浙江省中考数学压轴题分类及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、函数及函数的应用:
4题(12+10+12+12=46分)
占压轴分19.3%
(2017•杭州)22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.
(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;
(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;
(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.
【解答】解:(1)函数y1的图象经过点(1,﹣2),得
(a+1)(﹣a)=﹣2,
解得a=﹣2,a=1,
函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;
函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,
综上所述:函数y1的表达式y=x2﹣x﹣2;
(2)当y=0时x2﹣x﹣2=0,解得x1=﹣1,x2=2,
y1的图象与x轴的交点是(﹣1,0)(2,0),
当y2=ax+b经过(﹣1,0)时,﹣a+b=0,即a=b;
当y2=ax+b经过(2,0)时,2a+b=0,即b=﹣2a;
(3)当P在对称轴的左侧时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,
由m<n,得x0<0;
当时P在对称轴的右侧时,y随x的增大而减小,
由m<n,得x0>1,
综上所述:m<n,求x0的取值范围x0<0或x0>1.
(2017•湖州)23.(10分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;
(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为
;y与t的函数关系如图所示.
①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;
②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t 为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)
解:(1)由题意,得:,
解得,
答:a的值为0.04,b的值为30;
(2)①当0≤t≤50时,设y与t的函数解析式为y=k1t+n1,
将(0,15)、(50,25)代入,得:,
解得:,
∴y与t的函数解析式为y=t+15;
当50<t≤100时,设y与t的函数解析式为y=k2t+n2,
将点(50,25)、(100,20)代入,得:,
解得:,
∴y与t的函数解析式为y=﹣t+30;
②由题意,当0≤t≤50时,
W=20000(t+15)﹣(400t+300000)=3600t,
∵3600>0,
∴当t=50时,W最大值=180000(元);
当50<t≤100时,W=(100t+15000)(﹣t+30)﹣(400t+300000)=﹣10t2+1100t+150000
=﹣10(t﹣55)2+180250,
∵﹣10<0,
∴当t=55时,W最大值=180250(元),
综上所述,放养55天时,W最大,最大值为180250元.
(2017•嘉兴、舟山)24、(12分)如图,某日的钱塘江观潮信息如表:
按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s (千米)与时间t (分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点(0,12)A ,点B 坐标为(,0)m ,曲线BC 可用二次函数2
1125
s t bt c =
++(b ,c 是常数)刻画. (1)求m 的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度02
(30)125
v v t =+
-,0v 是加速前的速度)
.
(2017·台州)23、(12分)交通工程学理论把在单向道路上行驶的汽车看成连续的液体,并用流量、速度、密度三个概念描述车流的基本特征。其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度(辆/千米)指通过道路指定断面单位长度内的车辆数,为配合大数据治堵行动,测得某路段流量q与速度v之间的部分数据如下表:[来源:学科网ZXXK]
速度v(千米/小时)…[来源:学科网] 5 10 20 32 40 48 …
流量q(辆/小时)…550 1000 1600 1792 1600 1152 …
(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是________(只需填上正确答案的序号)①②
③
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大?最大流量是多少?
(3)已知q,v,k满足,请结合(1)中选取的函数关系式继续解决下列问题:
①市交通运行监控平台显示,当时道路出现轻度拥堵,试分析当车流密度k在什么范围时,该路段出现轻度拥堵;
②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值
(1)③
(2)解:∵q=-2v2+120v=-2(v-30)2+1800.