应用Matlab模拟光的夫琅禾费衍射的研究

合集下载

基于MATLAB的夫琅和费衍射实验的计算机仿真

基于MATLAB的夫琅和费衍射实验的计算机仿真
学 物 理 实 验 .0 2r)6 —6 2 0 : 46 . 4
式 中 J x是 一 阶 贝塞 尔 函 数 , 拟 时 令 f l h 6 0m, ,) ( 模 = m,= 0 n
a 0O 1 利用 MAT A = .0 m, L B编程 , 程序运行完毕后 , 依次得到 以 下图形 7 。圆孔衍射和矩孔衍射的三维 图形基本相 同, 二维 图
平 面 上 会 聚 点 Q(,) xy 的和 振 动 的 相 对 强 度 为 : I I u) Sl ) ( Q) ds (lP m r


() 1
于学生的理解 。同时通过 多种元 件的夫琅和费衍射 计算机仿
真, 能够动态直观地呈现光学衍射 中各种物 理量之间 的关 系,
有利于大学物理实验中光学部分教学的开展 。因此 , 我们应 当 充分利用计算机软件功 能为教学增添活力 ,为 学生理解复杂
Z agZ i n S uig J n e gh n YagK n L ne g Yag njn h n hf g uY l i g n cu n u iu f n gu e n a F J n Ho
(】潘 柏 根 , 施群 , 志 建 . 于 V +的 夫 琅 和 费 衍 射 仿 真 [] 5 金 刘 基 c+ J.
仪 器 仪表 用 户 ,0 O4: 66 . 2 l()6 —9
[]夏 静 , 6 陆训 毅 , 德 君 . 杨 圆孔 、 方 孔 和 双 矩 孔 夫琅 和 赞 衍 射 的
I tr ̄inN nfr n e n nen o Co ee c o M e s rn Te h lg a d M e h to is a ui g c noo y n c ar nc
Au o a i n Co f r n e o I EE: 0 — 0 . t m to , n e e c f E 9 2 9 5

实验7 衍射的Matlab模拟

实验7 衍射的Matlab模拟

实验7衍射的Matlab模拟一、实验目的:掌握衍射的matlab模拟。

二、实验内容:1)单个圆孔夫朗和费衍射的matlab模拟2)双圆孔夫朗和费衍射的matlab模拟3)同一波长,狭缝数量分别为1、2、3、6、9、10时候的夫朗和费衍射的matlab模拟4)对4个不同波长的光照射时,狭缝数量分别为1、3时候的夫朗和费衍射的matlab 模拟5)单个圆孔菲涅尔衍射的matlab模拟6)模拟圆孔(或者单缝)衍射时,衍射屏到接收屏距离不同的时候衍射的图样1)clearclclam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;hh=(2*BESSELJ(1,x)).^2./x.^2;b(:,i)=(hh)'.*5000;B=b/max(b);endimage(xs,ys,b);colormap(gray(n));figure;plot(xs,B);colormap(green);-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-3-3-2-10123x 10-300.10.20.30.40.50.60.70.80.912)%双圆孔夫琅禾费衍射clear all close all clc %lam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:m r=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;h=(2*BESSELJ(1,x)).^2./x.^2;d=10*a;deltaphi=2*pi*d*xs(i)/lam;hh=4*h*(cos(deltaphi/2))^2;b(:,i)=(hh)'.*5000;end image(xs,ys,b);colormap(gray(n));-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-33)lamda=500e-9;%波长N=[1236910];for j=1:6a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(j)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure(j);subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);plot(B1,ys,'k');end-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为2-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为3-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为9狭缝数为6-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.0254)lamda=400e-9:100e-9:700e-9;%波长N=[13];a=2e-4;D=5;d=5*a;for j=1:4ym=2*lamda(j)*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for k=1:2for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda(j);beta=pi*d*sinphi/lamda(j);B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(k)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);狭缝数为10plot(B1,ys,'k');end end-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02Lamda=400nm,N=1-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025Lamda=400nm,N=3Lamda=500nm,N=1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03Lamda=500nm,N=3Lamda=600nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04Lamda=600nm,N=3Lamda=700nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.045)clearclcN=300;r=15;a=1;b=1;I=zeros(N,N);[m,n]=meshgrid(linspace(-N/2,N/2-1,N));D=((m-a).^2+(n-b).^2).^(1/2);i=find(D<=r);I(i)=1;subplot(2,2,1);imagesc(I)colormap([000;111])axis imagetitle('衍射前的图样')L=300;M=300;[x,y]=meshgrid(linspace(-L/2,L/2,M));lamda=632.8e-6;k=2*pi/lamda;z=1000000;Lamda=700nm,N=3h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z); H=fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%圆孔频谱G=H.*B;U=fftshift(ifft2(G));Br=(U/max(U));subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)%figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U));subplot(2,2,4);plot(abs(Br))6)lamda=500e-9;%波长N=1;%缝数,可以随意更改变换a=2e-4;D=3:7;d=5*a;for j=1:5ym=2*lamda*D(j)/a;xs=ym;%屏幕上y的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D(j);alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2)plot(B1,ys,'k');end-0.4-0.200.20.4-0.015-0.01-0.00500.0050.010.01500.51-0.015-0.01-0.0050.0050.010.015D=3m-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025D=5m D=4m-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04D=7m D=6m。

夫琅禾费矩孔衍射的特征及其MATLAB模拟

夫琅禾费矩孔衍射的特征及其MATLAB模拟
对于夫琅禾费衍射实验由于受到实验课时等因素的限制即便是刚出版的大学物理实验教材也只是要求学生对夫琅禾费单逢衍射进行观测和研究而对夫琅禾费矩孔衍射实验则不做具体要求其实夫琅禾费单逢衍射只不过是矩孔衍射的特例而已对夫琅禾费矩孔衍射进行探讨和研究可加深对夫琅禾费衍射的认识和理解本文利用强大的运算及作图功能模拟夫琅禾费矩孔衍射不仅参数很容易调节模拟结果直观而且与实验观测结果也非常吻合夫琅禾费矩孔衍射实验装置夫琅禾费矩孔衍射实验装置如图所示费矩孔衍射实验的光源为单色光源实验时让平行光垂直入射到矩孔上在矩孔后置一焦距为的会聚透镜在透镜的象方焦平面上放置观测屏则在屏上会观测到夫琅禾费矩孔衍射图样夫琅禾费矩孔衍射的衍射场及其光强分布如图设波长为坐标的原点出发沿着衍射方向到达场点的光程即参考光程在积分过程中是不变的常量
##!
万方数据
蓝海江, 潘晓明, 吴建生: 夫琅禾费矩孔衍射的特征及其 %&’(&) 模拟
光强变小, 中央亮斑的面积增大! 这与 (!) 、 (") 式的结果是 一致的! ! ! ! ! ! 矩孔大小对夫琅禾费矩孔衍射的影响 在人机对话窗口中输入数据: " # # ! $ $$, % # # ! $ $$, ! # # ! ###$ $$, 则夫琅禾费矩孔衍射的 %&’(&) 模拟结果如 图 $ 所示! 何光学! ! ! ! ! - 从矩孔衍射到单缝衍射的 %&’(&) 模拟 在人机对话窗口中输入数据: " # # ! " $$, % # " $$, !# # ! ###$ $$, 夫琅禾费矩孔衍射的 %&’(&) 模拟结果如图 , 所示!
[-] 衍射是矩孔衍射的特例 !
! ! " ! ( 衍射反比律及其意义 由 ()) 式可知, ( 或 $!! 与 % 成反比) , $!# 与 $ 成反比 这一反比律具有普遍意义! 若设限制波前的光孔在某方向上 的几何线度为 #, 光波在该方向上的衍射发散角为 $!, 则衍

matlab实现夫朗和费矩形和圆孔衍射

matlab实现夫朗和费矩形和圆孔衍射

2、用MATLAB仿真平行光束的衍射强度分布图样。

(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。

)理论推导部分2.(1)夫朗和费矩形孔衍射若衍射孔为矩形则在透镜焦平面上得到的衍射图样如图,衍射图样的主要特征为衍射亮斑集中分布在两个相互垂直的方向上,并且x轴上的亮斑宽度与y轴亮斑宽度之比,恰与矩形孔在两个轴上的宽度相反。

其中的θ为θx,同样的β中的θ为θy,利用θx=x/f,θy=y/f进行求解。

(2)夫朗和费圆形孔衍射夫朗和费圆孔衍射的讨论方法和矩形孔衍射的讨论方法相同,只是由于圆孔的几何对称性,采用极坐标更为方便。

Ф=kaθ2.(1)夫朗和费矩形孔衍射clear all;lamda=500e-9;a=1e-3;b=1e-3;f=1;m=500;ym=8000*lamda*f;ys=linspace(-ym,ym,m)xs=ys;n=255;for i=1:msinth2=ys./sqrt(ys.^2+f^2);%相当于x/fsinth1=xs(i)/sqrt(xs(i).^2+f^2);%xs(i)作用每给一个ys值,要遍历到所有的x值angleA=pi*a*sinth1/lamda;%相当于书上的alfa=kax/2f k=2*pi/lamdaangleB=pi*b*sinth2./lamda;B(:,i)=(sin(angleA).^2.*sin(angleB).^2.*5000./(angleA.^2.*a ngleB.^2));%光强度公式endsubplot(1,2,1)image(xs,ys,B)colormap(gray(n))subplot(1,2,2)plot(B(m/2,:),ys)(2)夫朗和费圆孔衍射clearlam=500e-9a=1e-3f=1m=300;ym=5*0.61*lam*f/a;%取爱里光斑半径的5倍ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;%相当于r的平方sinth=sqrt(r./(r+f^2));%角度fai=2*pi*a*sinth./lam;%fai=k*a*sinthhh=(2*BESSELJ(1,fai)).^2./fai.^2;%贝塞尔函数 b(:,i)=hh.*5000;endsubplot(1,2,1)image(xs,ys,b)colormap(gray(n))subplot(1,2,2)b(:,m/2)plot(ys,b(:,m/2))。

光的干涉和衍射的matlab模拟

光的干涉和衍射的matlab模拟

光的干涉和衍射的matlab模拟单缝夫琅和费衍射是光的衍射现象之一,如图2所示。

当单色光波通过一个狭缝时,光波会向周围扩散,形成一系列同心圆环。

这些圆环的亮度分布是由夫琅和费衍射公式描述的,即。

其中为入射光波长,为狭缝宽度,为衍射角。

夫琅和费衍射公式表明,随着衍射角的增大,圆环的半径会减小,而亮度则会逐渐减弱。

在MATLAB中,可以通过输入实验参数,如光波长和狭缝宽度,来观察圆环的亮度分布和半径随衍射角的变化情况。

同时,还可以探讨不同波长和狭缝宽度对圆环亮度和半径的影响。

4双缝衍射双缝衍射是光的干涉和衍射现象的结合,如图3所示。

当一束单色光波通过两个狭缝时,光波会在屏幕上形成一系列干涉条纹和衍射环。

干涉条纹的亮度分布与___双缝干涉相同,而衍射环的亮度分布则由夫琅和费衍射公式描述。

在MATLAB中,可以通过输入实验参数,如光波长、双缝间距和双缝宽度,来观察干涉条纹和衍射环的亮度分布和条纹间距、环半径随实验参数的变化情况。

同时,还可以探讨不同实验参数对干涉条纹和衍射环的影响。

5衍射光栅衍射光栅是一种利用衍射现象制成的光学元件,如图4所示。

当一束单色光波通过光栅时,光波会被分为多个衍射光束,形成一系列亮度不同的衍射条纹。

衍射条纹的亮度分布与夫琅和费衍射公式描述的圆环类似,但是条纹间距和亮度分布会受到光栅常数的影响。

在MATLAB中,可以通过输入实验参数,如光波长和光栅常数,来观察衍射条纹的亮度分布和条纹间距随实验参数的变化情况。

同时,还可以探讨不同实验参数对衍射条纹的影响。

总之,通过MATLAB模拟光的干涉和衍射现象,可以更加直观地理解和掌握这些重要的光学现象,同时也可以为实验设计和数据分析提供有力的工具和支持。

本文介绍了___双缝干涉、单缝夫琅禾费衍射和衍射光栅光谱的计算机模拟。

当一束单色平行光通过宽度可调的狭缝,射到其后的光屏上时,形成一系列亮暗相间的条纹。

单缝夫琅禾费衍射的光强分布可以通过惠更斯-费涅耳原理计算。

应用Matlab模拟光的夫琅禾费衍射的研究

应用Matlab模拟光的夫琅禾费衍射的研究

应用Matlab模拟光的夫琅禾费衍射的研究摘要:光的衍射是一种非常重要的光的物理现象。

它指的是:光将障碍物绕过,偏离直线传播路径,然后进入阴影区里的现象。

它也是光的波动表现的一种现象。

衍射系统的组成有三个部分,它们分别是:光源、衍射屏、接收屏(用来接收衍射图样的屏幕)。

通常情况下,我们根据衍射系统当中三个组成部分之间相互距离的大小,将衍射现象分为两类:一类叫做菲涅耳(Fresnel)衍射,剩下的一类叫做夫琅禾费(Fraunhofer,)衍射。

此文通过Matlab软件,进行编程,进而对夫琅禾费衍射过程进行模拟。

然后给出衍射光强分布图形,又通过对光的波长、焦距、缝宽等因素的改变,得到了衍射光强的分布和它的变化规律,并在理论上作出了合理的解释。

从而帮助我们更深刻的理解光的波动性原理。

关键词:Matlab;衍射;光学实验目录1 绪论 (1)1.1光的衍射现象 (1)1.2 Matlab模拟的意义 (1)2 光的衍射理论 (3)2.1 惠更斯原理 (3)2.2 惠更斯——菲涅耳原理 (3)3夫琅禾费衍射原理 (4)3.1 夫琅禾费单缝衍射 (4)3.2 夫琅禾费双缝衍射 (5)4 夫琅禾费衍射模拟 (6)4.1 单缝 (6)4.2 矩孔 (12)5 总结 (15)参考文献 (15)1 绪论1.1光的衍射现象自然界之中有一些光的现象,它们与人们已经发现的光的直线传播现象并不是百分百符合。

这些现象相继在17世纪之后被科学家们发现。

这就是由光的波动性表现出来的。

在这些现象之中,人们第一个发现的光的现象便是衍射现象,而且还在发现的同时做了些实验与理论的研究和探讨。

第一次成功发现衍射现象的科学家是意大利的物理学者格里马第。

在他的一部著作里描写了这样一个实验:让光通过很小的一个孔后射入到一个暗室里面,利用这种方法来形成点光源,然后在光路上面放置根直杆。

这时发现了两个特殊的现象:一个是影子,它投在白色的屏幕之上,以光的直线传播理论假定的影子要比它的宽度要小;另一个就是在这个影子的边缘还呈现出大约2、3个条带,条带是彩色的,随着光的增强,增强到很强的时候,这些条带甚至进入影子里。

基于Matlab的光学衍射实验仿真

基于Matlab的光学衍射实验仿真

基于Matlab的光学衍射实验仿真()摘要通过Matlab软件编程,实现对矩孔夫琅和费衍射的计算机仿真,结果表明:该方法直观正确的展示了衍射这一光学现象,操作性强,仿真度高,取得了较好的仿真效果。

关键词夫琅和费衍射;Matlab;仿真1引言物理光学是高校物理学专业的必修课,其中,光的衍射既是该门课程的重点内容,也是人们研究的热点。

然而由于光学衍射部分公式繁多,规律抽象,学生对相应的光学图像和物理过程的理解有一定的困难,大大影响了教学效果。

当然,在实际中可以通过加强实验教学来改善教学效果,但是光学实验对仪器设备和人员掌握的技术水平要求都较高,同时实验中物理现象容易受外界因素的影响,这给光学教学带来了较大的困难1【-5】。

随着计算机技术的迅速发展,现代化的教育模式走进了课堂,利用计算机对光学现象进行仿真也成为一种可能。

Matlab是一款集数值分析、符号运算、图形处理、系统仿真等功能于一体的科学与工程计算软件,它具有编程效率高、简单易学、人机交互好、可视化功能、拓展性强等优点[6-8],利用Matlab编程仿真光学现象只需改变程序中的参数,就可以生成不同实验条件下的光学图像,使实验效果更为形象逼真。

在课堂教学中,能快速的验证实验理论,使学生更直观的理解理论知识,接受科学事实。

本文以矩孔夫琅和费衍射为例,介绍了Matlab在光学衍射实验仿真中的应用。

2 衍射基本原理衍射是光波在空间或物质中传播的基本方式。

实际上,光波在传播的过程中,只要光波波面受到某种限制,光波会绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象,称为光的衍射。

根据障碍物到光源和考察点的距离,把衍射现象分为两类:菲涅尔衍射和夫琅和费衍射。

研究不同孔径在不同实验条件下的光学衍射特性,对现代光学有重要的意义。

如图1所示,衍射规律可用菲涅尔衍射积分表示,其合振幅为[9]:(1)其中,K是孔径平面,E是观察平面,r是衍射孔径平面Q到观察平面P的距离,d是衍射孔径平面O到观察平面P0的距离,cosθ是倾斜因子,k=2π/λ是光波波数,λ是光波波长,x1,y1和x,y分别是孔径平面和观察平面的坐标。

基于MATLAB光学衍射之矩形孔的夫琅禾费衍射

基于MATLAB光学衍射之矩形孔的夫琅禾费衍射

MATLAB的课程报告项目名称:基于MATLAB光学衍射之矩型孔的夫琅和费衍射一,MATLAB 基础:MatlaB是功能强大的科学及工程计算软件,它不但表现具有以矩阵计算为基础的强大数学计算和分析功能,而且还具有丰富的可视化图形表现功能和方便的程序设计能力。

Matlab是一款集数值分析、符号运算、图形处理、系统仿真等功能于一体的科学与工程计算软件,它具有编程效率高、简单易学、人机交互好、可视化功能、拓展性强等优点。

MatlAB是面向21世纪的计算机程序设计及科学计算语言。

MatlAB系统包括5个部分:开发环境,MAtlAB数学函数库,MAtlAB语言,图形功能,应用程序接口。

二,光的衍射的原理:光的衍射是光波在物质或空间里传播的基本发式,实际上,光波在传播的过程中,只要光波波面受到某种限制,光波会绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象,称为光的衍射。

根据障碍物到光源和考察点的距离,把衍射现象分为两类:菲涅尔衍射和夫琅和费衍射。

此次课程报告主要是围绕夫琅和费衍射展开的。

在光学上,夫琅和费衍射在场波通过圆孔或狭缝时发生,导致观测到的成像大小有所改变,成因是观测点的远场位置,及通过圆孔向外的衍射波有渐趋平面波的性质。

1,惠更斯原理:根据惠更斯-菲涅耳原理,单缝后面空间任一点P 的光振动是单缝处波阵面上所有子波波源发出的子波传到P 点的振动的相干叠加。

2. 菲涅耳-基尔霍夫衍射公式:由于菲涅耳理论本身的缺陷,所以从波动微分方程出发,利用场论中的Green 定理及电磁场的边值条件,其中倾斜因子为()k θ和常数C 均在下面所设。

~exp()exp()cos(,)cos(,)()[]2A ikl ikr n r n l E P d i l r σλ-=∑⎰⎰ 若设 1C i λ=; ~exp()()A ikl E Q l= ;cos(,)cos(,)()2n r n l K θ-= 则上式可化为:~~exp ikr E()()()P C E Q K d θσ=∑⎰⎰()r3. 基尔霍夫衍射公式的近似 菲涅耳衍射近似满足:2222221111111121111()()11[]222x x y y xx yy x y x y r z z z z z z ⎧⎫-+-+++=+=+-+⎨⎬⎩⎭ 当上式中1z 很大而使得第四项相对相位的贡献远小于π时,即满足:221()2x y k z π+<< 随着1z 的逐渐增大,从而可推得夫琅和费衍射公式如下: ~~2211,1111111exp()(,)exp[()]()exp[()]2ikz ik ik E x y x y E x y xx yy dx dy i z z z λ=+-+∑⎰⎰以上是矩孔的矩孔夫琅和费衍射复振幅计算公式的推导过程。

夫琅禾费衍射的Matlab仿真

夫琅禾费衍射的Matlab仿真

夫琅禾费衍射的Matlab仿真110512班 11051057 李陟凌夫琅禾费衍射,是认为光源和观察屏离衍射屏(孔处于无穷远处的衍射现象。

实验装置如图:S为单色点光源,放置在透镜L1的物方焦点处,所得平行光垂直入射到障碍物,借助于透镜L2将无穷远处的衍射图样移至L2的像方焦面上观察。

若障碍物为单缝,设缝宽度为a ,观察屏上点P与透镜L2光心连线的方位角为θ,由几何成像理论,此角正好也是相应平面波分量的方位角。

若取入射光波长为λ,透镜L2的焦距为f,根据惠更斯- 菲涅耳原理,可得单缝夫琅禾费衍射强度分布公式为:I=I0sin2α2(公式1式中I0为接收屏中央的强度,α=θ2=πasinθλ。

阿贝成像原理的演示实验中提及到夫琅禾费衍射,然而没有相应的演示实验装置,由此我产生了用数学软件模拟其衍射图样的想法。

根据公式1,代入λ、a、θ等值,就可以得到接收屏每一点的光强度值,调用imagesc(函数就可以得到干涉条纹样。

但这种方法只适用于单缝等简单情况。

为了模拟较复杂的二维孔洞产生的衍射图样,我查阅了资料,得到如下的方法:设衍射屏的振幅透射系数为t(x,y,根据菲涅耳——基尔霍夫衍射积分,若观察平面到衍射屏的距离z 满足如下近似条件:则在单位振幅的相干平面光波照射下,可得衍射屏的夫琅禾费衍射光场复振幅及强度分布分别为:式中T = F[t(x,y]表示衍射屏振幅透射系数t(x,y的傅里叶变换。

上式表明,在单位振幅的相干平面光波照射下,夫琅禾费衍射光场的复振幅分布正比于衍射屏振幅透射系数的傅里叶交换;衍射光场复振幅表达式中的相位因子并不影响观察屏上衍射图样的强度分布,若略去常系数,则衍射图样的强度分布直接等于衍射屏透射光场复振幅的傅里叶变换的模值平方。

将衍射屏制作成输入图像,用imread(函数读入,然后利用傅里叶变换函数fft2(对其进行傅里叶变换,得到其傅里叶频谱。

由函数fft2(实现的傅里叶变换频谱的直流分量位于图像的左上角,而由透镜实现的光学傅里叶变换的直流分量位于图像中心。

用MATLAB语言模拟光衍射实验

用MATLAB语言模拟光衍射实验

第14卷第4期大 学 物 理 实 验 V ol.14N o.42001年12月出版PHY SIC A L EXPERI ME NT OF C O LLEGE Dec.2001收稿日期:2001-07-30文章编号:1007-2934(2001)04-0047-02用MAT LAB 语言模拟光衍射实验周 忆(安徽省科学技术培训中心,合肥,230031) 梁 齐(合肥工业大学,合肥,230009)摘 要:用M AT LAB 语言模拟编写了光衍射的模拟实验程度,给出了五种元件的夫琅和费衍射图。

关键词:衍射;模拟;M AT LAB 语言中图分类号:O4-39 文献标识码:A光的衍射现象是光具有波动性的重要特征,衍射无论在理论研究还是在大学物理教学中都占有较重要的地位。

笔者利用MAT LAB 较强的绘图和图像功能,针对多种衍射元件(单缝、双缝、光栅、矩孔、圆孔)编写了光衍射的模拟实验程序。

在计算机的模拟光的衍射,条件限制较少,对于衍射的实验教学是一种较好的补充。

程序首先根据衍射强度分布的理论公式及实验参数建立衍射相对强度的数据矩阵B (x ,y )然后利用image (B )和colormap (gray )命令绘出衍射图样。

同时,也绘制了衍射光强分布的二维或三维图。

单缝夫琅和费衍射的模拟结果见图1。

衍射光强公式为I =I 0(sin u/u )2,u =(πa sin θ/λ),a 是缝宽,λ是入射光的波长,θ是衍射角。

设观察屏位于单缝后正透镜的焦平面上,f 为透镜的焦距,x 为屏上横向坐标。

θ=arctan (x/f )。

模拟分成三组:第一组,λ=600nm ,f =600mm ,(a )a =0.20mm ;(b )a =0.10mm ;(c )a =0.05mm 第二组,a =0.10mm ,f =600mm ,(d )λ=500nm ;(e )a =600nm ;(f )λ=700nm第三组,a =0.10mm ,λ=600nm ,(g )f =300mm ;(h )f =600mm ;(i )f =900mm以下内容中,取λ=600nm ,f =600mm ,衍射图样横坐标x 和纵坐标y 的范围均为[-20,20]mm 。

基于Matlab的夫琅禾费衍射光学仿真

基于Matlab的夫琅禾费衍射光学仿真

基于Matlab的夫琅禾费衍射光学仿真摘要计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。

计算机仿真早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。

关键词:计算机仿真夫琅禾费衍射MatlabFraunhofer Diffraction Optical Simulation Based onMatlabAbstract The computer simulation technology is based on a variety of disciplines and theoretical, with the computer and the corresponding software tools, we can analyze the virtual experimentation and solve the problem of a comprehensive technology. Computer simulation of early known as the Monte Carlo method, is a random problem solved using the method of random number test.Key words:Computer simulation Fraunhofer diffraction Matlab一、引言计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。

计算机仿真早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。

根据仿真过程中所采用计算机类型的不同,计算机仿真大致经历了模拟机仿真、模拟-数字混合机仿真和数字机仿真三个大的阶段。

20世纪50年代计算机仿真主要采用模拟机;60年代后串行处理数字机逐渐应用到仿真之中。

matlab圆孔夫朗和费衍射

matlab圆孔夫朗和费衍射

MATLAB圆孔夫朗和费衍射圆孔夫朗和费衍射是物理光学领域中的两种重要现象,它们对光的传播和衍射提供了重要的理论基础。

在这篇文章中,我们将主要讨论MATLAB在模拟和分析圆孔夫朗和费衍射中的应用,介绍其原理和具体操作步骤。

一、圆孔夫朗衍射原理1. 圆孔夫朗衍射是指当平行光垂直照射到一个有圆孔的屏上时,圆孔后面的光屏上会出现明暗相间的环形条纹。

这种现象是由于光线经过圆孔后,会发生衍射和干涉的结果。

2. 根据夫朗和衍射的衍射公式,我们可以得到圆孔夫朗衍射的衍射角和衍射级数,进而求解出衍射光场的振幅和相位分布。

3. 圆孔夫朗衍射实际上是一种光学探测技术,可以用于测量光波的波长、频率和振幅等参数。

二、MATLAB模拟圆孔夫朗衍射1. 在MATLAB中,我们可以通过编写代码来模拟圆孔夫朗衍射的过程。

我们需要定义圆孔的参数,如半径、光波长等。

2. 我们可以利用波动方程和衍射公式来计算出衍射光场的振幅和相位分布。

3. 接下来,我们可以将计算得到的衍射光场显示出来,观察明暗条纹的分布情况。

4. 在模拟过程中,我们还可以改变圆孔的参数,观察不同条件下的衍射效果,从而更加深入地理解圆孔夫朗衍射的特性。

三、圆孔费衍射原理1. 圆孔费衍射是指当平行光垂直照射到一个有圆孔的屏上时,圆孔后面的光屏上会出现明暗相间的夫朗和环形条纹,其特点是中央明纹亮度大大减少而周围暗纹宽度减小。

2. 这种现象是由于光线经过圆孔后的扩散和衍射效应,导致光的传播方向发生变化,最终在屏上形成特殊的图案。

3. 圆孔费衍射可以用于光学成像、激光加工等领域,对于光学设备的设计和优化具有重要意义。

四、MATLAB模拟圆孔费衍射1. 在MATLAB中,我们同样可以通过编写代码来模拟圆孔费衍射的过程。

需要定义圆孔的参数,并计算出衍射光场的振幅和相位分布。

2. 利用MATLAB提供的图形绘制功能,我们可以将计算得到的衍射图案显示出来,观察中央明纹亮度减少和周围暗纹宽度变窄的现象。

模拟夫琅禾费衍射和菲涅耳衍射实验matlab程序

模拟夫琅禾费衍射和菲涅耳衍射实验matlab程序

模拟夫琅禾费衍射实验程序说明:本实验可以选择孔径类型、孔径半径、输入波长、衍射屏和衍射孔的距离等。

当衍射屏和衍射孔的距离相对较小时,此衍射为菲涅耳衍射,当距离相对较大时满足夫琅禾费衍射的条件,两者的程序一样,只是距离Z的大小不一致。

又由于夫琅禾费衍射与傅里叶变换成正比,只差一个系数关系。

所以程序中的衍射既是直接对物光进行傅里叶变换即可。

Matlab源程序:N=512;disp('衍射孔径类型 1.圆孔 2.单缝 3.方孔')kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型while kind~=1&kind~=2&kind~=3disp('超出选择范围,请重新输入衍射孔径类型');kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型endswitch(kind)case 1r=input('please input 衍射圆孔半径(mm):');% 输入衍射圆孔的半径I=zeros(N,N);[m,n]=meshgrid(linspace(-N/16,N/16-1,N));D=(m.^2+n.^2).^(1/2);I(find(D<=r))=1;subplot(1,2,1),imshow(I);title('生成的衍射圆孔');case 2a=input('please input 衍射缝宽:');% 输入衍射单缝的宽度b=1000;% 单缝的长度I=zeros(N,N);[m,n]=meshgrid(linspace(-N/4,N/4,N));I(-a<m&m<a&-b<n&n<b)=1;subplot(1,2,1);imshow(I);title('生成的衍射单缝');case 3a=input('please input 方孔边长:');% 输入方孔边长I=zeros(N,N);[m,n]=meshgrid(linspace(-N/4,N/4,N));I(-a/2<m&m<a/2&-a/2<n&n<a/2)=1;subplot(1,2,1),imshow(I);title('生成的方孔');otherwise kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型end% 夫琅禾费衍射的实现过程L=500;[x,y]=meshgrid(linspace(-L/2,L/2,N));lamda_1=input('please input 衍射波长(nm):');% 输入衍射波长;lamda=lamda_1/1e6k=2*pi/lamda;z=input('please input 衍射屏距离衍射孔的距离(mm):');% 衍射屏距离衍射孔的距离h=exp(1j*k*z)*exp((1j*k*(x.^2+y.^2))/(2*z))/(1j*lamda*z);%脉冲相应H =fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%孔频谱G=fftshift(ifft2(H.*B));subplot(1,2,2),imshow(log(1+abs(G)),[]);title('衍射后的图样');figuremeshz(x,y,abs(G));title('夫琅禾费衍射强度分布')实验输入:衍射孔径类型1.圆孔 2.单缝3.方孔please input 衍射孔径类型:1please input 衍射圆孔半径(mm):3please input 衍射波长(nm):632lamda =6.3200e-04please input 衍射屏距离衍射孔的距离(mm):1000000实验结果:。

基于Matlab的光学衍射实验仿真正式论文

基于Matlab的光学衍射实验仿真正式论文

基于Matlab的光学衍射实验仿真350126577qq.完整版本摘要光学试验中衍射实验是非常重要的实验. 光的衍射是指光在传播过程中遇到障碍物时能够绕过障碍物的边缘前进的现象, 光的衍射现象为光的波动说提供了有力的证据. 衍射系统一般有光源、衍射屏和接受屏组成, 按照它们相互距离的大小可将衍射分为两大类, 一类是衍射屏与光源和接受屏的距离都是无穷远时的衍射, 称为夫琅禾费衍射, 一类是衍射屏与光源或接受屏的距离为有限远时的衍射称为菲涅尔衍射。

本文用Matlab软件对典型的衍射现象建立了数学模型,对衍射光强分布进行了编程运算,对衍射实验进行了仿真。

最后创建了交互式GUI界面,用户可以通过改变输入参数模拟不同条件下的衍射条纹。

本文对于衍射概念、区别、原理及光强分布编程做了详细全面的介绍关键字:Matlab;衍射;仿真;GUI界面;光学实验Matlab-based Simulation of Optical Diffraction ExperimentAbstractOptical diffraction experiment is a very important experiment. is the diffraction of light propagation of light in the obstacles encountered in the process to bypass the obstacles when the forward edge of the phenomenon of light diffraction phenomenon of the wave theory of light provides a strong Evidence. diffraction systems generally have light, diffraction screen and accept the screen composition, size according to their distance from each other diffraction can be divided into two categories, one is the diffraction screen and the light source and the receiving screen is infinity when the distance between the diffraction Known as Fraunhofer diffraction, one is diffraction screen and the light source or accept a limited away from the screen when the diffraction is called Fresnel diffraction.In this paper, Matlab software on a typical phenomenon of a mathematical model of diffraction, the diffraction intensity distribution of the programming operation, the diffraction experiment is simulated. Finally, create an interactive GUI interface, users can change the input parameters to simulate different conditions of the diffraction pattern.This concept of the diffraction, difference, intensity distribution of programming principles and a detailed comprehensive descriptionKey word: m atlab;diffraction; simulation; gui interface; optical experiment目录1 绪论 (1)1.1光学仿真的研究意义 (1)1.2国外研究现状 (2)1.3M ATLAB仿真的优越性 (2)1.4仿真的主要容 (2)2 衍射 (3)2.1光的衍射现象 (3)2.1.1衍射定义 (3)2.1.2光的衍射现象 (3)2.2惠更斯——费涅耳原理 (6)2.2.1原理表述 (6)2.2.2原理的定量表达式 (6)2.3夫琅禾费原理 (7)2.3.1夫琅禾费衍射的装置 (8)2.3.2夫琅禾费矩孔衍射 (9)2.3.3夫琅禾费单缝衍射 (10)2.3.4夫琅禾费多缝衍射 (11)2.3.5多缝衍射图样 (12)2.4菲涅尔衍射原理 (13)2.4.1菲涅尔半波带法 (13)2.4.2菲涅尔单缝衍射 (14)2.4.3矩孔菲涅尔衍射 (15)3 夫琅禾费衍射仿真 (16)3.1夫琅禾费单缝衍射仿真 (17)3.2夫琅禾费多缝衍射仿真 (19)3.3夫琅禾费矩孔衍射仿真 (20)4 菲涅尔衍射仿真 (27)4.1菲涅尔方孔衍射仿真 (23)4.2菲涅耳单缝衍射仿真 (26)5 交互式GUI界面 (29)6 总结 (30)参考文献 (31)致 (33)毕业设计(论文)知识产权声明 (34)毕业设计(论文)独创性声明 (35)附录1(GUI编程) (36)1 绪论1.1光学仿真的研究意义在工程设计领域中,人们通过对研究对象建立模型,用计算机程序实现系统的运行过程和得到运算结果,寻找出最优方案,然后再予以物理实现,此即为计算机仿真科学。

夫琅禾费单缝衍射光强分布MATLAB分析毕业论文

夫琅禾费单缝衍射光强分布MATLAB分析毕业论文

夫琅禾费单缝衍射光强分布MATLAB分析毕业论文摘要衍射为人们所熟悉的现象,对于光的这种特殊现象在很多方面有着应用。

在光的衍射的基础上,介绍了什么是夫琅禾费衍射,几种实现夫琅禾费衍射的方法和原理及光强分布特点,以基尔霍夫积分定理为基础,利用衍射公式的近似对基尔霍夫衍射公式进行了推导,从理论上得出了夫琅禾费单缝衍射的光强公式,利用Matlab软件进行了光强分布的图样仿真,并用实验采集到的图样对理论和仿真的结论进行了验证,采用对观察屏上各点的光强进行计算的方法,对衍射条纹分析对比研究,重点研究了夫琅禾费单缝衍射光强分布以及衍射的条纹分析,计算结果与实验结果得到了很好的吻合。

关键词:夫琅禾费单缝衍射;光强分布;衍射条纹;对比分析AbstractDiffraction to people familiar with the phenomenon, the light of this unique phenomenon has applications in many areas.In the diffraction of light on the basis of what is on the Fraunhofer diffraction, the realization of several Fraunhofer diffraction methods and principles and distribution of light intensity to Kirchhoff integral theorem based on the formula used diffraction Kirchhoff diffraction similar to the formula derived from the theory that the Fraunhofer single-slit diffraction of light formula, using the Matlab software Light simulation of the design and use of the images collected on theory Simulation and the conclusions were verified by on-screen to observe the strong points of light to the method of calculation, the diffraction fringes of comparative study, focused on the Fraunhofer single-slit diffraction intensity distribution and diffraction analysis of the fringe The results with the experimental results have been very good anastomosis.Key words:Fraunhofer single-slit diffraction;light distribution;diffraction fringes ; comparative analysis目录第1章概述 (1)1.1 光的衍射 (1)1.2 研究的内容与目的 (2)第2章夫琅禾费衍射原理 (3)2.1 惠更斯—菲涅耳原理 (3)2.2 夫琅禾费衍射 (4)2.3 实现夫琅禾费衍射的几种方法 (5)2.4 菲涅耳半波带分析法 (7)2.5 夫琅禾费衍射光强图样特点 (10)2.6 本章小结 (13)第3章光强分布的推导 (14)3.1 基尔霍夫积分定理 (14)3.2 基尔霍夫衍射公式 (16)3.3 基尔霍夫衍射公式的近似 (18)3.4 夫琅禾费单缝衍射光强分布 (20)3.5 本章小结 (21)第4章条纹分析 (22)4.1 理论分析 (22)4.2 仿真分析 (24)4.3 实验分析 (27)4.4 对比分析 (30)4.5 本章小结 (31)结论 ......................................................................................... 错误!未定义书签。

基于Matlab的光学衍射实验仿真

基于Matlab的光学衍射实验仿真

基于Matlab的光学衍射实验仿真()摘要通过Matlab软件编程,实现对矩孔夫琅和费衍射的计算机仿真,结果表明:该方法直观正确的展示了衍射这一光学现象,操作性强,仿真度高,取得了较好的仿真效果。

关键词夫琅和费衍射;Matlab;仿真1引言物理光学是高校物理学专业的必修课,其中,光的衍射既是该门课程的重点内容,也是人们研究的热点。

然而由于光学衍射部分公式繁多,规律抽象,学生对相应的光学图像和物理过程的理解有一定的困难,大大影响了教学效果。

当然,在实际中可以通过加强实验教学来改善教学效果,但是光学实验对仪器设备和人员掌握的技术水平要求都较高,同时实验中物理现象容易受外界因素的影响,这给光学教学带来了较大的困难1【-5】。

随着计算机技术的迅速发展,现代化的教育模式走进了课堂,利用计算机对光学现象进行仿真也成为一种可能。

Matlab是一款集数值分析、符号运算、图形处理、系统仿真等功能于一体的科学与工程计算软件,它具有编程效率高、简单易学、人机交互好、可视化功能、拓展性强等优点[6-8],利用Matlab编程仿真光学现象只需改变程序中的参数,就可以生成不同实验条件下的光学图像,使实验效果更为形象逼真。

在课堂教学中,能快速的验证实验理论,使学生更直观的理解理论知识,接受科学事实。

本文以矩孔夫琅和费衍射为例,介绍了Matlab在光学衍射实验仿真中的应用。

2 衍射基本原理衍射是光波在空间或物质中传播的基本方式。

实际上,光波在传播的过程中,只要光波波面受到某种限制,光波会绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象,称为光的衍射。

根据障碍物到光源和考察点的距离,把衍射现象分为两类:菲涅尔衍射和夫琅和费衍射。

研究不同孔径在不同实验条件下的光学衍射特性,对现代光学有重要的意义。

如图1所示,衍射规律可用菲涅尔衍射积分表示,其合振幅为[9]:(1)其中,K是孔径平面,E是观察平面,r是衍射孔径平面Q到观察平面P的距离,d是衍射孔径平面O到观察平面P0的距离,cosθ是倾斜因子,k=2π/λ是光波波数,λ是光波波长,x1,y1和x,y分别是孔径平面和观察平面的坐标。

利用MATLAB进行夫琅和费衍射程序分享

利用MATLAB进行夫琅和费衍射程序分享

利用MATLAB进行夫琅和费衍射我已经发过相关的帖子,是我以前做过的课程论文。

近来看见有很多人回帖说需要程序,故而总结一下方法和共享程序:通过MATLAB软件编程实现夫琅和费衍射的方法:(1)用衍射积分(2)傅立叶变换一、衍射积分相关程序如下:1.单缝衍射clearlamba=500e-9;%波长a=1e-3;D=1;ym=3*lamba*D/a;%屏幕上y的范围n=51;%屏幕上的点数ys=linspace(-ym,ym,n);n=51;%屏幕上的点数yp=linspace(0,a,n);for i=1:nsinphi=ys(i)/D;alpha=pi*yp*sinphi/lamba;sumcos=sum(cos(alpha));sumsin=sum(sin(alpha));B(i,:)=(sumcos^2+sumsin^2)/n^2;endN=256;%确定灰度的等级Br=(B/max(B))*N;subplot(1,2,1)image(ym,ys,Br);colormap(gray(N));%色调处理subplot(1,2,2)plot(B,ys,'k');2.多缝衍射clearlamda=500e-9; %波长N=2; %缝数,可以随意更改变换a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;n=1001;ys=linspace(-ym,ym,n);for i=1:nsinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin (beta)).^2;B1=B/max(B);endNC=256; %确定灰度的等级Br=(B/max(B))*NC;subplot(1,2,1)image(xs,ys,Br);colormap(gray(NC)); %色调处理subplot(1,2,2)plot(B1,ys,'k');3.矩孔衍射clearlamda=500e-9;a=1e-3;b=1e-3;f=1;m=500;ym=8000*lamda*f;ys=linspace(-ym,ym,m);xs=ys;n=255;for i=1:msinth1=xs(i)/sqrt(xs(i)^2+f^2);sinth2=ys./sqrt(ys.^2+f^2);angleA=pi*a*sinth1/lamda;angleB=pi*b*sinth2./lamda;B(:,i)=(sin(angleA).^2.*sin(angleB).^2.*5000./(angleA.^2.*angleB.^2));endsubplot(1,2,1)image(xs,ys,B)colormap(gray(n))subplot(1,2,2)plot(B(m/2,:),ys,'k')4.正弦光栅clear allxm=10*pi;ys=xm;xs=linspace(-xm,xm,500);B=cos(xs)+1;N=255;Br=B/2*N;image(xs,ys,Br);colormap(gray(N));二、傅里叶变换(1)基本思想:在傅立叶变换光学中夫琅和费衍射场的强度分布就等于屏函数的功率谱。

夫琅禾费衍射matlab

夫琅禾费衍射matlab

夫琅禾费衍射matlab引言夫琅禾费衍射(Fraunhofer diffraction)是指波在通过孔径或物体边缘时发生衍射的现象。

这一现象在光学领域得到广泛应用,并在科学研究中发挥重要作用。

而Matlab作为一种强大的计算工具,可以用来模拟和分析夫琅禾费衍射现象。

本文将介绍夫琅禾费衍射的基本原理,并展示如何使用Matlab来模拟和分析这一现象。

夫琅禾费衍射的基本原理夫琅禾费衍射是一种光的衍射现象,当光通过孔径时,光的传播符合亚耳伯特衍射原理,即光波在传播过程中会发生衍射。

夫琅禾费衍射的特点是衍射波前是平行的,远离光源的点光源成为衍射光的源点。

夫琅禾费衍射可以通过光的干涉和衍射来解释。

Matlab模拟夫琅禾费衍射的基本步骤在Matlab中模拟夫琅禾费衍射的基本步骤如下:1.定义衍射光的波长和孔径的尺寸。

2.计算衍射光的传播距离和传播方向。

3.使用夫琅禾费衍射公式计算衍射场的幅度和相位分布。

4.计算衍射光的强度分布。

5.可视化衍射光的强度分布。

下面将详细介绍每个步骤的实现方法。

定义衍射光的波长和孔径的尺寸在Matlab中,可以通过定义变量来表示衍射光的波长和孔径的尺寸。

例如,可以使用lambda表示波长,使用D表示孔径的尺寸。

计算衍射光的传播距离和传播方向对于夫琅禾费衍射,衍射光的传播距离和传播方向与孔径的尺寸有关。

通常情况下,可以假设衍射光从孔径的中心点向外传播。

在Matlab中,可以使用向量来表示衍射光的传播距离和传播方向。

使用夫琅禾费衍射公式计算衍射场的幅度和相位分布夫琅禾费衍射公式可用于计算衍射场的幅度和相位分布。

幅度和相位分布可以通过求衍射光场的傅里叶变换来获得。

在Matlab中,可以使用傅里叶变换函数来计算衍射场的幅度和相位分布。

计算衍射光的强度分布夫琅禾费衍射的强度分布可以通过幅度和相位分布的平方来计算得到。

在Matlab 中,可以通过对幅度和相位分布进行平方运算来计算衍射光的强度分布。

大学物理-Matlab模拟夫琅禾费衍射

大学物理-Matlab模拟夫琅禾费衍射

Matlab 模拟夫琅禾费衍射
一、原理
衍射是光波动性的表现,当光波在遇到一定尺寸障碍物时不沿直线传播,偏离原来直线传播。

夫琅禾费衍射,是波动衍射的一种,通过圆孔或狭缝时发生,导致观测到的成像大小有所改变。

夫琅禾费衍射的原理如图1所示,一束平行光照射到衍射屏上,衍射屏开口处AB 的波前向各个方向发出次波,方向彼此相同的衍射次波经透镜L 汇聚到其像方焦平面的同一点P 上。

满足相长干涉条件的位置为亮条纹,满足相消干涉条件的位置为暗条纹,明暗条纹构成了该衍射屏的夫琅禾费衍射图样。

图1 夫琅禾费衍射原理图
1.白光单缝衍射
θ=arctan (x
f
)
光强分布 I (x )=I 0[sin (
πasin(arctan(x f
))
λ
)]2
2.白光圆孔衍射
θ=arctan (r
f
)
光强分布 I (r )=I 0[ J 1(
2πasin(arctan(r
f
))
λ
)πasin(arctan(r f
))
λ]
2
Matlab 模拟中采用等量红(700nm 绿(546.1nm )蓝(435.8nm )混合模拟,把红绿蓝三基色的衍射图样存储在m x n x 3矩阵中,按RGB 图显示产生白光的衍射。

二、代码
设透镜焦距f=800mm, a=0.04mm
图2 白光单缝衍射Matlab模拟代码图3 白光圆孔衍射Matlab模拟代码三、结果
图4 白光单缝衍射Matlab模拟结果
图5 白光圆孔衍射Matlab模拟结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用Matlab模拟光的夫琅禾费衍射的研究摘要:光的衍射是一种非常重要的光的物理现象。

它指的是:光将障碍物绕过,偏离直线传播路径,然后进入阴影区里的现象。

它也是光的波动表现的一种现象。

衍射系统的组成有三个部分,它们分别是:光源、衍射屏、接收屏(用来接收衍射图样的屏幕)。

通常情况下,我们根据衍射系统当中三个组成部分之间相互距离的大小,将衍射现象分为两类:一类叫做菲涅耳(Fresnel)衍射,剩下的一类叫做夫琅禾费(Fraunhofer,)衍射。

此文通过Matlab软件,进行编程,进而对夫琅禾费衍射过程进行模拟。

然后给出衍射光强分布图形,又通过对光的波长、焦距、缝宽等因素的改变,得到了衍射光强的分布和它的变化规律,并在理论上作出了合理的解释。

从而帮助我们更深刻的理解光的波动性原理。

关键词:Matlab;衍射;光学实验目录1 绪论 (1)1.1光的衍射现象 (1)1.2 Matlab模拟的意义 (1)2 光的衍射理论 (3)2.1 惠更斯原理 (3)2.2 惠更斯——菲涅耳原理 (3)3夫琅禾费衍射原理 (4)3.1 夫琅禾费单缝衍射 (4)3.2 夫琅禾费双缝衍射 (5)4 夫琅禾费衍射模拟 (6)4.1 单缝 (6)4.2 矩孔 (12)5 总结 (15)参考文献 (15)1 绪论1.1光的衍射现象自然界之中有一些光的现象,它们与人们已经发现的光的直线传播现象并不是百分百符合。

这些现象相继在17世纪之后被科学家们发现。

这就是由光的波动性表现出来的。

在这些现象之中,人们第一个发现的光的现象便是衍射现象,而且还在发现的同时做了些实验与理论的研究和探讨。

第一次成功发现衍射现象的科学家是意大利的物理学者格里马第。

在他的一部著作里描写了这样一个实验:让光通过很小的一个孔后射入到一个暗室里面,利用这种方法来形成点光源,然后在光路上面放置根直杆。

这时发现了两个特殊的现象:一个是影子,它投在白色的屏幕之上,以光的直线传播理论假定的影子要比它的宽度要小;另一个就是在这个影子的边缘还呈现出大约2、3个条带,条带是彩色的,随着光的增强,增强到很强的时候,这些条带甚至进入影子里。

此后,格里马第还在一个不透明的板上面挖一个圆孔,用它来代替直杆,这样就会在屏幕上就呈现一亮斑出来,然而亮斑的大小要比光线沿直线传播的时候稍微大一些。

“衍射”这个词汇就是在这个时候正式被定义到光学当中,格里马第用它来命名光线会绕过障碍物边缘的现象。

可惜的是,格里马第并没有能够正确解释这一现象。

一方面,他知道他所观察出的衍射现象与光的直线传播和光的微粒说两中当时处在统治地位的学说相矛盾;另一方面,他自己认为的观点是,光是一种稀薄而且感觉不到的光流体,在光遇到障碍物的时候,就会引起流体波动。

除此之外,有关与光的衍射的现象,胡克前辈也曾观察到。

《显微术》是一个物理光学的初始建立的标志,它就是胡克著作的。

在这本书中,写了在几何阴影中光衍射的现象。

另外一个重复衍射实验的学者是牛顿。

他的实验是仔细观察屏幕边缘、毛发影子等。

在这些实验中,他得出了这样的结论:粒子能够同物体的粒子相互作用,且在它们通过这些物体的边缘时发生倾斜。

最终,光的衍射的正式定义为:光在传播过程中,遇到障碍物或小孔(窄缝)时,它有离开直线路径绕道障碍物阴影里去的现象。

1.2 Matlab模拟的意义在工程设计的领域之中,我们在理论的分析、物理上做实验后面,观察客观世界的规律性方面又发现一种新型手段:即计算机仿真科学。

仿真程序是实现计算机仿真过程的凭借。

运行仿真模拟程序时:第一,模型要研究系统的相关特性,并且针对它们来设定出定量的参数值;第二,我们命令有关研究模型的一些变量变化,当然要在已经规定的变化范围之中;第三,计算;第四,得出这些系统通过计算求出来的各种结果、情况;第五,让参数值不断变化,然后得出相应情况下的结果。

计算机仿真程序用有很多的功能,最大的在运行情况下的功能如下:(1)计算机能够演示出来系统在运行的时候的整体过程以及此过程当中出现的各个现象、状态;(2)计算机的拥有高速运算的能力。

借助计算机的这个能力,我们能够反复的输入的实验条件、系统参数。

从而极大的提高了实验的效率。

由此可以得出,用计算机来模拟:近代制性更好(用参数的调整即可实现),完全没有破坏性(器械和事故都不会因为设计上出现不合理而损坏和发生),可以重复出现(像湿度、温度等随机因素的影响可以排除),观察性更强(在现实实验中根本没有办法观察或很难观察到的现象能够被观察到,从而节省很多耗费在实验上的物力人力),模拟可以看成是研究的基础,模拟的效果达到了一般才会去研发。

Matlab软件是目前应用最广泛的计算机仿真程序之一,它是由MATrix和LABoratory两词的前三个字母组合从而形成的。

它的寓意是:“矩阵实验室”。

Cleve Moler(新墨西哥大学计算机系主任)为讲解线性代数编写了程序,后创建Mathworks公司。

由1982年Mathworks公司推出了Matlab软件。

1984年Mathworks公司把Matlab软件正式推向市场。

从此,这个软件的内核编写用C语言,并且填加了数据图视功能。

而且C语言的本身就可以进行数值的计算。

1997年,Matlab5.0版问世,很快就是5.1、5.2以及2003年的6.5版。

Matlab发展到今天,它的数据结构和类型比以前丰富,面向对象比以前友善,图形可视比以前快速精良,数学和数据分析资源比以前广阔、应用开发工具比以前多。

Matlab是一种“高高级”语言,面向工程和科学,可以进行图形显示、数值分析、信号处理、矩阵运算,并且构成方便和界面友好的用户环境。

在求特定学科问题的方面,它还有相应的工具箱。

其特点是:可扩展性、强大的运算功能、易学易用高效性、良好的开放性、函盖广泛的专业领域——工具箱。

Matlab因其大量的特点,在研究单位、工业部门中广泛的应用与解决研究相关的工程问题。

有“第四代计算机语言”的美誉。

2 光的衍射理论2.1 惠更斯原理波面上的每一点都是一个次级球面波的子波源,如图1点光源的传输示意图所示。

因为子波的波速与频率与初级波的波速和频率相同。

所以在这以后的每一时刻当中,这个时刻总的波动的波面就构成了子波波面的包络。

它的核心的思想是:介质中任一处的波动状态是由各处的波动决定的。

惠更斯原理可以对光的直线传播、折射、反射等现象进行较好的解释。

不过,相对来说,原始的惠更斯原理就更加粗糙。

所以,它解释衍射现象还是比较困难的。

而且用惠更斯原理推倒还会出现倒退波(这个显然不存在)。

点光源的传输示意图图 12.2 惠更斯——菲涅耳原理在惠更斯原理(Huygens principle )的基础上,进一步发展,就有了惠更斯-菲涅耳原理( Huggens-Fresnel principle )。

在解释光的传播规律的光的波动理论中,惠更斯-菲涅耳原理是基本原理。

创立光的波动说的时候,荷兰物理学家克里斯蒂安·惠更斯(Christiaan Huygens )首先将它提出。

它是研究衍射现象的理论基础,也是求解波(特别是光波)的一种近似方法。

惠更斯于1678年在给巴黎科学院的信和中,阐述了他的光波动原理。

之后, 奥古斯汀-让·菲涅尔(Augustin-Jean Fresnel )于1815年,补充了惠更斯原理:加入了波的相干性(在考虑各次波到达某点的作用的时候,一起考虑次波之间的位相关系)到里面。

菲涅耳在它的基础上,添加了一些定量表示式,这些表示式是用来描述次波的基本特征(位相和振幅)的,并且加入“次波相干叠加原理”。

进一波源子波包洛 新波阵面 Rtt+τ 1s 2s r=υt步将这个原理发展成了惠更斯——菲涅耳原理。

这个原理的内容表述如下:由面积元dS发出的各次波如图所示,它的振幅和位相同时满足下面的四个假设:(1)在波动理论中,波面是一个等位相面。

所以,我们能够将所有dS面上发出的次波的初位相看作相同(并且可以假设它是零)。

(2)次波在P点引起的振动的振幅与r成反比。

(3)面元dS发出的次波,在P点的振幅于dS的面积成正比,并且与倾角θ有关。

(4)P点次波的位相,由光程nr来决定。

由于惠更斯——菲涅耳原理并不是严格的理论上的产物,在较大的程度上,它是凭科学家们朴素的直觉得到的。

而且对于倾斜因子来说,它也没有办法给出具体的函数形式。

3夫琅禾费衍射原理3.1 夫琅禾费单缝衍射在衍射角=0的情况下,因为所有的光在经历缝面AB到会聚点0时都是相同的光程,所以它们的振动是同位相的。

所以,所有的衍射线在O点所引出的振动振幅的和就是此点合振动的振幅。

因而,O点的合振动强度最大,振幅也最大。

从而,在O点呈现出明纹,因为位置在屏幕的中央,这个条纹也叫中央明纹。

我们假设会聚于屏幕上的某点P的一束衍射光,它和屏幕中心O 点的距离是x。

就光程差来说,在单缝上面的其它各点所发出的子波都小于AC.子波在其它的位置上的时候:我们来作此光过B点的同相面BC, 只是在波从AB面转到BC面的时候,产生同相面AB发出的子波到P点的光程差。

A点发出的子波比B点发出的子波多走的光程是asinθ。

单缝衍射的特点:1)主极大在屏幕上,相同θ角的地方拥有的光强相同,导致相互平行的条纹出现在屏上,成为它的衍射图样。

这些条纹平行于狭缝。

在θ=0的地方,因为没有光程差,各衍射光线相干加强,因而光强最大。

2)次级大屏上光强分布上有中央主极大,还有次级大。

次级大的位置可以通过计算来得出:,47.3,46.2,43.1ππ±±±=a (1)3)暗纹位置它满足下面关系 () ,2,1=±=k k a π (3)() ,2,1sin =±=k k a πθ (4)4)明纹角宽度由于其间明纹的角宽度是指相邻暗纹的角距离,所以中央主极大的半角3.2 夫琅禾费双缝衍射衍射利用惠更斯——菲涅耳原理。

它让光穿过矩孔或者狭缝,从而利用矩孔或者狭缝来将一个向外的波动分成很多向外的波动。

波动通过矩孔或者狭缝的时候,会被分成很多波动,然后各自分别平行行进,后面跟着的波动亦是如此。

我们把屏幕放在波动的行经路线上,就可以观测到成像条纹。

此办法应用的就是如上所述的这个原理。

由于夫琅禾费双缝衍射数学上并不复杂,实验设置可以很准确地找出入射单色光的波长,障碍物是两个相距很近的细狭缝时的夫琅和费衍射。

两个狭缝,宽度一样并且都是a ,中间隔上宽度为b 的不透光部分。

平行光照射此双缝,在L2的焦平面上可得到夫琅和费双缝衍射图样。

图样的形成机制可看为两步,首先,若两个缝分别打开,它们将分别形成单缝衍射图样,图样的形状,位置和强度都是完全相同的。

第二步,两个缝同时打开,则屏上某点P 的总振幅是每个缝形成的振幅的合成,是干涉的结果。

相关文档
最新文档