刚体绕定轴转动 力矩共17页文档

合集下载

力矩 刚体绕定轴转动定律-精品文档

力矩 刚体绕定轴转动定律-精品文档
力矩 刚体绕定轴转动定律
一、刚体绕定轴转动的力矩
z
F//
F
F对点O转动的力矩:
MO
O
Mz
y
x
r
P
F
F对定轴z转动的力矩:
M r F O r F r F //
M r F z
二、定轴转动定律
M β z J
M J Fr 2 M Fr 39 . 2 [ rad /s ]
mg T ma
Tr J
J
r
O
T
F
mg
(2)
ar
21 . 8 [ rad /s]
2
例: 均匀细直棒m 、l ,可绕轴 O 在竖直平面内转动 初始时它在水平位置 m l O 求: 它由此下摆 角时的
转动惯量与转轴有关
例: 求圆环绕中心轴旋转的转动惯量
2 解: dm 转动惯量 d JR d m
2 J R d m R d m mR 2 2 0 0 L L
dl R o
m
例: 求圆盘绕中心轴旋转的转动惯量 m 2 mr m d S 解: d 2 2πrdr 2 dr πR R dm 转动惯量 d J r2d m
M r d f df 的力矩 d
R
2 d M mgR 圆盘摩擦力矩 M 0 2 1 2d 3 mgR mR
d M

d 3 转动定律 MJ dt 3R0 t 0 3 R t d t d 0 4g g 04
2
d t
例: 一均质棒,长度为 l,现有一水平打 击力F 作用于距轴 l 处。 求: l =? 时, 轴对棒作用力的水平分量为 0。

一,刚体的定轴转动(运动)二,力矩,刚体定轴转动的转动定律,转动惯量

一,刚体的定轴转动(运动)二,力矩,刚体定轴转动的转动定律,转动惯量

二、刚体定轴转动的转动定律
~利用力矩定义+牛顿第二定律,研究刚体作定 轴转动的动力学规律。 设:oz为定轴, 为 P 刚体中任一质点 i ,其 质量为 ∆ m i。质点 iv ur 受外力 F i ,内力 F i ′ 的作用,均在与 O z 轴 相垂直的同一平面内。 ①牛顿第二定律: ur r v F i + Fi ′ = ∆ m i a i 建立自然坐标:切向、法向;
三、转动惯量 J 1.转动惯量的物理意义: 当以相同的力矩分别作用于两个绕定轴转动的不同 刚体时,它们所获得的角加速度一般是不一样的,转 动惯量大的刚体所获得的角加速度小,即角速度改变 得慢,也就是保持原有转动状态的惯性大;反之,转 动惯量小的刚体所获得的角加速度大,即角速度改变 得快,也就是保持原有转动状态的惯性小。因此,转 动惯量是描述刚体在转动中的惯性大小的物理量。 2.与转动惯量有关的因素:①刚体的质量;②转轴的 位置;③刚体的形状。 实质与转动惯量有关的只有前两个因素。形状即质量 分布,与转轴的位置结合决定转轴到每个质元的矢径。
R 3
例3、求长为L、质量为m的均匀细棒对图中不同轴的 转动惯量。 B 解:取如图坐标,dm=λdx A
J
A
=


L
0
x 2 λ dx = mL 2 / 3
A
x λ dx = mL
2 2
JC =
L 2 L − 2
L C L/2 L/2
X B X
/ 12
例4. 求质量 m ,半径 R 的球壳对直径的转动惯量 解:取离轴线距离相等的点的 集合为积分元
F i t ri + F i t′ ri = ∆ m i ri 2 α
外力矩 内力矩
③对所有质元的同样的式子求和:

第4章刚体转动

第4章刚体转动

16
长江大学物理教程
M1
外力在转动平面上对转
轴的力矩使刚体发生转动
F2
j2
F 2
F 1
r2 O r1
P2 d2 d1
P1
F1 力矩 M1 = r1 × F1 j1 大小 M1 = r1 F1 sin j1
= F1 d1 =F 1 r1
方向 MM2 = r2 × F2
M2
大小 M 2 = r2F2 sin j 2
定轴转动刚体在某时刻t 的瞬时角速度为 ,瞬
时角加速度 , 刚体中一质点P至转轴的距离为r
瞬时线速度
质点P 瞬时切向加速度 瞬时法向加速度
的大小
2019/10/31
这是定轴转动中线量与角量的基本关系
11
长江大学物理教程
质点直线运动或刚体平动 位移 速度 加速度
匀速直线运动 匀变速直线运动
刚体的定轴转动 角位移 角速度 角加速度 匀角速定轴转动 匀变角速定轴转动
2019/10/31
12
长江大学物理教程
例1 在高速旋转的微型电动机里,有一 圆柱形转子可绕垂直其横截面并通过中心的 转轴旋转.开始起动时,角速度为零.起动
后式其中转m速随5时40间r变 s化1,关系为2.:0s .求m (:1 et / )
(1)t=6 s时电动机的转速.(2)起动后,电动 机在 t=6 s时间内转过的圈数.(3)角加速度 随时间变化的规律.
优秀精品课件文档资料
长江大学物理教程
长江大学物理科学与技术学院
第四章 刚体的转动
主讲教师:喻秋山
2010~2011年第一学期
4-0 教学基本要求
一 理解描写刚体定轴转动角速度和 角加速度的物理意义,并掌握角量与线量 的关系.

力矩刚体绕定轴转动定律

力矩刚体绕定轴转动定律

3g cos
2l
d d dt d
d
3g cos d
0
0 2l
2 3g sin / l
例: 圆盘以 0 在桌面上转动,受摩擦力而静止
求: 到圆盘静止所需时间。
解: 取宽为dr的细圆环 其质量为
dm
σdS
π
m R2

rdr
dm 摩擦力 df gdm
dr r
df
df 的力矩 dM rdf
圆盘摩擦力矩 M
R
dM
2
mgR
0
3
转动定律 M J d
dM
2 mgR 1 mR2 d
3
2 dt
dt
t
0
dt
0
0
3R d 4g
t 3R0 4g
例: 一均质棒,长度为 l,现有一水平打
击力F 作用于距轴 l 处。
求: l =? 时, 轴对棒作用力的水平分量为 0。
解: 设轴对棒的水平分力为 Nx
rO
T

mg
例: 均匀细直棒m 、l ,可绕轴 O 在竖直平面内转动
初始时它在水平位置
求: 它由此下摆 角时的
解: dm 质元 dm m dx l
O
ml
dm 重力矩 dM gdm x cos
x
M
dM
1 2
mgl cos
gdm
重力对棒的合力矩等于重力全部集中于质心所产生的力矩
M
J
J 1 ml2 3
在绳端施以 F = 98 N 的拉力,不计摩擦力
求 (1) 滑轮的角加速度;
(2) 如以重量P = 98 N 的物体挂在绳端,计算滑轮 的角加速度

力矩作功与刚体绕定轴转动的动能定理

力矩作功与刚体绕定轴转动的动能定理

Ek0 0
1 mgl 1 J 2 0
2
2
m,l
o
J 1 ml 2
3
3g
mg
l
练习2、一质量 M、半径 R 圆盘绕一无摩檫 轴转动,盘上绕有轻绳,下端挂物体 m。 求:当 m 由静止下落h时速度 v ?
解:
刚体 M
N T
o
对m:
G
TP
m
v 2 mgh h
M 2m
注意和前面的方法比较!
练习3、一匀质细棒长l ,质量m,可绕通过 其端点O水平轴转动。当棒从水平位置自由释
放后,它在竖直位置上与放在地面上的物体
相撞。该物体的质量也为m ,地面的摩擦系 数为 。撞后物体沿地面滑行s后而停止。求 相撞后棒的质心C 离地面的最大高度h,并说
明棒在碰撞后将向重力外,其余内力与外力都 O
(3)
由匀减速直线运动的公式得
亦即
(4)
由(1)(2)与(4)联合求解,即得
(5)
当 >0 则棒向左摆条件: 亦即L>6s;
当0,则棒向右摆条件:
亦即L <6s
由机械能守恒定律,棒上升的最大高度:
(6)
把(5)代入上式,求得:
练习4:工程上,两飞轮常用摩擦啮合器使它们
以相同的转速一起转动。如图所示,A和B两飞
动量守恒;
动量不守恒;
角动量守恒;
角动量守恒;
机械能不守恒 .
机械能不守恒 .
圆锥摆系统 动量不守恒; 角动量守恒; 机械能守恒 .
直线运动与定轴转动规律对照
质点的直线运动
刚体的定轴转动
P126书例2 一长为 l , 质
量为m 的竿可绕支点O自由转 动.一质量为m’、速率为v

力矩 刚体定轴转动的转动定律

力矩 刚体定轴转动的转动定律

dJ R dm
2
第3章 刚体力学基础
3–2 力矩 刚体定轴转动的转动定律
12
考虑到所有质元到转轴的距离均为R,所以细圆环对 中心轴的转动惯量为
J dJ R dm R
2 m
2

m
dm mR
2
(2)求质量为m,半径为R的圆盘对中心轴的转动惯量
m 如图 dS 2 rdr , , dm dS 2 rdr 2 R
l 2
o
P
d d d d dt d dt d
代入初始条件积分 得
第3章 刚体力学基础
3g d sin d 2l 3g (1 cos ) l
1 2 J x dx ml 0 3
l 2
由此看出,同一均匀细棒,转轴位置不同,转动惯 量不同.
第3章 刚体力学基础
3–2 力矩 刚体定轴转动的转动定律
11
例3.2 设质量为m,半径为R的细圆环和均匀圆盘分 别绕通过各自中心并与圆面垂直的轴转动,求圆环和 圆盘的转动惯量. 解 (1) 在环上任 取一质元,其质量 为dm,距离为R, 则该质元对转轴的 转动惯量为
解 (1)转轴通过棒的中心并与棒垂直
m l
dm dx
dJ x 2dm x 2dx
第3章 刚体力学基础
3–2 力矩 刚体定轴转动的转动定律
10
整个棒对中心轴的转动惯量为
J dJ
l 2 l 2
1 x dx ml 2 12
2
(2)转轴通过棒一端并与棒垂直时,整个棒对该轴的 转动惯量为
解 (1) M k 2 ,故由转动定律有
k k J 即 J 2 1 k0 0 3 9J

2.91刚体的定轴转动力矩 转动定律 转动惯量

2.91刚体的定轴转动力矩 转动定律 转动惯量
Fi 0 , M i 0
M r F
d
P

F
F
Fi 0 , M i 0
F
F
2.9刚体的定轴转动定律
讨论
第二章 守恒定律
1)若力 F 不在转动平面内,把力分解为平行和垂
直于转轴方向的两个分量 其中 Fz 对转轴的力 矩为零,故 F 对转轴的 力矩
代入初始条件积分 得
3g d sind 2l
3g (1 cos ) l
考虑到
7lg 12 v0 dr g cost cos( t) dt 2 24 v0 7l
t
2.9刚体的定轴转动定律
第二章 守恒定律
例4 一长为 l 质量为 m 匀质细杆竖直放置,其 下端与一固定铰链 O 相接,并可绕其转动 . 由于此 竖直放置的细杆处于非稳定平衡状态,当其受到微小 扰动时,细杆将在重力作用下由静止开始绕铰链O 转 动 .试计算细杆转动到与竖直线成 角时的角加速度 和角速度 .
刚体定轴转动的角动量定理
第二章 守恒定律

t2
t1
Mdt J 2 J1
3 刚体定轴转动的角动量守恒定律 若M 讨论 若 J 不变, 不变;若 J 变, 也变,但 L 内力矩不改变系统的角动量.
守 恒条件
0 ,则 L J 常量
M 0
J 不变.
在冲击等问题中
L mi ri vi (
i
2 mi ri )
L J
i

ri
mi
z
2 刚体定轴转动的角动量定理 dL d( J ) M dt dt
O
vi
t1

5.2 力矩 刚体绕定轴转动微分方程

5.2 力矩 刚体绕定轴转动微分方程

M J 、 ma F M F , J m, a
两个定律在形式上对应, 都是反映瞬时效 应的。 d dv M J J F ma m dt dt (2) m反映质点的平动惯性,J 则反映刚 体的转动惯性。
大学物理 第三次修订本
7
第5章 刚体力学基础 动量矩
三、转动惯量 刚体质量不连续分布 刚体质量连续分布
O .
大小
F
方向由右螺旋法则确定。
r
θ
2
大学物理 第三次修订本
第5章 刚体力学基础 动量矩
力对定轴力矩的矢量形式
z
F//
M Z r F
方向由右螺旋法则确定。
F
r
A
F
大学物理 第三次修订本
3
第5章 刚体力学基础 动量矩
二、刚体绕定轴转动微分方程 作用在 mk上的外力 Fk ,内力 f k dvk mk Fk f k dt 在圆规迹切线方向
2
J z' 刚体绕任意轴的转动惯量;
J z 刚体绕通过质心的轴的转动惯量;
L
两轴间垂直距离。
大学物理 第三次修订本
13
第5章 刚体力学基础 动量矩
5. J 的计算 (1)按定义计算
例1求长为L质量为m 的均匀细棒对图 中不同轴的转动惯量。
解: 取如图坐标,dm = dx
A
dm B
x
L
J A x dx mL / 3
15
2
第5章 刚体力学基础 动量矩
求图所示刚体对经过棒端且与棒垂直的轴的 转动惯量如何计算?(棒长为L、圆盘半径为R)
J L1
1 2 J o mo R 2

力矩刚体绕定轴转动定律课件

力矩刚体绕定轴转动定律课件

03
力矩刚体绕定轴转动的实际应用
日常生活中的应用实例
自行车轮转动
方向盘控制
当我们在骑自行车时,脚踏板施加的 力量通过链条传递到车轮上,使车轮 发生转动。
在驾驶汽车时,我们通过转动方向盘 来控制车辆的方向,方向盘的转动就 是力矩刚体绕定轴转动的实例。
门把手转动
当我们握住门把手转动时,门被推开 或关闭,这是由于门把手施加的力矩 使门发生转动。
力矩的大小决定了刚体转动的速度,力矩 越大,刚体的角速度越快。
刚体转动惯量的概念
01
02
03
转动惯量定义
转动惯量是描述刚体转动 惯性大小的物理量,与刚 体的质量分布和转动轴的 位置有关。
计算公式
对于质量均匀分布的刚体 ,转动惯量I = (1/2) * m * r^2,其中m是质量,r 是到转动轴的距离。
实验结果分析和结论
实验结果分析
通过实验数据,分析角速度与力矩之间的关系,验证力矩刚体绕定轴转动定律 。同时,比较不同转动惯量下刚体的角速度变化,加深对转动惯量影响的理解 。
实验结论
通过实验验证,可以得出力矩刚体绕定轴转动定律的正确性。同时,实验结果 也表明转动惯量对刚体的角速度有影响,转动惯量越大,相同力矩作用下刚体 的角速度越小。
05
力矩刚体绕定轴转动定律的深入探讨
力矩刚体转动过程中的能量转换
机械能转换
力矩作用在刚体上,使刚体从静 止或匀速转动状态变为加速转动 状态,在此过程中,刚体的动能 增加,而势能保持不变。
能量守恒
力矩刚体转动过程中的能量转换 符合能量守恒定律,即输入的力 矩能量等于刚体动能的变化量。
力矩刚体转动过程中的动量守恒
工业生产中的应用实例

刚体定轴转动的转动定律

刚体定轴转动的转动定律

R
M
h
Hale Waihona Puke 解法一 用牛顿第二运动 定律及转动定律求解.分 析受力如图所示. 对物体m用牛顿第二 运动定律得 mg T ma 对匀质圆盘形滑轮用 转动定律有 TR J 物体下降的加速度的 大小就是转动时滑轮边缘 上切向加速度,所以
o R M

T
h
a
G
a R 物体m 落下h 高度时的速率为
2
3.试求质量为m 、半径为R 的匀质圆环 对垂直于平面且过中心轴的转动惯量. 解 作示意图如右,由于质 量连续分布,所以由转动 惯量的定义得
J R 2dm
m
dm
o
R

2R 0
m R dl 2R
2
mR 2
4.试求质量为m 、半径为R 的匀质圆盘 对垂直于平面且过中心轴的转动惯量. dr 解 如图所示, 由于质 量连续分布,设圆盘的 R l o r 厚度为l,则圆盘的质量 密度为 m 2 R l
r近日 r远日
v近日
解 彗星受太阳引力的作用,而引力通过了 太阳,所以对太阳的力矩为零,故彗星在运 行的过程中角动量守恒. 于是有 r近日 v近日 r远日 v远日 因为 r近日 v近日 ,r远日 v远日
r近日v近日 所以 r远日 v远日
代入数据可, 得
J r 2dm
m

R 0
1 1 4 r 2r ldr R l mR 2 2 2
2
5. 如图所示,一质 量为M 、半径为R 的匀 质圆盘形滑轮,可绕一 无摩擦的水平轴转动. 圆盘上绕有质量可不计 绳子,绳子一端固定在 滑轮上,另一端悬挂一 质量为m 的物体,问物 体由静止落下h 高度时, 物体的速率为多少?

刚体定轴转动的转动定律力矩PPT

刚体定轴转动的转动定律力矩PPT

求 θ角及着陆滑行时的速度多大?
解 引力场(有心力)
v0
系统的机械能守恒
质点的动量矩守恒
m r0
v R
OM
m 1 2m v v 0 r 00 2s iGπ n r0 M) ( 1 2 m m m vv 2 R GRMm vv0r0R sin4v0sin
sin14123RGv0M 21/2
1/2
LZ Δmiviri Δmiri2 JZ
i
i
LZJZ(所有质元对 Z 轴的动量矩之和)
2. 刚体定轴转动的动量矩定理
对定轴转动刚体,Jz 为常量。
dLZ dt
JZ
d
dt
dLZ dt
Mz
M zd t d L z d J
动量矩定理 微分形式
t1 t2M zd t 1 2d JJ2 J1(动量矩定理积分形式)
0tm1m 1m 2m 21 2 gmtr
3.2.2 刚体定轴转动的动能定理
1. 刚体定轴转动的动能
Δ m 1 ,Δ m 2 ,,Δ m k ,,Δ m N r 1 ,r 2 ,,r k ,,r N v 1 , v 2 , , v k , , v N
Δmk 的动能为
Ek 12Δmkvk212Δmkrk22
F FF Fn
2)力对点的力矩
Mo
M O r F
F
大小 M OrF sin
O . r
指向由右螺旋法则确定 力对定轴力矩的矢量形式
z
F//
F
M Z r F
(力对轴的力矩只有两个指向)
r
A
FF
2. 刚体定轴转动的转动定律
第 k个质元 F k f k m k a k

4-4 力矩的功 刚体绕定轴转动的动能定理

4-4 力矩的功 刚体绕定轴转动的动能定理

物理学
第五版
4-4
力矩的功 刚体绕定轴转动的动能定理
M 4 µg α= = 作匀加速转动) (作匀加速转动) J 3R 3ωR 由 ω = ω0 + αt 可求得 t = 4 µg 2 2 (3) 由 ω = ω0 + 2αθ 可得在 0 到 t ) 2 的时间内, 的时间内,转过的角度为 θ = 3ω R 8µg 1 驱动力矩做的功为 W = Mθ = mR 2ω 2 4
第四章 刚体的转动
13
物理学
第五版
4-4
力矩的功 刚体绕定轴转动的动能定理
解 (1) 如图取面 ) 积元ds 积元 = drdl,该面元 , 所受的摩擦力为
df
df =
µ mg
πR
2
o
r
dl dr
drdl
R
此力对点o的力矩为
rdf =
µmg
πR
2
rd r d l
刚体的转动
14
第四章
物理学
第五版
4-4
O
G
N
θ
A
l dA = mg cosθdθ 2
π
ω
A′ G
l l 2 A = ∫ dA = ∫0 mg cosθdθ = mg 2 2
第四章 刚体的转动
11
物理学
第五版
4-4 力矩的功 刚体绕定轴转动的动能定理 按力矩的功和转动动能增量的关系式得
由此得
l 1 2 mg = Jω 2 2 mgl ω= J
例, 留声机的转盘绕通过盘心垂直盘 作匀速转动. 面的轴以角速率 ω 作匀速转动.放上唱片 后,唱片将在摩擦力作用下随转盘一起转 设唱片的半径为R,质量为m, 动.设唱片的半径为 ,质量为 ,它与转 盘间的摩擦系数为 µ ,求:(1)唱片与转盘 ) 间的摩擦力矩; ) 间的摩擦力矩; (2)唱片达到角速度 ω时需 要多长时间;(3)在这段时间内,转盘的驱 要多长时间; )在这段时间内, 动力矩做了多少功? 动力矩做了多少功?

刚体定轴转动的转动定律力矩-文档资料

刚体定轴转动的转动定律力矩-文档资料

讨论 (1) 合力矩的功 2 2 2 A M d ( M )d M d A i i i 1 1 1 i i i (2) 力矩的功就是力的功。
Δmk 的动能为 1 2 1 2 2 E Δ m v Δ m r k k k k k 2 2
刚体的总动能
z

O
rk
P
vk
• Δ mk
1 2 2 1 2 2 1 2 E E Δ m r Δ m r J k kk kk 2 2 2 结论 绕定轴转动刚体的动能等于刚体对转轴的转动惯量与其 角速度平方乘积的一半
r
A
(力对轴的力矩只有两个指向)
F F
2. 刚体定轴转动的转动定律 k k
rk
fk
Fk
F f m a k k k k
在上式两边同乘以 rk 对所有质元求和
F r f r m a r m r r k k k k k k k k k k
求 (1) 飞轮的角加速度 (2) 如以重量P =98 N的物体挂在绳
端,试计算飞轮的角加速 解 (1) Fr J
Fr 98 0 . 2 2 39 . 2 rad/s J 0 . 5
mgr 2 J mr
两者区别
rO
T F
T ma (2) mg
Tr J
kk kk 2 k k
F r f r ( m r )
内力矩之和为0 转动惯量 J
刚体绕定轴转动微分方程(刚体的转动定律)
M J
与牛顿第二定律比较: M F , J m , a

3. 转动惯量 定义

刚体定轴转动定律

刚体定轴转动定律
于 180°的夹角 θ 转向 F 时,拇指所指的方向就是力矩的方向。
可见,力矩的方向与转轴的方向平行,只有两个可能的方向,因此,可用 M 的正负表示力矩的方向。 一般可按力矩的作用来判断其正负:由转轴 Oz 正向俯视,若力矩的作用使刚体逆时针转动,则力矩为 正,否则为负。
刚体定轴转动定律 1.1 力矩
可加性
• 对同一转轴而言,刚体各部分转动惯量之 和等于整个刚体的转动惯量。
平行轴定理
• 设有两个彼此平行的转轴,一个通过刚体 的质心,另一个不通过质心。两平行轴之 间的距离为d,刚体的质量为m。
如果此刚体对通过质心转轴的转动惯量为 Jc ,则对另一 转轴的转动惯量 J 为 J Jc md 2
刚体定轴转动定律
刚体定轴转动定律Βιβλιοθήκη , ,,,
例题讲解 2
如图所示,一轻绳跨过一轴承光滑的定滑轮。绳两边分别悬有质量为 m1 和 m2 的两个物体 A,B。已知 m1
小于 m2 ,滑轮可看作质量均匀分布的等厚圆盘,其质量为 m,半径为 r,设绳与滑轮间无相对滑动。求:① 物
体的加速度;② 滑轮的角加速度;③ 绳的张力。
i 1
n
用 M 表示,即 M (Δmiri2 ) β
i 1
n
n
式中的 (Δmiri2 ) 称为转动惯量,用 J 表示,即 J (Δmiri2 )
i 1
i 1
于是,式可写为 M Jβ
刚体定轴转动定律 1.2 转动定律
转动定律:刚体定轴转动时,刚体的角加速度与刚体所受的合外力矩成正比,与刚体的转动惯量 成反比。
r 2 dm
Ω
式中 r ——质元 dm 到转轴的距离(m)。 在国际单位制中,转动惯量的单位为 kg m2 。

7-31 刚体定轴转动的力矩 转动定律 转动惯量

7-31 刚体定轴转动的力矩 转动定律 转动惯量
1 2 I A ml 3
A
C l 2 l 2
m
1 2 I c ml 12
另外一些参见P224表7.1。
3、计算 I 的几条规律:
1)对同一轴 I 具有可叠加性
JC C d J m 2)平行轴定理 平行
I Ii
I Ic md
2
d --两平行轴距离
2) 平行轴定理 质量为 m 的刚体,如果对 其质心轴的转动惯量为 J C ,则 对任一与该轴平行,相距为 d 的转轴的转动惯量
3、绕一端轴,杆的转动惯量
x dx
例2、均质细圆环的转动惯量 任取线元dl , dm=dl,距离轴 r
ω m r
I r dm r
2
2
dm m r

2
例3、质量为m,半径为R 的均质圆盘的转动惯量 可看作由半径不同的圆环构成,盘面 m 单位面积的质量为
ω
R
3
0
R2
任取面元ds(离r 远处dr 宽细环)
Note: 绳中张力
例: 已知: 圆盘转动惯量I,初角速度0 阻力矩M= -k (k为正的常量) 求: 从0变为0/2所需的时间
解:转动定律: -k = Id /dt
k d 2 dt 0 0 I I ln 2 t k
t
0
[思考] 从任意值变为其一半值所需的时间?
例:
有一均质细直杆在一个粗糙的水平面上可绕一条通过其一端 的竖直轴旋转,它与平面之间的摩擦系数为m 。设杆子质量为m, 长度为 l ,其初始转速为ω 0 。试求当它的转速为原来的一半时 所用的时间。 m 解:
o
dm
l
o
´
x
dx

4-4 力矩的功 刚体绕定轴转动的动能定理

4-4 力矩的功 刚体绕定轴转动的动能定理
轴以角速率ω 作匀速转动.放上唱片后,唱片将 在摩擦力作用下随转盘一起转动.设唱片的半径 为R,质量为m,它与转盘间的摩擦系数为 ,求: (1)唱片与转盘间的摩擦力矩; (2)唱片达到角速 度 时需要多长时间; (3)在这段时间内,转盘的 ω 驱动力矩做了多少功?
4-4 力矩的功 刚体绕定轴转动的动能定理
作的总功为 二、力矩的功率
4-4 力矩的功 刚体绕定轴转动的动能定理
刚体中任一质元 的速率 该质元的动能
对所有质元的动能求和


转动惯量 J

J
4-4 力矩的功 刚体绕定轴转动的动能定理
四、刚体绕定轴转动的动能定理
回忆质点的动能定理
刚体转动的动能定理
由 力矩的元功 转动定律 则
合外力矩的功
称为
转动动能的增量
L J
2、角动量定理.
dL M dt
2015-7-12
微分形式
积分形式
t1 M dt L2 L1 t2 冲量矩 M dt
t2
t1
17
3、角动量守恒定律.
若作用于物体的合外力矩 M 0 ,则角动量守恒: L 恒矢量
对质点有: 对刚体有:
4-4 力矩的功 刚体绕定轴转动的动能定理
第一节
4-4 力矩的功 刚体绕定轴转动的动能定理
力的空间累积效应: 力的功、动能、动能定理.
力矩的空间累积效应: 力矩的功、转动动能、动能定理.
一 力矩作功
4-4 力矩的功 刚体绕定轴转动的动能定理

的元功
力对转动刚体所作的功用力矩的功来计算
若在某变力矩 的作用下,刚体由 转到 ,
o
x
dx x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档