北邮-概率论与随机过程-年期末试题A标准答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北邮-概率论与随机过程-年期末试题A答案

————————————————————————————————作者:————————————————————————————————日期:

2

3 北京邮电大学2009——2010学年第二学期

《概率论与随机过程》期末考试试题(A )

考试注意事项:学生必须将答题内容做在答题纸上,做在试题纸上一律无效

一. 填空 (每小题4分,共40分)

1. 若321,,A A A 相互独立,且3,2,1,)(==i p A P i i ,则321,,A A A 这3个事件至少有一个发生的概率为 )1)(1)(1(1321p p p ---- .

2. 设连续型随机变量X 的分布函数为

⎪⎩⎪⎨⎧

>+=-他其,

0;

0,)(22

x be a x F x

则b a ,分别为 1,-1 .

3. 设),(Y X 的概率密度为 )]2(1[1Φ---πe

⎩⎨

⎧>>=+-他其,

0;

0,0,),()1(y x xe y x f y x 则=>-}1{Y X P (用标准正态分布的分布函数表示). 4. 设),(Y X 的概率密度为

⎪⎩

⎪⎨⎧<<<-= ,其它 , 0,

10 ,11

),(y x x y x f

则对任意给定的)10(<

5. 设随机变量X 与Y 互相独立,且1)()(==Y D X D ,则=--)13(Y X D

4 10 .

6. 设随机变量X 与Y 相互独立,且都服从]1,0[上的均匀分布,则

Y X Z -=的分布函数⎪⎩

⎨⎧≥<≤-<=1,110,20,

0)(2z z z z z z F Z .

7. 设{(),0}W t t ≥是参数为2σ的维纳过程,)0()()(2≥+=t t t W t X ,则)(t X 的相关函数=),(t s R X 222),m in(t s t s +σ .

8. 设平稳过程)(t X 的均值为8,且)()(t X t Y '=,则)(t Y 的均值为 0 . 9. 设随机过程t Z Y t X +=)(,t ∈T =(-∞,+∞),其中Y ,Z 是相互独立的服从N (0,1)的随机变量,则∀t ,)(t X 服从 )1,0(2t N + 分布(写明参数).

10. 设马氏链},2,1,0,{Λ=n X n 的状态空间为}2,1{=E ,转移概率矩阵为

,32313132

⎪⎪⎪⎪

⎫ ⎝⎛则=∞→)(11

lim n n p 1/2 .

二.(10分)某保险公司多年的统计表明:在索赔户中被盗索赔户占20%,

以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数。(1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户,且不多于30户的概率的近似值. [附表]设)(x Φ是标准正态分布的分布函数

x

0.5 1.0 1.5 2.0 2.5 )(x Φ

0.692

0.841

0.933

0.977

0.994

解 (1))2.0,100(~b X ,即

5 {}100,,1,0)8.0()2.0(100100

Λ===-k C k X P k k k

(3分)

(2)16)(,20)(==X D X E , (3分)

927

.01)5.1()5.2()5.1()5.2(}

1620

301620162014{}3014{=-Φ+Φ=-Φ-Φ=-≤-≤-=≤≤X P X P (4分)

三.(10分)设)(t X ,)(t Y 均为平稳随机过程,+∞<<∞-t ,且相互独

立,均值都是0,相关函数分别为||)(ττ-=e R X ,ττcos 21

)(=Y R ,证明

)()()(t Y t X t Z +=是平稳过程,并求其自相关函数和谱密度。

证明:(1) 0)]([)]([)]([=+=t Y E t X E t Z E . (2分)

)()()]()([τττY X R R t Z t Z E +=+ (2分)

于是Z (t)为平稳过程. (1分) (2) 由(1)知)(t Z 的自相关函数为

τττττcos 2

1

)()()(||+=+=-e R R R Y X Z (2分)

(3)谱密度为

=

)(ωZ S )].1()1([12

)(2

++-++=

-+∞

-⎰ωδωδπωττωτ

d e R i Z (3分)

四.(10分)设线性系统的脉冲响应函数为)(3)(3t u e t h t -=,其输入平稳过

程)(t X 的自相关函数)(τX R ||42τ-=e ,求输出的平稳过程自相关函数)(τY R 及其谱密度)(ωY S .

6 解: ω

ωi H t u e t h t +=

↔=-33

)()(3)(3, (2分) ,1616

)(2

ω

ω+=

X S (2分)

(1) )

9)(16(144

)(|)(|)(2

22ωωωωω++=

=X Y S H S (3分) (2) |

|4||37

18724)(21

)(ττωτ

ωωπ

τ--+∞

--==

⎰e e d e S R i Y

Y . (3分) 五.(12分)设马氏链},2,1,0,{Λ=n X n 的状态空间为}4,3,2,1{=E , 初始分

布为)4

1

,41,41,41(,一步转移概率矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎝⎛=210

2

14121041043410

002121P , 计算 (1) }2{2=X P ; (2) }4,1,2{532===X X X P ; (3) }3|2,1{032===X X X P .

解: 二步转移概率矩阵为 ⎪⎪⎪⎪⎪

⎪⎪⎭⎫

⎝⎛==410

412

14141818316316916116308383412

)

2(P P (3分)

相关文档
最新文档