大学物理:流体力学、液体表面现象小结
液体的表面现象
液体的表面现象液体是物质的三种状态之一,与固体和气体相比,液体具有较高的密度和较低的流动性。
由于液体的分子之间有所谓的“凝聚力”,它们表面会出现一些有趣的现象。
这些现象被称为液体的表面现象,包括表面张力、毛细现象等。
本文将对液体表面现象进行介绍。
1.表面张力表面张力是指液体表面上分子间的相互作用力,使得液体表面能够收缩成一定形状的趋势。
液体的分子间互相吸引,因此在液体内部分子间距离较小。
但是,在液体的表面,分子只能受到内部和液体外部分子的吸引力,这使得表面分子排列紧密,比内部分子间距离要小。
表面分子向内部分子受到的吸引力较大,而向表面和外部分子受到的吸引力较小。
这种不平衡的效应导致了表面分子紧密地附着在一起,形成了所谓的“表面膜”。
因此,液体的表面不趋向平坦,而是减少表面积至最小化。
表面张力是由于表面膜的存在而产生的力,其大小与表面积和表面膜的形状有关。
表面张力的单位是“牛/米(N/m)”,是指当液体表面积为1平方米时,要克服液体表面张力的力量。
2.毛细现象毛细现象是液面在物体上升降不同高度的现象。
液体在将毛细管或细小通道中上升或下降的过程中就会出现毛细现象。
液体分子会被相互吸引而塞进一个毛细管或细小通道中,当管道非常细小时,液体分子就会塞进其中,并且分子外面的表面能量就要比里面的表面能量更多。
因此,在这种情况下就会发生毛细现象。
当管道越细时,液体上升的高度将增加,这是因为表面张力使液体分子的吸引力更加强大(因为液体表面的面积越小,分子之间的吸引力就越强)。
因此,液体分子在管道内被塞进的尺寸越小,液面就会上升得更高。
3.珠形(球形液滴)形状当液体表面张力作用于液滴时,液滴的形状呈现出球形。
这是因为液体表面分子对瓶子、盘子等容器的内部不附着,但对自身和外界的不附着。
由于表面张力,液体分子会倾向于把自己塑造成一个球体,从而减少液体表面积至最小化。
无论容器是什么形状,液滴都会尽可能地缩小表面积并形成一个球形,这就是珠形的形状。
大一物理流体的运动知识点总结
大一物理流体的运动知识点总结流体力学是研究流体的力学性质和运动规律的学科,是物理学的一个重要分支。
在大一的物理学课程中,我们学习了流体力学的基本概念和运动规律。
下面是对流体的运动知识点的总结。
一、流体的基本性质流体是指能够流动的物质,包括气体和液体。
流体的特点是没有固定的形状,能够适应所处容器的形状。
流体的基本性质包括质量密度、体积密度、压强和浮力等。
1. 质量密度:流体的质量与其体积的比值,常用符号ρ表示,单位是千克/立方米。
2. 体积密度:流体的质量密度的倒数,常用符号ρ'表示,单位是立方米/千克。
3. 压强:流体受到的压力,是垂直于单位面积的力,常用符号P表示,单位是帕斯卡(Pa)。
4. 浮力:流体对物体上浸的部分所施加的向上的力,大小等于被排开的流体重量。
二、流体的运动规律1. 连续性方程:在稳恒流动的条件下,流经一个截面的流体质量速率恒定,即质量守恒定律。
2. 波依恩定律:对于一个稳恒流动的理想流体,沿任意一条流线,流体速度、压力和高度之间满足波依恩定律。
3. 压强和速度的关系:对于一个稳恒流动的理想流体,速度增大,压强减小;速度减小,压强增大。
4. 伯努利定律:对于一个稳恒流动的理想流体,沿一条流线,流体的总机械能保持不变。
5. 流体的黏性:流体黏性是指流体内部的分子间的相互作用力,黏性对流体的流动有一定的阻碍作用。
三、流体的实际应用流体力学在现实生活中有广泛的应用,例如管道输送、飞机和汽车空气动力学、水力发电等。
下面是一些流体在实际应用中的重要现象和原理。
1. 血流动力学:通过研究血液在血管中的流动规律,可以了解心脏和血管的疾病。
2. 鸟类飞行原理:通过研究空气动力学,可以分析鸟类飞行的原理,并应用于飞机设计。
3. 水力发电:利用水流的动能产生电能的过程,通过水轮机转动发电机,将水的动能转化为电能。
4. 管道输送:通过流体在管道中的流动,可以实现将液体或气体从一处运输到另一处,例如输油管道、天然气管道等。
流体力学总结
1、质点:是指大小同所有流动空间相比微不足道,又含有大量分子,具有一定质量的流体微元。
含义:宏观尺寸非常小,微观尺寸足够大,具有一定的宏观物理量,形状可以任意划定质点间无空隙。
2、连续介质假设:把流体当做是由密集质点构成的、内部无空隙的连续体。
3、相对密度:物体质量与同体积4摄氏度蒸馏水质量比4、体胀系数:压强不变时每增加单位温度时,流体体积的相对变化率(α),温度越高越大。
5、压缩率:当流体温度不变时每增加单位压强时,流体体积的相对变化率,压强越大压缩率越小压缩越难(kt)。
6、体积模量:温度不变,每单位体积变化所需压强变化量,(K),越大越难压缩。
7、不可压缩流体:体胀系数与压缩率均零的流体。
8、粘性:流体运动时内部产生切应力的性质,是流体的内摩擦特性,或者是流体阻抗剪切变形速度的特性,动力黏度μ:单位速度梯度下的切应力,运动黏度:流体的动力黏度与密度的比值。
9、速度梯度:速度沿垂直于速度方向y的变化率。
10、牛顿内摩擦定律:切应力与速度梯度成正比。
符合牛顿内摩擦定律的流体;不符合牛顿内摩擦定律的流体。
11、三大模型:连续介质模型、不可压缩模型、理想流体模型。
连续介质假设是流体力学中第一个带根本性的假设。
连续介质模型:认为液体中充满一定体积时不留任何空隙,其中没有真空,也没有分子间隙,认为液体是连续介质,由此抽象出来的便是连续介质模型。
不可压缩流体模型:在忽略液体或气体压缩性和热胀性时,认为其体积保持不变以简化分析,流体密度随压强变化很小,可视为常数的流体。
理想流体模型:连续介质模型和不可压缩模型的总和。
12、质量力与表面力之间的区别:①作用点不同质量力是作用在流体的每一个质点上表面力是作用在流体表面上;②质量力与流体的质量成正比(如为均质体与体积成正比)表面力与所取的流体的表面积成正比③质量力是非接触产生的力,是力场的作用表面力是接触产生的力13、简述气体和液体粘度随压强和温度的变化趋势及不同的原因。
《大学物理》液体的表面性质
O’
F1 dF1 2r sin
sin r
R
F1
2r2
R
pS
p 2
R
,
讨论
对于凹球液面
p - 2
任意弯曲凸液面
p
R
(
1
1
)
R1 R2
柱形凸液面 R1= R,R2→∞
p
R
凹状任意弯曲凸液面与柱液面,附加压强的值是负的。
如液面是平的,由于 R 所以 p 0
例 求球形液膜的内外压强差。
液体内部的分子要进入到
液体表面层,要克服这种
R
指向内部的合引力做功,
增加了分子的势能,即液
F
体表层内的分子比液体内
部的分子有更大的势能,
这就是表面能产生的根源.
例
。
求半径r的小油滴聚合成半径为R的大油滴所释放的
表面能。假设聚合前后油滴的表面张力系数不变。
解: 小油滴的个数为
N
4 R3
3
4 r 3
R3 r3
解 液膜有内外两个表面
设液膜内、液膜、液膜外的压强
分别为p1,p2,p3
p1
p2
2
R1
R1 O R2
p2
p3
2
R2
由于液面很薄,有 R1 R2 R
p1
p3
4
R
小液泡越来越小,大液泡会越来越大。
7.3 毛细现象
7.3.1 润湿与不润湿
接触角:
在液体和固体接触处液体表面的切面与
固体表面的切面之间的夹角
2
h
h 2 cos gr
由于接触角为钝角,所以h是负值,来自 示管内的液面比管外低。称液体湿润固体;
大学物理第9章 液体的表面现象
图9-12 气体栓塞
液体Ⅰ在液体Ⅱ的表面上伸展成薄膜的 现象称为液体Ⅱ对液体Ⅰ的表面吸附,而把 液体Ⅱ称为对液体Ⅰ的吸附剂。 一种液体在另一种液体上伸展成薄膜的 现象称为表面吸附现象。水面上的油膜是日 常很容易观察到的表面吸附现象。
9.4.1 表面吸附现象的解释
一种密度较小的液滴Ⅰ浮在另一种 密度较大的液体Ⅱ的表面上,如图9-11 所示。
对于图9-6所示球形液泡(如肥皂泡)来 说,由于液膜有两个表面,而且膜很薄,R1 ≈ R2 ≈ R 。O点在液泡外,压强为pO ;B点在 液膜中,压强为pB ;A点在液泡内,压强为 pA 。因此液泡内外的总压强差为
pS
2 2 4 pA pO ( pA pB ) ( pB pO ) R1 R2 R
或
E P S
图9-3 表面张力与表面能的关系
9.2 弯曲液面内外的压强差
9.2.1 弯曲液面的附加压强
如图9-4所示,在液面的某一部分, 任意取一块小面积元dS,dS以外的液面 对dS一定有表面张力的作用。
图9-4 弯曲液面的附加压强
图9-5 球冠形液面下的附加压强
9.2.2 液膜表面的物质
对于溶液,其表面张力系数通常都 与纯溶剂的表面张力系数有差别,有的 溶质使溶液的表面张力系数减小,则称 为表面活性物质;有的溶质表面张力系 数增大,则称为表面非活性物质。
水的表面活性物质常见的有胆盐、 蛋黄素以及有机酸、酚、醛、酮、肥皂 等。 水的表面非活性物质常见的有氯化 钠、糖类、淀粉等。
9.5 肺泡中的压强 气体栓塞
肺是进行气体交换的主要器官。左 右两肺分成若干叶。 气管被分成两支分叉,通过支气管 对每个肺叶提供空气。 每一支气管再分支约15次以上,最 后通过终末细支气管膨大成数百万个小 囊,这种小囊叫做肺泡。
流体力学知识点总结
流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。
流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。
密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。
重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。
比容是密度的倒数,它表示单位质量流体所占有的体积。
流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。
通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。
对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。
膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。
用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。
二、流体静力学流体静力学主要研究静止流体的力学规律。
静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。
2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。
流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。
作用在平面上的静水总压力可以通过压力图法或解析法来计算。
对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。
三、流体动力学流体动力学研究流体的运动规律。
连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。
对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。
伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。
其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
液体表面性质 流体力学 章节总结
液体表面性质章节总结第二章液体表面性质1.液体表面张力液体表面张力是由于与液体交界的物质种类、形态不同产生的;表面张力大小正比于相互作用的两部液面之间假想分界直线的长度f L α=,表面张力的方向垂直于假想分界直线并与液面相切。
2.液体表面张力系数的定义α∆∆===∆∆f W E L S S表面张力系数的大小与液体的种类、温度、相邻的介质及液体的纯度有关。
3.液体表面张力形成的微观机理由于处于表面层的分子其作用球内的物质种类和密度不同,造成对该分子的引力大于斥力,表面张力是众多分子引力的宏观表现。
4.附加压强球形液面的内部压强高于球面外部的压强称为附加压强2S P Rα=任意形状弯曲液面的凹进一侧压强高于突出一测的压强1211S P R R α⎛⎫=+ ⎪⎝⎭2cos h grαθρ=毛细作用还会使细小的缝隙中悬空保持一段液体;当毛细管中混进的气体成为多个气泡时,可能会阻碍液体的流动,造成栓塞。
5.毛细现象毛细现象源于液体与固体分子之间作用力不同于表面层内液体分子之间作用力,使插入液体中的半径较小的毛细管中的液面高于或低于液槽中平液面的高度流体力学章节总结第三章流体力学1.理想流体不可压缩而且无黏滞性的流体。
定常流动流速场中各点的流速只是空间坐标的函数而不随时间变化。
2.连续性原理不可压缩、稳定流动流体单位时间内通过同一流管上任一截面的流体体积或体积流量均相同,即Sv=恒量3.理想流体伯努利方程212v gh P ρρ++=恒量理想流体稳定流动过程中总比能守恒,即4.黏滞流体牛顿黏滞定律黏滞流体稳定流动时,流体内垂直于速度梯度的一定面积两侧流体之间的相互作用力S yv f ∆=d d η泊肃叶定律在长为L 、内径为R 的水平、等截面圆管中黏滞流体稳定流动时流速随半径的变化关系和体积流量分别为)(4)(2221r R Lp p r v −−=ηR p p R L p p Q '−=−=214218ηπ斯托克斯定律相对于黏滞流体以较低速度运动的小球所受到的阻力6f rvπη=在重力场中沉降的终极速度为229(')T r v g ρρη−=力学一般考察点一、质点力学:质点、描述质点运动物理量之间的关系、变力作功二、液体表面性质:表面张力现象、表面张力系数的影响因素、弯曲液面下附加压强、毛细管上升(下降)高度、小球在粘滞流体中运动规律三、流体力学:理想流体、连续性原理、伯努利方程、小孔流速力学重点考察点一、X,v.a微积分关系二、伯努利方程与连续性原理的应用。
(完整版)流体力学知识点总结汇总
流体力学知识点总结第一章 绪论1液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止 时不能承受剪应力。
2流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3流体力学的研究方法:理论、数值、实验。
4作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力. T 为A 点的剪应力Pl A应力的单位是帕斯卡(pa ), 1pa=1N/ m 2,表面力具有传递性。
(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例 重力、惯性力、uv 生力、离心力)5流体的主要物理性质(1)惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下):34°时的水1000 kg / m 3(2)粘性F Bm单位为应力_P作用于A 上的平均压应力周围流体作用 的表面力切向应力法向应力P APliPH为A 点压应力,即A 点的压强切向应力(常见的质量力:20 C 时的空气1.2kg /m 3作用于A 上的平均剪应力说明:1) 气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2) 液体 T f 门气体 T f 卩匸无黏性流体无粘性流体,是指无粘性即口 =0的液体。
无粘性液体实际上是不存在的,它只是一种对物 性简化的力学模型。
(3)压缩性和膨胀性压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。
T 一定,dp 增大,dv 减小膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。
P 一定,dT 增大,dV 增大A 液体的压缩性和膨胀性液体的压缩性用压缩系数表示 压缩系数:在一定的温度下,压强增加单位P ,液体体积的相对减小值。
dV /V1 dV dP V dP由于液体受压体积减小,dP 与dV 异号,加负号,以使K 为正值;其值愈大,愈容易压缩。
流体力学——液体表面
0 0
举例:土壤颗粒粘合
4) 球形液膜内、外压强差 如图,由于球形液膜很薄, 如图,由于球形液膜很薄,内外 膜半径近似相等, 膜半径近似相等,设A、B、C 三 、 、 点压强分别为P 点压强分别为 A 、PB 、PC ,则:
一、表面现象
液体的反常现象: 液体的反常现象: 钢针浮于水面 水管的栓塞 叶面上的露珠, 叶面上的露珠,熔化的焊球 细玻璃管取血, 细玻璃管取血,树木从土壤中吸取水分 细小液滴更容易蒸发 皆源于液体表面的力学性质—表面张力 皆源于液体表面的力学性质 表面张力
二、表面张力
1.现象: 1.现象: 现象 (1)液面有收缩到最小的趋势 液面有收缩到最小的趋势; (1)液面有收缩到最小的趋势; (2)液面像紧绷的橡皮膜具有弹性 液面像紧绷的橡皮膜具有弹性。 (2)液面像紧绷的橡皮膜具有弹性。 说明:液面上存在沿表面的收缩力作用,这种力 说明:液面上存在沿表面的收缩力作用, 只存在于液体表面。 只存在于液体表面。 2.表面张力 2.表面张力 (1)表面层 在液体与气体交界面, 表面层: (1)表面层:在液体与气体交界面,厚度等于分 子有效作用半径R 的一层液体。 子有效作用半径 (10-10m)的一层液体。 的一层液体 (2)表面张力 表面张力: (2)表面张力:液体的表面层中有一种使液面尽 可能收缩成最小的宏观张力。 可能收缩成最小的宏观张力。
df
//
ϕ
dl
r c
df
df
⊥
df = α dl
df力的方向垂直dl且与球面相切。将df分 力的方向垂直dl且与球面相切。 df分 dl且与球面相切 解为半径r 解为半径r垂直和平行的两个分力 df 与 df
大学物理液体的表面性质
F1
2r
r R
2r 2
R
PS
F1
r 2
2
R
同理:凹液面的附加压强
PS
2
R
上两式即球形液面的附加压强公式。
二、球形液面的附加压强
球形凸液面内的液体压强:
P
P0
PS
P0
2
R
球形凹液面内的液体压强:
P
P0
PS
P0
2
R
二、球形液面的附加压强
(二)拉普拉斯公式 (Laplace formula)
如果液面不是球面,可以证明,任意弯曲液面的
三、表面张力系数 (Coefficient of surface tension )
由 f L 可得
f
L
表面张力系数的物理意义:代表液体表面张力 大小性质的物理量,数值上等于单位长度线段 两侧液面相互作用的表面张力。
σ的单位:牛顿/米(N/m)。
三、表面张力系数 (Coefficient of surface tension )
实验指出,影响表面张力系数的因素有: (1)与液体的种类相关。
(2)与相邻的介质有关。
(3)与液体的温度有关。温度愈高,液体的 表面张力系数愈小。
(4)与液体的纯度有关。液体中掺入某些物 质能显著地减小表面张力系数的大小,这种 物质称为表面活性物质。
三、表面张力系数
(Coefficient of surface tension )
240页-246页
§1 液体的表面张力
一、表面张力现象 (一)表面张力现象 (二)表面张力 二、表面张力的微观解释 三、表面张力系数 四、表面张力系数的测定
一、表面张力现象
中南大学流体力学实验报告
流体力学实验报告
班级学号姓名
实验名称:流体流动观察实验
一、实验目的
通过观察流体的流动的层流,紊流和康达现象。
二、实验装置
自来水龙头、热水瓶盖;纪录设备:照相机
三、观察实验现象结果
观察康达效应:稍微打开自来水龙
头,形成细小平稳水柱,如果热水瓶盖
碰到水柱,水会沿着瓶盖的下侧往下
淌,而不是重力方向从龙头直接往下
流。
水流经瓶盖壁的时候有向瓶盖内侧
吸附的趋向
观察层流现象:稍微打开自来水龙
头使水流速较小时,可以看到一条
明显的平稳的水流
观察紊流现象:当水龙头逐渐打
开,水流速度逐渐增大,水流开
始振荡,并越来越不平稳,越来
越混乱。
四、观察结果分析
康达效应:流体有离开本来的流动方向,改为随着凸出的物体表面流动的倾向。
当流体与它流过的物体表面之间存在表面摩擦时,流体的流速会减慢。
如果平顺的流动的流体经过具有一定弯度的凸表面的时候,有向凸表面吸附的趋向。
层流与紊流:液体在运动时,存在着两种根本不同的流动状态,层流和紊流。
当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。
当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。
这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。
2012年11月30日。
表面张力与液体流体力学的研究
表面张力与液体流体力学的研究液体是日常生活中我们经常接触到的物质状态之一。
虽然看似简单,但液体中却蕴藏着丰富而复杂的物理现象。
表面张力就是液体中一种重要的现象,在液体的表面形成一层薄薄的膜,使其表面呈现高度的平整和弹性。
表面张力与液体流体力学的研究一直是科学家们关注的热点之一。
表面张力是由于分子之间的相互作用引起的。
在液体中,分子之间的吸引力使得液体的表面呈现出一种尽量减少表面面积的趋势,从而形成了表面张力。
这种力量在很多现象中起着重要的作用,例如液滴的形成和蓬松的气泡的稳定等。
对于液体的流动性质而言,表面张力对其流体力学有着深远的影响。
流体力学是一门研究流体运动和其相互作用的学科,涉及到诸如流速、压力和阻力等物理量。
研究表面张力对液体流体力学的影响,有助于我们更好地理解和探索液体的行为规律。
在液滴形成和消失的过程中,表面张力起到了至关重要的作用。
当液体流体达到平衡状态时,如果液体流动速度较低,表面张力会使得液滴形成一个球形。
而液体流动速度增大时,液滴会呈现出不规则的形状,表面张力变得难以保持原状。
这种现象在瀑布自由落下的水滴中尤为明显,水滴变得更加扁平且不规则。
此外,表面张力还可以影响到液体的蒸发速率。
在液体表面,由于表面分子吸引力的存在,液体分子获得足够的能量才能逸出到气相中。
表面张力越大,液体分子逸出需要克服更大的吸引力,因此蒸发速率会相应减慢。
这也是为什么液体中的水分子在露天环境下不易快速蒸发的原因之一。
进一步研究表面张力对液体流体力学的影响,有助于我们更好地理解液滴的运动和液体流动的行为。
对于液滴运动,我们可以通过改变表面张力来调节液滴的形状和稳定性。
例如,一些生物体表面的纹路可以降低表面张力,从而使液滴在其表面上层次分明而又积聚起来。
这种特性在植物叶片上尤为常见。
此外,在某些领域的应用中,我们可以利用表面张力的特性来改善液体流体力学。
例如,利用表面张力可以制备出自清洁材料,使其表面对水和污垢具有高度的抗性。
流体力学知识点总结
流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。
它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。
下面将对流体力学的一些重要知识点进行总结。
一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。
比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。
2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。
膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。
液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。
3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。
粘性的大小用动力粘度μ 或运动粘度ν 来表示。
牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。
4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。
表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。
二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。
2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。
3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。
4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。
真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。
5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。
6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。
大学物理液体的表面性质
gd
d l h
解:(1)分析液面与两 侧平板接触处的受力:
F1 ' F2 ' F1 cos l cos F 2 l cos
F1 ’ F2’ F2 F2” θ
Fs F1 ' F2 '
F1 F1”
GF 即 g hld 2 l cos
ps
垂直
F dF
2 r 0
s
sin dL
sin 2 r 2 2 r R
r sin R
F垂直 ps s
S很小,约为 r
2
22 r 2 来自 RrR2
2 PS (凸正,凹负) R
重点
例题1。 温度为18℃时,一滴水珠内部压 强为外部大气压的两倍。求水珠的半径 5 (大气压强 p0 1.01310 Pa )。
例题9。将两个平行板插入液体中,由于毛细现象 使两板间的液面上升。 (1)试证明两板间液面上升的高度 h 2 cos , 其中 为液体的表面张力系数,为液体的密度, θ 为接触角,d为两板间距离。 (2)设两平行板间距离为0.5mm,插入水中,求两板 间水面上升的高度是多少?设接触角是零。
f12
1 B 2
f21
A
L
2)若液面是曲面,则 Fs 与这个弯曲液面相切,指 向液面收缩趋势的方向。
F F
表面张力来源的两种解释:
第一种:表面分子所受引力的非球对称性; 第二种:液体稳定时表面具有最小表面能, 使得表面尽可能含有少量的分子,表层面 (厚度为分子引力作用半径)中的分子挤向 会液体里侧,表面收缩,从而产生表面张力;
2、表面张力系数
流体力学中的流体中的表面张力与毛细现象
流体力学中的流体中的表面张力与毛细现象流体力学是研究流体力学特性和流体行为的学科。
其中,表面张力和毛细现象是流体力学中的重要概念和现象。
本文将探讨流体中的表面张力和毛细现象,分析其原理和应用。
一、流体中的表面张力表面张力是指液体表面分子间相互吸引力所产生的张力。
在液体内部,分子之间的相互作用力是各向同性的,而在液体表面,由于缺乏相邻分子的吸引力,表面分子表现出更强的相互吸引力。
这种吸引力使得液体表面具有薄膜状的特性,形成了一个能够抵抗外界作用的弹性界面。
表面张力对流体的性质和行为有重要影响。
它是液体静力学和动力学性质的基础之一。
比如在液滴形成和液体间的分离过程中,表面张力决定了液滴的形状和液体分离所需的能量。
此外,表面张力还能够影响液体的浸润性和液体在毛细管中的行为。
二、毛细现象毛细现象是指细长管道或毛细管中液体的上升或下降现象。
这种现象是由于表面张力和容器与液体相互作用力共同作用的结果。
根据杨-卡普拉斯定律,毛细现象中液体的升降高度和毛细管半径成反比。
也就是说,当毛细管半径减小时,液体的升降高度增加。
这是因为随着毛细管半径减小,液体受到的表面张力作用力相对增大。
这种现象被广泛应用于各种仪器和设备中,比如用于测量液体压力和液位的毛细管压力计和毛细管液位计。
毛细现象还可以解释液体在多孔介质中的渗流现象。
由于毛细作用,液体能够在细小孔隙中上升,从而产生渗流。
三、表面张力和毛细现象的应用表面张力和毛细现象在工程和科学领域有着广泛的应用。
1. 在纺织工业中,通过调整纤维和液体之间的表面张力,可以实现纤维与液体的良好接触,从而使得液体均匀地分布在纤维上,提高染色和涂布效果。
2. 在植物学中,毛细现象被用于解释植物根系中水分的吸收和输送过程。
水分通过毛细现象在植物的细小细胞中向上运输,从而实现植物体内的水分循环。
3. 在医学领域,毛细现象被应用于血管和血液的研究。
毛细作用能够帮助血液在微小血管中保持正常的流动,并在组织间液体、氧气和营养物质的交换中起到重要作用。
液体的表面现象-大学物理
液膜内表面为凹液面,有
所以附加压强为 PS
PB PC
4
R
2
R
球形液泡内气体的压强为
P P0
PS
P0
4
R
例 如图所示的装置中,连通管活塞关闭,左右两端吹成一大 一小两个气泡。(假设肥皂薄膜厚度为定值)
求 如果打开连通管,气体会怎么运动?
解 由肥皂泡内外气体压强差
PA
P0
4
RA
PB
P0
4
一部分在液体表面以外,分子作用球内下部液体分
子密度大于上部;
统计平均效果所受合外力指向液体内部,因
此有向液体内部运动的趋势。
fL
当液体内部分子移动到表面层中时,就要克服上述指向液 体内部的分子引力作功,这部分功将转变为分子相互作用的势 能。所以液体表面层分子比液体内部分子的相互作用势能大。
由势能最小原则,在没有外力影响下,液体应处于表面积最 小的状态。
求 气泡内空气的压强。
ρ水= 1.0×103kg·m-3, P0
解
P P0 P Ps
P0
gh
2
R
1.013
10
5
1.0
10
3
9.8
0.3
2 72 103 0.01 10 3
=1.186×105Pa
h d
? 弯曲液面是如何形成的呢
§3.3 毛细现象
一、润湿和不润湿
润湿 是由附着层分子力引起的
不润湿
能够产生毛细现象的细管称为毛细管。
h h
1、毛细现象产生的原因
毛细现象是由于润湿或不润湿现象和液体表面张力共同作
用引起的。
如果液体对固体润湿, 则接触角为锐角。
液体的表面现象
凹液面
P外 P0
P外P内
2
R
P内 PA
P0
P0
R
r
cos
P0PA2cros
· T R · r
A
P0
A
·C ·B
h
PAP02crosP0
P BP Ag h (P 02 c ro ) sgh
PB PC P0
(P02cro)sgh P0
h 2 cos rg
精选ppt课件
19
(植物水分的输送、动物毛细血管)
使液体表面面积趋于缩小.
精选ppt课件
5
精选ppt课件
6
精选ppt课件
7
它们为什么可以 漂在水面上
精选ppt课件
8
2、表面张力:液体表面内存在的使其表面积 有收缩成最小的趋势的张力。
①、方向:与表面相切,与面内分界线垂直。
L
F ·F
②、大小:
FL
表面张力系数
精选ppt课件
9
3、液体的表面能 surface energy
表面层内的分子比液体内部的分子具有更多的势能。
表面积越大,势能越大。系统的能量有减小到最小的
趋势,所以只要有可能,表面积将减到最小。
精选ppt课件
10
• 如果要增加液体的表面积,就得作功把 液体内部分子移到表面层,从而增加了 液面的势能。
•表面能surface energy :液体表面的势能
精选ppt课件
• 能够减小溶液表面张力系数的物质,称为表面活 性物质。
• 水的表面活性物质有:胆盐、肥皂、蛋黄素等。
精选ppt课件
21
肺泡的物理现象
• 肺泡内壁附着有一层特殊的肺液,类似于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P2 )
, vm
P1 P2
4l
R2
适用条件:不可压缩,稳定层流。
⑸斯托克斯公式:
f
6vr
适用条件:小球,稳定层流。
收应尾用速:度 沉降分离与vT离心2分(离9)r 2g
第一章第二章总结
大学
一、基本内容
物理
3表面张力
1) 表面张力: f =αl 2)表面能: E S
4弯曲液面的附加压强
1)平液面:P P0
3 弯曲液面两侧存在压强差的原因是什么?
第一章第二章总结
7
大学
三、历年考题
物理
1. 当接触角 2 13.01033kPgams-3 时,表明液体不润湿固体。(
)
2 沉降法可以用于测定土壤颗粒的大小。若已
知20℃时某种土壤颗粒密度为3.0 103kg m-,3 水的
密度为 1.0 103 kg m-3,水的黏滞系数为1.0103Pa s ,
大学
一、基本内容
物理
2.粘滞流体的流动规律
⑴层流,牛顿粘滞定律 ⑵湍流
f dv S;粘度
dy
雷诺数 R vd
⑶粘滞流体的伯努利方程:
P1
1 2
v12
gh1
P2
1 2
v2 2
gh2
A21
适用条件:不可压缩,稳定层流。
第一章第二章总结
大学
一、基本内容
物理
⑷泊肃叶公式:
Q
R 4 8l
(P1
测定这种土壤颗粒在水中的收尾速度
为 2.0103ms-1 ,则该土壤颗粒的半径为
m。
2.14 105 m
vT
2 9
g
r2
3 理想流体的伯努利方程和粘滞流体的伯努利方程 都反应了能量守恒原理。( √ )
第一章第二章总结
8
大学
三、历年考题
物理
4.在水槽中插入A、B两个毛细管,半径分别为
rA 2.0 104 m rB 5.0 105 m
2)球形液面:
(1) 凸球面(如气中液滴)
:P
P0
2
R
(2)
凹球面
:P
P0
2
R
3)球形液膜:P内
P外
4
R
第一章第二章总结
大学
一、基本内容
物理
4润湿与不润湿 ⑴ , 液体润湿固体; 0 ,液体完全润湿固体。
2
⑵
, 液体不润湿固体; ,液体完全不润湿固体。
2
5毛细现象
(1)液体润湿管壁:
h 2 2 cos gR gr
完全润湿: 0, R r , h 2 2 . gR gr
(2)液体不润湿管壁: h 2 2 cos
gR
gr
完全不润湿: , R r , h 2 2 . gR gr
第一章第二章总结
大学
二、讨论
物理
1 连续性原理和伯努利方程分别是根据什么原 理推出来的?他们的适用条件是什么?
2 泊肃叶公式和斯托克斯公式的适用条件是什 么?
如图所示。已知水的表面张力系数 7.3102 N m-1
,水能完全润湿毛细管,(1)
试求两管水面的高度差?(2)
如果分别对两个毛细管从上 面施加气压,假设凹形液面
A
B
h
曲率不变,使两毛细管内液
面与水槽液面相齐,试求两
管内压强之差
第一章第二章总结
9
大学
三、历年考题
物理
解:(1)由毛细管液面上升的高度公式 h 2 cos
大学 物理
流体力学、液体表面现象 小结
第一章第二章总结
大学
一、基本内容
物理
1.理想流体的流动规律:
⑴模型:理想流体,稳定流动,流线,流管。
⑵规律:①连续性原理:S1v1=S2v2
适用条件:不可压缩流体。
②伯努利方程:
P1
1 2
v12
gh1
P2
1 2
v2 2
gh2
适用条件:理想流体,稳定流动。
第一章第二章总结
gr
,且 =0
两管水面的高度差为
2 2 h hB hA grB grA 0.22m
(2)由拉普拉斯压强公式得
p0
pA
2
rA
pB
2
rB
A
p
pB
ห้องสมุดไป่ตู้
pA
=
2
rB
2
rA
=2.19 103pa
B
h
第一章第二章总结
10