. 135 B. 1312 C. 125 D. 5128. 如下图,河堤横断面迎水坡AB 的坡比(指坡面的铅直 高度BC 与水平宽度CA 的比)是1:3,堤高BC =5m , 那么坡面AB 的长度是( ) A .10m B .103m C .15m D .53m九、等腰三角形底边长为10cm ,周长为36cm ,那么底角的正弦值为( )。

A 、185 B 、165 C 、1513 D 、1312 10. 将矩形纸片ABCD 按如下图的方式折叠,AE 、EF 为折痕, ∠BAE =30°,3AB =,折叠后,点C 落在AD 边上的 C 1处,而且点B 落在EC 1边上的B 1处.那么BC 的长为( ) A.3 B. 2 C. 3 D.23 二、填空题(此题共8小题,每题3分,共24分)A B CD EC 1 B 1F11. 计算: 60tan 60sin 45tan 30cos += . 12. 若是α是锐角,且1tan =α,那么α= .13. 在△ABC 中,∠A ,∠B 为锐角,sin A =12 ,tan B =33, 则△ABC 的形状为 .14.在Rt△ABC 中, ∠B=90°,AC 边上的中线BD=5,AB=8,那么 cos ∠ACB=_______.15.在Rt △ABC 中,∠C=90°,假设AB=2AC ,那么cosA=______. 16. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE =6,sin A =35 ,那么菱形ABCD 的周长是 .17. 等腰三角形腰长为2cm ,底边长为23cm ,那么顶为 面积为 . 18. 若α是锐角,4sin cos 3αα+=,则sin cos αα⋅= . 三、解答题(19题共21分)19 . (1)60cos 30sin 45sin 2⋅+; (2)2sin 452cos 6060︒+︒︒;(3)30cos 360tan 2345cos 2260sin 2--+.20、.(本小题总分值7分)在Rt △ABC 中,∠C=90°,c=20 , ∠A=45°依照以下条件解直角三角形;21.(本小题总分值8分)已知:在Rt △ABC 中,190tan 2C A ∠==°,,B ∠求的正弦、余弦值.ABCD E22. (本小题总分值10) 如图,已知4 AC ,求AB 和BC 的长.23. (本小题总分值10分) 如图,某校数学爱好小组的同窗在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为45°,向前走50米抵达D 处,在D 处测得点A 的仰角为60°,求建筑物AB 的高度.24. (本小题总分值10分) 如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔100海里的A 处,它打算沿正北方向航行,去往位于灯塔P 的北偏东30°方向上的B 处. (1)B 处距离灯塔P 有多远?(2)圆形暗礁区域的圆心位于PB 的延长线上,距离灯塔200海里的O 处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判定假设海轮抵达B 处是不是有触礁的危险,并说明理由.ACD B45°60°九年级数学第四章锐角三角函数测试题参考答案一、选择题:1.A ; 2. D ; 3.C ; 4.B ; 5.A ;6. A ;7.D ;8.C 二、填空题:9.2323+; 10.45︒; 11. 等腰三角形; 12. 40; 13. 120,3︒; 14. 54,43; 15. 187; 16. tan aθ或2sin a θ.三、解答题:17. (1)45 (2)42-2 (3)6-2.18. (1)2 (2)15819. 25sin 5,cos 5B B ==20. 作CD ⊥AB 于点D ,在Rt △ACD 中,∵∠A =30°,∴∠ACD =90°-∠A =60°,221==AC CD ,32cos =⋅=A AC AD .在Rt △CDB 中,∵∠DCB =∠ACB -∠ACD =45°,∴2==CD BD , 2245sin =︒=CDBC . ∴322+=+=BD AD AB .21. 设建筑物AB 的高度为x 米. 在Rt △ABC 中,∠ACB =45°,∴AB =BC =x .∴BD =BC -CD =50x -. 在Rt △ABD 中,∠ADB =60°,∴tan ∠ADB =AB BD. ∴tan 6050x x ︒=- ∴350x x =-. ∴75253x =+. ∴建筑物AB 的高度为(75253+)米. 22. (1)作PC ⊥AB 于C .(如图)在Rt △P AC 中,∠PCA =90°,∠CP A =90°-45°=45°.∴2cos 45100502PC PA =⋅=⨯=. 在Rt △PCB 中,∠PCB =90°,∠PBC =30°. ∴21002PB PC ==.答:B 处距离灯塔P 有1002海里.(2)海轮抵达B 处没有触礁的危险.理由如下:∵200OB OP PB=-=-而150,∴200200150--.∴50OB>.∴B处在圆形暗礁区域外,没有触礁的危险.。

三角函数题练习题初三

三角函数题练习题初三

三角函数题练习题初三正文:1. 已知一直角三角形,其斜边长为10cm,其中一个锐角的正弦值为0.6,求该锐角的余弦值。

解析:设这个锐角为θ,则根据正弦的定义有sinθ = 对边/斜边,代入已知条件可得对边/10 = 0.6,解得对边长为6cm。

再根据余弦的定义有cosθ = 邻边/斜边,将已知条件代入可得cosθ = 对边/10 = 6/10 = 0.6。

答案:0.62. 已知正弦函数y = sin x 的图像在区间[0, 2π]上有两个最大值点,一个最小值点和一个零点。

求解方程sin x = -0.5 的所有解。

解析:根据正弦函数的图像特点,sin x = -0.5 对应的是函数在负半个周期内的一个最小值点。

根据正弦函数的周期性,在区间[0, 2π]内可以找到一个最小值点,即π + arcsin(-0.5)。

由于正弦函数是一个周期函数,所以在[0, 2π]内,还可以找到一个位于第三象限的解,即2π - arcsin(-0.5)。

所以方程sin x = -0.5 的所有解为x = π + arcsin(-0.5) 和 x = 2π - arcsin(-0.5)。

答案:x = π + arc sin(-0.5) 和x = 2π - arcsin(-0.5)3. 在直角三角形中,已知一条直角边的长度为12cm,另一条直角边的长度为5cm。

求解该三角形斜边与这两条直角边的夹角的正切值。

解析:设斜边与较长直角边的夹角为θ,则根据正切的定义有tanθ = 对边/邻边,代入已知条件可得对边/5 = 12/5,解得对边长为12cm。

所以tanθ = 12/5。

答案:12/54. 已知角A与角B都是锐角,且满足sinA = cosB = 0.8,求解角A 与角B的大小。

解析:根据正弦与余弦的定义可得 sinA = 对边/斜边,cosB = 邻边/斜边。

设三角形的斜边长度为x,根据已知条件可得对边/x = 0.8,邻边/x = 0.8。

三角函数练习题目初三

三角函数练习题目初三

三角函数练习题目初三1.已知直角三角形中一条直角边的长度为3cm,另一条直角边的长度为4cm。

求其两条直角边上的正弦、余弦和正切值。

解析:已知直角边 a = 3cm、直角边 b = 4cm。

根据三角函数的定义可知:正弦(sin) = 直角边a / 斜边c余弦(cos) = 直角边b / 斜边c正切(tan) = 直角边a / 直角边b其中,斜边c可以通过勾股定理求得:斜边c = √(a² + b²) = √(3² + 4²) = √(9 + 16) = √25 = 5代入计算得:正弦(sin) = 3 / 5 = 0.6余弦(cos) = 4 / 5 = 0.8正切(tan) = 3 / 4 = 0.75所以,该直角三角形的正弦值为0.6,余弦值为0.8,正切值为0.75。

2.已知角度θ的正弦值为0.5,求角度θ的余弦值和正切值。

解析:已知正弦(sin) = 0.5,要求余弦(cos)和正切(tan)。

根据正弦函数的定义可得:正弦(sin) = 直角边a / 斜边c已知正弦(sin) = 0.5,令直角边a = 0.5,斜边c = 1。

根据勾股定理可得:直角边b = √(c² - a²) = √(1² - 0.5²) = √(1 - 0.25) = √0.75 ≈ 0.866所以,余弦(cos) = 直角边b / 斜边c = 0.866 / 1 = 0.866正切(tan) = 直角边a / 直角边b = 0.5 / 0.866 ≈ 0.577所以,角度θ的余弦值为0.866,正切值为0.577。

3.已知角度α的正切值为2,求角度α的正弦值和余弦值。

解析:已知正切(tan) = 2,要求正弦(sin)和余弦(cos)。

根据正切函数的定义可得:正切(tan) = 直角边a / 直角边b已知正切(tan) = 2,令直角边a = 2,直角边b = 1。

人教版初3数学9年级下册 第28章(锐角三角函数)单元测试题 (含答案)

人教版初3数学9年级下册 第28章(锐角三角函数)单元测试题 (含答案)

初中数学人教版九年级锐角三角函数单元测试题学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 在Rt△ABC中,∠C=90∘,若AC=3,BC=2,则tan A的值是()A.12B.23C.52D.2552. 已知在Rt△ABC中,∠C=90∘,sin A=12,AC=23,那么BC的值为( )A.2B.4C.43D.63. 海中有一个小岛P,该岛四周12海里范围内(含12海里)是一个暗礁区.今有货轮由西向东航行,开始在A点观测P在北偏东60∘.若行驶10海里后到达B点观测P在北偏东α(0<α<90∘)处,若货船不改变航向,则当tanα为何值时,货轮会有触礁的危险,则根据以上数据可计算得tanα的值为()A.tanα=63−56B.tanα≥63−56C.0<tanα≤63−56D.56<tanα<34. 兰州是古丝绸之路上的重镇,以下准确表示兰州市的地理位置的是( )A.北纬34∘03′B.在中国的西北方向C.甘肃省中部D.北纬34∘03′,东经103∘49′5. 如图,①以点A为圆心,5cm长为半径画弧分别交∠MAN的两边AM,AN于点B,D;②以点B为圆心,AD长为半径画弧,再以点D为圆心,AB长为半径画弧,两弧交于点C;③分别连接BC,CD,AC.若tan∠BAC=12,点C到射线AN的距离是( )A.3B.4C.5D.256. 如图,小明从点A沿坡度i=1:2的斜坡走到点B,若AB=10米,则上升高度是()米.A.5B.2C.25D.237. 如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15∘到AC′的位置,此时露在水面上的鱼线B′C′长度是( )A.3mB.33mC.23mD.4m8. 你认为tan15∘的值可能是()A.36B.2+3 C.2−3 D.329. 如图是深圳市少年宫到中心书城地下通道的手扶电梯示意图,其中AB、CD分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC=135∘,BC的长约是5,则乘电梯从点B到点C上升的高度ℎ是()A.mB.5mC.mD.10m10. 如图,在△ABC中,∠C=90∘,AB=5,AC=2,则sin B的值是()A.35B.25C.23D.32.11. 如图,在Rt△ABC中,∠ACB=90∘,CD⊥AB于D,下列式子正确的是( )A.sin A=BDBC B.cos A=ACADC.AC2=AD⋅BDD.tan A=CDAB12. 如图,△ABC的顶点在正方形网格的格点上,则tan A的值是( )A.12B.22C.2D.2213. 如果某飞机的飞行高度为m千米,从飞机上看到地面控制点的俯角为α,那么此时飞机与地面控制点之间的距离是()A.m⋅tanαB.mcosαC.msinαD.m⋅cotα14. 在Rt△ABC中,∠C=90∘,下列式子不一定成立的是()A.tan A=cot BB.sin2A+cos2A=1C.sin2A+sin2B=1D.tan A⋅cot B=115. 中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前的一座雕像C的俯角为76∘(雕像的高度忽略不计),远处海面上一艘即将靠岸的轮船E的俯角为27∘.已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,问此时轮船E距离海岸线D的距离ED的长为()(参考数据:tan76∘≈4.0,tan27∘≈0.5,sin 76∘≈0.97,sin 27∘≈0.45.A.262B.212C.244D.27616. 西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC 高为a .已知,冬至时北京的正午日光入射角∠ABC 约为26.5∘,则立柱根部与圭表的冬至线的距离(即BC 的长)约为( )A.a sin 26.5∘B.atan 26.5C.a cos 26.5∘D.acos 26.517. 已知,菱形的一个内角为60∘,边长为2,用六个这样完全一样的菱形拼成如图所示的图形,则tan ∠ABC 的值是( )A.12 B.33C.233D.3218. 如图是一张简易活动餐桌,现测得OA =OB =40cm ,OC =OD =60cm ,现要求桌面离地面的高度为50cm ,那么两条桌腿的张角∠COD 的大小应为( )A.150∘B.135∘C.120∘D.100∘19. 在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70∘方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A.北偏东20∘方向上B.北偏西20∘方向上C.北偏西30∘方向上D.北偏西40∘方向上20. 轮船航行到C处观测小岛A的方向是北偏西48∘,那么从A同时观测轮船在C处的方向是()A.南偏东48∘B.东偏北48∘C.东偏南48∘D.南偏东42∘21. 若tanα⋅tan36∘=1,则α=________度.22. 若1−tanα=0,则锐角α=________度.23. 已知∠α=36∘,若∠β是∠α的余角,则∠β=________度,sinβ=________.(结果保留四个有效数字)24. 如图,已知△ABC三个顶点的坐标分别为A(−2, −4),B(0, −4),C(1, −1).(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB 相交于点D,写出点D的坐标;(3)若另有一点P(−3, −3),连接PC,则tan∠BCP=________.25. 如图,某学校灯光球场的大功率照明灯发出的光线与灯杆成30∘角,照射在地面上的大距离为AB=60m,现在准备调整它的照明角度,使它发出的光线与灯杆AC成45∘角,请你通过计算回答:调整后,这个大功率照明灯是否影响距离灯杆100m的D处的居民休息?(参考数据:3≈1.73)26. 2019年10月1日李明和他的爸爸、妈妈一同驾车到云南石林风景区旅游.如图,他利用自己带的测角仪站在一处高大的石林AB的前方C点处测得∠ACB=60∘,再沿BC方向走20m到达D处,测得∠ADC=30∘.(1)求点C到AD的距离;(2)求出石林AB的高度.(测角仪高度忽略不计,结果精确到1m)27. 已知以直线x=1为对称轴的抛物线y1与x轴交于点A1(d,0)和A2,顶点为B1,以直线x=2为对称轴的抛物线y2与x轴交于点A2和A3,顶点为B2,…,以直线x=n为对称轴的抛物线y n与x轴交于点A n和A n+1,顶点为B n,我们把这样的抛物线y1, y2 ,…,y n对应的二次函数称为“整对称轴”二次函数.(1)当0<d<1时,①填空:A1A2=_______,A2A3=_______,A3A4=________;(用含d的代数式表示)②若d=0.4,“整对称轴”二次函数y1,y2,…,y n的图象的顶点B1,B2,…,B n都在直线y=15 x上,当n的值为多少时,△A n A n+1B n是直角三角形?(2)当0<d<1时,已知“整对称轴”二次函数y1,y2,…,y n的图象的开口方向都向下,且△A1A2B1,△A2A3B2,⋯,△A n A n+1B n均为直角三角形.①请求出“整对称轴”二次函数y1,y2的解析式,并猜想出y2019的解析式(可以含d);②请通过画草图分析直线y=1与抛物线y1,y2,…,y2019的公共点个数.228. 如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD 的延长线交于点P,PC,AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60∘,AB=10,求线段CF的长.参考答案与试题解析一、选择题(本题共计 20 小题,每题 3 分,共计60分)1.【答案】B2.【答案】A3.【答案】C4.【答案】D5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】B10.【答案】B11.【答案】A12.【答案】A13.【答案】C14.【答案】D15.【答案】B16.【答案】B17.【答案】D18.【答案】C19.【答案】B20.【答案】A二、填空题(本题共计 3 小题,每题 3 分,共计9分)21.【答案】5422.【答案】4523.【答案】54,0.8090三、解答题(本题共计 5 小题,每题 10 分,共计50分)24.【答案】解:(1)作出点B1,C1连接即可;(2)因为直线CD 将△ABC 分成面积相等的两部分,且与线段AB 相交于点D ,故点D 为线段AB 的中点,画出直线CD ,可知点D 坐标为(−1, −4);125.【答案】解:在直角△ABC 中,∠C =30∘,AB =60,tan ∠ACB =ABAC ,∴ AC =AB tan ∠ACB=603,在直角△ACD 中,∠ACD =45∘,AC =603,AD =AC =603≈103.8(m ),∴ 照明灯会影响距离灯杆100m 的D 处的居民休息.26.【答案】解:(1)如图,过点C 作CE ⊥AD 于点E ,在Rt △CDE 中,CD =20m ,∠ADC =30∘,所以CE =12CD =12×20=10(m )即点C 到AD 的距离是10m .(2)∵ ∠ACB =60∘,∠ADC =30∘,∴ ∠CAD =30∘,∴ ∠CAD =∠ADC ,∴ AC =DC =20,在Rt △ABC 中,AB =AC sin 60∘=20×sin 60∘=20×32=103≈17(m).∴ 石林AB 的高度约为17m .27.【答案】解:(1)① 2−2d ;2d ; 2−2d ;②∵ 顶点 B 1,B 2,⋯B n 都在直线 y =15x 上,∴ 当x =n 时, y =15n ,由(1)可知,当n 为奇数时, A n A n +1=2−2d ,当n 为偶数时, A n A n +1=2d ,∴ 当d =0.4 时,只要 15n =12A n A n +1=12(2−2d)=0.6,或15n =12A n A n +1=12×2d =0.4时,△A n A n +1B n 是直角三角形,解得n =3或n =2.(2)①∵ △A 1A 2B 1 是直角三角形, A 1A 2=2−2d ,∴ y 1 的顶点 B 1 的坐标为 (1,1−d),设y 1 的解析式为 y 1=a 1(x−1)2+1−d ,∵ y 1 过点 A 1(d,0) ,将A 1 的坐标代入得 a 1=1d−1,∴ y 1 的解析式为 y 1=1d−1(x−1)2+1−d ,同理,∵ △A 2A 3B 2 是直角三角形, A 2A 3=2d ,∴ y 2 的顶点 B 2 的坐标为 (2,d),设y 2 的解析式为 y 2=a 2(x−2)2+d ,∵ y 2 过点 A 2(2−d,0),将A 2的坐标代入得 a 2=−1d ,∴ y 2 的解析式为 y 2=−1d (x−2)2+d .猜想 y 2019 的解析式为 y 2019=1d−1(x−2019)2+1−d.②通过以上探究,画出草图,可知:当0<d <12 时,直线 y =12 与y 1,y 2,…,y 2019 的公共点个数为2020个;当d =12 时,直线 y =12 与y 1,y 2,…,y 2019 的公共点个数为2019个; 当12<d <1 时,直线 y =12与 y 1,y 2,…,y 2019 的公共点个数为2018个 .28.【答案】(1)证明:如图,连接OC ,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,∵OA=OC, PA=PC, OP=OP,∴△OAP≅△OCP(SSS),∴∠OCP=∠OAP,∵PA是⊙O的切线,∴∠OAP=90∘,∴∠OCP=90∘,即OC⊥PC,∴PC是⊙O的切线.(2)解:∵OB=OC,∠OBC=60∘,∴△OBC是等边三角形,∴∠COB=60∘,∵AB=10,∴OC=5,由(1)可知,∠OCF=90∘,∴CF=OC⋅tan∠COB=53.。

三角函数测试题及答案

三角函数测试题及答案

三角函数测试题及答案一、选择题1. 已知角A的正弦值为\( \sin A = \frac{1}{2} \),则角A的余弦值\( \cos A \)是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( -\frac{1}{2} \)D. \( -\frac{\sqrt{3}}{2} \)2. 函数\( y = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \pi/2 \)D. \( 4\pi \)3. 已知\( \cos x = \frac{1}{3} \),且\( x \)在第一象限,求\( \sin x \)的值:A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{5}}{3} \)C. \( \frac{4\sqrt{2}}{9} \)D. \( \frac{4\sqrt{5}}{9} \)二、填空题4. 根据正弦定理,如果三角形ABC的边a和角A相对,且\( a = 5 \),\( \sin A = \frac{3}{5} \),则边b的长度为______(假设\( \sin B = \frac{4}{5} \))。

5. 已知\( \tan x = -1 \),求\( \sin 2x \)的值。

三、解答题6. 求以下列三角方程的解:\( \sin^2 x + \cos^2 x = 1 \)7. 证明:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \)。

四、应用题8. 在直角三角形ABC中,角C为直角,已知AB = 10,AC = 6,求BC 的长度。

答案:一、选择题1. C2. B3. B二、填空题4. 45. 1 或 -1三、解答题6. 该方程对所有\( x \)都成立,因为它是三角恒等式。

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案任务一 求锐角三角函数值子任务1 利用参数法求锐角三角函数值母题1 如图,在Rt △ABC 中,∠C=90°,BC=3AC ,则tan B=( )A .13B .3C .√1010 D .3√1010变式练1:在直角三角形ABC 中,若2AB=AC ,则cos C 的值为( )A .12或2√35B .12或2√55 C .√32或2√55 D .√32或2√35子任务2 构造直角三角形求锐角三角函数值母题2 如图,已知钝角三角形ABC ,点D 在BC 的延长线上,连接AD ,若∠DAB=90°,∠ACB=2∠D ,AD=2,AC=32,求tan D 的值.变式练2:如图,△ABC与△BDC均为直角三角形,若∠ACB=30°,∠DBC=45°,求∠ADB的正切值.母题3如图,在△ABC中,CA=CB=4,cos C=14,则sin B的值为()A.√102B.√153C.√64D.√104变式练3:如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC.若tan B=53,则tan∠CAD的值为.子任务3利用等角转换法求锐角三角函数值母题4如图,在半径为3的☉O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tan D=()A.2√2B.√24C.13D.2√23【关键点拨】变式练4:如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=1∠BAC,求sin∠BPC.2子任务4利用网格求锐角三角函数值母题5如图,这是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是.【关键点拨】变式练5:如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.√1313B.√66C.√2613D.√2626子任务5在折叠问题中求锐角三角函数值母题6如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D 处,EF为折痕,若AE=3,则sin∠BFD的值为.【关键点拨】变式练6:直角三角形纸片ABC,两直角边BC=4,AC=8,现将△ABC纸片按图中方式折叠,使点A 与点B重合,折痕为DE,则tan∠CBE的值是()A.12B.34C.1D.43任务二 由一个锐角的三角函数值求三角形的边长母题7 在Rt △ABC 中,∠C=90°,sin A=35,AC=8 cm,则BC 的长度为( )A .3 cmB .4 cmC .5 cmD .6 cm变式练7:已知∠A 是锐角,sin A=35,则cos A 的值为( )A .35B .45C .34D .54任务三 由一个锐角的三角函数值求三角形的面积母题8 已知△ABC 中,tan B=23,BC=6,过点A 作BC 边上的高,垂足为点D ,且满足BD ∶CD=2∶1,则△ABC 面积的所有可能值为 .变式练8:在△ABC 中,AB=3√6,AC=6,∠B=45°,则BC= .任务四 锐角三角函数的探究问题母题9 如图1,在Rt △ABC 中,以下是小亮探究asinA 与bsinB 之间关系的方法:∵sin A=a c ,sin B=b c , ∴c=a sinA ,c=bsinB ∴asinA =bsinB .根据你掌握的三角函数知识,在图2的锐角三角形ABC 中,探究asinA ,bsinB ,csinC 之间的关系,并写出探究过程.图1 图2变式练9:把(sin α)2记作sin 2α,根据图完成下列各题:图1图2(1)如图1,sin 2A 1+cos 2A 1= ,sin 2A 2+cos 2A 2= sin 2A 3+cos 2A 3= .(2)观察上述等式后猜想:在Rt △ABC 中,∠C=90°,总有sin 2A+cos 2A= . (3)如图2,在Rt △ABC 中证明(2)题中的猜想.(4)已知在△ABC 中,∠A+∠B=90°,且sin A=1213,求cos A 的值.参考答案母题1 A 提示:在Rt △ABC 中,∠C=90°,BC=3AC∴tan B=AC BC =AC 3AC =13.故选A .变式练1 C 提示:①当AC 为直角边时∵2AB=AC∴BC=√AB 2+AC 2=√5AB∴cos C=AC BC =2AB √5AB =2√55;②当AC 为斜边时 ∵2AB=AC∴BC=√AC 2-AB 2=√3AB∴cos C=BC AC =√3AB 2AB=√32. 综上,cos C=2√55或√32. 故选C .母题2 解:∵∠ACB=∠D+∠CAD ,∠ACB=2∠D∴∠CAD=∠D∴CA=CD. ∵∠DAB=90°∴∠B+∠D=90°,∠BAC+∠CAD=90° ∴∠B=∠BAC ∴AC=CB∴BD=2AC=2×32=3. 在Rt △ABD 中,∵∠DAB=90°,AD=2∴AB=√32-22=√5∴tan D=AB AD =√52.变式练2解:如图,过点A 作DB 延长线的垂线,垂足为点E 则∠E=90°,∠ABE=45°,AE=BE.设AE=BE=x ,则AB=√2x ,BC=√6x ,BD=CD=√3x∴DE=√3x+x ,∴tan ∠ADB=AE DE =(√3+1)x =√3+1=√3-12.母题3 D 提示:如图,过点A 作AD ⊥BC ,垂足为D在Rt △ACD 中,CD=CA ·cos C=1∴AD=√AC 2-CD 2=√15.在Rt △ABD 中,BD=CB-CD=3,AD=√15.∴AB=√BD 2+AD 2=2√6.∴sin B=AD AB =√104.故选D . 变式练3 15 提示:如图,延长AD ,过点C 作CE ⊥AD ,垂足为E.在Rt △BAD 中,tan B=AD AB =53. 可设AD=5x ,则AB=3x.∵∠CDE=∠BDA ,∠CED=∠BAD ∴△CDE ∽△BDA∴CE AB =DE AD =CD BD =12 ∴CE=32x ,DE=52x ∴AE=AD+DE=152x ∴在Rt △AEC 中,tan ∠CAD=CE AE =15.故答案为15.母题4 A 提示:如图,连接BC.∵AB 是直径,∴∠ACB=90°. ∵☉O 的半径为3,∴AB=6 ∴BC=√AB 2-AC 2=√62-22=4√2∴tan D=tan A=BC AC =4√22=2√2. 故选A .变式练4 解:如图,作AD ⊥BC 于点D.∵AB=AC=5,BC=8∴BD=CD=4,∠BAD=12∠BAC. ∵∠ADB=90°,∴sin ∠BAD=BD AB =45.又∵∠BPC=12∠BAC∴∠BPC=∠BAD ∴sin ∠BPC=45. 母题5 2 提示:如图,过点Q 作QC ∥BA ,连接PC∴∠QMB=∠CQP. 由题意得CQ 2=22+22=8 PC 2=42+42=32 PQ 2=22+62=40∴PC 2+CQ 2=PQ 2∴△PCQ 是直角三角形 ∴∠PCQ=90°∴tan ∠CQP=PC CQ =√22√2=2∴tan ∠QMB=tan ∠CQP=2. 故答案为2.变式练5 D 提示:如图,延长AC 到点D ,连接BE 交CD 于点O∴BE ⊥CD ,AB=√22+32=√13,OB=12BE=12√12+12=√22∴sin ∠BAC=OB AB =√22√13=√2626. 故选D .母题6 13 提示:∵在△ABC 中,∠ACB=90°,AC=BC=4∴∠A=∠B.由折叠的性质得到△AEF ≌△DEF∴∠EDF=∠A ∴∠EDF=∠B∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180° ∴∠CDE=∠BFD. 又∵AE=DE=3∴CE=4-3=1.在直角△ECD 中,sin ∠CDE=CEED =13∴sin ∠BFD=13. 故答案为13.变式练6 B 提示:根据题意,BE=AE.设BE=x ,则CE=8-x. 在Rt △BCE 中,x 2=(8-x )2+42 解得x=5∴CE=8-5=3∴tan ∠CBE=CE CB =34.故选B .母题7 D 提示:∵sin A=BCAB =35∴设BC=3x ,AB=5x. 又∵AC 2+BC 2=AB 2∴82+(3x )2=(5x )2解得x=2或x=-2(舍去)∴BC=3x=6 cm . 故选D .变式练7 B 提示:∵sin 2A+cos 2A=1∴cos A=√1−(35) 2=45. 故选B .母题8 8或24 提示:如图1所示∵BC=6,BD ∶CD=2∶1∴BD=4.∵AD ⊥BC ,tan B=23∴AD BD =23∴AD=23BD=83∴S △ABC =12BC •AD=12×6×83=8. 如图2所示∵BC=6,BD ∶CD=2∶1,∴BD=12.∵AD ⊥BC ,tan B=23,∴AD BD =23,∴AD=23BD=8 ∴S △ABC =12BC •AD=12×6×8=24. 综上所述,△ABC 面积的所有可能值为8或24. 故答案为8或24.图1 图2变式练8 3√3+3或3√3-3 提示:①当△ABC 为锐角三角形时 过点A 作AD ⊥BC 于点D ,如图1.图1∵AB=3√6,∠B=45°∴AD=BD=AB ·sin 45°=3√3∴CD=√AC 2-AD 2=3,∴BC=BD+CD=3√3+3. ②当△ABC 为钝角三角形时过点A 作AD ⊥BC 交BC 延长线于点D ,如图2.图2∵AB=3√6,∠B=45°∴AD=BD=AB ·sin 45°=3√3∴CD=√AC 2-AD 2=3∴BC=BD-CD=3√3-3.综上,BC 的长为3√3+3或3√3-3.故答案为3√3+3或3√3-3.母题9 解:a sinA =b sinB =c sinC .理由如下:如图,过点A 作AD ⊥BC ,过点B 作BE ⊥AC在Rt △ABD 中,sin B=AD c ,即AD=c sin B 在Rt △ADC 中,sin C=AD b ,即AD=b sin C∴c sin B=b sin C ,即b sinB =c sinC 同理可得a sinA =c sinC则a sinA =b sinB =c sinC .变式练9 解:(1)1;1;1 提示:sin 2A 1+cos 2A 1=122+√322=14+34=1 sin 2A 2+cos 2A 2=1√22+1√22=12+12=1 sin 2A 3+cos 2A 3=352+452=925+1625=1.故答案为1;1;1.(2)1.(3)在题图2中,∵sin A=a c ,cos A=b c ,且a 2+b 2=c 2 则sin 2A+cos 2A=a c 2+b c 2=a 2c 2+b 2c 2=a 2+b 2c 2=c 2c 2=1 即sin 2A+cos 2A=1.(4)在△ABC 中,∠A+∠B=90°,∴∠C=90°. ∵sin 2A+cos 2A=1,∴12132+cos 2A=1 解得cos A=513或cos A=-513(舍去),∴cos A=513.。

三角函数试题及答案初中

三角函数试题及答案初中

三角函数试题及答案初中一、选择题(每题3分,共30分)1. 若sinα=1/2,则α的度数是()A. 30°B. 60°C. 90°D. 120°2. cos30°的值是()A. 1/2B. √3/2C. √2/2D. 13. 已知tan45°=1,则sin45°的值是()A. 1/√2B. √2/2C. √2D. 14. 如果sinβ=3/5,且β为锐角,则cosβ的值是()A. 4/5B. -4/5C. 3/5D. -3/55. 根据三角函数的定义,下列哪个选项是错误的()A. sin0°=0B. cos90°=0C. tan60°=√3D. sin180°=-16. 已知sinA=1/2,那么cos2A的值是()A. 1/4B. 1/2C. 3/4D. 07. 在直角三角形中,如果一个锐角的正弦值是1/3,那么它的余弦值是()A. 2√2/3B. √2/3C. √6/3D. 3√2/38. 根据三角函数的周期性,sin(360°+α)等于()A. sinαB. -sinαC. co sαD. -cosα9. 一个角的正切值是-√3,那么这个角的度数是()A. 60°B. 120°C. 240°D. 300°10. 根据三角函数的和角公式,sin(α+β)=sinαcosβ+cosαsinβ,那么cos(α+β)的值是()A. cosαcosβ-sinαsinβB. cosαcosβ+sinαsinβC. sinαcosβ-cosαsinβD. -cosαcosβ-sinαsinβ二、填空题(每题4分,共20分)1. sin60°的值是______。

2. 一个角的余弦值是-1/2,那么这个角的正弦值是______。

3. 已知tanA=2,则sinA的值是______。

(数学人教版)九年级三角函数练习题

(数学人教版)九年级三角函数练习题

三角函数练习题田云江一、选择题1、有以下四组角:(1)kπ+;(2)kπ-;(3)2kπ±;(4)-kπ+(k∈z)其中终边相同的是()A、(1)和(2)B、(1)、(2)和(3)C、(1)、(2)和(4)D、(1)、(2)、(3)和(4)2、若角α的终边过点(sin30°-cos30°),则sinα等于()A、 B、- C、- D、-3、设α=,则sin(x-)+tg(α-)的值为()A、 B、 C、 D、4、在以下四个函数y=sin|x|,y=|sinx|,y=|sinx+|,y=sin(-x)中,周期函数的个数是()A、1B、2C、3D、45、若将某正弦函数的图象向右平移后得到的图象的函数式是y=sin(x+),则原来的函数表达式是()A、y=sin(x-)B、y=sin(x+)C、y=sin(x+)-D、y=sin(x+)6、函数y=sin(-2x)的单调递增区间是()A、[kπ-,kπ+]B、[2kπ+,2kπ+]C、[kπ+,kπ+]D、[2kπ-,2kπ+]7、α为第二象限角,其终边上一点为P(x,),且cos=x,则sinα的值为()A、 B、 C、 D、-8、若θ是第三象限的角,且sin>0,则()A、cos>B、cos>-C、cos>D、sec<-9、已知α、β为锐角,且2tgα+3sinβ=7,tgα-6sinβ=1,则sinα的值是()A、 B、 C、 D、10、函数y=sinπ的单调增区间是()A、[2kπ,(4k+2)π]B、[4k,4k+2]C、[2kπ,(2k+2)π]D、[2k,2k+2] (k∈z)11、若=,则x取值范围是()A、2kπ≤x≤2kπ+B、2kπ≤x≤2kπ+πC、2kπ-≤x≤2kπ+D、kπ-≤x≤2kπ+(k∈z)12、在[,]上与函数y=cos(x-π)的图象相同的函数是()A、y=B、y=C、y=cos(x-)D、y=cos(-x-4π)二、填空题:1、已知tgα=3 则的值为________2、函数y=的定义域是______,值域是______3、函数的最小正周期是_______4、函数的单调递减区间是______三、解答题1、(1)化简:++cos2αcsc2α(2)设sin(α+)=-,且sin2α>0求sinα,tgα2、已知sinx+≥0,tgx+1≤0求函数y=的最小值,并求取得最小值y,x的值,此函数有没有最大值,为什么?3、如果方程x2-4xcosθ+2=0与方程2x2+4xsin2θ-1=0有一根,互为倒数求θ职 (0<θ<π)4、已知a>0,0≤x<2π,函数y=cos2x-asinx+b的最大值为0最小值为-4,求a和b 值,并求出使y取得最大值和最小值时的x值。

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析一、单选题(共10题;共30分)1.(3分)tan30°的值等于()A.√3B.√33C.√22D.12.(3分)如图,PA、PB分别切⊙O于A,B,⊙APB=60°,⊙O半径为2,则PB的长为()A.3B.4C.2√3D.2√23.(3分)已知Rt⊙ABC中,⊙C=90°,⊙A=50°,AB=2,则AC=()A.2sin50°B.2sin40°C.2tan50°D.2tan40°4.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,tanA=34.以点C为圆心,CB长为半径的圆交AB于点D,则AD的长是()A.1B.75C.32D.25.(3分)如图,在扇形AOB中,⊙AOB=90°,以点A为圆心,OA的长为半径作OC⌢交AB⌢于点C,若OA=2,则阴影部分的面积为()A.23π−√3B.√3−13πC.13πD.√3+13π6.(3分)如图,一艘轮船在小岛A的西北方向距小岛40√2海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东60°的B处,则该船行驶的路程为()A.80海里B.120海里C.(40+40√2)海里D.(40+40√3)海里7.(3分)如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则sin⊙ABC的值()A.√22B.1C.√33D.√28.(3分)在⊙ABC中,(2cosA-√2)2+| √3-tanB|=0,则⊙ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形9.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin⊙OBD=()A.12B.34C.45D.3510.(10分)如图(1)所示,E为矩形ABCD的边AD上一边,动点P,Q同时从点B出发,点P 沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,⊙BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分)则下列结论正确的是()A.AB:AD=3:4B.当⊙BPQ是等边三角形时,t=5秒C.当⊙ABE⊙⊙QBP时,t=7秒D.当⊙BPQ的面积为4cm2时,t的值是√10或475秒二、填空题(共5题;共15分)11.(3分)cos245∘−tan30∘⋅sin60∘=.12.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠ABC的值为.13.(3分)如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是cm.14.(3分)如图,在Rt⊙ABC中,⊙ACB=90°,CD是高,如果⊙A=α,AC=4,那么BD=.(用锐角α的三角比表示)15.(3分)如图,Rt⊙AOB中,⊙OAB=90°,⊙OBA=30°,顶点A在反比例函数y=−4x图象上,若Rt⊙AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三、解答题(共8题;共78分)16.(8分)先化简,再求代数式(aa2−1−1a+1)⋅(a−1)的值,其中a=tan60°−2sin30°.17.(9分)居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)18.(9分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 √2海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:√2≈1.41,√3≈1.73)19.(9分)如图,从甲楼AB的楼顶A,看乙楼CD的楼顶C,仰角为30°,看乙楼(CD)的楼底D,俯角为60°;已知甲楼的高AB=40m.求乙楼CD的高度,(结果精确到1m)20.(10分)如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)21.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊙AB于E,设⊙ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得⊙EFD=k⊙AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan⊙DCF的值.22.(11分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)(5分)求楼间距AB;(2)(6分)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)23.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣4,0)和点B(2,0),与y轴交于点C.(1)(4分)求该抛物线的表达式及点C的坐标;(2)(4分)如果点D的坐标为(﹣8,0),联结AC、DC,求⊙ACD的正切值;(3)(4分)在(2)的条件下,点P为抛物线上一点,当⊙OCD=⊙CAP时,求点P的坐标.答案解析部分1.【答案】B【解析】【解答】解:tan30°=√33. 故答案为:B【分析】利用特殊角的三角函数值直接求解即可。

九年级数学 三角函数50道练习题

九年级数学 三角函数50道练习题

九年级数学三角函数50道练习题(以上为标题,不计入800字)1. 已知一个角的补角是60度,求该角的大小。

2. 求解sin45°的值。

3. 已知tanθ = 1/√3,求θ的度数。

4. 求解cos30°的值。

5. 若sinθ = cos(180° - θ),求θ的度数。

6. 求解tan60°的值。

7. 若secθ = 2,求cosθ的值。

8. 若tanθ = 2,求cotθ的值。

9. 求解sin60°的值。

10. 若sinθ = cos90° - θ,求θ的度数。

11. 已知sinθ = 1/2,求θ的度数。

12. 求解tan30°的值。

13. 若cscθ = 4/3,求sinθ的值。

14. 已知cosθ = 1/√2,求θ的度数。

15. 求解cos45°的值。

16. 若secθ = -2,求cosθ的值。

17. 如果tanθ = 4/3,求cotθ的值。

18. 求解sin30°的值。

19. 若sinθ = cos(90° - θ),求θ的度数。

20. 已知cosθ = 1/2,求θ的度数。

21. 求解tan45°的值。

22. 若secθ = -1/2,求cosθ的值。

23. 如果tanθ = 3/4,求cotθ的值。

24. 求解sin120°的值。

25. 若sinθ - cosθ = 0,求θ的度数。

26. 已知tanθ = √3,求θ的度数。

27. 求解cos60°的值。

28. 若secθ = -√2,求cosθ的值。

29. 如果tanθ = -2/3,求cotθ的值。

30. 求解sin150°的值。

31. 若sinθ + cosθ = 1,求θ的度数。

32. 已知cotθ = 4/3,求θ的度数。

33. 求解cos75°的值。

34. 若secθ = -1/√3,求cosθ的值。

九年级数学下学期三角函数练习题

九年级数学下学期三角函数练习题

13131312九年级数学下学期三角函数测试卷2 .当锐角a >30时,则COS %的值是A •大于1B •小于LC .大于 32 2 23.如图,沿AC 方向开山修路,为了加快施工进度,取一点 B ,使得/ ABD= 145° 点E 离点D 的距离是 C . 500tan55 米; D .500米tan 55O班级: ____________ 姓名: _____________ 座号: 、选择题____________ 成绩: _____________1 .在 Rt △ ABC 中,/ J C=90°, BC = 1 , AB = 4 , A . 15 B . 1C . 1154 390o , CD 丄 AB 于 D ,若 BC 3 , AC 4 ,则 tan BCD 的值为 ( )34 「34A.Bc.— D.4 3 555. 在厶ABC 中,C90°,B 2 A ,则cosA 等于 (.3A.- B. 1C. -.3D.- 223则旗杆的高AB 等于()m .A. 12B. 14C. 16D. 18A. ABC 中,5 6 C 90°,B. 6匹sinA 12,周长为 45,13C. 6 — CD 是斜边AB 上的高,贝U CD 的长是D. 7丄A . 500sin55 米B . 500cos55 米0,则△ ABC ^(B .等腰直角三角形 D.等边三角形则sinA 的值是要在山的另一边同时施工,现在从 ACBD= 500米,/ D = 55°要使 A C 、E 在一条直线上,那么开挖4•如图 1,在 Rt △ ABC 中,ACB 6.如图2所示,旗杆 AB 在C 处测得旗杆顶的仰角为 30°, 向旗杆前进12m 到达D ,在D 处测得A 仰角为45°,8. △ ABC中,/ A,Z B 均为锐角,且有|ta nB .3 | (2si nA 、、3)2A.直角(不等腰)三角形C.等腰(不等边)三角形131313126.某山路的路面坡度 i =1:J 399,沿此山路向前走200米,则人升高了 ___ — 米. 7 .在△ ABC 中,若 BC=J 2 , AB= J 7, AC=3,则 cosA= ___________ .8.学校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示, 台阶的坡角为30o , BCA 90o ,台阶的高BC 为2米, 那么请你帮忙算一算需要 _________________________ 米长的地毯恰好能铺好台阶。

初三数学锐角三角函数测试题及答案

初三数学锐角三角函数测试题及答案

ACOP D B图3锐角三角函数(一)测试题一、 选择题(每小题3分,共30分)1、在Rt △ABC 中,∠C=90°,CD ⊥AB 于点D ,已知AC=5,BC=2,那么sin ∠ACD=( )A 、35B 、32C 、552D 、252、如图1,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1200米,则飞机到目标B 的距离AB 为( ) A 、1200m B 、2400m C 、4003m D 、12003m3、(08)在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( )A .12B .22C .32D .334、在Rt △ABC 中,∠C=90°,若tanA=43,则sinA=( )A 、34B 、43C 、35D 、535、如图2,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6,CD=11,则tan α的值为( )A 、311B 、113C 、119D 、9116、在△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=22ABC 三个角的大小关系是( )A 、∠C >∠A >∠B B 、∠B >∠C >∠A C 、∠A >∠B >∠CD 、∠C >∠B >∠A7、若关于x 的方程x 2-2x+cos α=0有两个相等的实数根,则锐角α为( )A 、30°B 、45°C 、60°D 、0°8、如图3,∠AOB=30°,OP 平分∠AOB ,PC ∥OB ,PD ⊥DB , 如果PC=6,那么PD 等于( ) A 、4 B 、3 C 、2 D 、19、已知∠A 为锐角,且cosA ≤21,则( )A 、 0°≤A ≤60°B 、60°≤A <90°C 、0°<A ≤30°D 、30°≤A ≤90°10、如图4,在矩形ABCD 中,CE ⊥BD 于点E ,BE=2,DE=8,设∠ACE=α,则 tan α的值为( )ABC( α 图1CEDAB图2(αA 、21B 、34C 、43D 、2二、 填空题(每小题3分,共30分)11、直线y=kx-4与y 轴相交所成的锐角的正切值为21,则k 的值为。

初中三角函数单元测试卷

初中三角函数单元测试卷

三角函数测试(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若1sin 44πα⎛⎫+= ⎪⎝⎭,则sin 2α=()A .78B .78-C .34D .34-2.若函数2()cos sin f x x a x b =++在0,2π⎡⎤⎢⎥⎣⎦上的最大值为M ,最小值为m ,则M m -的值().A .与a 有关,且与b 有关B .与a 有关,且与b 无关C .与a 无关,且与b 有关D .与a 无关,且与b 无关3.函数()()()2cos 0,0f x x ωϕωπϕ=+>-<<的部分图象如图所示,则ω=()A .πB .23πC .712πD .3π4.已知θ是第二象限角,且1cos 22θ=-2+的值是()A .1B .1-C .22D.2-5.定义运算:12142334a a a a a a a a =-,将函数cos 2()sin2x f x x =的图像向左平移m (0)m >个单位,所得图像对应的函数为偶函数,则m 的最小值是()A .3πB .23πC .43πD .73π6.已知()4cos 5αβ+=,()1cos 5αβ-=,则tan tan αβ⋅的值为()A .12B .35-C .310-D .357.设函数2()3sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭与函数()2cos(3)||3g x x πϕϕ⎛⎫=+ ⎪⎝⎭的对称轴完全相同,则ϕ的值为()A .6π-B .3πC .6πD .3π-8.函数23()3sin cos4442x x x f x m =+-+,若对于任意的233x ππ-≤≤有()0f x ≥恒成立,则实数m 的取值范围是().A .2m ≥B .32m ≥-C .2m ≥-D .32m ≥二、选择题:本题共4小题,每小题5分,共20分。

九年级数学《锐角三角函数》单元测试题及答案

九年级数学《锐角三角函数》单元测试题及答案

九年级数学《锐角三角函数》单元测试题及答案一、填空题:(30分)1、在Rt △ABC 中,∠C =90°,a =2,b =3,则cosA = ,sinB = ,tanB = 。

2、直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = 。

3、已知tan α=125,α是锐角,则sin α= 。

4、cos 2(50°+α)+co s 2(40°-α)-tan(30°-α)tan(60°+α)= ;5、如图1,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 .(结果保留根号).(1) (2) (3)6、等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 .7、某人沿着坡度i=1:3的山坡走了50米,则他离地面 米高。

8、如图2,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米。

9、在△ABC 中,∠ACB=90°,cosA=33,AB =8cm ,则△ABC 的面积为______ 。

10、如图3,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是 _米。

二、选择题:(30分)11、sin 2θ+sin 2(90°-θ) (0°<θ<90°)等于( ) A.0 B.1 C.2 D.2sin 2θ12、在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值 ( ) A.也扩大3倍 B.缩小为原来的1/3 C. 都不变 D.有的扩大,有的缩小 13、以原点O 为圆心,以1为半径作圆。

2024年数学九年级下册三角函数基础练习题(含答案)

2024年数学九年级下册三角函数基础练习题(含答案)

2024年数学九年级下册三角函数基础练习题(含答案)试题部分一、选择题:1. 已知sinA = 0.6,cosA = 0.8,那么tanA的值为()A. 0.75B. 0.75C. 0.75D. 0.752. 在直角三角形ABC中,∠C = 90°,若sinB = 3/5,则cosA 的值为()A. 4/5B. 3/4C. 4/3D. 3/43. 若0°<θ<90°,且cosθ = 4/5,则sin(90° θ)的值为()A. 3/5B. 4/5C. 3/4D. 4/34. 已知tanα = 1,则sinα和cosα的值分别为()A. 1, 1B. 1, 0C. 1, 1D. 1, 05. 在直角坐标系中,点P(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 若sinθ = 0.5,则θ的终边可能位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 已知sinα = √3/2,且α为锐角,则cosα的值为()A. 1/2B. √3/2C. 1/√2D. 1/28. 若0°<θ<180°,且cosθ = 1/2,则sinθ的值为()A. √3/2B. √3/2C. 1/2D. 1/29. 在直角三角形中,若一个锐角的正弦值为1/2,则这个锐角的度数为()A. 30°B. 45°C. 60°D. 90°A. sinAB. cosAC. tan(90° A)D. cotA二、判断题:1. 若一个角的正弦值等于它的余弦值,则这个角为45°。

()2. 在直角三角形中,锐角的正弦值随着角度的增大而增大。

()3. 若sinA = 0,则A为90°。

()4. 对于任意锐角α,sinα和cosα的值都在0到1之间。

()5. 在直角坐标系中,第二象限的点的横坐标为正,纵坐标为负。

北师大版九年级数学下册《1.1锐角三角函数》同步测试题及答案

北师大版九年级数学下册《1.1锐角三角函数》同步测试题及答案

北师大版九年级数学下册《1.1锐角三角函数》同步测试题及答案1.如图,在Rt ABC △中,AC=4,BC=3,90C ∠=︒则sin A 的值为( )A.34B.53C.43D.352.在Rt ABC △中90C ∠=︒ 3cos 5A =,AB=10,则BC 的( ) A.3 B.4 C.6 D.83.在Rt ABC △中,各边的长度都扩大4倍,那么锐角A 的余弦值( )A.扩大4倍B.保持不变C.缩小4倍D.扩大2倍4.如图,在Rt ABC △中,CD 是斜边AB 上的高,则下列正确的是( )A.3tan 4DCB ∠=B.5tan 3DCB ∠=C.4cos 5DCB ∠=D.4sin 5DCB ∠= 5.已知A B ∠∠=︒+90,且3cos 5A =,则tanB 的值为( ). A.45 B.35 C.34 D.43 6.ABC △中,A ∠和B ∠,C ∠的对边分别为a ,b ,c .已知6810a b c ===,,,则cos A ∠的值为( )A.35B.34C.45D.43 7.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC △的顶点均是格点,则cos BAC ∠的值是( )A.55B.105C.255D.458.如图,的顶点分别在单位长度为1的正方形网格的格点上,则sin BAC∠的值为( ) A. B.55C. D.2539.已知ABC△中,90C∠=︒和3cos5A=,AC=6,那么AB的长是___________.10.在等腰三角形ABC中10AB AC==,BC=12,则tan B=_____________.11.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC△的顶点均是格点,则sin∠的值为_____.12.如图,在ACD中90C∠=︒,15A∠=︒点B在边AC上,且2AB BD==,则BC= _______________,tan CAD∠=_______________.ABC△51213.如图,在四边形ABCD 中90ABC ∠=︒ 45C ∠=︒ 2CD 3BD =.(1)求sin CBD ∠的值;(2)若3AB =,求AD 的长.14.如图,在平面直角坐标系内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内5BO = 3sin 5BOA ∠=求:(1)点B 的坐标;(2)cos BAO ∠的值.参考答案及解析1.答案:D解析:=4AC =3BC 90C ∠=︒∴2222345AB AC BC =++= ∴3sin 5BC A AB ==; 故选:D.2.答案:D解析:如图在Rt ABC △中 3cos 5AC A AB ==10AB =6AC ∴=在Rt ABC △中 22221068BC AB AC =-=-=. 故选:D.3.答案:B解析:在Rt ABC △中,各边的长度都扩大4倍 ∴各角的大小不变,即A ∠大小不变.一个角的锐角三角函数值只与角的大小有关∴锐角A 的余弦值保持不变.故选:B.4.答案:D解析:Rt ABC △中,CD 是斜边AB 上的高,AC=3,CB=4 5AB ∴= DCB DBC DBC A ∠+∠=∠+∠DCB A ∴∠=∠4tan tan 3DCB CAD ∴∠=∠=,故A 选项不正确; 4tan 3DCB ∴∠=,故B 选项不正确;3cos 5DCB ∴∠,故C 选项不正确; 4sin 5DCB ∴∠=,故D 选项正确 故选:D.5.答案:C解析:如图A B ∠∠=︒+90∴90C ∠=︒3cos5A =∴设3AC x = 5AB x =∴224BC AB AC x =-=∴33tan 44xB x ==故选:C.6.答案:C解析:在ABC △中6a = 8b = 10c =2222683664100a b ∴+=+=+=2100c = 222a b c ∴+=ABC ∴△是直角三角形84cos 105b A c ∴===.故选:C.7.答案:C解析:过点C 作AB 的垂线交AB 于一点D ,如图所示∵每个小正方形的边长为1∵5AC = 10= 5AB =设AD x =,则5BD x =-在Rt ACD △中 222DC AC AD =-在Rt BCD △中 222DC BC BD =-∵2210(5)5x x --=-解得2x =∵25cos 55AD BAC AC ∠=== 故选:C.8.答案:B解析:如图,过B 作BD AC ⊥于点D根据勾股定理得:22345AB =+= 223635AC =+=11111546313463,22222ABC S AC BD ∴=⋅=⨯-⨯⨯-⨯⨯-⨯⨯=△ 5BD ∴=5sin 5BD CAB AB ∴∠== 故选:B.9.答案:10解析:在Rt ABC △中3cos 5AC A AB == 6AC = 10AB ∴=故答案为:10.10.答案:43解析:本题易因忽略求tan B 的前提是将B ∠放在一个直角三角形中而出错. 11.答案:55解析:延长AC 到D ,连接BD ,如图:220AD = 25BD = 225AB = 222AD BD AB ∴+=90ADB ∴∠=︒55sin 525BD BAC AB ∴∠===. 故答案为:55. 12.答案:323/32解析:2AB BD ==∴15A ADB ∠=∠=︒∴30DBC A ADB ∠=∠+∠=︒ 90C ∠=︒∴112CD BD ==在Rt DBC △中,由勾股定理得:2222213BC BD CD =--= ∴23AC AB BC =+= ∴tan 2323CD CAD AC ∠===-+ 故答案为:3 3.13.答案:(1)1sin 3CBD ∠= (2)23AD =解析:(1)如图,过点D 作DE BC ⊥于点E .在Rt CED △中45C ︒∠= 2CD = 1CE DE ∴==.在Rt BDE △中1sin 3DE CBD BD ∠==. (2)如图,过点D 作DF AB ⊥于点F ,则90BFD BED ABC ∠=∠=∠=︒. ∴四边形BEDF 为矩形.1BF DE ∴==.2AF AB BF ∴=-= 2222DF BD BF =-=2223AD AF DF ∴=+.14.答案:(1)(4,3)B (2)2cos 55BAO ∠= 解析:(1)如图,过点B 作BC OA ⊥于点C . 3sin 5BCBOA BO ∠==.22534OC ∴=-=. .(2)易知10OA =.4OC = . 226335AB ∴=+5BO =3BC ∴=(4,3)B ∴6AC ∴=2cos 5535AC BAO AB ∴∠===。

三角函数数学初三试卷

三角函数数学初三试卷

一、选择题(每题5分,共50分)1. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则∠A的正弦值sinA等于:A. 3/5B. 4/5C. 3/4D. 4/32. 已知sinα=0.6,且α在第二象限,则cosα的值等于:A. -0.8B. 0.8C. -0.6D. 0.63. 在等腰三角形ABC中,AB=AC,∠B=40°,则∠C的度数是:A. 40°B. 50°C. 70°D. 80°4. 若sinα=0.8,则tanα的值大约是:A. 1.25B. 1.5C. 2D. 2.55. 在直角坐标系中,点P(2,3)到原点O的距离|OP|可以用以下哪个三角函数表示?A. sinB. cosC. tanD. cot6. 已知cosθ=-0.5,θ在第四象限,则sinθ的值等于:A. -0.5B. 0.5C. -√3/2D. √3/27. 在三角形ABC中,若AB=AC,∠B=60°,则∠A的余弦值cosA等于:A. 1/2B. √3/2C. 1D. 08. 若tanα=2,且α在第二象限,则sinα的值大约是:A. 0.4B. 0.5C. 0.6D. 0.79. 在直角三角形中,若sinA=1/2,cosA=√3/2,则这个三角形的面积S可以用以下哪个公式表示?A. S=1/2 AB BCB. S=1/2 AC BCC. S=1/2 AB ACD. S=1/2 AB AB10. 已知cosα=0.9,sinα=0.4,则tanα的值大约是:A. 0.5B. 1C. 1.5D. 2二、填空题(每题5分,共50分)1. 在直角三角形中,若sinA=3/5,则cosA=__________。

2. 若tanβ=-1,且β在第四象限,则cosβ的值等于__________。

3. 在等边三角形中,每个角的正切值tanA等于__________。

初三三角函数测试题

初三三角函数测试题

(第4题)D EACB(第5题)D BCA(第7题)30°EAD CBPC (第9题)A B OD九年级三角函数练习题一、选择题1、在Rt △ABC 中,∠C=90°,sinA ∶sinB= 3∶4,则tanA 的值是( )。

A 、43 B 、34 C 、53 D 、542、在Rt △ABC 中,∠C=90°,如果sinA =53,则tanB= 。

A 、53B 、45C 、43D 、344、如图,已知AD 是等腰△ABC 底边上的高,且tan ∠B=43,AC 上有一点E 满足AE ∶CE= 2∶3,则tan∠ADE 的值是( )。

A 、53 B 、98 C 、54 D 、975、如图,在等腰Rt △ABC 中,∠C=90°,AC =6,D 是AC 上一点,若tan ∠DBA=51,则AD 的长为( ) A 、2 B 、3 C 、2 D 、1 6、在Rt △ABC 中,∠C=90°,∠B=35°,AB =7,则BC 的长为( )。

A 、7sin35° B 、︒35cos 7C 、7cos35°D 、7tan35°7、如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m ,那么这棵树高是( )。

A 、⎪⎪⎭⎫⎝⎛+23335m B 、⎪⎭⎫⎝⎛+2335m C 、335m D 、4 m二、填空题8、一个物体从A 点出发,在坡度为i=1∶7的斜坡上沿直线向上运动到B ,当AB=30m 时,物体升高 m 。

9、如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C ,若∠AOB=60°,OC=4,则点P 到OA 的距离PD 等于 。

10、在△ABC 中,∠C=90°,若3AC=3BC ,则∠A 的度数是 cosB= 。

初三数学 三角函数测试题

初三数学 三角函数测试题

初三数学三角函数测试题1. 题目一已知直角三角形ABC中,∠C=90°,AB=5cm,BC=12cm。

求∠A 和∠B的正弦、余弦、正切值。

解析:由三角函数的定义可知,sinA = 对边/斜边 = AC/BCcosA = 邻边/斜边 = AB/BCtanA = 对边/邻边 = AC/AB代入已知数据,可得sinA = AC/BC = AC/12cosA = AB/BC = 5/12tanA = AC/AB = AC/5接下来求解∠B的三角函数值:sinB = 对边/斜边 = BC/AC = 12/ACcosB = 邻边/斜边 = AB/AC = 5/ACtanB = 对边/邻边 = BC/AB = 12/52. 题目二已知三角形DEF中,∠D=30°,DE=8cm。

若三角形DEF为等腰三角形,求EF和DF的长。

解析:由题目信息和三角函数的定义可知,sin30° = 对边/斜边 = EF/DEcos30° = 邻边/斜边 = DF/DEtan30° = 对边/邻边 = EF/DF根据已知信息,sin30° = 1/2,cos30° = √3/2。

代入上述公式,可得EF/8 = 1/2,由此可求得EF的长度为4cm。

DF/8 = √3/2,由此可求得DF的长度为4√3 cm。

3. 题目三已知锐角三角形XYZ中,∠X=60°,XY=10cm,夹边YZ=6cm。

求∠Y和∠Z的正弦、余弦、正切值。

解析:首先,由题目信息可以得知∠Y = 180° - 60° - 90° = 30°∠Z = 180° - ∠X - ∠Y = 180° - 60° - 30° = 90°继续根据三角函数的定义计算正弦、余弦、正切值:sinY = 对边/斜边 = ZX/XY = ZX/10cosY = 邻边/斜边 = YX/XY = YX/10tanY = 对边/邻边 = ZX/YX = ZX/YX代入已知数据,可得sinY = ZX/10,cosY = YX/10,tanY = ZX/YXsinZ = 对边/斜边 = YZ/XY = 6/10 = 3/5cosZ = 邻边/斜边 = YX/XY = YX/10tanZ = 对边/邻边 = YZ/YX = 6/YX4. 题目四已知干钢管AB与竖直线篮球架之间的夹角为25°,篮球架的高度为3.5m。

北师大版九年级数学下册《1.5三角函数的应用》同步测试题(附答案)

北师大版九年级数学下册《1.5三角函数的应用》同步测试题(附答案)

北师大版九年级数学下册《1.5三角函数的应用》同步测试题(附答案)一、解答题1.(1)sin230°+2sin60°+tan45°−tan60°+cos230°;(2)√1−2tan60°+tan260°−tan60°.2.计算tan1°•tan2°•tan3°•…•tan88°•tan89°的值.3.(1)计算:2sin230°−6tan260°⋅4cos2150°2tan845°+4sin245°⋅3tan230°2sin120°⋅6tan230°;(参考公式:sinα=sin(180°−α))(2)已知a、b是一元二次方程x2+2x−3=0的两个实根,求2√2bcos260°−√2的S值.4.如图,在▱ABCD中AE⊥BC,垂足为E,AF⊥CD,垂足为F,BD与AE,AF分别相交于点G H AG=AH.(1)求证:四边形ABCD是菱形;(2)若AG=2EG=1.①求sin∠BAE;②求▱ABCD的面积.5.如图在Rt△ABC中∠ACB=90°D是BC上一点过点C作CE⊥AD垂足为E.连接BE并延长交AC于点F.(1)求证:CD2=ED⋅AD;(2)若D为BC的中点ACBC =23求sin∠CEF的值.6.如图一座古塔坐落在小山上(塔顶记作点A其正下方水平面上的点记作点B) 小李站在附近的水平地面上他想知道自己到古塔的水平距离便利用无人机进行测量但由于某些原因无人机无法直接飞到塔顶进行测量因此他先控制无人机从脚底(记为点C)出发向右上方(与地面成45°点A B C O在同一平面)的方向匀速飞行4秒到达空中O点处再调整飞行方向继续匀速飞行8秒到达塔顶已知无人机的速度为5米/秒∠AOC=75°求小李到古塔的水平距离即BC的长.7.在综合实践课中小明同学利用无人机测量小山AB的高度.如图CD是小明同学无人机飞到小山AB的右上方时测得山顶A的俯角为37°,AP=10米测得小明同学头顶C的俯角为53.5°,PC=80米.已知小明的身高CD为1.8米求小山AB的高度.(已知AB,CD分别与水平线BD垂直且在同一平面内参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75sin53.5°≈0.80cos53.5°≈0.59tan53.5°≈1.35)8.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间小刚站在雕像前自C处测得雕像顶A的仰角为53°小强站凤栖堂门前的台阶上自D处测得雕像顶A的仰角为45°此时两人的水平距离EC为0.45m已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45cos53°≈35tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.9.如图甲、乙两艘货轮同时从A港出发分别向B D两港运送物资最后到达A港正东方向的C港装运新的物资甲货轮沿A港的东北方向航行40海里到达D港再沿东南方向航行一定距离到达C港.乙货轮沿A港的南偏东60°方向航行后到达B港再沿北偏西15°方向航行一定距离到达C港.(参考数据:√2≈1.41√3≈1.73√6≈2.45)(1)求B C两港之间的距离;(2)若甲货轮的速度为20海里/小时乙货轮的速度为30海里/小时(停靠B D两港的时间相同)哪艘货轮先到达C港?请通过计算说明.10.冬季是滑雪的最佳时节亚布力滑雪场有初、中、高级各类滑雪道.如图其中的两条初级滑雪道的线路为:①A→B→C→D;②A→E→D.点A是雪道起点点D是雪道终点点B、C、E是三个休息区.经勘测点B在点A的南偏东30°方向1800米处点C 在点B的正南方向2000米处点D在C的西南方向点E在点A的西南方向1300米处点E在点D的正北方向.(参考数据:√2≈1.414√3≈1.732)(1)求CD的长度;(精确到1米)(2)小外一家周末去亚布力滑雪小外沿滑雪道线路①全程以5米/秒的速度滑雪且在途经的每个休息区都各休息了5分钟;小外的爸爸比小外晚出发2分钟以3米/秒的速度沿滑雪道线路②滑完全程且中途没有休息.请计算说明小外和爸爸谁先到达终点D.11.某数学兴趣小组自制测角仪到公园进行实地测量活动过程如下:(1)探究原理:制作测角仪时将细线一端固定在量角器圆心O处另一端系小重物G测量时使支杆OM、量角器90∘刻度线ON与铅垂线OG相互重合(如图①)绕点O转动量角器使观测目标P与直径两端点A、B共线(如图②)此时目标P的仰角是图②中的∠_____.目标P的仰角与图②中的∠_____相等请写出这两个角相等的证明过程.(2)拓展应用:公园高台上有一凉亭为测量凉亭顶端P距地面的高度PH(如图④)同学们经过讨论决定先在水平地面上选取观测点E、F E、F、H在同一直线上分别测得点P的仰角a=45∘、β=30∘测得E、F间的距离2米点O1、O2到地面的距离O1E、O2F均为1.5米.求PH的长(结果保留根号)12.如图Rt△ABO中∠ABO=90°AB=2反比例函数y=−8x的图象经过点A.(1)求点A的坐标.(2)直线CD垂直平分AO交AO于点C交y轴于点D交x轴于点E求线段OE的长.13.随着南海局势的升级中国政府决定在黄岩岛填海造陆修建机场设立雷达塔.某日在雷达塔A 处侦测到东北方向上的点B 处有一艘菲律宾渔船进入我方侦测区域且以30 海里/时的速度往正南方向航行我方与其进行多次无线电沟通无果后这艘渔船行驶了1 小时10 分到达点A 南偏东53°方向的C 处与此同时我方立即通知(通知时间忽略不计)与A 、C 在一条直线上的中国海警船往正西方向对该渔船进行侦测拦截其中海警船位于与A 相距100 海里的D 处.(1)求AC的距离和点D 到直线BC的距离;(2)若海警船航行速度为40 海里/时可侦测半径为25 海里当海警船航行1 小时时是否可以侦测到菲律宾渔船为什么?(参考数据:sin53°≈45cos53°≈35tan53°≈43)14.综合实践活动中某小组利用直角尺和皮尺测量建筑物AB和CD的高因为这两栋建筑物高度相同于是这个小组设计出一种简捷的方案如图所示:(1)把直角尺的顶点E放在两栋建筑物之间的地面上调整位置使直角尺的两边EM EN所在直线分别经过建筑物外立面的的顶部A和C;(2)用皮尺度量BE和DE的长度;(3)通过计算得到建筑物的高度.若示意图中点A B C D E M N均在同一平面内.测得BE=9m DE=36m.请求出这两栋建筑的高度.15.图1所示是屹立在于都县纪念广场的中央红军长征出发纪念碑它是由呈双帆造型的碑身与方形底座两部分组成的底座下方是台阶台阶的横截面如图2所示.已知台阶的坡面DE的坡度i=1:√3坡面DE的长为2.4m.(1)计算坡面DE的铅直高度;(2)如图3 为了测量纪念碑的高度亮亮站在纪念碑正前方广场上的点G处用高1.64m的测角仪GH测得纪念碑碑身顶端A的仰角是35°继续向纪念碑前进8.1m到达点K处此时测得纪念碑顶端45°求纪念碑的实际高度AC.(结果精确到0.01参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)16.如图1是超市的手推车如图2是其侧面示意图已知前后车轮半径均为5cm两个车轮的圆心的连线AB与地面平行测得支架AC=BC=60cm AC、CD所在直线与地面的夹角分别为30°、60°CD=50cm.(1)求扶手前端D 到地面的距离;(2)手推车内装有简易宝宝椅 EF 为小坐板 打开后 椅子的支点H 到点C 的距离为10cm DF =20cm EF∥AB ∠EHD =45° 求坐板EF 的宽度.(本题答案均保留根号) 17.千厮门大桥是重庆最具特色的斜拉桥之一 也是重庆的“网红打卡地”之一 某校数学兴趣小组的同学们欲测量千厮门大桥桥塔的高度 如图2 他们在桥下水平地面上架设测角仪CM (测角仪垂直于地面放置) 此时测得桥塔最高点A 的∠ACE =30∘ 然后将测角仪沿MB 向前水平移动132米达到点N 处 并测得桥塔最高点A 的∠ADE =45∘ 测角仪高度CM =DN =1.6米.(点M N B 在同一水平线上 AB ⊥BM )(结果保留整数 参考数据:√2≈1.41 √3≈1.73)(1)求桥塔的高度AB 约为多少米?(2)如图3 在(1)的条件下 小语同学在洪崖洞的某地Q 处测得千厮门大桥桥塔最高点A 的∠AQG =30∘ 最低点B 的∠BQG =60∘ 则小语同学所在地Q 与AB 的水平距离约为多少米? 18.嘉嘉在某次作业中得到如下结果: sin 27°+sin 283°≈0.122+0.992=0.9945 sin 222°+sin 268°≈0.372+0.932=1.0018 sin29°+sin 261°≈0.482+0.872=0.9873 sin37°+sin 253°≈0.602+0.802=1.0000 sin 245°+sin 245=(√22)2+(√22)2=1.据此 嘉嘉猜想:对于任意锐角α β 若α+β=90° 均有sin 2α+sin 2β=1.(1)当α=30°β=60°时验证sin2α+sin2β=1是否成立?(2)嘉嘉的猜想是否成立?若成立请结合如图所示Rt△ABC给予证明其中∠A所对的边为a∠B所对的边为b斜边为c;若不成立请举出一个反例;(3)利用上面的证明方法直接写出tanα与sinαcosα之间的关系.19.阅读与思考阅读下列材料并解决后面的问题.在锐角△ABC中∠A∠B∠C的对边分别是a b c过C作CE⊥AB于E(如图1)则sinB=CEa sinA=CEb即CE=asinB CE=bsinA于是asinB=bsinA即bsinB=asinA.同理有csinC =asinAcsinC=bsinB所以asinA=bsinB=csinC.即:在一个锐角三角形中各边和它所对角的正弦的比相等.运用上述结论和有关定理在锐角三角形中已知三个元素(至少有一条边)就可以求出其余三个未知元素.根据上述材料完成下列各题:(1)如图1 在△ABC中∠A=60°∠C=45°BC=30则AB=______;(2)如图2 一艘轮船位于灯塔P的南偏东60°方向距离灯塔50海里的A处它沿正北方向航行一段时间后到达位于灯塔北偏东45°方向上的B处此时B处与灯塔的距离为______海里;(结果保留根号)(3)在(2)的条件下试求75°的正弦值.(结果保留根号)20.如图1 正方形ABCD中P是边AD上任意一点Q是对角线AC上的点且满足∠PBQ=45°.(1)①求证:△PDB∽△QCB;②DPCQ=;(2)如图2 矩形ABCD中AB=12AD=5P、Q分别是边AD和对角线AC上的点∠PBQ=∠ACB DP=3求CQ的长;(3)如图3 菱形ABCD中DH⊥BA交BA的延长线于点H.若DC=5对角线AC=6P、Q分别是线段DH和AC上的点tan∠PBQ=34PH=85求CQ的长.参考答案:1.解:(1)sin230°+2sin60°+tan45°−tan60°+cos230°=(sin230°+cos230°)+2sin60°+tan45°−tan60°=1+2×√32+1−√3=2+√3−√3=2;(2)√1−2tan60°+tan260°−tan60°=√(1−tan60°)2−√3=√(1−√3)2−√3=√3−1−√3=−1.2.解:tan1°•tan2°•tan3°•…•tan88°•tan89°=(tan1°•tan89°)(tan2°•tan88°)…(tan44°•tan46°)•tan45°=1.3.(1)解:2sin230°−6tan260°⋅4cos2150°2tan845°+4sin245°⋅3tan230°2sin120°⋅6tan230°=2sin230°−6tan260°⋅4×(1−sin2150°)2tan845°+4sin245°⋅12sin60°⋅2=2sin230°−6tan260°⋅4×(1−sin230°)2tan845°+4sin245°⋅12sin60°⋅2 =2×(12)2−6×(√3)2×4×[1−(12)2]2×1+4×(√22)214×√32=−107√348;(2)解:∵a、b是一元二次方程x2+2x−3=0的两个实根∴(x+3)(x−1)=0解得a=−3b=1或b=−3a=1当a=−3b=1时则2√2bcos260°−√2=12×(−3)+√2 14×1−√2=−26+20√231;当b=−3a=1时则2√2bcos260°−√2=12×1+√2 14×(−3)−√2=−26+4√223;4.(1)证明:∠AE⊥BC AF⊥CD∠∠AEB=∠AFD=90°∠∠BAG=90°−∠ABE∠DAH=90°−∠ADF ∠四边形ABCD是平行四边形∠∠ABE=∠ADF∠∠BAG=∠DAH∠AG=AH∠∠AGH=∠AHG∠∠AGB=∠AHD∠在△ABG 和△ADH 中{∠AGB =∠AHD∠BAG =∠DAH AG =AH∠△ABG≌△ADH∠AB =AD∠▱ABCD 是菱形;(2)①解:∠AD∥BC∠△ADG ∽△EBG∠AD BE =AG EG∠AG =2,GE =1∠AD BE =AG EG =2∠在菱形ABCD 中 AB =AD∠BE AB =12 ∠AE ⊥BC∠sin∠BAE =BE AB =12; ②∠sin∠BAE =12∠∠BAE =30°∠cos∠BAE =cos30°=AE AB =√32∠AB =2√3=BC∠S ▱ABCD =BC ×AE =2√3×3=6√3.5.(1)证明:∵ CE ⊥AD ∠ACB =90°∴∠CED =∠ACB =90°∵∠CDE +∠DCE =90°,∠DCE +∠ACE =90°∴∠ACE =∠CDE∴△CDE∽△ADC∴CD AD =DE CD∴ CD 2=ED ⋅AD ;(2)解:∵D为BC的中点∴BD=CD∵CD2=ED⋅AD∴BD2=ED⋅AD∴BDAD =DEBD∵∠ADB=∠ADB∴△ABD∽△BED∴∠ABD=∠BED∴∠AEF=∠BED=∠ABD ∵∠AEF+∠CEF=90°∴sin∠CEF=cos∠ABD∵∠ACB=90°ACBC =23设AC=2k,BC=3k∴AB=√AC2+BC2=√13k∴cos∠ABD=BCAB =√13k=3√1313∴sin∠CEF=3√1313.6.解:过点O作OD⊥BC交BC的延长线于点D过点O作OE⊥AB垂足为E如图所示:由题意得:AO=8×5=40米OC=4×5=20米OE=BD OE∥BD∴∠EOC=∠OCD=45°∵∠AOC=75°∴∠AOE=∠AOC−∠EOC=30°在Rt△OCD中CD=OC⋅cos45°=20×√22=10√2米在Rt△AOE中OE=AO⋅cos30°=40×√32=20√3米∴OE=BD=20√3米∴BC=BD−CD=20√3−10√2米∴小李到古塔的水平距离即BC的长为20√3−10√2米.7.解:如图过点C作CE⊥AB于点E过点P作PF⊥CE于点F过点A作AG⊥PF于点G则四边形BECD和四边形AEFG都是矩形∴AE=FG BE=CD.在Rt△APG中由题意知∠PAG=37°,AP=10米∠PG=sin∠PAG⋅AP=sin37°×10≈0.60×10=6(米)在Rt△PCF中由题意知∠PCF=53.5°,PC=80米∠PF=sin∠PCF⋅PC=sin53.5°×80≈0.80×80=64(米)∴AB=AE+BE=FG+CD=PF−PG+CD=64−6+1.8=59.8(米).答:小山AB的高度约为59.8米.8.(1)解:∠凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∠DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∠由题意得四边形NFDE是矩形∠FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∠FD=MF=(x−0.15)m∠NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∠tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.9.(1)解:过点C作CM⊥AB于点M∠甲货轮沿A港的东北方向航行40海里到达D港再沿东南方向航行一定距离到达C港∠∠ADC=90°∠DAC=∠DCA=45°AD=40海里∠AD=CD=40海里∠AC=√AD2+DC2=40√2海里∠乙货轮沿A港的南偏东60°方向航行后到达B港再沿北偏西15°方向航行一定距离到达C港.∠∠CAM=∠ABN=30°∠CBN=90°−15°=75°∠∠ABC=∠CBN−∠ABN=45°在Rt△ACM中∠CAM=30°∴CM=12AC=40√2×12=20√2(海里)AM=AC⋅cos30°=20√6(海里)在Rt△BCM中∠ABC=45°∴CB=CMsin45°=40(海里)BM=CM=20√2海里∴B C两港之间的距离约为40海里;(2)解:乙货轮先到达C港理由如下:∠甲货轮航行的路程=AD+DC=40+40=80(海里)∠甲货轮航行的时间=8020=4(小时)∠乙货轮航行的路程=AB+BC=20√6+20√2+40(海里)∠乙货轮航行的时间=20√6+20√2+4030=2√6+2√2+43≈3.91(小时)∵3.91<4∴乙货轮先到达C港.10.(1)解:过B作BL⊥DE于L交AN于N过作EK⊥AN于K过C作CM⊥DE于M∵点E在点A的西南方向∴∠EAK=45°∴△AEK是等腰直角三角形∴EK=AK=√22AE=√22×1300≈919.38(米)∵∠BAN=30°∠ANB=90°∴BN=12AB=12×1800=900(米)∵DE∥BC CM⊥DE BL⊥DE EK⊥AN NL⊥DE ∴四边形ELNK BCML是矩形∴BC=BL NL=EK EL=KN ML=BC∵BL=NB+NL=900+919.38=1819.38(米)∴MC=1819.38米∵∠MCD=45°∴△MCD是等腰直角三角形∴CD=√2MC≈2573(米);(2)解:滑雪道线路①全程=AB+BC+CD=1800+2000+2572.6=6372.6(米)∴小外滑行的时间是6572.6÷5≈1274.5(秒)≈21.2(分钟)∵小外途经的每个休息区都各休息了5分钟∴小外在滑雪道线路①共用时21.2+5×2=31.2(分钟)∵AN=√3NB≈1558.8(米)∴NK=AN−AK=1558.8−919.38=639.42(米)∴EL=KN=639.42米∴ME=ML+EL=2000+639.42=2639.42(米)∵△CDM是等腰直角三角形∴MD=MC=1819.9米∴滑雪道线路②全程=AE+ME+MD=1300+2639.42+1819.9=5759.32(米)∴小外的爸爸滑行的时间是5759.32÷3≈1919.8(秒)≈32.0(分钟)∵小外的把爸爸比小外又晚出发2分钟∴小外先到达终点D.11.解:(1)目标P的仰角是图②中的∠POC目标P的仰角与图②中的∠NOG相等证明∵∠COG=90∘∠AON=90∘∴∠POC+∠CON=∠GON+∠CON∴∠POC=∠GON;(2)解:由题意可得O1O2=2O1E=O2F=DH=1.5米由图可得tanβ=PDO2D tanα=PDO1D∴O2D=PDtanβO1D=PDtanα∵O1O2=O2D−O1D=2∴2=PDtanβ−PDtanα∴PD=2tanαtanβtanα−tanβ∴PH=PD+DH=2tan45∘tan30∘tan45∘−tan30∘+1.5=(52+√3)米.故PH的值为(52+√3)米.12.(1)解:∵AB=2∴点A的横坐标为−2∵A点在反比例函数y=−8x的图象上∴y=−8−2=4∴A(−2,4).(2)解:∵A(−2,4)∠AB=2BO=4∠AO=√22+42=2√5∠CD垂直平分AO∠OC=12AO=√5CD⊥AO∠∠DOE=90°∠∠1+∠3=90°=∠2+∠3∠∠1=∠2∠sin∠1=sin∠2∠OC OE =ABOA即:√5OE=2√5解得:OE=5.13.(1)解:作DE⊥BC于E AF⊥BC于F=35设AF=x海里由题意得BC=30×76∠∠BAF=45°,∠ACF=53°x∠BF=AF=x,FC=AF÷tan53°=34x=35∠x+34解得x=20x=15∠34∠AC=√AF2+CF2=25∠CD=AD−AC=75∠DE=CD⋅sin∠ECD=CD⋅sin53°=60答:AC的距离为25海里点D到直线BC的距离为60海里;(2)能理由如下:设1小时后海警船到达点G菲律宾渔船到达点H则DG=40CH=30由(1)知CE=CD⋅cos53°=45∠HE=CE−CH=15GE=DE−DG=20由勾股定理得:GH=√HE2+GE2=25故可以侦测到菲律宾渔船.14.解:如图由题意得AB⊥BD CD⊥BD∴∠BEA+∠BAE=90°∠ECD+∠DEC=90°∵∠MEN=90°∴∠BEA+∠DEC=90°∴∠BAE=∠DEC∴tan∠BAE=tan∠DEC即BEAB =CDED设AB=CD=x可得9x =x36解得x=18经检验x=18是原方程的解答:两栋楼的高度为18m.15.(1)解:如图所示:过点D作DH⊥FE于点H∠i=DHEH =√3∠设DH=xm EH=√3xm∠∠DHE=90°,DE=2.4m∠DH2+HE2=DE2∠x2+(√3x)2=2.42解得:x=±1.2(负值舍去)∠CF=DH=1.2m∠坡面DE的铅直高度为1.2m;(2)设AM=ym∠∠AMI=90°,∠AIM=45°∠∠MAI=45°∠∠MAI=∠AIM∠MI=AM=ym∠∠AHM=35°,∠AMH=90°∠tan35°=AMMH≈0.700∠yMH∠MH≈y0.7∠MH−MI=8.1−y=8.1∠y0.7∠y=18.9∠AM=18.9m∠AF=AM+MF=18.9+1.64=20.54(m)∠AC=AF−CF=20.54−1.2=19.34(m).∠纪念碑的实际高度AC为19.34m.16.(1)解:如图2 过C作CM⊥AB垂足为M又过D作DN⊥AB垂足为N过C作CG⊥DN垂足为G则∠DCG=60°.则四边形CMNG为矩形CM=NG∵AC=BC=60cm AC、CD所在直线与地面的夹角分别为30°、60°∴∠A=∠B=30°AC=30cm.则在Rt△AMC中CM=12∵在Rt△CGD中sin∠DCG=DGCD=50cmCD=25√3(cm).∴DG=CD⋅sin∠DCG=50⋅sin60°=50×√32又GN=CM=30cm前后车轮半径均为5cm∴扶手前端D到地面的距离为DG+GN+5=25√3+30+5=(35+25√3)(cm);(2)解:∵EF∥CG∥AB∴∠EFH=∠DCG=60°∵CD=50cm椅子的支点H到点C的距离为10cm DF=20cm∴FH=20cm如图2 过E作EQ⊥FH垂足为Q设FQ=x在Rt△EQF中∠EFH=60°∴EF=2FQ=2x EQ=√3x在Rt△EQH中∠EHD=45°∴HQ=EQ=√3x∵HQ+FQ=FH=20cm∴√3x+x=20解得x=10√3−10.∴EF=2(10√3−10)=20√3−20(cm).答:坐板EF的宽度为(20√3−20)cm.17.(1)解:如图所示延长CD交AB于点F由题意得:CD=MN=132DF=BN∠AFD=90°CM=DN=BF=1.6设DF=x则CF=x+132在Rt△ADF中∠ADF=45°∴AF=x在Rt△ACF中∠ACE=30°tan30°=AFCF =xx+132≈0.58∴x≈182经检验x≈182是原方程的解且符合题意∴AB=AF+BF=182+1.6≈184米∴桥塔的高度约为184米(2)解:延长QG交AB于点M由题意可知QM⊥AB AB=184∵∠AQG=30°∠BQG=60°∠A=60°∠B=30°设AM=y则BM=184−ytan∠A=tan60°=QMAM≈1.73tan∠B=tan30°=QMBM≈0.58tan30°tan60°=AMBM=y184−y=0.581.73解得:y≈46.2∴QM=AM·tan60°=46.2×√3=80故Q处与AB的水平距离约为80米18.(1)解:∠sin30°=12sin60°=√32∠sin2α+sin2β=(12)2+(√32)2=1结论成立;(2)解:成立.理由如下:在Rt△ABC中sinα=ac sinβ=bc且a2+b2=c2∠sin2α+sin2β=(ac )2+(bc)2=a2+b2c2=c2c2=1故结论成立;(3)解:tanα=sinαcosα理由如下:在Rt△ABC中sinα=ac cosα=bctanα=ab∠tanα=acbc=sinαcosα∠tanα=sinαcosα.19.(1)解:由题意可知:asinA =bsinB=csinC∠∠A=60°∠C=45°BC=30∠BC sin60°=ABsin45°即√32=√22∠AB=10√6故答案为:10√6.(2)解:如图:由题意可知∠APE=60°,∠BPF=45°AB∥EF AP=50海里asinA =bsinB=csinC∠∠A=∠APE=60°,∠B=∠BPF=45°∠BP sin60°=APsin45°即√32=√22∠BP=25√6∠B处与灯塔的距离为25√6海里故答案为:25√6.(3)解:如图:由题可知PA=50海里PC⊥AB∠∠EPC=∠FPC=90°∠∠APE=60°∠BPF=45°∠∠APC=30°∠bPC=45°∠∠APB=∠APC+∠BPC=75°在Rt△APC中AC=12PA=25海里PC=√32PA=25√3海里在Rt△BPC中BC=PC=25√3海里∠AB=AC+BC=(25+25√3)海里由前面定理可知:ABsin∠APB =PAsin∠B则25+25√3sin75°=50sin45°∠sin75°=25+25√350×√22=√2+√64∠75°的正弦值√2+√64.20.(1)解:①∵四边形ABCD为正方形BD AC是对角线∴∠PDB=∠QCB=∠DBC=45°∴∠QBC+∠DBQ=45°∵∠PBQ=45°∴∠PBD+∠DBQ=45°∴∠QBC=∠PBD∴△PDB∽△QCB;②∵四边形ABCD为正方形∴BC=DC∠BCD=90°∴BD=√BC2+DC2=√2BC∵△PDB∽△QCB∴DPCQ =BDBC=√2BCBC=√2;故答案为:√2;(2)解:连接BD交AC于点O∵四边形ABCD为矩形∴AD∥BC OA=OD∠DAB=90°∴∠ACB=∠OAD=∠ODA=∠OBC∵∠PBQ=∠ACB∴∠PBQ=∠OBC∴∠PBD+∠DBQ=∠QBC+∠DBQ∴∠PBD=∠QBC ∴△PDB∽△QCB∴QCPD =BCBD∵AB=12AD=5∴BD=√AB2+AD2=13∵BC=AD=5DP=3∴QC3=513∴QC=1513;(3)解:连接BD交AC于点O∵四边形ABCD为菱形AC BD是对角线∴AC⊥BD∴AO=OC=12AC=3∴BO=√BC2−OC2=√52−32=4∴tan∠DBC=OCOB =34∵tan∠PBQ=34∴∠DBC=∠PBQ∴∠DBQ+∠PBD=∠DBQ+∠QBC ∴∠PBD=∠QBC∵DH⊥BH AC⊥BD∴∠DBC+∠ACB=90°∵四边形ABCD为菱形BD是对角线∴∠ABD=∠CBD∴∠HDB=∠ACB∴△PDB∽△QCB∴QCPD =BCBD∵AC=6∴OC=OA=12AC=3∵AB=BC=DC=5∴OB=OD=4即BD=8∵12AC⋅BD=AB⋅DH∴5DH=12×6×8∴DH=245∵PH=85∴DP=DH−PH=245−85=165∴165QC=85∴QC=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上数学第四章锐角三角函数测试题
一、 选择题(本题共10小题,每小题3分,共30分) 1、sin30°的值等于()。

A 、2
1
B 、22
C 、23
D 、1
2、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值、余弦值都()。

A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定
3、已知sin α=
2
3
,且α为锐角,则α=()。

A 、75°B 、60°C 、45°D 、30°
4、有一个角是30°的直角三角形,斜边为1cm ,则斜边上的高为()。

A 、41cm
B 、2
1C 、43D 、23
5.三角形在方格纸中的位置如图所示,则αcos 的值是()
4334535
4
在Rt△ABC 中,∠C =90°,若BC =1,AB =5,则tan A
的值为()
A .
55B .25
5C .12
D .2 7.在Rt ABC ∆中,∠C=90°,若12
5
tan =
A ,则
B sin 的值是() 135********
12
如图所示,河堤横断面迎水坡AB 的坡比(指坡面
的铅直
高度BC 与水平宽度CA 的比)是1:3,堤高BC =5m ,则坡面AB 的长
度是()
A .10m
B .103m
C .15m
D .53m
9、等腰三角形底边长为10cm ,周长为36cm ,则底角的正弦值为()。

A 、
185B 、165C 、1513D 、13
12
10.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,
∠BAE =30°,3AB =,折叠后,点C 落在AD 边上的
C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为()
3.2 C.3D.23
A
B C
D E C 1 B 1
F
二、填空题(本题共8小题,每小题3分,共24分) 11.计算: 60tan 60sin 45tan 30cos +=. 12.如果α是锐角,且1tan =α,那么α=. 13.在△ABC 中,∠A ,∠B 为锐角,sin A =,tan B =
3
3
,则△ABC 的形状为. 14.在Rt△ABC 中,∠B=90°,AC 边上的中线BD=5,AB=8,则cos ∠ACB=_______. 15.在Rt △ABC 中,∠C=90°,若AB=2AC ,则cosA=______. 16.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE =6,sin A =,
则菱形ABCD 的周长是.
17.等腰三角形腰长为2cm ,底边长为23cm ,则顶为面积为. 18.若α是锐角,4
sin cos 3
αα+=,则sin cos αα⋅=. 三、解答题
(19题共21分)
19.(1) 60cos 30sin 45sin 2⋅+;(2)2sin 452cos 603tan 60+18︒+︒-︒; (3) 30cos 360tan 2
3
45cos 2260sin 2--+
. 20、.(本小题满分7分)在Rt △ABC 中,∠C=90°,c=20,∠A=45°根据下列条件解直角三角形;
21.(本小题满分8分)已知:在Rt △ABC 中,1
90tan 2
C A ∠==°,,
B ∠求的正弦、余弦值. 22.(本小题满分10)如图,已知4=A
C ,求AB 和BC 的长.
23.(本小题满分10分)如图,某校数学兴趣小组的同学在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为45°,向前走50米到达D 处,在D 处测得点A 的
仰角为60°,求建筑物AB 的高度.
24.(本小题满分10分)如图,一艘海轮位于灯塔P
的南偏东45°
方向,距离灯塔100海里的A 处,它计划沿正北方向航行,去往位于灯塔P 的北偏东30°方向上
的B 处.(1)B 处距离灯塔P 有多远(2)圆形暗礁区域的圆心位于PB 的延长线上,距离灯塔200海里的O 处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B 处是否有触礁的危险,并说明理由.
A
B
C
D
E A
C D B 45°
60°
九年级数学第四章锐角三角函数测试题参考答案
一、选择题:;;;;;;; 二、填空题:9.
2
3
23+;10.45︒;11.等腰三角形;12.40; 13.120,3︒;14.54,43;15.18
7;16.tan a
θ或2sin a θ.
三、解答题:
17.(1)45(2)42-2(3)6
-22.
18.(1)2(2)15
8
19.25
sin 5,cos 55
B B =
=
20.作CD ⊥AB 于点D ,在Rt△ACD 中,∵∠A =30°,∴∠ACD =90°-∠A =60°,22
1
==
AC CD ,32cos =⋅=A AC AD .
在Rt△CDB 中,∵∠DCB =∠ACB -∠ACD =45°,∴2==CD BD ,
2245sin =︒
=
CD
BC .∴322+=+=BD AD AB .
21.设建筑物AB 的高度为x 米.在Rt △ABC 中,∠ACB =45°,∴AB =BC =x .
∴BD =BC -CD =50x -.在Rt △ABD 中,∠ADB =60°,∴tan ∠ADB =AB BD
.
∴tan 6050
x x ︒=
-∴350x x =
-.∴75253x =+. ∴建筑物AB 的高度为(75253+)米. 22.(1)作PC ⊥AB 于C .(如图)
在Rt△PAC 中,∠PCA =90°,∠CPA =90°-45°=45°. ∴2cos 451005022
PC PA =⋅=⨯=.
在Rt△PCB 中,∠PCB =90°,∠PBC =30°. ∴21002PB PC ==.
答:B 处距离灯塔P 有1002海里.
(2)海轮到达B 处没有触礁的危险.
理由如下:

=-=-
OB OP PB
200
而150,
∴200200150
--.
∴50
OB>.
∴B处在圆形暗礁区域外,没有触礁的危险.。

相关文档
最新文档